
Vorlesung/Seminar: Modellierung dynamischer und adaptiver Systeme, Wintersemester 2018/19

Kap. 3: Modelle und Grundlagen der Modellierung

- Modellieren wozu?
- Modelle: Definitionen
- Modell und Original
- Modelle und ihre Darstellung
- Modelle als Vor- und Nachbilder
- Ansätze und Konzepte dynamischer Modellierung
- Literatur

Wozu Modellieren?

- Menschliche kreative Tätigkeit: ohne Modelle undenkbar
- Reale Welt steckt voller komplexer Zusammenhänge
- Modell erlaubt, vereinfachende, reduzierende Sicht auf einen Teil davon (das "Original") herzustellen und sich daran zu orientieren.

- Komplexe geistige Aufgaben: nur lösbar, wenn man sich nacheinander auf ausgewählte Aspekte konzentrieren kann.
- Mit Hilfe von Modellen kann man:
 - Überblick über komplexe Strukturen gewinnen,
 - Informationen und Erfahrungen sammeln,
 - Alternativen bewerten, Vergleiche anstellen, Schlüsse ziehen,
 - Entscheidungen treffen, Strategien entwickeln,
 - .. die für die Bearbeitung des Originals von Nutzen sind,
 - .. die sich an diesem selbst nicht (so leicht) vollziehen lassen.

Zum Modellbegriff: Definitionsversuche

Model: A semantically closed abstraction of a system (cf. [UML 99], Glossary)

Vorsicht: "semantically closed" ist nicht näher definiert, sehr vager "Semantik"begriff Gemeint (?): eine gewisse Kohärenz des Modells.

Model: An abstraction of a physical system with a certain purpose (cf. [UML 03], Glossary)

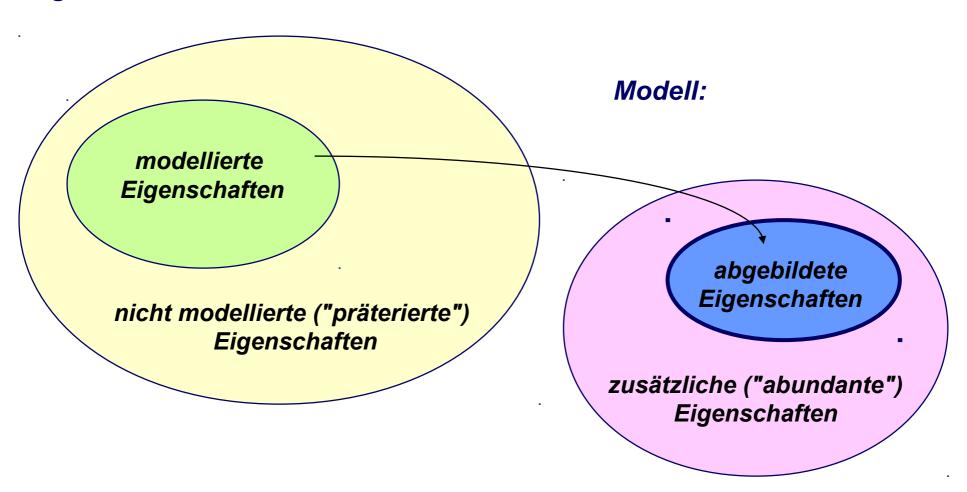
Vorsicht: Muss es immer "physical" sein? Immer ein "System"? Ist "Abstraktion" einziges Merkmal?

Modell: Idealisierte, vereinfachte, in gewisser Hinsicht ähnliche Darstellung eines Gegenstands, Systems oder sonstigen Weltausschnitts mit dem Ziel, daran bestimmte Eigenschaften des Vorbilds besser studieren zu können. (vgl. [HBB+ 94])

Achtung! "Vorbild" ist dabei *nicht zeitlich* zu verstehen. Modelle können sowohl *nach* einem Vorbild oder als Vorbild für ein zu erstellendes Produkt oder System gebildet werden (vgl.unten).

Modellbegriff / Merkmale

Herkunft des Modellbegriffs:

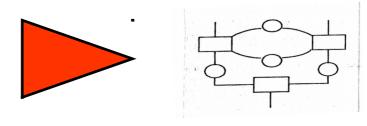

modulus (lat): Maß, Regel, Form, Muster, Vorbild

Merkmale von Modellen (n. Stachowiak [Sta 73], vgl. auch: Ludewig [Lud 02]):

- (A) Abbildungsmerkmal: Ein Modell steht immer für etwas anderes, das "Original" ohne Original kein Modell
- (R) Reduktionsmerkmal: Ein Modell weist nicht alle Eigenschaften des Originals auf, sondern nur einige und auch die möglicherweise in veränderter, "ähnlicher" Form
- (P) *Pragmatisches Merkmal:* Ein Modell hat den Zweck, unter bestimmten Bedingungen und bezüglich bestimmter Fragestellungen das Original zu ersetzen.

Original und Modell (n. Stachowiak)

Original:



System / Modell / Original

Original (System)

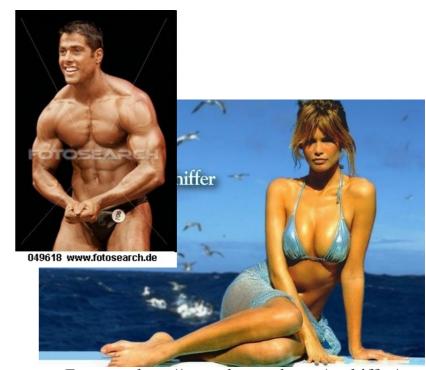
Modell

Relation O > M

- "System" ... oder besser: "Original"?
 (⇒ Stachowiak)
- "System" setzt bestimmte Eigenschaften voraus, "Original" bezeichnet dagegen eine Rolle.

- Ein "Modell" repräsentiert immer ein Original
 - als Stellvertreter
 - mit seinen abgebildeten Eigenschaften

Modell und Original


.. sind vielleicht "ähnlich", aber oft in vielerlei Hinsicht sehr unterschiedlich!

Beispiel: Person ► Photo

- Modelle betonen bestimmte Aspekte der Realität und stellen andere in den Hintergrund: ein Modell kann die Realität nie vollständig erfassen.
- Ein Modell arbeitet mit Annahmen und Vereinfachungen.
- Modelle sind häufig nicht eindeutig (in Bezug auf das modellierte Original)

Weiteres Beispiel: Landschaft ► Landkarte

- Eine Landkarte kann als Modell (= Vereinfachung) nie alle Aspekte der abgebildeten Landschaft enthalten.
- Surreales "Gegenbeispiel": *Umberto Eco: Die Karte des Reiches im Maßstab 1:1*, s. [Eco 93]

Original und Modell: Eigenschaften

Das Original existiert möglicherweise nicht in der (konkreten, materiellen)
 Realität → fiktives Original.

Beispiel:

- Ein Modell kann selbst wieder Original für ein (weiteres) Modell sein

 → Modellketten oder kaskaden, Metamodelle

 Beispiel:
- Eigenschaften des Originals finden sich entweder (möglicherweise in veränderter Form) im Modell wieder - oder werden unterdrückt ("abstrahiert") → nicht modellierte ("präterierte") Eigenschaften Beispiel:
- Eigenschaften des Modells sind entweder (möglicherweise in veränderter Form) aus dem Original abgeleitet - oder treten neu hinzu → zusätzliche ("abundante") Eigenschaften

Beispiel:

Original und Modell: Eigenschaften

Das Original existiert möglicherweise nicht in der (konkreten, materiellen)
 Realität → fiktives Original.

Beispiel: Modell der Stadt Entenhausen

Ein Modell kann selbst wieder Original für ein (weiteres) Modell sein
 → Modellketten oder - kaskaden, Metamodelle

Beispiel: UML-Metamodell (für die Kategorien von UML-Modellelementen)

 Eigenschaften des Originals finden sich entweder (möglicherweise in veränderter Form) im Modell wieder - oder werden unterdrückt ("abstrahiert") → nicht modellierte ("präterierte") Eigenschaften

Beispiel: Puppe – ähnlich, aber ohne "Fleisch und Blut"

 Eigenschaften des Modells sind entweder (möglicherweise in veränderter Form) aus dem Original abgeleitet - oder treten neu hinzu → zusätzliche ("abundante") Eigenschaften

Beispiel: Gebäudemodell aus Pappe: Klebstoff

Beispiele von Modellen

außerhalb der Informatik:
- Geographie:
- Architektur:
- Mathematik:
- Physik / Chemie:
- Biologie:
- Spielzeug:
- Mode / Unterhaltung:
in der Informatik:
_
_
-

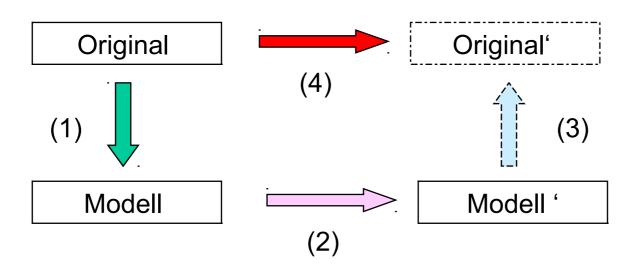
Beispiele von Modellen

außerhalb der Informatik:

- Geographie: Land-, See-, Himmelskarten
- Architektur: Blaupausen, Modelle für Gebäude u. andere Bauwerke
- Mathematik: Graphen, Verbände, Algebraische Strukturen
- Physik / Chemie: Atomium, Molekularstrukturen, chem. Elemente
- Biologie: DNS-Struktur, Doppel-Helix
- Spielzeug: Eisenbahnen, Autos, Puppenhäuser, ...
- Mode / Unterhaltung: Ersatzperson

- ...

in der Informatik:


- Daten- und Prozessmodelle, Vorgehensmodelle
- Architekturmodelle
- Analyse- und Entwurfsmuster

- ...

Modellmethode

Die Modellmethode vollzieht sich in vier Schritten:

- (1) Auswahl: Herstellung eines dem Original entsprechenden Modells
- (2) **Bearbeitung** des Modells, um neue Informationen über Original und Modell zu gewinnen (Modellversuch)
- (3) **Schluss** auf Informationen über das Original (meist Analogieschluss)
- (4) (ggf.) **Durchführung** der Aufgabe am Original.

Zum Modellbegriff: Verwandte Begriffe

System:	
Theorie:	
/ergleich, Analogie, Metapher:	
Paradigma:	
Zeichen, Symbol:	
Verkzeug:	

Zum Modellbegriff: Verwandte Begriffe

- **System:** Schwerpunkt liegt auf verallgemeinerbaren Eigenschaften (z.B. Komponenten-Struktur, Emergenz), ist i. A. kein Vor-/Nachbild.
- Theorie: stützt sich i. A. auf ein oder mehrere Modell(e), macht hypothetische Aussagen über den modellierten Bereich.
- Vergleich, Analogie, Metapher: Modell ist mehr: repräsentiert ein Original und dessen (wichtige) Eigenschaften, wird analysiert und bearbeitet.
- **Paradigma:** Denkweise, Denkschule. Kann als "Modell" (i.S.v. Beispiel, Muster) für Ableitungen dienen.
- **Zeichen, Symbol:** hat bloße Repräsentations-Funktion; Modell soll dagegen ähnlich, analysier- und bearbeitbar sein und Ableitungen ermöglichen.
- Werkzeug: Ein Modell kann (mit) als Werkzeug bei einem Projekt eingesetzt werden. Ein Werkzeug kann auf einer bestimmten Modellvorstellung aufbauen repräsentiert aber i. A. nicht selbst ein Original.

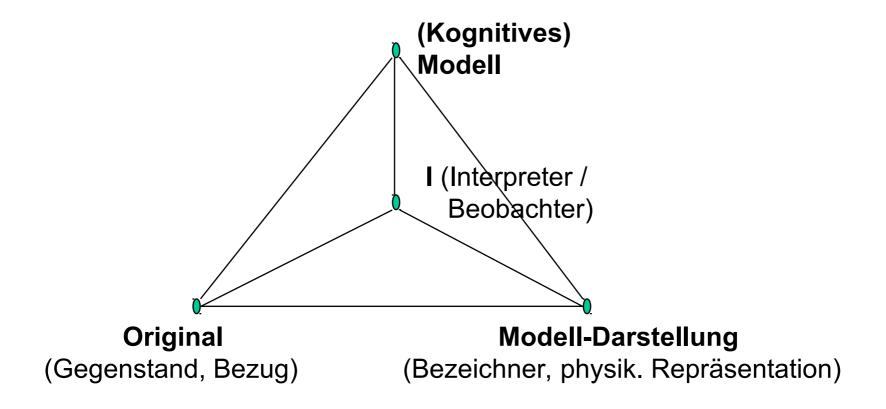
Abgrenzung des Modellbegriffs

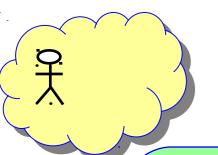
Modell vs. Darstellung

- Problem: Nicht-Unterscheidung zwischen (kognitiven) Modell und seiner Darstellung, z.B. werden Diagramme als "Modelle" bezeichnet.
- Mögliche Lösung: unterscheiden zwischen kognitiven Modell (als struktureller Vorstellung) und seiner Darstellung ("Modell-Repräsentation")

Modell vs. Sprache

Problem: Nicht-Unterscheidung zwischen Beschreibungsmittel (= Sprache)
 bzw. Beschreibungsmuster und dem, was damit beschrieben wird.


Beispiel: *Entity/Relationship (E/R-) "Modell"* – ist eine Diagrammtechnik (Sprache), mit der man *Datenmodelle* (Artefakte) herstellen kann.

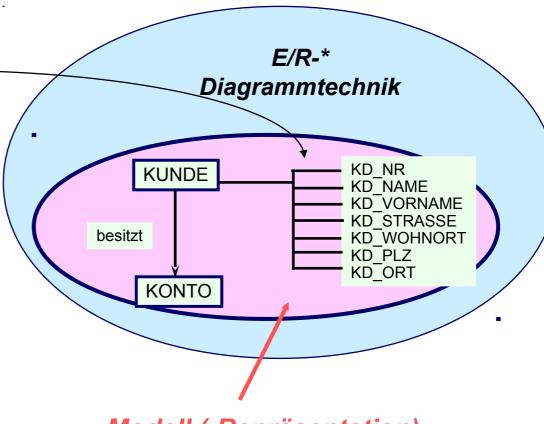

Abweichendes Verständnis in der *mathematischen Logik*:

Modell = Interpretation eines Axiomensystems, bei der alle Axiome dieses Systems wahre Aussagen darstellen.

n. Meyers Neues Lexikon (1993), zit. nach [K-K 14]

Original - Modell - Repräsentation

Modelle und ihre Darstellung


 Entität Kunde, charakterisiert durch

Attribute
 Kunden-Nr., Name,
 Vorname, Adresse,

 Entität Konto, charakterisiert durch

• ...

(Kognitives) Modell ("im Kopf des Betrachters") (Modellierungs-) Sprache

Modell (-Repräsentation)

Modellierungssprache UML

Unified Modelling Language (UML):

- entwickelt aus verschiedenen Ansätzen mit (vorwiegend) graphischen Elementen, seit 1997, Standard der OMG (Object Management Group)
- gestattet Darstellung mittels verschiedener Sichten, u.a. ...

(a) für die statische Systemstruktur:

Klassen-/Objekt-Diagramme (Class/Object diagram)

(b) für das *dynamische* Verhalten:

- Anwendungsfall-Diagramme (Use Case diagram)
- Interaktions- / Sequenzdiagramme (Interaction / Sequence diagram)
- Zustandsdiagramme (State diagram)
- Aktivitäts-Diagramme (Activity diagram)

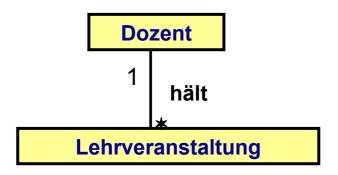
(c) für die System-Umsetzung:

Komponenten-/ Verteilungs-Diagramme (Component /Deployment diagram)

val.: https://de.wikipedia.org/wiki/Unified Modeling Language

Beispiel eines UML-Klassendiagramms

Klassen-Bezeichner


Attribut-Bezeichner: Typ

Operations-Bezeichner

Pers_Nr: Integer
Titel: String
Name: String
Vorname: String
Adresse: String
FB-Nr: Integer
Anlegen
Adresse_aendern
Löschen

Assoziation (mit Bezeichner, Richtung und Kardinalität)

Kurzform:

Lehrveranstaltung

Vorl_Nr: Integer

hält >

Titel: String

*

Dozent: Angestellter Assistent: Angestellter

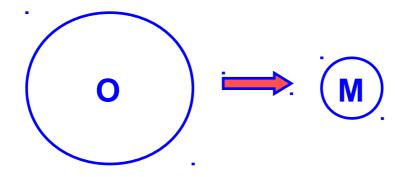
Beginn: Datum


Wo_Stunden: Integer

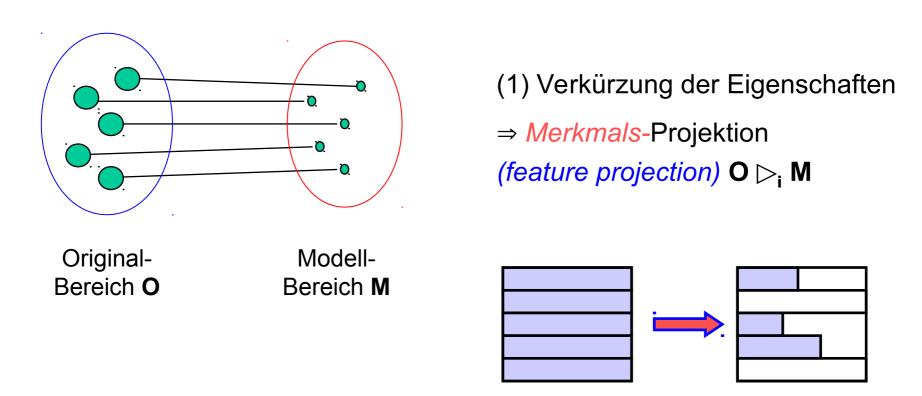
Anlegen

Doz aendern

Löschen

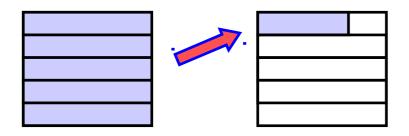

Klassen und Klassenbeziehungen (Zusammenfassung)

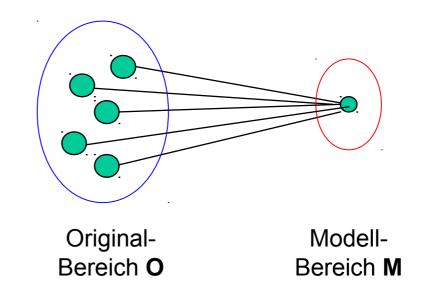
Nähere Charakterisierung der Original-Modell-Relation


Vom Original wird "abstrahiert". Was bedeutet das genau?

- Weglassen: Modell enthält weniger Details als Original
- Verkleinern: Modell ist "kleiner" als Original
- Übertragen: Modell befindet sich in einem anderen Bereich als das Original
- Wesentlicher Bestandteil der Abstraktion: Projektion

Arten von Projektion

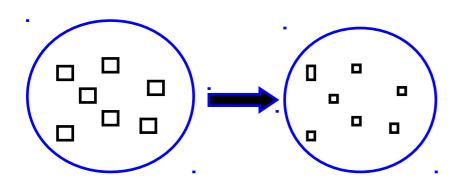

- Projektion kann in zweierlei Hinsicht erfolgen:



Beispiel: Städte in Landkarte

Stellvertreter-Projektion

- (2) Repräsentation einer Menge von Elementen durch einen Platzhalter
- ⇒ Stellvertreter-Projektion
 (placeholder projection) O ▷, M

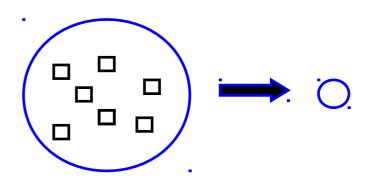


Beispiele: (1) Wähler und Wahlkreise / Abgeordnete

(2) (statistische) Balken- / Kreisdiagramme – 1 Balken oder Kreis steht (mit seiner Größe) für eine Menge von Gegenständen / Personen etc.

Token- vs. Typ-Modelle

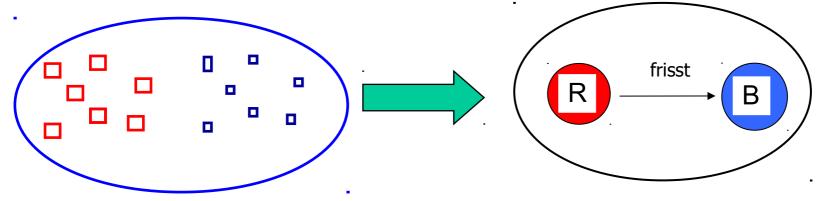
- Zweierlei Projektion führt zu zweierlei Arten von Modellen:

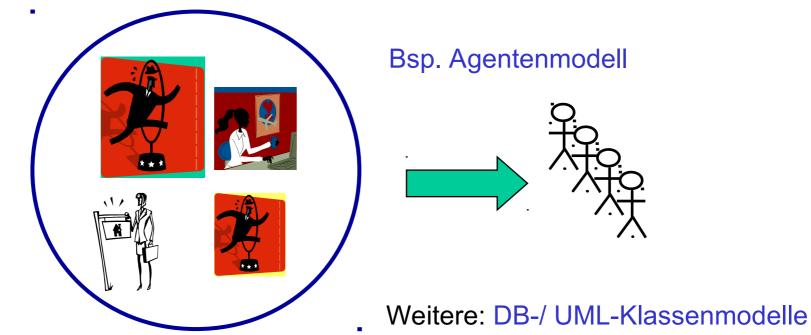

(1) Token-Modelle O ⊳_i M

- abgeleitet von feature projection
- Anzahl der *Exemplare* bleibt *gleich*
- Anzahl und Details der Attribute werden reduziert

(2) Typ-Modelle O ⊳_t M

- abgeleitet von placeholder projection
- Anzahl der Exemplare wird auf 1
 Stellvertreter reduziert


Alternative Notation: **O** ► **M**



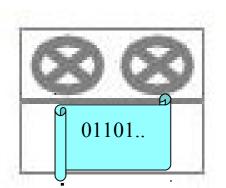
Beispiele?

Token- vs. Typ-Modelle: Beispiele

Bsp. Räuber-Beute-Modell

Unterscheidungen von Modellen

- nach **Zweck**:


- . Deskriptive (Abbild-) / präskriptive (Vorbild-) / transiente Modelle
- . Experimentelle, explorative Modelle
- . Idealisierende / Vorhersage-/ Erklärungs-Modelle
- . Kausale Modelle
- . *Prognostische* (--> Prototypen, Simulationen)
- . Konstitutive Modelle
- . Dokumentations- Modelle,
- . Lehr- und Spielmodelle

Deskriptive vs. präskriptive Modelle

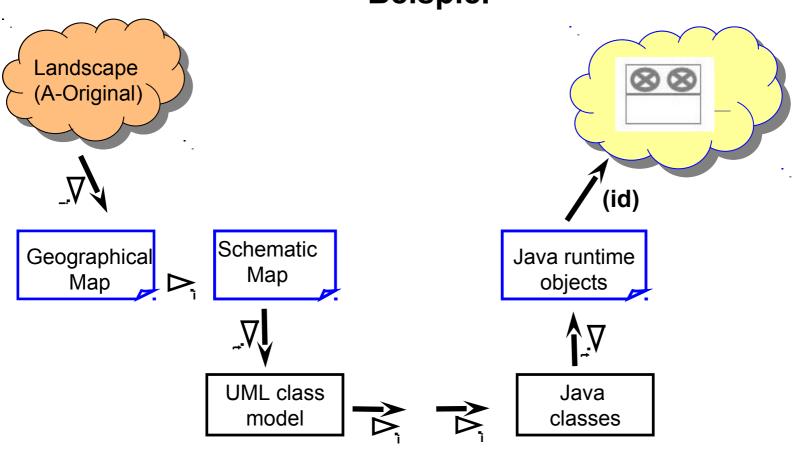
Anwendung (Original 1)

Software-System (Original 2)

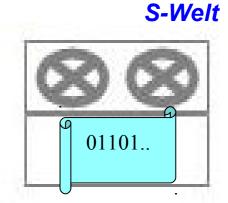
Modell

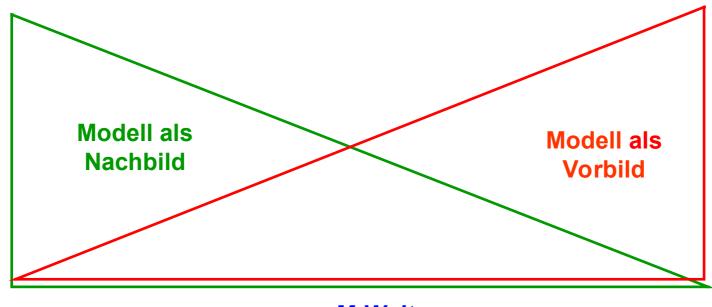
Janus schaut in beide Richtungen!

Modell als Nachbild:


A ► M

Modell als Vorbild:

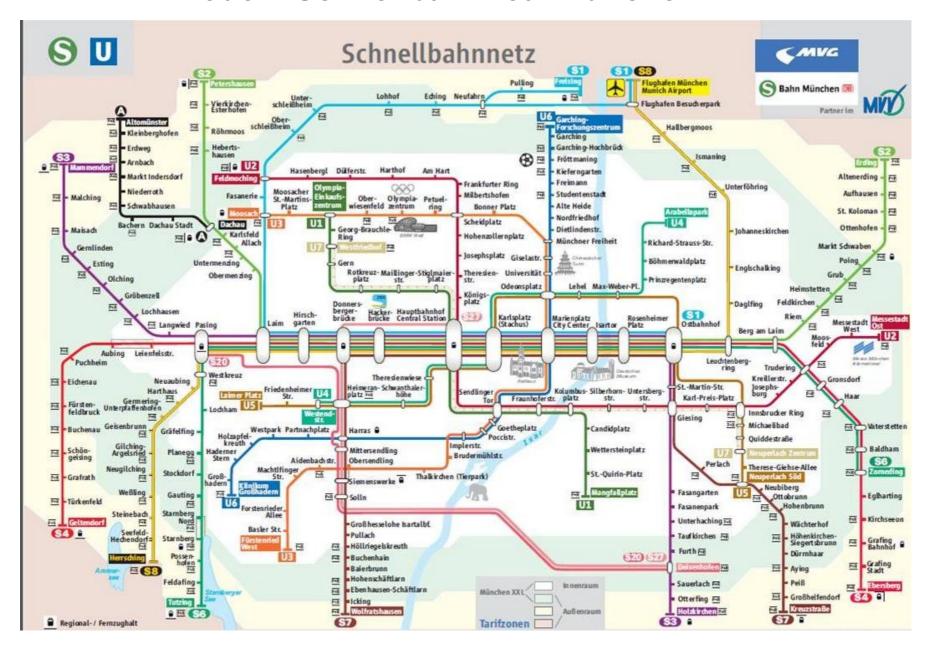

M ◀ S


(Token- und Typ-)Modelle als Vor-/Nachbilder: Beispiel

Vor- und Nachbild-Anteil der Modelle

Modelle – statisch vs. dynamisch

Verschiedene Modelltypen helfen, *unterschiedliche Aspekte* hervorzuheben:


Statische Modelle

- Gegenstands- / Objektmodelle
- Strukturmodelle
- Entitätsmodelle
- Klassenmodelle

Dynamische Modelle

- Vorgehensmodelle
- Aktions- / Aktivitätsmodelle
- Prozessmodelle
- Zustandsmodelle

Modell: Schnellbahnnetz München

MVG

München

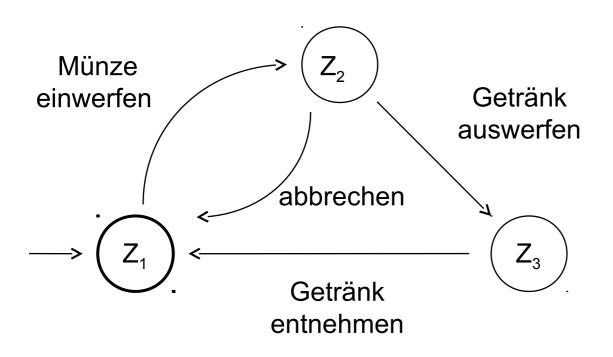
Fragen:

- statisch oder dynamisch?
- präterierte / abundante Eigenschaften?
- Modellzweck?

Eigenschaften des Beispielmodells (MVV)

statisch:

- Gegenstands- / Strukturmodell (Token-Modell) für Netz mit Linien, Knoten und statischen (d.h. räumlichen, nicht zeitlichen) Verknüpfungen.
- Dynamik des Systems ist nicht abgebildet keine einzelnen Züge, Fahrzeiten, Korrespondenzen (Anschlüsse), etc.


Modellauswahl:

- *präteriert*: dynamische Eigenschaften, Züge, Zugläufe, Anschlüsse, Wagenumlauf, Standplätze etc.
- abundant: (falsche) geographische Ausrichtungen (z.B. "Knicks" in U3 und U6 n. Süden)

Modellzweck:

• Für die Zielgruppe (= MVV-Benutzer) Linienverläufe, Knoten (Umsteigepunkte) und Verknüpfungen visuell darstellen und damit Orientierung im System schaffen

Modell: Endlicher (deterministischer) Automat

Fragen:

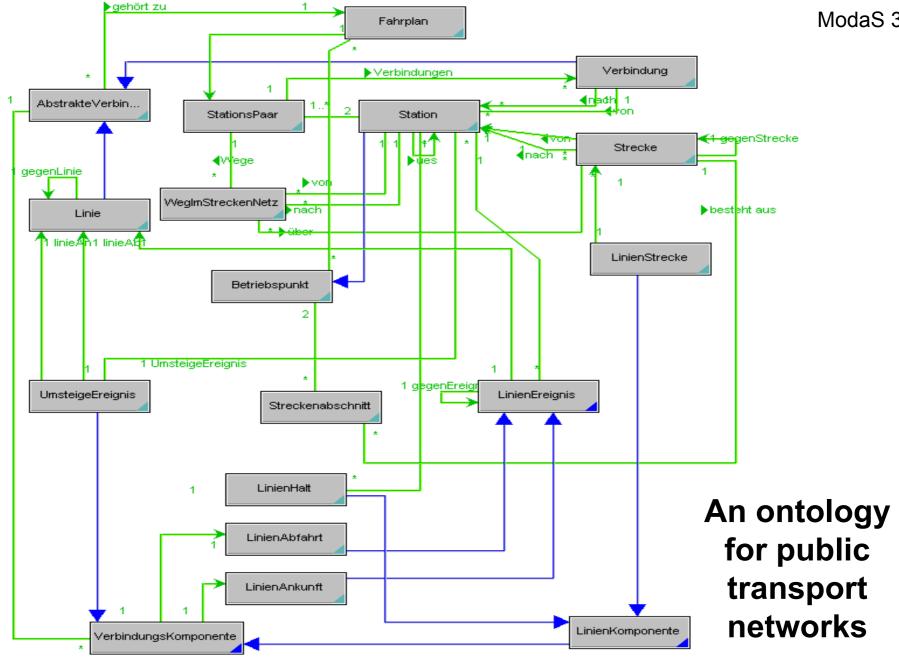
- statisch oder dynamisch?
- präterierte / abundante Eigenschaften?
- Modellzweck?

Eigenschaften des Beispielmodells (Getränke-Automat)

dynamisch (– aber statische Darstellung):

- Zustandsmodell (Typ-)Modell für (sehr) einfache Getränkeautomaten.
- Dynamik des Systems steckt in Zuständen, Zustandsübergängen etc.

Modellauswahl:


- *präteriert*: physikalische, materielle Eigenschaften: Gehäuse, Zubehör, Stromversorgung, Münzen, Getränke, ...
- abundant: graphische Symbole (Kreise, Pfeile); auch: Reihenfolge 1,2,3

Modellzweck:

• Für die Zielgruppe (= Programmierer, Simulations-Ersteller) Abläufe, ihre Zusammenhänge und Kausalitäten darstellen, um richtige (=beabsichtigte) Funktionsweise zu verifizieren

Modell vs. Ontologie

- Ontologie (von griech: το ον) = Lehre vom Seienden.
- In der Informatik (anfänglich in der KI, J. McCarthy, um 1970) bezeichnet O. die formale Beschreibung eines Wissens- (bzw. Gegenstands)bereichs zur gemeinsamen Nutzung von (vorwiegend automatisierten) Anwendungen
- T. Gruber: Ontology = "a formal explicit specification of a shared conceptual-isation" [Gru 93].
- O. ist also ein "Modell im Großen", das vielfältigen Nutzungen dient und automatisiert be-/verarbeitet werden kann.
- Eine Ontologie beschreibt einen Gegenstandsbereich mit Hilfe
 - einer standardisierten *Terminologie* (Taxonomie),
 - Beziehungen (zwischen den Begriffen der Taxonomie),
 - Ableitungsregeln (zum Verbinden der Begriffe)
- Pro Wissensbereich gibt es (mindestens!) eine Ontologie
 - → viele "Ontologien" (im Plural!) sind notwendig

Literatur

- [Bos 04] H. Bossel: Systeme, Dynamik, Simulation: Modellbildung, Analyse und Simulation komplexer Systeme. Books on Demand, Norderstedt/Germany, 2004
- [B-S 04] M. Broy, R. Steinbrüggen: Modellbildung in der Informatik. Springer 2004
- [Cha 01] D. Chandler: Semiotics: The Basics. Routledge, London/New York 2001, überarb. Ausgabe 2006,
- [Che 76] P.P. Chen: The entity/relationship model Toward a unified view of data. *ACM Transact. on DB Systems Vol. 1, no. 1,* pp 9-36 (1976)
- [DIN 82] DIN 44300: Informationsverarbeitung Begriffe. Beuth-Verlag, Berlin 1982
- [Dör 84] D. Dörner: Modellbildung und Simulation, in: E. Roth (Hg.): Sozialwissenschaftliche Methoden. Oldenbourg-Verlag 1984, S. 337–350
- [Eco 93] U. Eco: Platon im Striptease-Lokal: Parodien und Travestien, dtv 1993
- [Gru 93] T. Gruber: A translation approach to portable ontologies. Knowledge Acquisition, 5(2), pp. 199-220 (1993)
- [HBB+94] Hesse, W., Barkow, G., v. Braun, H., Kittlaus, H.B., Scheschonk, G.: Terminologie der Softwaretechnik Ein Begriffssystem für die Analyse und Modellierung von Anwendungssystemen, Informatik- Spektrum 17.1, S. 39-47 u. 17.2, S. 96-105 (1994)
- [Hes 02] W. Hesse: Das aktuelle Schlagwort: Ontologie(n). in: Informatik-Spektrum 25.6, S. 477-480 (2002)
- [Hes 06] W. Hesse: Modelle Janusköpfe der Software-Entwicklung oder: Mit Janus von der Azur S-Klasse. Proc. Modellierung 2006, pp. 99-113. Springer LNI P-82 (2006)

Literatur (Forts.)

- [Hes 08] W. Hesse: Engineers discovering the "real world" From Model-driven to Ontology-based Software Engineering (Invited Talk). Proc. 7th Int. Conf. on Inf. Systems UNISCON 2008; Springer LNBIP 5, pp. 136-147 (2008)
- [Hes 14] W. Hesse: Ontologie und Weltbezug. Informatik-Spektrum 37.4, pp. 298-307 (2014)
- [H-E 14] W. Hesse, H. Engesser: Ontologie. Informatik-Spektrum 37.4, pp. 281-282 (2014)
- [H-M 08] W. Hesse, H.C. Mayr: Modellierung in der Softwaretechnik: eine Bestandsaufnahme Informatik-Spektrum 31.5, pp. 377-393 (2008)
- [K-K 14] U. Kastens, H. Kleine Büning: Modellierung Grundlagen und formale Methoden. 3. Aufl. Hanser 2005
- [Lud 02] J. Ludewig: Modelle im Software Engineering eine Einführung und Kritik. In: M. Glinz et. al (Hrsg.): Proc. Modellierung 2002. LNI P-12 Koellen-Verlag 2003
- [Pre 86] A. Prestel: Einführung in die Mathematische Logik und Modelltheorie. Vieweg, Braunschweig 1986.
- [Scn 97] H.J. Schneider (Hrsg.): Lexikon Informatik und Datenverarbeitung, Version 4.0, Oldenbourg 1997
- [Sta 73] H.Stachowiak: Allgemeine Modelltheorie. Springer, Wien 1973
- [Tab 06] P. Tabeling: Softwaresysteme und ihre Modellierung
- [Tro 90] K. Troitzsch: Modellbildung und Simulation in den Sozialwissenschaften. Westdeutscher Verlag 1990.
- [UML 06] OMG Unified Modelling Language Specification Version 2.0, 2006. www.uml.org/#UML2.0