

The Sharer's Dilemma in Collective Adaptive
Systems of Self-Interested Agents

Martin Wirsing
Ludwig-Maximilians-Universität München

In cooperation with
Lenz Belzner, Kyrill Schmid, Thomy Phan, Thomas Gabor

IFIP WG 1.3, Royal Holloway, July 2018

[L. Belzner, K. Schmid, T. Phan, T. Gabor, M. Wirsing: The sharer’s dilemma in collective adaptive systems of self-
interested agents.. In: Margaria, T., Steffen, B. (eds.): Leveraging Applications of Formal Methods, Verification and
Validation. Distributed Systems (ISoLA 2018, vol. 3). Lecture Notes in Computer Science 11246, Springer, Cham
2018, 241-256]

Motivation

Coin game

• Yellow (Y) and blue agent (B) compete for a coin, with fifty-fifty chance

• Y gets reward +1, B gets reward +2

Expected value: Individual optimization Y resists to get the coin

 B shares reward +2 by

 transfering +1 of reward to Y

 Sharing may increase the individual and the global reward

2

Reward Sharing

Simplified stochastic game (one single state)

• N = {0, …, n} is a finite set of agents

• A = A1
x … x An is a set of joint actions. Ai is a finite set of actions for agent i

• R = {ri : A  Real}iN is a family of reward functions, one for each agent

Utility ui of agent i for (joint) action a

• Pure self-interest

 ui (a) = ri (a)

• Sharing with share si

 ui (a, s1,…, sn) = ri (a) – si + (Sj,  j=i sj) / (n-1) Equation (1)

Policy pi of an agent i for action ai

• Probability distribution over actions and shares

 3

Distributed Optimization with Sharing

Algorithm DOS

Iterate the following for a predefined number of steps:

1: initialize policy pi for each agent i

2: for niter iterations do

3: for each agent i do

4: each agent samples a list of nsample actions and shares from i

5: broadcast sampled actions and shares

6: for each agent i do

7: build joint actions a

8: determine utility ui (a, s1,…, sn) according to Eq. 1

9: update policy pi to increase the likelihood of sampling high-

 utility actions

10: for each agent i do

11: execute ai with share si sampled from pi

4

Cross-Entropy DOS (CE-DOS)

Cross-entropy optimization

Idea

• Model policy p as (isotropic) normal

distribution N(m, s) with

m mean, s standard deviation

• Start with a normal distribution

• In each step

 Update the distribution based on

 “elite” samples to produce a "better"

 distribution in the next iteration

Cross-Entropy DOS (CE-DOS)

Cross-entropy optimization

Notations

• Prior mean m0 and standard deviation s0 for policies

• Bound smin on the policy standard deviations

• Fraction y  (0, 1] of elite samples to keep

• Learning rate a  (0, 1]

7

Cross-Entropy DOS (CE-DOS)

1: Initialize pi by N(m0, s0) for each agent i

2: for niter iterations do

3: for each agent i do

4: sample nsample actions and shares si from pi

5: clip si such that si >= 0

6: broadcast sampled actions and shares

7: for each agent i do

8: build joint actions a = (a1, …, an) and shares s = (s1, …, sn)

9: determine utility ui(a, s) according to Eq. 1

10: keep y . nsample elite samples a, s with highest utility

11: compute mnew and snew from ai, si in the elite samples

12: mt+1 := (1 - a) mt + amnew

13: st+1 := (1 - a) st + asnew

14: st+1 := max(st+1, smin)

15: pi := N(mt+1, st+1)

16: for each agent i do

17: execute ai with share si sampled from pi

8

8

Experiments

Simple market model

• Ai = Real models (directly) the production amount

• Global production = SiN ai

• Reward ri(a) = ai / (SjN aj)
x correlates to ai‘s market share

9

Experimental Settings

Settings

• No. agents n = 10, n = 50 and n = 100

• Individual action spaces Ai = [.1, 4]

• number of iterations niter = 100

• Number of samples nsample = 100 for each agent

• Prior mean m0 = 0 and standard deviation s0 = 1

• Fraction of elite samples y = 0,25

• Learning rate a = 0,5

• Minimal policy standard deviation smin = 0,2.

10

Global Payoff
Results forSimple Market, 100 Agents

• Similar results hold for

the cases of 10 agents

and of 50 agents

• Best global payoff if

all agents are sharing

• Worst global results if

all agents are selfish

11

• Similar results hold for

the cases of 10 agents

and of 50 agents

• Best mean shared

value if all agents are

sharing

• Worst mean shared

value if all agents are

selfish

Mean Shared Value
Results forSimple Market, 100 Agents

12

• Similar results hold for

the cases of 10 agents

and of 50 agents

• But selfish (defecting)

agents get higher

individual return than

sharing agents

• However, global

payoff is best if all

agents are sharing

Mean Individual Return
Results forSimple Market, 100 Agents

13

Summary and outlook

Summary

• Adaptation implemented by optimization wrt. utility: CE_DOS algorithm

• Agents are self-interested; utilities may depend on other agents choices

Results: Dilemma

• Utility sharing increases expected individual and global payoff

• But defection increases the mean expected individual payoff at the expense

of sharing individuals' payoff

• Presence of too many defectors decreases expected individual and global

payoff in comparison to optimization with utility sharing

Limitations of the experiment

• CE-DOS is stateless and memoryless, no temporal effect

Future Work

• Temporal domains and multi-agent reinforcement learning with model sharing

• Other (not equally distributed) models of sharing

15

Master-/Bachelorarbeit

 Herleiten einer geeigneten Reward-

Funktion aus einer

Anforderungsspezifikation

 Beispiel:

 Ein/Mehrere Roboter suchen Objekte in

 einem Raum und müssen auf

 ausreichende Batterieladung achten

 Beginn: ab März 2020

16

service area

