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Motivation 

Coin game 

• Yellow (Y)  and blue agent (B) compete for a coin,  with fifty-fifty chance 

• Y gets reward +1, B gets reward +2 

 

 

 

 

 

 

Expected value:  Individual optimization   Y resists to get the coin 

      B shares reward +2 by 

      transfering +1 of reward to Y 

 Sharing may increase  the individual and the global reward 
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Reward Sharing 

 

Simplified stochastic game (one single state) 

• N = {0, …, n} is a finite set of agents 

• A = A1 
x … x An  is a set of joint actions. Ai is a finite set of actions for agent i 

• R = {ri : A  Real}iN is a family of reward functions, one for each agent 

 

Utility ui of agent i for (joint) action a  

• Pure self-interest 

  ui (a) = ri (a) 

• Sharing with share si  

  ui (a, s1,…, sn) = ri (a) – si + (Sj,  j=i sj) / (n-1) Equation (1) 

 

Policy pi  of an agent i for action ai  

• Probability distribution over actions and shares    
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Distributed Optimization with Sharing 

Algorithm DOS 

Iterate the following for a predefined number of steps: 

 

1: initialize policy pi for each agent i 

2: for  niter  iterations do 

3:   for each agent i do 

4:    each agent samples a list of  nsample  actions and shares from i 

5:    broadcast sampled actions and shares  

6:   for each agent i do 

7:    build joint actions a 

8:    determine utility ui (a, s1,…, sn) according to Eq. 1 

9:    update policy pi to increase the likelihood of sampling high- 

   utility actions 

10: for each agent i do 

11:  execute ai  with share si sampled from pi   
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Cross-Entropy DOS (CE-DOS) 

 

Cross-entropy optimization 

Idea 

• Model policy  p  as (isotropic) normal 

distribution  N(m, s)  with                         

m mean, s standard deviation 

• Start with a normal distribution 

• In each step 

 Update the distribution based on 

 “elite” samples to produce a "better" 

 distribution in the next iteration 

 

 

 

 

 

  

    

 



Cross-Entropy DOS (CE-DOS) 

 

Cross-entropy optimization 

 

Notations 

• Prior mean m0 and standard deviation s0 for policies 

• Bound smin on the policy standard deviations 

• Fraction y  (0, 1] of elite samples to keep 

• Learning rate a  (0, 1]  
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Cross-Entropy DOS (CE-DOS) 

 

1: Initialize pi  by N(m0, s0) for each agent i 

2: for niter iterations do 

3:   for each agent i  do 

4:    sample nsample actions and shares si  from pi 

5:    clip si such that si >= 0 

6:    broadcast sampled actions and shares 

7:   for each agent i  do 

8:    build joint actions a = (a1, …, an ) and shares s = (s1, …, sn )  

9:    determine utility ui(a, s) according to Eq. 1 

10:   keep y  . nsample elite samples a,  s with highest utility 

11:   compute mnew and snew from ai, si in the elite samples 

12:   mt+1  :=  (1 - a) mt + amnew 

13:   st+1  :=  (1 - a) st + asnew  

14:   st+1  :=  max(st+1, smin) 

15:    pi      := N(mt+1, st+1)  

16: for each agent i  do 

17:  execute ai  with share si sampled from pi   
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Experiments 

Simple market model 

• Ai = Real models (directly) the production amount 

• Global production = SiN ai  

• Reward ri(a) = ai / (SjN aj)
x  correlates to ai‘s market share 

9  



Experimental Settings 

Settings 

• No. agents n = 10, n = 50 and n = 100 

• Individual action spaces Ai = [.1, 4] 

• number of iterations niter = 100 

• Number of samples nsample = 100 for each agent 

• Prior mean m0 = 0 and standard deviation s0 = 1 

• Fraction of elite samples y = 0,25 

• Learning rate a = 0,5 

• Minimal policy standard deviation smin = 0,2. 
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Global Payoff 
Results forSimple Market, 100 Agents 

• Similar results hold for 

the cases of 10 agents 

and of 50 agents     
  

 

• Best global payoff  if 

all agents are sharing 

• Worst global results if 

all agents are selfish 
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• Similar results hold for 

the cases of 10 agents 

and of 50 agents      

  

 

• Best mean shared 

value if all agents are 

sharing 

• Worst mean shared 

value if all agents are 

selfish 

 

Mean Shared Value 
Results forSimple Market, 100 Agents 
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• Similar results hold for 

the cases of 10 agents 

and of 50 agents      

  

 

• But selfish (defecting) 

agents get higher 

individual return than 

sharing agents 

 

• However, global 

payoff is best if all 

agents are sharing 

Mean Individual Return 
Results forSimple Market, 100 Agents 
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Summary and outlook 

Summary 

• Adaptation implemented by optimization wrt. utility: CE_DOS algorithm 

• Agents are self-interested; utilities may depend on other agents choices 
 

Results: Dilemma 

• Utility sharing increases expected individual and global payoff  

• But defection increases the mean expected individual payoff at the expense 

of sharing individuals' payoff 

• Presence of too many defectors decreases expected individual and global 

payoff in comparison to optimization with utility sharing 
 

Limitations of the experiment 

• CE-DOS is stateless and memoryless, no temporal effect 
 

Future Work 

• Temporal domains and multi-agent reinforcement learning with model sharing 

• Other (not equally distributed) models of sharing 
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Master-/Bachelorarbeit 

 Herleiten einer geeigneten Reward-

Funktion aus einer 

Anforderungsspezifikation 

 

     Beispiel:  

     Ein/Mehrere Roboter suchen Objekte in  

     einem Raum und müssen auf 

     ausreichende Batterieladung achten 

 

    Beginn: ab März 2020 
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