

The Sharer's Dilemma in Collective Adaptive Systems of Self-Interested Agents

Martin Wirsing Ludwig-Maximilians-Universität München

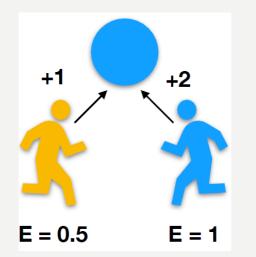
In cooperation with Lenz Belzner, Kyrill Schmid, Thomy Phan, Thomas Gabor

IFIP WG 1.3, Royal Holloway, July 2018

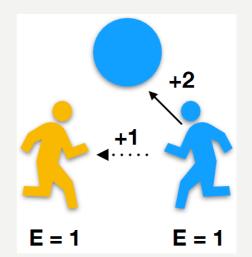
[L. Belzner, K. Schmid, T. Phan, T. Gabor, M. Wirsing: The sharer's dilemma in collective adaptive systems of selfinterested agents.. In: Margaria, T., Steffen, B. (eds.): Leveraging Applications of Formal Methods, Verification and Validation. Distributed Systems (ISoLA 2018, vol. 3). Lecture Notes in Computer Science 11246, Springer, Cham 2018, 241-256]

Coin game

- Yellow (Y) and blue agent (B) compete for a coin, with fifty-fifty chance
- Y gets reward +1, B gets reward +2



Expected value: Individual optimization



Y resists to get the coin B shares reward +2 by

transfering +1 of reward to Y

> Sharing may increase the individual and the global reward

Simplified stochastic game (one single state)

- $N = \{0, ..., n\}$ is a finite set of agents
- $A = A_1 \times ... \times A_n$ is a set of joint actions. A_i is a finite set of actions for agent *i*
- $R = \{r_i : A \rightarrow \text{Real}\}_{i \in N}$ is a family of reward functions, one for each agent

Utility u_i of agent *i* for (joint) action *a*

- Pure self-interest
 - $u_i(a) = r_i(a)$
- Sharing with share *s_i*

$$u_i(a, s_1, ..., s_n) = r_i(a) - s_i + (\sum_{j, \neg j=i} s_j) / (n-1)$$
 Equation (1)

Policy π_i of an agent *i* for action a_i

• Probability distribution over actions and shares

Iterate the following for a predefined number of steps:

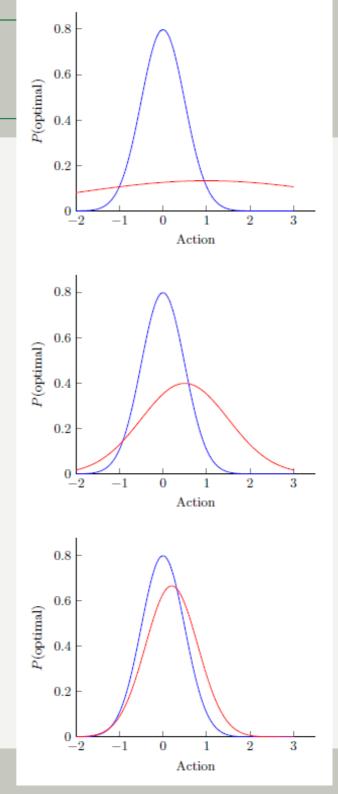
- 1: initialize policy π_i for each agent *i*
- 2: for n_{iter} iterations do
- 3: for each agent *i* do
- 4: each agent samples a list of n_{sample} actions and shares from *i*
- 5: broadcast sampled actions and shares
- 6: **for** each agent *i* **do**
- 7: build joint actions *a*
- 8: determine utility $u_i(a, s_1, ..., s_n)$ according to Eq. 1
- 9: update policy π_i to increase the likelihood of sampling highutility actions
- 10: for each agent *i* do
- 11: execute a_i with share s_i sampled from π_i

Cross-Entropy DOS (CE-DOS)

Cross-entropy optimization Idea

- Model policy π as (isotropic) normal distribution $\mathcal{N}(\mu, \sigma)$ with μ mean, σ standard deviation
- Start with a normal distribution
- In each step

Update the distribution based on "elite" samples to produce a "better" distribution in the next iteration



Cross-entropy optimization

Notations

- Prior mean μ_0 and standard deviation σ_0 for policies
- Bound σ_{\min} on the policy standard deviations
- Fraction $\psi \in (0, 1]$ of elite samples to keep
- Learning rate $\alpha \in (0, 1]$

1: Initialize π_i by $\mathcal{N}(\mu_0, \sigma_0)$ for each agent <i>i</i>
2: for n _{iter} iterations do
3: for each agent <i>i</i> do
4: sample n_{sample} actions and shares s_i from π_i
5: clip s_i such that $s_i \ge 0$
6: broadcast sampled actions and shares
7: for each agent <i>i</i> do
8: build joint actions $a = (a_1,, a_n)$ and shares $s = (s_1,, s_n)$
9: determine utility $u_i(a, s)$ according to Eq. 1
10: keep $\psi \cdot n_{\text{sample}}$ elite samples <i>a</i> , <i>s</i> with highest utility
11: compute μ_{new} and σ_{new} from a_i , s_i in the elite samples
12: $\mu_{t+1} := (1 - \alpha) \mu_t + \alpha \mu_{new}$
13: $\sigma_{t+1} := (1 - \alpha) \sigma_t + \alpha \sigma_{new}$
14: $\sigma_{t+1} := \max(\sigma_{t+1}, \sigma_{\min})$
15: $\pi_i := \mathcal{N}(\mu_{t+1}, \sigma_{t+1})$
16: for each agent <i>i</i> do

17: execute a_i with share s_i sampled from π_i

Simple market model

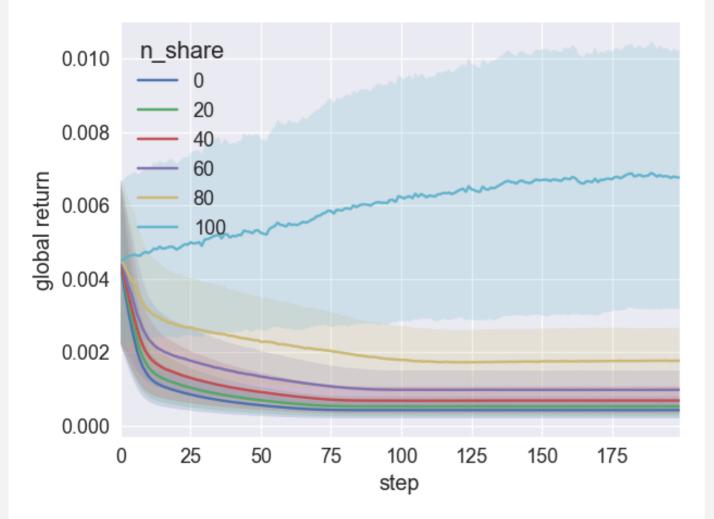
- A_i = Real models (directly) the production amount
- Global production = $\sum_{i \in N} a_i$
- Reward $r_i(a) = a_i / (\sum_{j \in N} a_j)^{\xi}$ correlates to a_i 's market share

Settings

- No. agents n = 10, n = 50 and n = 100
- Individual action spaces A_i = [.1, 4]
- number of iterations $n_{\text{iter}} = 100$
- Number of samples $n_{\text{sample}} = 100$ for each agent
- Prior mean $\mu_0 = 0$ and standard deviation $\sigma_0 = 1$
- Fraction of elite samples $\psi = 0,25$
- Learning rate $\alpha = 0,5$
- Minimal policy standard deviation $\sigma_{min} = 0,2$.

LUDWIG-

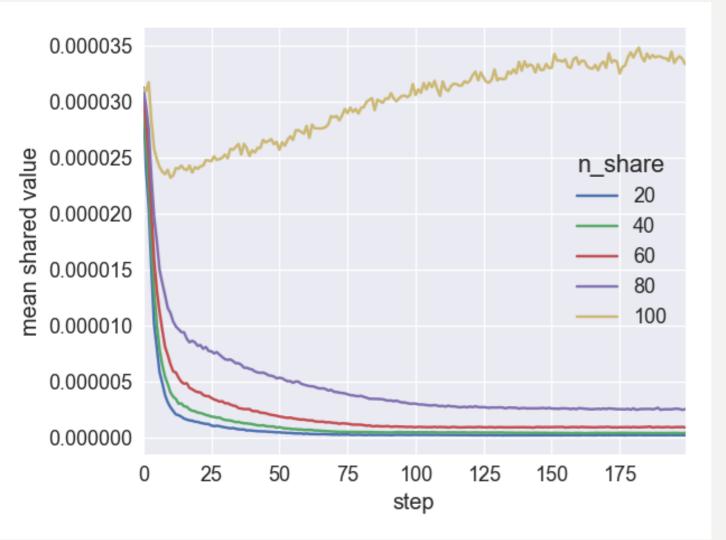
MAXIMILIANS-UNIVERSITÄT MÜNCHEN Results for Simple Market, 100 Agents



- Similar results hold for the cases of 10 agents and of 50 agents
- Best global payoff if all agents are sharing
- Worst global results if all agents are selfish

Mean Shared Value

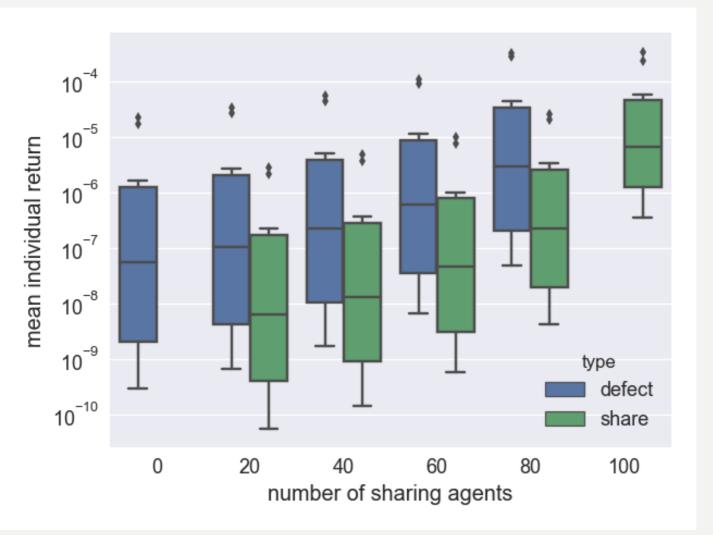
Results for Simple Market, 100 Agents



- Similar results hold for the cases of 10 agents and of 50 agents
- Best mean shared value if all agents are sharing
- Worst mean shared value if all agents are selfish

Mean Individual Return

Results for Simple Market, 100 Agents



- Similar results hold for the cases of 10 agents and of 50 agents
- But selfish (defecting) agents get higher individual return than sharing agents
- However, global payoff is best if all agents are sharing

Summary

- Adaptation implemented by optimization wrt. utility: CE_DOS algorithm
- Agents are self-interested; utilities may depend on other agents choices

Results: Dilemma

- Utility sharing increases expected individual and global payoff
- But defection increases the mean expected individual payoff at the expense of sharing individuals' payoff
- Presence of too many defectors decreases expected individual and global payoff in comparison to optimization with utility sharing

Limitations of the experiment

CE-DOS is stateless and memoryless, no temporal effect

Future Work

- Temporal domains and multi-agent reinforcement learning with model sharing
- Other (not equally distributed) models of sharing

Herleiten einer geeigneten Reward-Funktion aus einer Anforderungsspezifikation

Beispiel: Ein/Mehrere Roboter suchen Objekte in einem Raum und müssen auf ausreichende Batterieladung achten

Beginn: ab März 2020

