
Towards Systematically Engineering Adaptive Systems
using Machine-Learning Techniques

Martin Wirsing** *

Ludwig-Maximilians-Universität München

**In cooperation with
 Lenz Belzner and Thomas Gabor
Maiborn & Wolff LMU München

 *Thanks to Rolf Hennicker, Alexander Knapp, Matthias Hölzl and all other former
members of the ASCENS project

Seminar Dynamische und Adaptive Systeme, WS 2019/20, LMU München

Contents

• What is an adaptive system?

• A development lifecycle for adaptive systems and

ensembles

• Adapting behaviours by online planning

• Safe learning: Policy synthesis from requirements

• Concluding remarks

Martin Wirsing

1. What is an adaptive system?

Martin Wirsing

Adaptive system

• An adaptive system adjusts its

behaviour to multiple situations:

• change of

• environment

• human/other agents behavior

• network infrastructure

• goals/requirements

• the system itself

• or any combination thereof

• We distinguish between

• black-box adaptation and

• white-box adaptation

Martin Wirsing

Adaptation Requirements:

Black-Box Adaptation

• Goal satisfaction in an environment

 For any environment h, system S, goal g:

 h, S |= g

• An adaptive system adjusts to a change

of

• goals/requirements: h, S |= g’

• environment: h’, S |= g

• the system itself: h, S’ |= g

• Adaptation space

• Adaptation domain A Env × G

• S can adapt to A, written S ||- A :

 S ||- A iff (h, g) A. h, S |= g

Adaptation
space

[M. Hölzl, MW: Towards a System Model for Ensembles. Formal
Modeling: Actors, Open Systems, Biological Systems 2011]

Martin Wirsing

Adaptation Modelling:

White-Box Adaptation

• White-box adaptation

• Modify control mechanism at runtime

 so that the (adaptation) requirements are satisfied

• Approaches

• Classical adaptation techniques

E.g. programming using modes, reconfiguration, policies

• AI adaptation techniques

E.g. using planning, learning, reasoning,

swarm algorithms

Martin Wirsing
[Bruni, Corradini, Gaducci, Lluch Lafuente, Vandin : A Conceptual Framework for
Adaptation. FASE 2012; Bruni, Corradini, Gaducci, Hölzl, Lluch Lafuente, Vandin, MW:
Reconciling White-box and Black-Box Adaptation, ASCENS book 2015]

2. Recap:

DevAdapt

A development lifecycle for

adaptive systems

Martin Wirsing

Agile lifecycle: DevAdapt
• Iterations at development time and runtime connected by deployment

and feedback

• 3 feedback loops

• Cf. DevOps life cycle for integrating development and operations

 8 Martin Wirsing
[N. Koch et al.: Life Cycle for the Development of Autonomic Systems: The e-Mobility
Showcase, 3rd Workshop Self-Awareness in Autonomic Systems, 2013; Compuware
Mainframe DevOps, https://www.compuware.com/lifecycle-overview/]

ASCENS Approach:

„DevAdapt“ Lifecycle

Develop “SOTA/Gem” requirements

specification consisting of

• environment specification

• goal-oriented specification of the

adaptive system with

• Maintain goals of form Gmaintain f

• Achieve goals of form Fpost f

• adaptation/awareness

requirements (adaptation space)

9 Martin Wirsing

Requirements Engineering

9
[M. Hölzl, MW: Towards a System Model for Ensembles. Formal Modeling: Actors, Open
Systems, Biological Systems 2011; D. Abeywickrama, M, Mamei, F. Zambonelli: Engineering
Collectives of Self-driving Vehicles: The SOTA Approach. ISoLA (3) 2018: 79-93]

Fpost

Init

Modelling

• Architecture

• Adaptation patterns such as

• Reactive component

• MAPE-K architecture of autonomic

manager

• Modelling and programming/training: White-

box adaptation

• Classical adaptation, e.g.

• Component-based programming with SCEL

• Machine learning adaptation, e.g.

• Reinforcement learning

• Deep Neural Networks

[Puviani, Cabri, Zambonelli: Patterns for self-adaptive systems: agent-based simulat-
ions. EAI Endorsed Trans. Self-Adaptive Systems 1, 2015; De Nicola , Loreti, Pugliese,
Tiezzi: SCEL: a Language for Autonomic Computing, ACM TAAS, 2014; Bruni,
Corradini, Gaducci, Lluch Lafuente, Vandin : A Conceptual Framework for Adaptation.
FASE 2012]

MAPE-K Autonomic manager

Martin Wirsing

Autonomic component

• Show that the system satisfies the

(adaptation) requirements

specification by

• Testing

• Simulation

• (Statistical) Modelchecking

using compositional techniques,

fluid flow analysis, constraint

programming, …

11 Martin Wirsing

Validation and Verification

[J. Combaz,S. Bensalem, F.Tiezzi ,A. Margheri, R. Pugliese, J. Kofron: Correctness of Service
Components and Service Component Ensembles. ASCENS Book 2015:105-158; R. De Nicola , M.
Loreti, R. Pugliese, F. Tiezzi: SCEL: a Language for Autonomic Computing, ACM TAAS, 2014; L. Bulej,
T. Bures, I. Gerostathopoulos, V. Horký, J. Keznikl, L. Marek, M. Tschaikowski, M. Tribastone, P. Tuma:
Supporting Performance Awareness in Autonomous Ensembles. ASCENS Book 2015: 291-322]

• Note: Environment assumptions and

adaptation space requirements must also be

validated

3. Adapting Behaviours by

Simulation-based Online Planning

Martin Wirsing
[Belzner, R. Hennicker, MW: Onplan: A framework for simulation-based online planning. In
C. Braga and P. C. Ölveczky, eds., FACS 2015 LNCS 9539, Springer, 2015. 1-30.]

Environment

• Victims, fires and ambulances

• Unknown topology

• Unknown initial situation

Agent actions

• Noop, Move

• Load or drop a victim

• Extinguish fire if adjacent

Agent Requirements

• Find victims and bring them to an ambulance

– F (ANDi=1,…n victimi at ambulance)

• Extinguish fire if adjacent

– G (robot.position.fire

 action.robot = extinguishFire)

Search and Rescue

Case Study Requirements

Adaptation Space

Environment and system may change

• in a nondeterministic way

- Fires ignite and cease

- Actions of agent may fail

 by unexpected events

- New fires break out and agents drop

victims

Goals of agent may change

• Goal “Save victims from fire”

– F (ANDi=1,…n victimi at fire)

 changes to

 “Save victims and bring them to

 ambulance”

Generic Modelling

Online Planning

• Perform planning and execution of actions

iteratively at runtime

Architecture

• MAPE-K loop with parallel planning

Online Planning Pseudo-Code

while true do

 observe state

 execute || plan

end while

Modelling: Instantiation

Simulation-based Online Planning

 simulates future episodes at runtime

• Architecture

- Iterated MAPE-K loop

• Simulation-based planning

- Simulate by generating n episodes

and their rewards

- After each episode update the

current policy according to strategy

• Strategies

- Monte Carlo Tree Search

- Cross Entropy Planning

 Monte Carlo Tree Search

 for Discrete Domains

Simulation with Monte Carlo Tree Search

• Policy as tree

• Nodes represent states and action choices

• Add a node per simulation

• Aggregate simulation data in nodes

– Reward and frequency

• Sample actions w.r.t. aggregated data

[Cameron B Browne et al.: A survey of Monte Carlo tree search methods.
Computational Intelligence and AI in Games, IEEE Transactions on, 4(1):1 - 43, 2012.]

Strategy Inside the Tree

E.g. use Upper Confidence Bounds for Trees

• Select actions that maximize

 𝑈𝐶𝑇𝑗 = 𝑋𝑗 + 2𝐶
2 ln 𝑛

𝑛𝑗

4 / 8 0 / 3 7 / 10

2 / 4 5 / 6 1 / 2 1 / 3 2 / 3

2 / 3 3 / 3

11 / 21

Cumulated reward Nr. of episodes

18

[Kocsis, Levente, and Csaba Szepesvári. Bandit-based Monte
Carlo planning. Machine Learning: ECML 2006. Springer:
Berlin Heidelberg, 2006, 282-293].

Strategy Inside the Tree

E.g. use Upper Confidence Bounds for Trees

• Select actions that maximize

 𝑈𝐶𝑇𝑗 = 𝑋𝑗 + 2𝐶
2 ln 𝑛

𝑛𝑗

𝑋𝑗: Average reward of child node j

𝑛: Nr. of episodes from current node

𝑛𝑗: Nr. of episodes from child node j

𝐶: UCT exploration constant

4 / 8 0 / 3 7 / 10

2 / 4 5 / 6 1 / 2 1 / 3 2 / 3

2 / 3 3 / 3

11 / 21

Exploit
observations

Explore
solution space

19

[Kocsis, Levente, and Csaba Szepesvári. Bandit-based Monte
Carlo planning. Machine Learning: ECML 2006. Springer:
Berlin Heidelberg, 2006, 282-293].

Expand the Tree

4 / 8 0 / 3 7 / 10

2 / 4 5 / 6 1 / 2 1 / 3 2 / 3

2 / 3 3 / 3

11 / 21

0 / 0

Add a new node

• When an episode leaves the tree

20

Strategy Outside the Tree

Current simulation strategy

Simulate episode to depth ℎ𝑚𝑎𝑥

Observe result

• E.g. reward observed

 Here: 0 or 1

Reward: 1

4 / 8 0 / 3 7 / 10

2 / 4 5 / 6 1 / 2 1 / 3 2 / 3

2 / 3 3 / 3

11 / 21

0 / 0

21

Update the statistics

This changes the strategy inside the tree

Update Strategy

4 / 8 0 / 3 8 / 11

2 / 4 6 / 7 1 / 2 1 / 3 2 / 3

2 / 3 4 / 4

12 / 22

1 / 1

22

Search and Rescue Case

Study: Experiment

Experiment

• Topology randomly generated with

 20 nodes, 6-7 connections/nodes

• Action failure probability = 5%

• Planning depth = 20

• Reward for victims at safe positions:

 R(s) = 100 · Sv∈victims(s) #(v.position.safe)

Provided reward

• Victim at ambulance: +100

System synthesizes

sensible behaviour

Results in 0.95 confidence interval

• Checked with MultiVeStA

Validation (I)

Autonomy

[Stefano Sebastio and Andrea Vandin. MultiVeStA:
statistical model checking for discrete event simulators.
ValueTools '13. 2013. 310-315.]

 Measured (in %): Victims at ambulance (blue), in a fire (red)

 Positions on fire (green)

Expose system to unexpected events

• At steps 20, 40, 60, 80

• All carried victims are dropped

• New fires break out

• Events NOT simulated by planner

• New situation incorporated by

planner

System shows sensible reactions

Results in 0.95 confidence interval

Validation (II)

Robustness

 Measured (in %): Victims at ambulance (blue), in a fire (red)

 Positions on fire (green)

Change system goals while operating

• Change of reward function

– Steps 0-40: Reward for

victims not in a fire

– Steps 40-80: Reward for

victims at ambulance

• Change NOT simulated by

planner

• But planner incorporates new

situation

System adapts behaviour wrt. goals

Results in 0.95 confidence interval

Validation (III)

Flexibility

 Measured (in %): Victims at ambulance (blue), in a fire (red)

 Positions on fire (green)

4. Safe Learning
PSyCo: Policy SYnthesis with safety COnstraints

Martin Wirsing

Case study Robot in Grid

Requirements

Grid world with two passages

• broad long passage and short narrow

passage

Robot agent

• can move into 4 directions but slips with prob

0.05

Requirements

• Achieve goal

• Go to bottom right corner:

 F atBottomCorner

• Safety („maintain“) goal

• Don‘t collide with walls:

 p(G collision) > psat iff

 p(F collision) <= psat

PSyCo:
Modelling by Policy Synthesis

• Achieve goals

• Optimise goal satisfaction by Q-learning as

long as safety requirements hold

• Safety goals

• Control goal satisfaction

in case of violation return into the “safety

corridor”

„Safety
corridor“

Moves of agent

Violation

of safety

Idea: Generate reinforcement learning algorithm from requirements

 so that the safety requirements are (mostly) respected

Modelling: Formally

Reinforcement learning

• Learn in parallel Q-function of achieve goal and safety distribution

• Then the combined policy

• maximises expected future reward when being safe

 and

• minimises future expected constraint satisfaction probability when

violating constraints

• Formally:

Negated (!) safety property

Programming

Learning safety-aware policy

• Learn in parallel

 Q-function of achieve goal and safety distribution

• Q-value iteration*:

 where r reward, a learning rate, g discount factor

• Safety distribution:

[*C.Watkins: Learning from Delayed Rewards. Ph.D. thesis,Cambridge University, 1989]

Robot in Grid World

Experiment

Experiment

• Vary psat from 0.1 to 0.5

• Learning rate a = 0.1, discount factor g = 0.9,

• Reward r = 1.0 if robot at bottom right corner

 psat = 0.5

Mostly the short passage is chosen

due to lax collision requirements

Training

Training: 100.000 episodes (each up to 100 steps)

State visitation count

 psat = 0.3

Mostly the long passage is chosen

to avoid too many collisions

 psat = 0.5

Learned policy chooses

short passage

Validation for psat >= 0.3

Validation: 1000 episodes using learned policy

State visitation count

 psat = 0.3

Learned policy chooses

long passage

Validation: 1000 episodes with learned policy

collision free episodes vs. # episodes with collisions:

 psat = 0.3 psat = 0.5

80% no collision on 70% no collision on

long passage short passage

Validation for psat >= 0.3

Validation: 1000 episodes using learned policy

Validation fails for strong collision freeness (psat = 0.1, 0.2)!

 psat = 0.1

State visitation count

long passage preferred

Validation fails

for psat <= 0.2

 psat = 0.1

but learned policy follows short passage

and has >30% collisions

Further design cycle is necessary!

Concluding Remarks

 „Safe Learning" PSyCo Online simulation planning

Adaptation: „slow“ at design time „fast“ at runtime

Execution: FAST SLOW

Martin Wirsing

• Many challenges

• How to engineer complex safe adaptive multi-agent systems?

• In adaptive environments?

