LUDWIG-

MAXIMILIANS-
I_M u UNIVERSITAT
MONCHEN

Towards Systematically Engineering Adaptive Systems
using Machine-Learning Techniques

Martin Wirsing** *
Ludwig-Maximilians-Universitat Minchen

**In cooperation with

Lenz Belzner and Thomas Gabor
Maiborn & Wolff LMU Munchen

*Thanks to Rolf Hennicker, Alexander Knapp, Matthias H6lzl and all other former
members of the ASCENS project

Seminar Dynamische und Adaptive Systeme, WS 2019/20, LMU Mt inchen

LUDWIG-

LMU| iz | | Contents

® What is an adaptive system?

® A development lifecycle for adaptive systems and
ensembles

® Adapting behaviours by online planning
¢ Safe learning: Policy synthesis from requirements
® Concluding remarks

Martin Wirsing

1. What Is an adaptive system?

LUDWIG-

LMU | || | Adaptive system

® An adaptive system adjusts its
behaviour to multiple situations:

® change of
® environment
® human/other agents behavior
® network infrastructure
® goals/requirements
® the system itself
® or any combination thereof

® We distinguish between
® black-box adaptation and

® white-box adaptation

Martin Wirsing

wwe || Adaptation Requirements:
LMU | S | | Black-Box Adaptation

® Goal satisfaction in an environment
For any environment n, system S, goal y:

n,Sl=y

Force of Torque = define # of robots

S

® An adaptive system adjusts to a change

of
* goals/requirements: 1, S |= v g!
® environment:n’, S |=y -
® the systemitself:n, S’ |=y ——
un Environ
Light
* Adaptation space &
® Adaptation domain Ac Env X G Cmpf&/w/fpm égggéation

® Scan adaptto A, written S |- A :
S|I-A iff V(n,v)e A n, Sy

[M. Holzl, MW: Towards a System Model for Ensembles. Formal

Martin ersmg Modeling: Actors, Open Systems, Biological Systems 2011]

wwe | |Adaptation Modelling:
LMU | ewvesrar | | White-Box Adaptation

® White-box adaptation
® Modify control mechanism at runtime

so that the (adaptation) requirements are satisfied | T b |
¥ P
K -
¢ A p p rO aC h eS Knowledge 11:Po|icies P E{R%‘o
® Classical adaptation techniques - Procasss

E.g. programming using modes, reconfiguration, policies
® Al adaptation techniques

MANAGER

Control
. - . . AUTONOMIC
E.g. using planning, learning, reasoning,

\
Analyze Plan
swarm algorithms \ >
Monitor Knowledge Execute
P
/ Control ‘
Data

MANAGED ELEMENT

Control

[Bruni, Corradini, Gaducci, Lluch Lafuente, Vandin : A Conceptual Framework for
Martin Wirsing Adaptation. FASE 2012; Bruni, Corradini, Gaducci, Holzl, Lluch Lafuente, Vandin, MW:
Reconciling White-box and Black-Box Adaptation, ASCENS book 2015 |

2. Recap:
DevAdapt

A development lifecycle for
adaptive systems

LUDWIG- ASCENS ApproaCh:
IMU | oo | | ,DevAdapt™ Lifecycle

MUNCHEN

Agile lifecycle: DevAdapt

lterations at development time and runtime connected by deployment
and feedback

« 3 feedback loops

« Cf. DevOps life cycle for integrating development and operations

; - [N. Koch et al.: Life Cycle for the Development of Autonomic Systems: The e-Mobility
Martin Wirsing Showcase, 3@ Workshop Self-Awareness in Autonomic Systems, 2013; Compuware
Mainframe DevODps. httbs://www.combuware.com/lifecvcle-overview/]

LUDWIG-

LMIU | | == | | Requirements Engineering

MUNCHEN

Develop “SOTA/Gem” requirements
specification consisting of

« environment specification

| Yol
« goal-oriented specification of the :
adaptive system with Init
* Maintain goals of form G, ,intain @ — //
- Achieve goals of form F; ¢ - /'2&4,@
- adaptation/awareness ,P/// @
requirements (adaptation space) /

s

[M. Holzl, MW: Towards a System Model for Ensembles. Formal Modeling: Actors, Open
Martin Wirsing Systems, Biological Systems 2011; D. Abeywickrama, M, Mamei, F. Zambonelli: Engineering
Collectives of Self-driving Vehicles: The SOTA Approach. ISoLA (3) 2018: 79-93]

LUDWIG-

LMU)| =™ | | Modelling

® Architecture

AUTONOMIC

MANAG E\R

Adaptation patterns such as y
>

w
® Reactive component m/wedge\@
-~ P

Control

MAPE-K architecture of autonomic
manager /‘ Data

Data

MANAGED ELEMENT

- . . . MAPE-K A i
® Modelling and programming/training: White- utonomic manager

box adaptation] oo .

Classical adaptation, e.qg. E ‘
® Component-based programming with SCEL i‘
Machine learning adaptation, e.g. —

: : Autonomic component
® Reinforcement learning P

® Deep Neural Networks

[Puviani, Cabri, Zambonelli: Patterns for self-adaptive systems: agent-based simulat-
ions. EAI Endorsed Trans. Self-Adaptive Systems 1, 2015; De Nicola , Loreti, Pugliese
Tiezzi. SCEL.: a Language for Autonomic. Computing, ACM TAAS, 2014; Bruni,

Martin Wirsing IC::'A\orsrgdzir(l)i,é;aducci, Lluch Lafuente, Vandin : A Conceptual Framework for Adaptation.

° © GUEEIEeEPGEICID @ o B ©

LUDWIG-
MAXIMILIANS-

|_|V|U vwversitat || \/gljdation and Verification

¢ ShOW that the SyStem SatiSfieS the Probability of rescuing the victim within a given time

(adaptation) requirements 'F o Lananars
specification by 0| ——— oo andmas
* Testing Sus}
e Simulation Boil

* (Statistical) Modelchecking /
using compositional techniques, of— |

1000 2000 3000 4000

fluid flow analysis, constraint Time steps (1)
programming, ...

=

* Note: Environment assumptions and
adaptation space requirements must also be
validated

[J. Combaz,S. Bensalem, F.Tiezzi ,A. Margheri, R. Pugliese, J. Kofron: Correctness of Service
Components and Service Component Ensembles. ASCENS Book 2015:105-158; R. De Nicola , M.
Loreti, R. Pugliese, F. Tiezzi: SCEL: a Language for Autonomic Computing, ACM TAAS, 2014; L. Bulej,
Martin Wirsing T. Bures, |. Gerostathopoulos, V. Horky, J. Keznikl, L. Marek, M. Tschaikowski, M. Tribastone, P. Tuma:
Supporting Performance Awareness in Autonomous Ensembles. ASCENS Book 2015: 291-322]

LUDWIG-

MAXIMILIANS-
I_M u UNIVERSITAT
MONCHEN

3. Adapting Behaviours by
Simulation-based Online Planning

Martin Wirsi [Belzner, R. Hennicker, MW: Onplan: A framework for simulation-based online planning. In
Al el C. Braga and P. C. Olveczky, eds., FACS 2015 LNCS 9539, Springer, 2015. 1-30.]

oG, Search and Rescue

LMU| [szv=sm | ICase Study Requirements

Environment
« Victims, fires and ambulances
« Unknown topology
« Unknown initial situation

Agent actions
« Noop, Move
« Load or drop a victim
« Extinguish fire if adjacent

Agent Requirements
« Find victims and bring them to an ambulance
— F (AND,, _,victim; at ambulance)
« Extinguish fire if adjacent
— G (robot.position.fire =»
action.robot = extinguishFire)

[*] connections

Position
[1] position . |fire : Boolean _ [0..1] position
safe : Boolean
[*] robots [*] victims
[*] victims =5
Robot Victim

capacity : Integer

LUDWIG-

LMU | sy | |Adaptation Space

Environment and system may change
* In a nondeterministic way

— Fires ignite and cease
— Actions of agent may fail
by unexpected events

— New fires break out and agents drop
victims

Goals of agent may change

 (Goal “Save victims from fire”
— F (AND,., _, — victim; at fire)
changes to

“Save victims and bring them to
ambulance”

LUDWIG-

| MU| |ewveeems | | Generic Modelling

MUNCHEN

Online Planning

« Perform planning and execution of actions
iteratively at runtime

AUTONOMIC MANAG E\R

Architecture

« MAPE-K loop with parallel planning \ / \
IWKnowledgem
P

Online Planning Pseudo-Code

Control
Data

while true do

MANAGED ELEMENT
Oobserve state

execute || plan

end while

Control

LUDWIG-

|_|V|u wvesitar | | Modelling: Instantiation

MUNCHEN

Simulation-based Online Planning
simulates future episodes at runtime

« Architecture
— Iterated MAPE-K loop
« Simulation-based planning

— Simulate by generating n episodes
and their rewards

— After each episode update the
current policy according to strategy

« Strategies
— Monte Carlo Tree Search

— Cross Entropy Planning

AN

S

tree 1

NAGED ELEMENT

(L, x)

‘I P (c)

e, Monte Carlo Tree Search
|_|V|u wesitar | | fOr Discrete Domains

MUNCHEN

Simulation with Monte Carlo Tree Search
 Policy as tree
» Nodes represent states and action choices
« Add a node per simulation
« Aggregate simulation data in nodes
— Reward and frequency

« Sample actions w.r.t. aggregated data

e Sample/Simulate — Update ~ o

Default
Policy

v
. A Y,
[Cameron B Browne et al.: A survey of Monte Carlo tree search methods.
Computational Intelligence and Al in Games, IEEE Transactions on, 4(1):1 - 43, 2012.]

LMU

T Cumulated reward

MAXIMILIANS-

Nr. of episodes

wvenn | | | Strategy Inside the Tree \

A

E.g. use Upper Confidence Bounds for Trees
« Select actions that maximize

2lnn

UCT; = X; + 2C

nj

[Kocsis, Levente, and Csaba Szepesvari. Bandit-based Monte
Carlo planning. Machine Learning: ECML 2006. Springer:

Berlin Heidelberg, 2006, 282-293].

LUDWIG-

LMU)| :2e=m | | strateqy Inside the Tree

E.g. use Upper Confidence Bounds for Trees
« Select actions that maximize

UCT; = X; + 2C

/

Exploit Explore "][-]
observations solution space

X;: Average reward of child node |

n. Nr. of episodes from current node

n;. Nr. of episodes from child node |

i [Kocsis, Levente, and Csaba Szepesvari. Bandit-based Monte
C: UCT exploration constant Carlo planning. Machine Learning: ECML 2006. Springer:

Berlin Heidelberg, 2006, 282-293].

LMU

LUDWIG-
MAXIMILIANS-
UNIVERSITAT
MONCHEN

Expand the Tree

Add a new node
 When an episode leaves the tree

LUDWIG-

LMU| sz Strateqy Outside the Tree

Simulate episode to depth h,,,
Observe result

« E.g. reward observed

Here: 0O or 1

Reward: 1

LLLLLLL

LMU | |i2== | | update Strateqy

Update the statistics

This changes the strategy inside the tree

LMU

Search and Rescue Case
wversar | | StUAy: Experiment

MUNCHEN

LUDWIG-

Experiment

« Topology randomly generated with

20 nodes, 6-7 connections/nodes

« Action failure probability = 5%

« Planning depth =20

« Reward for victims at safe positions:

LUDWIG-

LMU| iz | | validation (1)

Provided reward
 Victim at ambulance: +100

System synthesizes
sensible behaviour
Results in 0.95 confidence interval
« Checked with MultiVeStA

Autonomy

Results of the MultiuaTEx expression

Isafetxj I]::-urningl{x:l Ifireslﬁxj

Measured (in %): Victims at ambulance (blue), in a fire (red’

[Stefano Sebastio and Andrea Vandin. MultiVeStA:
statistical model checking for discrete event simulators.
ValueTools '13. 2013. 310-315.]

Positions on fire (green)

LUDWIG-

LMU| |22 | | validation (11)

Besults of the MultiQuaTEx expression

Expose system to unexpected events v
« At steps 20, 40, 60, 80 \
 All carried victims are dropped

 New fires break out
« Events NOT simulated by planner

« New situation incorporated by
planner

System shows sensible reactions
Results in 0.95 confidence interval

Robustness

IslafEl:JL:l Iburningix:l Ifireslﬁx)

Measured (in %): Victims at ambulance (blue), in a fire (red)
Positions on fire (green)

LUDWIG-
MAXIMILIANS-

LMU| stz | | validation (111)

RBesults of the MultiguaTEx expression

Change system goals while operating v
« Change of reward function
— Steps 0-40: Reward for \
victims not in a fire N

— Steps 40-80: Reward for
victims at ambulance

« Change NOT simulated by
planner

« But planner incorporates new
situation

System adapts behaviour wrt. goals
Results in 0.95 confidence interval

Flexibility

Isafeix:l I]::-urningix:l Ifiresix:l
Measured (in %): Victims at ambulance (blue), in a fire (red’
Positions on fire (green)

4. Safe Learning
PSyCo: Policy SYnthesis with safety COnstraints

T Case study Robot in Grid
LMIU | | Requirements

Grid world with two passages

 broad long passage and short narrow
passage

Robot agent

e can move into 4 directions but slips with prob
0.05

Requirements

 Achieve goal
 Go to bottom right corner:

F atBottomCorner
- Safety (,,maintain®) goal

« Don't collide with walls:
P(G — collision) > p,, Iff
p(F collision) <= p;

MAXIMILIANS-
I_M u UNIVERSITAT
MONCHEN

LUDWIG-

PSyCo:
Modelling by Policy Synthesis

Idea: Generate reinforcement learning algorithm from requirements

so that the safety requirements are (mostly) respected

Achieve goals

Optimise goal satisfaction by Q-learning as
long as safety requirements hold

Safety goals

Control goal satisfaction

In case of
corridor”

violation return into the “safety

-

,Safety
corridor”

Moves of agent

/

Violation
of safety

MU s || Modelling: Formally

MUNCHEN

Reinforcement learning
« Learn in parallel Q-function of achieve goal and safety distribution

« Then the combined policy
« maximises expected future reward when being safe
and
« minimises future expected constraint satisfaction probability when

violating constraints

Negated (!) safety property

 Formally:

Let Asafc (S:ﬂ-) — {{I|p(F¢ s, a, ﬂ') < psat}-

TT(S) — arg ma}:ﬂg-"{lsafc (Slﬂ-) Q(S'J a') if ASﬂfE (S? ﬂ-) # @
arg min, p(F'¢|s, a,) otherwise

LMU

LUDWIG-
MAXIMILIANS-
UNIVERSITAT
MONCHEN

Programming

Learning safety-aware policy
* Learn in parallel
Q-function of achieve goal and safety distribution

 Q-value iteration*:

Q(Sa CL) — (1 o CY)Q(S,(I) + Oé(fr T YIMAXg c A(s') Q(Slaa,))

where r reward, « learning rate, y discount factor

« Safety distribution:

Initialize /s, a, 7 : p(F¢|s,a,w) = 0.

p(Fo

s,a,

) (1 —a)p(F¢|s,a,m)+ al if 5 = ¢
(1~ @)p(Fls,a,m) + ap(F¢|s',x(s'),m) otherwise

[*C.Watkins: Learning from Delayed Rewards. Ph.D. thesis,Cambridge University, 1989]

Experiment

Vary pg, from 0.1 to 0.5

Learning rate « = 0.1, discount factor y= 0.9,
Reward r = 1.0 if robot at bottom right corner

LUDWIG-

MAXIMILIANS-
UNIVERSITAT
MUNCHEN

Training

Training: 100.000 episodes (each up to 100 steps)
State visitation count

8

9

11 10

Psat = 0.3
Mostly the long passage is chosen
to avoid too many collisions

- 5000

- 4000

3000

2000

1000

8

9

11 10

o
—
N
M
<
i
o
~
0 1 2 3 4 5 6 7 8

Psat = 0.9
Mostly the short passage is chosen
due to lax collision requirements

- 4000

- 3200

2400

1600

800

0

LUDWIG-

LMIU| s+ | | validation for p,,, >= 0.3

Validation: 1000 episodes using learned policy

State visitation count

8

9

11 10

Psat = 0.3
Learned policy chooses
long passage

- 1000

- 800

- 600

- 400

- 200

- 1000

- 800

- 600

- 400

8

9

- 200

11 10

Psat = 0.9
Learned policy chooses
short passage

LUDWIG-

LMU | |:=s+| | Validation for pg,, >= 0.3

Validation: 1000 episodes with learned policy
collision free episodes vs. # episodes with collisions:

800 A 700 +

700 A
600

600
500

500 A

200 +
200 A

100 4 100 +

0.0 1.0 0.0 1.0
hit hit
Psat = 0.3 Psat = 0.5
80% no collision on 70% no collision on

long passage short passage

wowis Validation fails
LMU)| s | for pg,, <= 0.2

Validation: 1000 episodes using learned policy
Validation fails for strong collision freeness (p.,; = 0.1, 0.2)!

- 7500
- 6000
4500
3000

1500

117 10 9 8 7 6 5 4 3 2 1 0

0 1 2 3 4 5 6 7 8

Psat = 0.1 Pgat = 0.1
State visitation count but learned policy follows short passage
long passage preferred and has >30% collisions

> Further design cycle is necessary!

LUDWIG-

LMU | 2= | | Concluding Remarks

,oafe Learning" PSyCo Online simulation planning
Adaptation: ,slow" at design time Jfast” at runtime
Execution: FAST SLOW

® Many challenges
® How to engineer complex safe adaptive multi-agent systems?
® In adaptive environments?

Martin Wirsing

