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1. What Is an adaptive system?
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® An adaptive system adjusts its
behaviour to multiple situations:

® change of
® environment
® human/other agents behavior
® network infrastructure
® goals/requirements
® the system itself
® or any combination thereof

® We distinguish between
® black-box adaptation and

® white-box adaptation

Martin Wirsing
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® Goal satisfaction in an environment
For any environment n, system S, goal y:

n,Sl=y

Force of Torque = define # of robots

S

® An adaptive system adjusts to a change

of
* goals/requirements: 1, S |= v g!
® environment:n’, S |=y -
® the systemitself:n, S’ |=y ——
un Environ
Light
* Adaptation space &
® Adaptation domain Ac Env X G Cmpf&/w/fpm égggéation

® Scan adaptto A, written S |- A :
S|I-A iff V(n,v)e A n, Sy

[M. Holzl, MW: Towards a System Model for Ensembles. Formal

Martin ersmg Modeling: Actors, Open Systems, Biological Systems 2011]
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® White-box adaptation
® Modify control mechanism at runtime

so that the (adaptation) requirements are satisfied | T b |
¥ P
K -
¢ A p p rO aC h eS Knowledge 11:Po|icies P E{R%‘o
® Classical adaptation techniques - Procasss

E.g. programming using modes, reconfiguration, policies
® Al adaptation techniques

MANAGER

Control
. - . . AUTONOMIC
E.g. using planning, learning, reasoning,

\
Analyze Plan
swarm algorithms \ >
Monitor Knowledge Execute
P
/ Control ‘
Data

MANAGED ELEMENT

Control

[Bruni, Corradini, Gaducci, Lluch Lafuente, Vandin : A Conceptual Framework for
Martin Wirsing Adaptation. FASE 2012; Bruni, Corradini, Gaducci, Holzl, Lluch Lafuente, Vandin, MW:
Reconciling White-box and Black-Box Adaptation, ASCENS book 2015 |




2. Recap:
DevAdapt

A development lifecycle for
adaptive systems
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Agile lifecycle: DevAdapt

lterations at development time and runtime connected by deployment
and feedback

« 3 feedback loops

« Cf. DevOps life cycle for integrating development and operations

; - [N. Koch et al.: Life Cycle for the Development of Autonomic Systems: The e-Mobility
Martin Wirsing Showcase, 3@ Workshop Self-Awareness in Autonomic Systems, 2013; Compuware
Mainframe DevODps. httbs://www.combuware.com/lifecvcle-overview/]
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Develop “SOTA/Gem” requirements
specification consisting of

« environment specification

| Yol
« goal-oriented specification of the :
adaptive system with Init
* Maintain goals of form G, ,intain @ — //
- Achieve goals of form F; ¢ - /'2&4,@
- adaptation/awareness ,P/// @
requirements (adaptation space) /

s

[M. Holzl, MW: Towards a System Model for Ensembles. Formal Modeling: Actors, Open
Martin Wirsing Systems, Biological Systems 2011; D. Abeywickrama, M, Mamei, F. Zambonelli: Engineering
Collectives of Self-driving Vehicles: The SOTA Approach. ISoLA (3) 2018: 79-93]
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® Architecture

AUTONOMIC

MANAG E\R

Adaptation patterns such as y
>

w
® Reactive component m/wedge\@
-~ P

Control

MAPE-K architecture of autonomic
manager /‘ Data

Data

MANAGED ELEMENT

- . . . MAPE-K A i
® Modelling and programming/training: White- utonomic manager

box adaptation ] oo .

Classical adaptation, e.qg. E ‘
® Component-based programming with SCEL i‘
Machine learning adaptation, e.g. —

: : Autonomic component
® Reinforcement learning P

® Deep Neural Networks

[Puviani, Cabri, Zambonelli: Patterns for self-adaptive systems: agent-based simulat-
ions. EAI Endorsed Trans. Self-Adaptive Systems 1, 2015; De Nicola , Loreti, Pugliese
Tiezzi. SCEL.: a Language for Autonomic. Computing, ACM TAAS, 2014; Bruni,

Martin Wirsing IC::'A\orsrgdzir(l)i,é;aducci, Lluch Lafuente, Vandin : A Conceptual Framework for Adaptation.

° © GUEEIEeEPGEICID @ o B ©
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¢ ShOW that the SyStem SatiSfieS the Probability of rescuing the victim within a given time

(adaptation) requirements 'F o Lananars
specification by 0| ——— oo andmas
* Testing Sus}
e Simulation Boil

* (Statistical) Modelchecking /
using compositional techniques, of— |

1000 2000 3000 4000

fluid flow analysis, constraint Time steps (1)
programming, ...

=

* Note: Environment assumptions and
adaptation space requirements must also be
validated

[J. Combaz,S. Bensalem, F.Tiezzi ,A. Margheri, R. Pugliese, J. Kofron: Correctness of Service
Components and Service Component Ensembles. ASCENS Book 2015:105-158; R. De Nicola , M.
Loreti, R. Pugliese, F. Tiezzi: SCEL: a Language for Autonomic Computing, ACM TAAS, 2014; L. Bulej,
Martin Wirsing T. Bures, |. Gerostathopoulos, V. Horky, J. Keznikl, L. Marek, M. Tschaikowski, M. Tribastone, P. Tuma:
Supporting Performance Awareness in Autonomous Ensembles. ASCENS Book 2015: 291-322]
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3. Adapting Behaviours by
Simulation-based Online Planning

Martin Wirsi [Belzner, R. Hennicker, MW: Onplan: A framework for simulation-based online planning. In
Al el C. Braga and P. C. Olveczky, eds., FACS 2015 LNCS 9539, Springer, 2015. 1-30.]




oG, Search and Rescue
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Environment
« Victims, fires and ambulances
« Unknown topology
« Unknown initial situation

Agent actions
« Noop, Move
« Load or drop a victim
« Extinguish fire if adjacent

Agent Requirements
« Find victims and bring them to an ambulance
— F (AND,, _,victim; at ambulance)
« Extinguish fire if adjacent
— G (robot.position.fire =»
action.robot = extinguishFire)

[*] connections

Position
[1] position . |fire : Boolean _ [0..1] position
safe : Boolean
[*] robots [*] victims
[*] victims =5
Robot Victim

capacity : Integer
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Environment and system may change
* In a nondeterministic way

— Fires ignite and cease
— Actions of agent may fail
by unexpected events

— New fires break out and agents drop
victims

Goals of agent may change

 (Goal “Save victims from fire”
— F (AND,., _, — victim; at fire)
changes to

“Save victims and bring them to
ambulance”
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Online Planning

« Perform planning and execution of actions
iteratively at runtime

AUTONOMIC MANAG E\R

Architecture

« MAPE-K loop with parallel planning \ / \
IWKnowledgem
P

Online Planning Pseudo-Code

Control
Data

while true do

MANAGED ELEMENT
Oobserve state

execute || plan

end while

Control
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Simulation-based Online Planning
simulates future episodes at runtime

« Architecture
— Iterated MAPE-K loop
« Simulation-based planning

— Simulate by generating n episodes
and their rewards

— After each episode update the
current policy according to strategy

« Strategies
— Monte Carlo Tree Search

— Cross Entropy Planning

AN

S

tree 1

NAGED ELEMENT

(L, x)

‘I P (c)




e, Monte Carlo Tree Search
|_|V|u wesitar | | fOr Discrete Domains

MUNCHEN

Simulation with Monte Carlo Tree Search
 Policy as tree
» Nodes represent states and action choices
« Add a node per simulation
« Aggregate simulation data in nodes
— Reward and frequency

« Sample actions w.r.t. aggregated data

e Sample/Simulate — Update ~ o

Default
Policy

v
. A Y,
[Cameron B Browne et al.: A survey of Monte Carlo tree search methods.
Computational Intelligence and Al in Games, IEEE Transactions on, 4(1):1 - 43, 2012.]
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E.g. use Upper Confidence Bounds for Trees
« Select actions that maximize

2lnn

UCT; = X; + 2C

nj

[Kocsis, Levente, and Csaba Szepesvari. Bandit-based Monte
Carlo planning. Machine Learning: ECML 2006. Springer:

Berlin Heidelberg, 2006, 282-293].
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E.g. use Upper Confidence Bounds for Trees
« Select actions that maximize

UCT; = X; + 2C

/

Exploit Explore " ][ - ]
observations solution space

X;: Average reward of child node |

n. Nr. of episodes from current node

n;. Nr. of episodes from child node |

i [Kocsis, Levente, and Csaba Szepesvari. Bandit-based Monte
C: UCT exploration constant Carlo planning. Machine Learning: ECML 2006. Springer:

Berlin Heidelberg, 2006, 282-293].
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Expand the Tree

Add a new node
 When an episode leaves the tree
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Simulate episode to depth h,,,
Observe result

« E.g. reward observed

Here: 0O or 1

Reward: 1
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Update the statistics

This changes the strategy inside the tree
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LUDWIG-

Experiment

« Topology randomly generated with

20 nodes, 6-7 connections/nodes

« Action failure probability = 5%

« Planning depth =20

« Reward for victims at safe positions:
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Provided reward
 Victim at ambulance: +100

System synthesizes
sensible behaviour
Results in 0.95 confidence interval
« Checked with MultiVeStA

Autonomy

Results of the MultiuaTEx expression

Isafetxj I]::-urningl{x:l Ifireslﬁxj

Measured (in %): Victims at ambulance (blue), in a fire (red’

[Stefano Sebastio and Andrea Vandin. MultiVeStA:
statistical model checking for discrete event simulators.
ValueTools '13. 2013. 310-315. ]

Positions on fire (green)
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Besults of the MultiQuaTEx expression

Expose system to unexpected events v
« At steps 20, 40, 60, 80 \
 All carried victims are dropped

 New fires break out
« Events NOT simulated by planner

« New situation incorporated by
planner

System shows sensible reactions
Results in 0.95 confidence interval

Robustness

IslafEl:JL:l Iburningix:l Ifireslﬁx)

Measured (in %): Victims at ambulance (blue), in a fire (red)
Positions on fire (green)
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RBesults of the MultiguaTEx expression

Change system goals while operating v
« Change of reward function
— Steps 0-40: Reward for \
victims not in a fire N

— Steps 40-80: Reward for
victims at ambulance

« Change NOT simulated by
planner

« But planner incorporates new
situation

System adapts behaviour wrt. goals
Results in 0.95 confidence interval

Flexibility

Isafeix:l I]::-urningix:l Ifiresix:l
Measured (in %): Victims at ambulance (blue), in a fire (red’
Positions on fire (green)



4. Safe Learning
PSyCo: Policy SYnthesis with safety COnstraints




T Case study Robot in Grid
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Grid world with two passages

 broad long passage and short narrow
passage

Robot agent

e can move into 4 directions but slips with prob
0.05

Requirements

 Achieve goal
 Go to bottom right corner:

F atBottomCorner
- Safety (,,maintain®) goal

« Don't collide with walls:
P(G — collision) > p,, Iff
p(F collision) <= p;
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PSyCo:
Modelling by Policy Synthesis

Idea: Generate reinforcement learning algorithm from requirements

so that the safety requirements are (mostly) respected

Achieve goals

Optimise goal satisfaction by Q-learning as
long as safety requirements hold

Safety goals

Control goal satisfaction

In case of
corridor”

violation return into the “safety

-

,Safety
corridor”

Moves of agent

/

Violation
of safety
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Reinforcement learning
« Learn in parallel Q-function of achieve goal and safety distribution

« Then the combined policy
« maximises expected future reward when being safe
and
« minimises future expected constraint satisfaction probability when

violating constraints

Negated (!) safety property

 Formally:

Let Asafc (S:ﬂ-) — {{I|p(F¢ s, a, ﬂ') < psat}-

TT(S) — arg ma}:ﬂg-"{lsafc (Slﬂ-) Q(S'J a') if ASﬂfE (S? ﬂ-) # @
arg min, p(F'¢|s, a, ) otherwise
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Programming

Learning safety-aware policy
* Learn in parallel
Q-function of achieve goal and safety distribution

 Q-value iteration*:

Q(Sa CL) — (1 o CY)Q(S,(I) + Oé(fr T YIMAXg c A(s') Q(Slaa,))

where r reward, « learning rate, y discount factor

« Safety distribution:

Initialize /s, a, 7 : p(F¢|s,a,w) = 0.

p(Fo

s,a,

) (1 —a)p(F¢|s,a,m)+ al if 5 = ¢
(1~ @)p(Fls,a,m) + ap(F¢|s',x(s'),m) otherwise

[*C.Watkins: Learning from Delayed Rewards. Ph.D. thesis,Cambridge University, 1989]




Experiment

Vary pg, from 0.1 to 0.5

Learning rate « = 0.1, discount factor y= 0.9,
Reward r = 1.0 if robot at bottom right corner
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Training

Training: 100.000 episodes (each up to 100 steps)
State visitation count

8

9

11 10

Psat = 0.3
Mostly the long passage is chosen
to avoid too many collisions

- 5000

- 4000

3000

2000

1000

8

9

11 10

o
—
N
M
<
i
o
~
0 1 2 3 4 5 6 7 8

Psat = 0.9
Mostly the short passage is chosen
due to lax collision requirements

- 4000

- 3200

2400

1600

800

0
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Validation: 1000 episodes using learned policy

State visitation count

8

9

11 10

Psat = 0.3
Learned policy chooses
long passage

- 1000

- 800

- 600

- 400

- 200

- 1000

- 800

- 600

- 400

8

9

- 200

11 10

Psat = 0.9
Learned policy chooses
short passage
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Validation: 1000 episodes with learned policy
# collision free episodes vs. # episodes with collisions:

800 A 700 +

700 A
600

600
500

500 A

200 +
200 A

100 4 100 +

0.0 1.0 0.0 1.0
hit hit
Psat = 0.3 Psat = 0.5
80% no collision on 70% no collision on

long passage short passage
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Validation: 1000 episodes using learned policy
Validation fails for strong collision freeness (p.,; = 0.1, 0.2)!

- 7500
- 6000
4500
3000

1500

117 10 9 8 7 6 5 4 3 2 1 0

0 1 2 3 4 5 6 7 8

Psat = 0.1 Pgat = 0.1
State visitation count but learned policy follows short passage
long passage preferred and has >30% collisions

> Further design cycle is necessary!
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,oafe Learning" PSyCo Online simulation planning
Adaptation:  ,slow" at design time Jfast” at runtime
Execution: FAST SLOW

® Many challenges
® How to engineer complex safe adaptive multi-agent systems?
® In adaptive environments?

Martin Wirsing




