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1. What is an adaptive system? 

Martin Wirsing 



Adaptive system 

• An adaptive system adjusts its 

behaviour to multiple situations: 

• change of 

• environment 

• human/other agents behavior 

• network infrastructure 

• goals/requirements 

• the system itself 

• or any combination thereof 

 

• We distinguish between  

• black-box adaptation and 

• white-box adaptation 
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Adaptation Requirements:  

Black-Box Adaptation 

•  Goal satisfaction in an environment 

 For any environment h, system S, goal g: 

 h, S |= g 

 

• An adaptive system adjusts to a change 

of 

• goals/requirements: h, S |= g’ 

• environment: h’, S |= g 

• the system itself: h, S’ |= g 

 

• Adaptation space  

• Adaptation domain A  Env × G 

• S can adapt to A, written S ||- A : 

   S ||- A  iff   (h, g)  A.  h, S |= g 

 

 

Adaptation  
space 

[M. Hölzl, MW: Towards a System Model for Ensembles. Formal 
Modeling: Actors, Open Systems, Biological Systems 2011] 
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Adaptation Modelling: 

White-Box Adaptation 

• White-box adaptation 

• Modify control mechanism at runtime  

    so that the (adaptation) requirements are satisfied 

  

• Approaches 

• Classical adaptation techniques  

E.g. programming using modes, reconfiguration, policies  

• AI adaptation techniques 

E.g. using planning, learning, reasoning, 

swarm algorithms 
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[Bruni, Corradini, Gaducci, Lluch Lafuente, Vandin : A Conceptual Framework for 
Adaptation. FASE 2012; Bruni, Corradini, Gaducci, Hölzl, Lluch Lafuente, Vandin, MW: 
Reconciling White-box and Black-Box Adaptation,  ASCENS book 2015 ] 



 

 

2. Recap:  

DevAdapt 

A development lifecycle for 

adaptive systems 
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Agile lifecycle: DevAdapt 
• Iterations at development time and runtime connected by deployment 

and feedback 

• 3 feedback loops 

• Cf. DevOps life cycle for integrating development and operations 

 8  Martin Wirsing 
[N. Koch et al.: Life Cycle for the Development of Autonomic Systems: The e-Mobility 
Showcase, 3rd Workshop Self-Awareness in Autonomic Systems, 2013; Compuware 
Mainframe DevOps, https://www.compuware.com/lifecycle-overview/] 

ASCENS Approach:  

„DevAdapt“ Lifecycle 



Develop “SOTA/Gem” requirements 

specification consisting of 

• environment specification 

• goal-oriented specification of the 

adaptive system with  

• Maintain goals of form Gmaintain f 

• Achieve goals of form Fpost f 

• adaptation/awareness 

requirements (adaptation space) 

9  Martin Wirsing 

Requirements Engineering 

9  
[M. Hölzl, MW: Towards a System Model for Ensembles. Formal Modeling: Actors, Open 
Systems, Biological Systems 2011; D. Abeywickrama, M, Mamei, F. Zambonelli: Engineering 
Collectives of Self-driving Vehicles: The SOTA Approach. ISoLA (3) 2018: 79-93] 

Fpost 

Init 



 

Modelling 

• Architecture 

• Adaptation patterns such as 

• Reactive component 

• MAPE-K architecture of autonomic 

manager 

 

• Modelling and programming/training: White-

box adaptation 

• Classical adaptation, e.g. 

• Component-based programming with SCEL 

• Machine learning adaptation, e.g.  

• Reinforcement learning 

• Deep Neural Networks 

 

 

 

[Puviani, Cabri, Zambonelli: Patterns for self-adaptive systems: agent-based simulat-
ions. EAI Endorsed Trans. Self-Adaptive Systems 1, 2015; De Nicola , Loreti, Pugliese, 
Tiezzi: SCEL: a Language for Autonomic Computing, ACM TAAS, 2014; Bruni, 
Corradini, Gaducci, Lluch Lafuente, Vandin : A Conceptual Framework for Adaptation. 
FASE 2012] 

MAPE-K Autonomic manager 

Martin Wirsing 

Autonomic component 



• Show that the system satisfies the 

(adaptation) requirements 

specification by 

• Testing  

• Simulation 

• (Statistical) Modelchecking 

using compositional techniques, 

fluid flow analysis, constraint 

programming, …  

      

11  Martin Wirsing 

Validation and Verification 

[J. Combaz,S. Bensalem, F.Tiezzi ,A. Margheri, R. Pugliese, J. Kofron: Correctness of Service 
Components and Service Component Ensembles. ASCENS Book 2015:105-158; R. De Nicola , M. 
Loreti, R. Pugliese, F. Tiezzi: SCEL: a Language for Autonomic Computing, ACM TAAS, 2014; L. Bulej, 
T. Bures, I. Gerostathopoulos, V. Horký, J. Keznikl, L. Marek, M. Tschaikowski, M. Tribastone, P. Tuma: 
Supporting Performance Awareness in Autonomous Ensembles. ASCENS Book 2015: 291-322] 

• Note: Environment assumptions and 

adaptation space requirements must also be 

validated 



 

 

3. Adapting Behaviours by 

Simulation-based Online Planning 

Martin Wirsing 
[Belzner, R. Hennicker, MW: Onplan: A framework for simulation-based online planning. In 
C. Braga and P. C. Ölveczky, eds., FACS 2015 LNCS 9539, Springer, 2015. 1-30.] 



Environment 

• Victims, fires and ambulances 

• Unknown topology 

• Unknown initial situation 

 

Agent actions 

• Noop, Move 

• Load or drop a victim 

• Extinguish fire if adjacent 

 

 

Agent Requirements 

• Find victims and bring them to an ambulance 

– F (ANDi=1,…n victimi at ambulance) 

• Extinguish fire if adjacent 

– G (robot.position.fire   

  action.robot = extinguishFire) 

 

 

Search and Rescue  

Case Study Requirements 



 

Adaptation Space 

Environment and system may change  

• in a nondeterministic way 

- Fires ignite and cease 

- Actions of agent may fail 

 by unexpected events 

- New fires break out and agents drop 

victims 

 

Goals of agent may change 

• Goal “Save victims from fire”  

– F (ANDi=1,…n   victimi at fire) 

     changes to  

     “Save victims and bring them to 

      ambulance” 

 



Generic Modelling 

Online Planning 

• Perform planning and execution of actions 

iteratively at runtime 

 

Architecture  

• MAPE-K  loop with parallel planning 

 

Online Planning Pseudo-Code 

while true do 

  observe state 

  execute || plan 

end while 

 



Modelling: Instantiation 

Simulation-based Online Planning  

 simulates future episodes at runtime 

• Architecture  

- Iterated MAPE-K loop 

• Simulation-based planning  

- Simulate by generating n episodes 

and their rewards 

- After each episode update the 

current policy according to strategy 

• Strategies 

- Monte Carlo Tree Search   

- Cross Entropy Planning 

 

 



 Monte Carlo Tree Search  

 for Discrete Domains 

Simulation with Monte Carlo Tree Search  

• Policy as tree 

• Nodes represent states and action choices 

• Add a node per simulation 

• Aggregate simulation data in nodes 

– Reward and frequency 

• Sample actions w.r.t. aggregated data 

[Cameron B Browne et al.: A survey of Monte Carlo tree search methods. 
Computational Intelligence and AI in Games, IEEE Transactions on, 4(1):1 - 43, 2012.] 

 



Strategy Inside the Tree 

 

E.g. use Upper Confidence Bounds for Trees  

• Select actions that maximize 

 

          𝑈𝐶𝑇𝑗 = 𝑋𝑗 + 2𝐶
2 ln 𝑛

𝑛𝑗
 

 

 

 

 

4 / 8 0 / 3 7 / 10 

2 / 4 5 / 6 1 / 2 1 / 3 2 / 3 

2 / 3 3 / 3 

11 / 21 

Cumulated reward Nr. of episodes 

18 

[Kocsis, Levente, and Csaba Szepesvári. Bandit-based Monte 
Carlo planning. Machine Learning: ECML 2006. Springer: 
Berlin Heidelberg, 2006, 282-293]. 



Strategy Inside the Tree 

 

E.g. use Upper Confidence Bounds for Trees  

• Select actions that maximize 

 

          𝑈𝐶𝑇𝑗 = 𝑋𝑗 + 2𝐶
2 ln 𝑛

𝑛𝑗
 

 

 

 

 

𝑋𝑗:  Average reward of child node j 

𝑛:   Nr. of episodes from current node 

𝑛𝑗:  Nr. of episodes from child node j 

𝐶:   UCT exploration constant 

4 / 8 0 / 3 7 / 10 

2 / 4 5 / 6 1 / 2 1 / 3 2 / 3 

2 / 3 3 / 3 

11 / 21 

Exploit 
observations 

Explore 
solution space 

19 

[Kocsis, Levente, and Csaba Szepesvári. Bandit-based Monte 
Carlo planning. Machine Learning: ECML 2006. Springer: 
Berlin Heidelberg, 2006, 282-293]. 



Expand the Tree 

4 / 8 0 / 3 7 / 10 

2 / 4 5 / 6 1 / 2 1 / 3 2 / 3 

2 / 3 3 / 3 

11 / 21 

0 / 0 

Add a new node 

• When an episode leaves the tree 

20 



Strategy Outside the Tree 

Current simulation strategy 

Simulate episode to depth ℎ𝑚𝑎𝑥 

Observe result 

• E.g. reward observed 

     Here: 0 or 1 

Reward: 1 

4 / 8 0 / 3 7 / 10 

2 / 4 5 / 6 1 / 2 1 / 3 2 / 3 

2 / 3 3 / 3 

11 / 21 

0 / 0 

21 



Update the statistics 

This changes the strategy inside the tree 

Update Strategy 

4 / 8 0 / 3 8 / 11 

2 / 4 6 / 7 1 / 2 1 / 3 2 / 3 

2 / 3 4 / 4 

12 / 22 

1 / 1 

22 



Search and Rescue Case 

Study: Experiment 

Experiment 

• Topology randomly generated with 

 20 nodes, 6-7 connections/nodes 

• Action failure probability = 5% 

• Planning depth  = 20 

• Reward for victims at safe positions: 

      R(s) = 100 · Sv∈victims(s) #(v.position.safe) 



Provided reward 

• Victim at ambulance:  +100 

 

 

System synthesizes 

sensible behaviour 

Results in 0.95 confidence interval 

• Checked with MultiVeStA 

 

Validation (I) 

Autonomy 

[Stefano Sebastio and Andrea Vandin. MultiVeStA: 
statistical model checking for discrete event simulators. 
ValueTools '13. 2013. 310-315. ] 

 Measured (in %): Victims at ambulance (blue),  in a fire (red) 

     Positions on fire (green) 



Expose system to unexpected events 

• At steps 20, 40, 60, 80 

• All carried victims are dropped 

• New fires break out 

• Events NOT simulated by planner 

• New situation incorporated by 

planner 

 

System shows sensible reactions 

Results in 0.95 confidence interval 

Validation (II) 

Robustness 

 Measured (in %): Victims at ambulance (blue),  in a fire (red) 

     Positions on fire (green) 



Change system goals while operating 

• Change of reward function 

– Steps 0-40: Reward for 

victims not in a fire 

– Steps 40-80: Reward for 

victims at ambulance 

• Change NOT simulated by 

planner 

• But planner incorporates new 

situation 

System adapts behaviour wrt. goals 

Results in 0.95 confidence interval 

Validation (III) 

Flexibility 

 Measured (in %): Victims at ambulance (blue),  in a fire (red) 

     Positions on fire (green) 



 

 

4. Safe Learning 
PSyCo: Policy SYnthesis with safety COnstraints  
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Case study Robot in Grid 

Requirements 

Grid world with two passages 

• broad long passage and short narrow 

passage 

Robot agent 

• can move into 4 directions but slips with prob 

0.05 

Requirements 

• Achieve goal  

• Go to bottom right corner:  

  F atBottomCorner 

• Safety („maintain“) goal 

• Don‘t collide with walls:     

  p(G  collision) > psat  iff  

  p(F collision) <= psat  

 

 

 



PSyCo:  
Modelling by Policy Synthesis 

• Achieve goals 

• Optimise goal satisfaction by Q-learning as 

long as safety requirements hold 

 

• Safety goals 

• Control goal satisfaction 

in case of violation return into the “safety 

corridor” 

 

 

 

 

„Safety 
corridor“ 

Moves of agent 

Violation 

of safety 

Idea: Generate reinforcement learning algorithm from requirements 

 so that the safety requirements are (mostly) respected 

 

 



Modelling: Formally 

Reinforcement learning 

• Learn in parallel Q-function of achieve goal and safety distribution  

• Then the combined policy 

• maximises expected future reward when being safe  

      and 

• minimises future expected constraint satisfaction probability when 

violating constraints 
 

• Formally:  

 

Negated (!) safety property 



Programming 

 

Learning safety-aware policy 

• Learn in parallel  

     Q-function of achieve goal and safety distribution  

 

• Q-value iteration*:  

 

 

  where r reward, a learning rate, g discount factor 
 

• Safety distribution: 

 

 

 

 

 

    

 

[*C.Watkins: Learning from Delayed Rewards. Ph.D. thesis,Cambridge University, 1989] 



Robot in Grid World 

Experiment 
 

Experiment 

• Vary psat from 0.1 to 0.5 

• Learning rate a = 0.1, discount factor g = 0.9,  

• Reward r = 1.0 if robot at bottom right corner 



 

 

 

 

 

 

 

 

 

 

 psat = 0.5 

Mostly the short passage is chosen 

due to lax collision requirements 

 

Training 

Training: 100.000 episodes (each up to 100 steps) 

State visitation count 

 

 

 

 

 

 

 

 

 

 

 psat = 0.3     

Mostly the long passage is chosen    

to avoid too many collisions 



 

 

 

 

 

 

 

 

 

 

 psat = 0.5 

Learned policy chooses   

short passage 

 

Validation for psat >= 0.3 

Validation: 1000 episodes using learned policy  

State visitation count 

 

 

 

 

 

 

 

 

 

 

 psat = 0.3   

Learned policy chooses    

long passage 



Validation: 1000 episodes with learned policy  

# collision free episodes vs. # episodes with collisions: 

 

 

 

 

 

 

 

 

 

 

 psat = 0.3     psat = 0.5 

80% no collision on    70% no collision on  

long passage         short passage 

 

Validation for psat >= 0.3 



Validation: 1000 episodes using learned policy  

Validation fails for strong collision freeness (psat = 0.1, 0.2)! 

 

 

 

 

 

 

 

 

 psat = 0.1      

State visitation count    

long passage preferred 

Validation fails 

for psat <= 0.2 

 

 

 

 

 

 

 

 

 psat = 0.1 

but learned policy follows short passage 

and has >30% collisions 

Further design cycle is necessary! 

 

 

 



Concluding Remarks 

        „Safe Learning"  PSyCo     Online simulation planning 

Adaptation:      „slow“ at design time                   „fast“ at runtime 

Execution:                  FAST           SLOW 

Martin Wirsing 

• Many challenges 

• How to engineer complex safe adaptive multi-agent systems?  

• In adaptive environments? 

 

 


