VL Semantik
Lehrstuhl fir Software and Computational Systems
Dirk Beyer, Thomas Lemberger

Winter Term 2020/2021

Handout

1 Ablauf

13:00 - 13:15 Intro

13:15-13:45 pySMT und BMC (Breakout Rooms)
13:45 - 13:55 Besprechung

13:55 - 14:00 Pause

14:00 — 14:10 Einftihrung CPAs

14:10 — 14:45 CPAs (Breakout Rooms)

14:35 — 14:45 Besprechung CPAs

14:45 -14:50 Pause

14:50 — 15:20 CPAs (Breakout Rooms)

15:20 - 15:30 Nachbesprechung

1.1 Teambildung

2er-Teams. Wer kann Python?

2 SMT Solvers

Satisfiability modulo theories.
Theories:
¢ Arrays
¢ Arithmetic (Integer, Float, Bitvector)

¢ Undefined functions

3 Configurable Program Analysis

3.1 Semi-Lattice

Semi-lattice £ = (E,C, U, T) over elements of a set E, if:

e C: E x E partial order over E,

¢ every subset M C E has a least upper bound e € E,

U : E x E — E denotes the leat upper bound of two elements,

top element T is the least upper bound of E.

2021/02/19

https://uni2work.ifi.lmu.de/course/W20/IfI/SV

3.2 CPAs

A CPAD = (D, ~», merge, stop) for a CFA (L, Iy, G) consists of the following components:

* Abstract domain D = (C, &, [-]) with concrete states C, semi-lattice £ = (E,C, L, T), and
concretization function [-] : E — 2¢

® Abstract transfer relation ~»: E X G x E assigns to each abstract state e € E possible ab-
stract successors ¢’ € E, labelled with a corresponding CFA edge g € G.

* Merge operator merge : E x E — E combines two abstract states into a new one

 Termination check stop : E x 2F — B checks whether an abstract state is already covered
by a set of given abstract states

Some CPAs you should know:

1. Location CPA

2. Observer Analysis

3. Value Abstraction

4. Predicate Abstraction

3.3 CPA Algorithm

Algorithm 2 CPA(D, ¢)

Input: a CPA D = (D, ~+, merge, stop),
an initial abstract state e¢g € E, where E denotes the set of elements of the lattice of D
QOutput: a set of reachable abstract states
Variables: a set reached C E. a set waitlist C E
1. waitlist := {eg}

2: reached := {ep}

3: while waitlist £ {} do

4. choose ¢ from waitlist

5: waitlist := waitlist \ {¢}

6: for each ¢’ with e~=¢’ do

7 for each ¢” € reached do

8: /f combine with existing abstract state
0: €new = Mmerge(e’, ")

10: if €,0, # ¢ then

11: waitlist := (waitlist U {epen}) \ {€”}
12: reached := (reached U {¢ o }) \ {€”}
13: if — stop(¢’, reached) then

14: waitlist := waitlist U {¢’}

15: reached := reached U {¢'}

16: return reached

3.4 Linear Temporal Logic (LTL)

As a reminder, the syntax of LTL:

Formula ¢ ::= true | false | A atomic propositions

| = |pAY| ... junctors over LTL formulae

|o¢p (N o) ¢ is true in the next state (/next time step)

| o ¢ (Fo¢) ¢ is true sometime between now and the infinite future
|O0¢ (G¢) ¢ is true all the time, from now on

| U ¢ is true until ¢ is true, and Ymust be true at some point
| W ¢ is true until ¢ is true, and Ymay always stay false

An LTL formula is evaluated over an infinite sequence of steps. In each step, each atomic propo-
sition may change its value.

The definition of a (time) step is arbitrary. In our application, a time step is often defined as one
transition in the CFA.

4 Verification-Result Withesses

https://github.com/sosy-lab/sv-witnesses

4.1 Violation Witnesses

4.2 Correctness Witnesses

https://github.com/sosy-lab/sv-witnesses

	Ablauf
	Teambildung

	SMT Solvers
	Configurable Program Analysis
	Semi-Lattice
	CPAs
	CPA Algorithm
	Linear Temporal Logic (LTL)

	Verification-Result Witnesses
	Violation Witnesses
	Correctness Witnesses

