Semantics: Application to C Programs

Thomas Lemberger

© SoSy-Lab, LMU Munich, Germany Slides and Material prepared by D. Beyer, M.-C. Jakobs, M. Spießl, and T. Lemberger

Organization

Lecture and Exercise

Lecture

Mar 4, 2022, 10:00 - 12:00

Exercise

Mar 4, 2022, 13:00 - 16:00

Course Material

```
https:
//www.sosy-lab.org/Teaching/2021-WS-Semantik/
```

Required software:

- ► Linux
- ▶ Java 11
- ► CPAchecker 2.1.1
- ▶ Python >= 3.8
- pip (usually comes with python)

Introduction

Bingo

C Use-Def

Invariant Specification

Formal Verification State Space

Dead Code

Model Checking

Taint Analysis

Least Upper Bound Constant Propagation

Constant Fropagation

Partial Order Program Syntax

SMT CPAchecker

Axiomatic Semantics

Program Path Operational Semantics

Software Analysis

Computes an (over-)approximation of a program's **behavior**.

Applications

- Optimization
- Correctness (i.e., whether program satisfies a given property)
- Developer Assist

What Could an Analysis Find out?

```
double divTwiceCons(double y) {
   int cons = 5;
   int d = 2*cons;
   if (cons != 0)
      return y/(2*cons);
   else
      return 0;
}
```

Some Analysis Results

```
double divTwiceCons(double y) {
    int cons = 5:
    // expression 2*cons has value 10
    // variable d not used
    int d = 2*cons;
    if (cons != 0)
       // expression 2*cons evaluated before
       return y/(2*cons);
    else
       // dead code
       return 0;
```

One Resulting Code Optimization

```
double divTwiceCons(double y) {
   int cons = 5:
   // expression 2*cons has value 10
   // variable d not used
   int d = 2*cons:
    if (cons!=0)
       // expression 2*cons evaluated before
       return y/(2*cons);
   else
       // dead code
       return 0:
double divTwiceConsOptimized(double y) {
          return y/10;
```

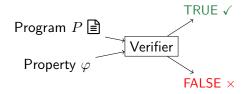
Software Verification

Formally proves whether a program P satisfies a property φ .

- Requires program semantics, i.e., meaning of program
- Relies on mathematical methods,
 - logic
 - induction
 - **•** . .

Software Verification

Formally proves whether a program P satisfies a property φ .



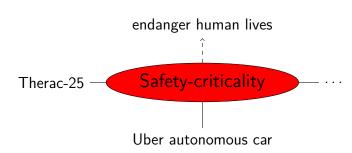
- Disprove (\times) Find a program execution (counterexample) that violates the property φ
 - Prove (\checkmark) Show that **every** execution of the program satisfies the property φ .

Does This Code Work?

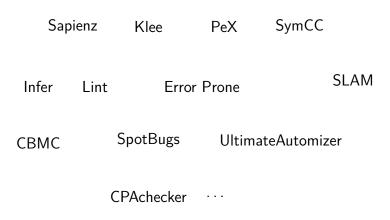
```
double avgUpTo(int[] numbers, int length) {
    double sum = 0;
    for(int i=0;i<length;i++)
        sum += numbers[i];
    return sum/(double)length;
}</pre>
```

Problems With This Code

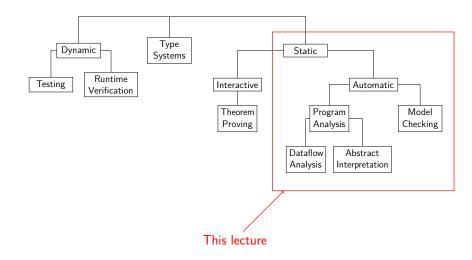
Why Should One Care for Bugs?



Analysis and Verification Tools



Overview on Analysis and Verification Techniques



Why Different Static, Automatic Techniques?

Theorem of Rice

Any non-trivial, semantic property of programs is undecidable.

Consequences

Techniques are

- incomplete, e.g. answer UNKNOWN, or
- unsound, i.e., report
 - ► false alarms (non-existing bugs),
 - ► false proofs (miss bugs).

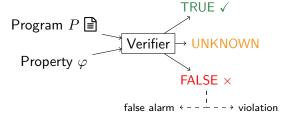
Verifier Design Space

 $\begin{array}{c} \text{TRUE} \checkmark \\ \text{Program } P & \\ \hline \\ \text{Property } \varphi \\ \hline \\ \text{FALSE} \times \\ \end{array}$

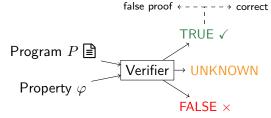
 $\begin{array}{c} \text{false proof} \leftarrow --- \rightarrow \text{correct} \\ \text{TRUE} \checkmark \\ \text{Program } P \end{array}$ Unreliable verifier $\begin{array}{c} \text{Property } \varphi \\ \text{FALSE} \times \\ \text{false alarm} \leftarrow --- \rightarrow \text{violation} \end{array}$

Verifier Design Space

 Overapproximating verifier (superset of program behavior) without precise counterexample check



Underapproximating verifier (subset of program behavior)



Other Reasons to Use Different Static Techniques

- ▶ State space grows exponentially with number of variables
- (Syntactic) paths grow exponentially with number of branches
- ⇒ Precise techniques may require too many resources (memory, time,...)
- ⇒ Trade-off between precision and costs

Flow-Insensitivity

Order of statements not considered

E.g., does not distinguish between these two programs

```
x=0; x=0; y=x; x=x+1; y=x;
```

 \Rightarrow very imprecise

Flow-Sensitivity Plus Path-Insensitivity

- Takes order of statements into account
- Mostly, ignores infeasibility of syntactical paths
- Ignores branch correlations

E.g., does not distinguish between these two programs

```
if (x>0)
                             if (x>0)
   v=1:
                                 y=1;
else
                             else
   y=0;
                                 y=0;
if (x>0)
                             if (x>0)
   v=v+1:
                                 y=y+2:
else
                             else
   y=y+2;
                                 y=y+1;
```

Path-Sensitivity

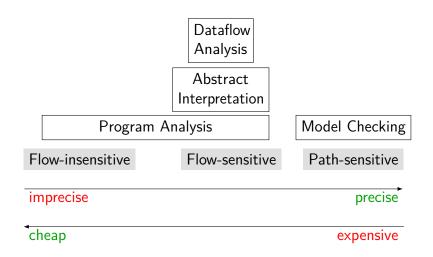
- ► Takes (execution) paths into account
- Excludes infeasible, syntactic paths (not necessarily all infeasible ones)
- Covers flow-sensitivity

$$\begin{array}{c} \textbf{if (x>0)} \\ y=1; \\ \textbf{else} \\ y=0; \\ \textbf{if (x>0)} \\ y=y+2; \\ \textbf{else} \\ y=y+1; \end{array}$$

To detect that y has value 0, 1, or 3

- must exclude infeasible, syntactic path along first else-branch and second if-branch
- need to detect correlation between the if-conditions
- requires path-sensitivity

Precision vs. Costs



Program Syntax and Semantics

Programs

Theory: simple while-programs

- Restriction to integer constants and variables
- Minimal set of statements (assignment, if, while)
- ► Techniques easier to teach/understand

Practice: C programs

- Widely-used language
- Tool support

While-Programs

- Arithmetic expressions $\operatorname{aexpr} := \mathbb{Z} \mid \operatorname{var} \mid \operatorname{-aexpr} \mid \operatorname{aexpr} op_a \operatorname{aexpr} op_a \operatorname{standard} \operatorname{arithmetic} \operatorname{operation} \operatorname{like} +, -, /, \%, \dots$
- ▶ Boolean expressions bexpr := aexpr | aexpr op_c aexpr | !bexpr | bexpr op_b bexpr
 - ightharpoonup integer value $0 \equiv$ false, remaining values represent true
 - $ightharpoonup op_c$ comparison operator like <, <=, >=, >, ==, !=
 - op_b logic connective like $\&\&(\land), ||(\lor), \hat{}(\mathsf{xor}), \ldots$
- Program

```
S:= var=aexpr; | while bexpr S | if bexpr S else S |
    if bexpr S | S;S
```

Syntax vs. Semantics

Syntax

Representation of a program

Semantics

Meaning of a program

Source code

```
if (x>0)

abs = x;

else

abs = -x;

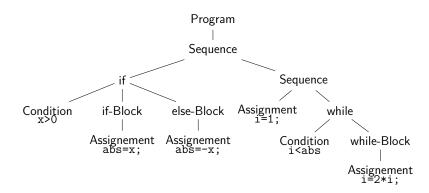
i = 1;

while(i < abs)

i = 2*i;
```

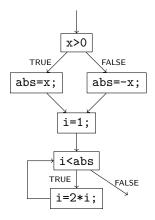
- Basically sequence of characters
- ► No explicit information about the structure or paths of programs

2. Abstract-syntax tree (AST)

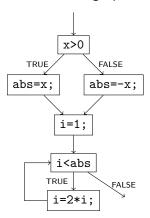


- Hierarchical representation
- ► Flow, paths hard to detect

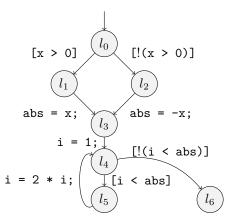
3. Control-flow graph



3. Control-flow graph



4. Control-flow automaton



Control-Flow Automaton

Definition

A control-flow automaton (CFA) is a three-tuple $P=(L,l_0,G)$ consisting of

- ▶ the set L of program locations (domain of program counter)
- \blacktriangleright the initial program location $l_0 \in L$, and
- ▶ the control-flow edges $G \subseteq L \times Ops \times L$.

Operations Ops

Two types

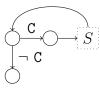
- Assumes (boolean expressions)
- Assignments (var = aexpr;)

From Source Code to Control-Flow Automaton

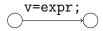
Assignment var=expr;

Assignment var=expr;

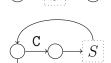
While-Statement while (C) S

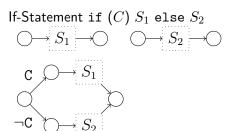


Assignment var=expr;

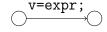


While-Statement while (C) S

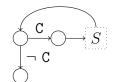




Assignment var=expr;

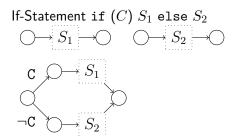


While-Statement while (C) S



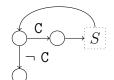
If-Statement if (C) S

$$\bigcirc \longrightarrow S \longrightarrow \bigcirc$$



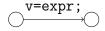
Assignment var=expr;

While-Statement while (C) S

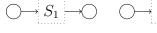


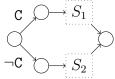
If-Statement if (C) S

$$\begin{array}{c} \bigcirc \longrightarrow S \longrightarrow \bigcirc \\ \bigcirc \bigcirc \longrightarrow S \end{array}$$



If-Statement if (C) S_1 else S_2





Sequential Composition $S_1; S_2$

$$\bigcirc \longrightarrow S_1 \longrightarrow \bigcirc \longrightarrow S_2 \longrightarrow \bigcirc$$

Semantics

Different types

- ► Axiomatic semantics: based on pre- and postconditions, e.g. {true}x=0;{x=0}
- ▶ Denotational semantics: function from inputs to outputs
- \triangleright Operational semantics (\checkmark): defines execution of program

Operational Semantics

Defines program meaning by fixing program execution

- ► Transitions describe single execution steps
 - Level of assignment or assume
 - Change states
 - Evaluate semantics of expressions in a state
- Execution: sequence of transitions

Concrete States

Pair of program counter and data state $(C = L \times \Sigma)$

- Program counter
 - ▶ Where am I?
 - Location in CFA
 - lacktriangledown c(pc) = l refers to program counter of concrete state
- ightharpoonup Data state $\sigma: V \to \mathbb{Z}$
 - Maps variables to values
 - $ightharpoonup c(d) = \sigma$ refers to data state of concrete state

Semantics of Arithmetic Expressions

Evaluation function $S_a : aexpr \times \Sigma \to \mathbb{Z}$

Defined recursively on structure

- $ightharpoonup const \in \mathbb{Z} : \mathcal{S}_a(const, \sigma) = const$
- ightharpoonup variable var: $S_a(\text{var}, \sigma) = \sigma(\text{var})$
- unary operation: $S_a(-t,\sigma) = -S_a(t,\sigma)$
- binary operation:

$$S_a(t_1 \ op_a \ t_2, \sigma) = S_a(t_1, \sigma) \ op_a \ S_a(t_2, \sigma)$$

Semantics of Boolean Expressions

Evaluation function $S_b: bexpr \times \Sigma \rightarrow \{true, false\}$

Defined recursively on structure

arithmetic expression:

$$S_b(t,\sigma) = \begin{cases} true & \text{if } S_a(t,\sigma) \neq 0 \\ false & \text{else} \end{cases}$$

- **>** comparison: $S_b(t_1 \ op_c \ t_2, \sigma) = S_a(t_1, \sigma) \ op_c \ S_a(t_2, \sigma)$
- ▶ logic connection: $S_b(b_1 \ op_b \ b_2, \sigma) = S_b(b_1, \sigma) \ op_b \ S_b(b_2, \sigma)$

Examples for Expression Evaluation

Consider σ : abs $\mapsto 2$; i $\mapsto 0$; x $\mapsto -2$

Derivation of the values of

- $\triangleright \mathcal{S}_a(-x,\sigma)$
- $\triangleright \mathcal{S}_a(2*i,\sigma)$
- $\triangleright \mathcal{S}_b(x>0,\sigma)$
- $\triangleright S_b(i < abs, \sigma)$

on the board.

State Update

$$\Sigma \times Ops_{\text{assignment}} \to \Sigma$$

$$\sigma[var = aexpr;] = \sigma'$$
with $\sigma'(v) = \begin{cases} \sigma(v) & \text{if } v \neq var \\ S_a(aexpr, \sigma) & \text{else} \end{cases}$

Examples for State Update

Consider σ : abs $\mapsto 2$; i $\mapsto 0$; x $\mapsto -2$

Computation of the state updates

- $\sigma[i=1;]$
- $ightharpoonup \sigma[abs = -x;]$
- $\sigma[i = 2 * i;]$

on the board.

Transitions – Single Execution Steps

Transitions $\mathcal{T} \subseteq C \times G \times C$ with $(c, (l, op, l'), c') \in \mathcal{T}$ if

1. Respects control-flow, i.e.,

$$c(pc) = l \wedge c'(pc) = l'$$

- 2. Valid data behavior
 - ightharpoonup op assignment var=aexpr; :
 - ... \wedge c'(d) = c(d)[var = aexpr;]
 - ightharpoonup op assume bexpr :
 - ... \wedge $S_b(\texttt{bexpr}, c(d)) = true \wedge c(d) = c'(d)$

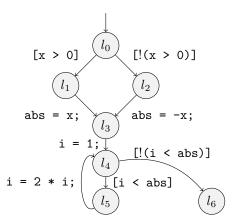
Program Paths

Defined inductively

- lacktriangle every concrete state c with $c(pc)=l_0$ is a program path
- if $c_0 \stackrel{g_1}{\to} c_1 \cdots \stackrel{g_n}{\to} c_n$ is a program path and $(c_n, g_{n+1}, c_{n+1}) \in \mathcal{T}$, then $c_0 \stackrel{g_1}{\to} c_1 \cdots \stackrel{g_n}{\to} c_n \stackrel{g_{n+1}}{\to} c_{n+1}$ is a program path

Set of all program paths of program $P = (L, G, l_0)$ denoted by paths(P).

Examples for Program Paths



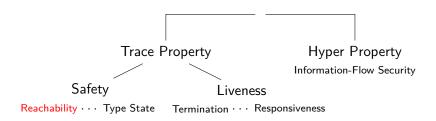
On the board: Shortest and longest program path starting in state (l_0, σ) with $\sigma : abs \mapsto 2; i \mapsto 0; x \mapsto -2$

Reachable States

$$reach(P) := \{c \mid \exists c_0 \xrightarrow{g_1} c_1 \cdots \xrightarrow{g_n} c_n \in paths(P) : c_n = c\}$$

Program Properties and Program Correctness

Program Properties



Reachability Property φ_R

Defines that a set $\varphi_R \subseteq C$ of concrete states must not be reached

In this lecture:

- Certain program locations must not be reached
- ▶ Denoted by $\varphi_{L_{\mathrm{sub}}} := \{c \in C \mid c(pc) \in L_{\mathrm{sub}}\}$

Correctness

Definition

Program P is correct wrt. reachability property φ_R if

$$reach(P) \cap \varphi_R = \emptyset.$$

Formalizing Verification Terms

- ► False alarm: $v(P, \varphi_R) = \mathsf{FALSE} \wedge reach(P) \cap \varphi_R = \emptyset$
- ► False proof: $v(P, \varphi_R) = \mathsf{TRUE} \wedge reach(P) \cap \varphi_R \neq \emptyset$
- Verifier v is **sound** if v does not produce false proofs and v is **complete** if v does not produce false alarms.

Abstract Domains

Problem With Program Semantics

- Infinitely many data states σ \Rightarrow infinitely many reachable states
- ► Cannot analyze program paths individually

How to deal with infinite state space?

Idea: analyze set of program paths together

- ► Group concrete states ⇒ abstract states
- Define (abstract) semantics for abstract states
- ⇒ Abstract domain

Partial Order (Recap)

Definition

Let E be a set and $\sqsubseteq \subseteq E \times E$ a binary relation on E. The structure (E, \sqsubseteq) is a *partial order* if \sqsubseteq is

- ightharpoonup reflexive $\forall e \in E : e \sqsubseteq e$,
- ▶ transitive $\forall e_1, e_2, e_3 \in E : (e_1 \sqsubseteq e_2 \land e_2 \sqsubseteq e_3) \Rightarrow e_1 \sqsubseteq e_3$,
- antisymmetric

$$\forall e_1, e_2 \in E : (e_1 \sqsubseteq e_2 \land e_2 \sqsubseteq e_1) \Rightarrow e_1 = e_2.$$

Examples for Partial Orders

- ightharpoonup (\mathbb{Z}, \leq)
- \triangleright $(2^Q,\subseteq)$
- \triangleright (Σ^* , lexicographic order)
- \triangleright (Σ^* , suffix)

Upper Bound (Join)

Let (E, \sqsubseteq) be a partial order.

Definition (Upper Bound)

An element $e \in E$ is an upper bound of a subset $E_{\mathrm{sub}} \subseteq E$ if

$$\forall e' \in E_{\text{sub}} : e' \sqsubseteq e.$$

Definition (Least Upper Bound (lub))

An element $e \in E$ is a least upper bound \sqcup of a subset $E_{\mathrm{sub}} \subseteq E$ if

- ightharpoonup e is an upper bound of $E_{
 m sub}$ and
- ▶ for all upper bounds e' of E_{sub} it yields that $e \sqsubseteq e'$.

Lower Bound (Meet)

Let (E, \sqsubseteq) be a partial order.

Definition (Lower Bound)

An element $e \in E$ is an lower bound of a subset $E_{\mathrm{sub}} \subseteq E$ if

$$\forall e' \in E_{\text{sub}} : e \sqsubseteq e'.$$

Definition (Greatest Lower Bound (glb))

An element $e \in E$ is a greatest lower bound \sqcap of a subset $E_{\mathrm{sub}} \subseteq E$ if

- ightharpoonup e is a lower bound of $E_{
 m sub}$ and
- ▶ for all lower bounds e' of E_{sub} it yields that $e' \sqsubseteq e$.

Computing Upper Bounds

PO	subset		П
$\overline{(\mathbb{Z},\leq)}$	$\{1, 4, 7\}$	7	1
(\mathbb{Z},\leq)	${\mathbb Z}$	×	×
(\mathbb{N},\leq)	Ø	0	×
$(2^Q,\subseteq)$	2^Q	Q	Ø
$(2^Q,\subseteq)$	$\{\emptyset\}$	Ø	Ø
$(2^Q,\subseteq)$	$Y \subseteq 2^Q$	$\bigcup_{y\in Y}y$	$\bigcap_{y\in Y} y$

Facts About Upper and Lower Bounds

 Least upper bounds and greatest lower bound do not always exist.

For example,

- ightharpoonup (\mathbb{Z},\leq)
- ightharpoonup (\mathbb{N}, \leq)
- ightharpoonup (\mathbb{N}, \geq)
- 2. The least upper bound and the greatest lower bound are unique if they exist.

Lattice

Definition

A structure $\mathcal{E} = (E, \sqsubseteq, \sqcup, \sqcap, \top, \bot)$ is a lattice if

- \blacktriangleright (E, \sqsubseteq) is a partial order
- ▶ least upper bound \sqcup and greater lower bound \sqcap exist for all subsets $E_{\mathrm{sub}} \subseteq E$
- ightharpoonup $T = \sqcup E = \sqcap \emptyset$ and $\bot = \sqcap E = \sqcup \emptyset$

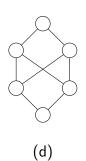
Note:

For any set Q the structure $(2^Q,\subseteq,\cup,\cap,Q,\emptyset)$ is a lattice.

Which Partial Orders Are Lattices?

(a)

(b)



(e)

(f)

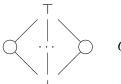
(c)

Flat-Lattice

Definition

A flat lattice of set Q consists of

- ightharpoonup Extended set $Q^{\top} = Q \cup \{\top, \bot\}$
- ▶ Flat ordering \sqsubseteq , i.e. $\forall q \in Q : \bot \sqsubseteq q \sqsubseteq \top$ and $\bot \sqsubseteq \top$



Product Lattice

Let
$$\mathcal{E}_1 = (E_1, \sqsubseteq_1, \sqcup_1, \sqcap_1, \top_1, \perp_1)$$
 and $\mathcal{E}_2 = (E_2, \sqsubseteq_2, \sqcup_2, \sqcap_2, \top_2, \perp_2)$ be lattices.

The product lattice $\mathcal{E}_{\times} = (E_1 \times E_2, \sqsubseteq_{\times}, \sqcup_{\times}, \sqcap_{\times}, \top_{\times}, \perp_{\times})$ with

- \blacktriangleright $(e_1, e_2) \sqsubseteq_{\times} (e'_1, e'_2)$ if $e_1 \sqsubseteq_1 e'_1 \land e_2 \sqsubseteq_2 e'_2$
- $ightharpoonup \sqcup_{\times} E_{\text{sub}} = (\sqcup_1 \{e_1 \mid (e_1, \cdot) \in E_{\text{sub}}\}, \sqcup_2 \{e_2 \mid (\cdot, e_2) \in E_{\text{sub}}\})$
- \vdash $\top_{\times} = (\top_1, \top_2)$ and $\bot_{\times} = (\bot_1, \bot_2)$

is a lattice.

Join-Semi-Lattice

Complete lattice not always required

⇒ remove unused elements

Definition

Join-Semi-Lattice A structure $\mathcal{E} = (E, \sqsubseteq, \sqcup, \top)$ is a lattice if

- \blacktriangleright (E, \sqsubseteq) is a partial order
- ▶ least upper bound \sqcup exists for all subsets $E_{\text{sub}} \subseteq E$
- ightharpoonup $\top = \sqcup E$

Abstract Domain

Join-semi-lattice on set of abstract states + meaning of abstract states

Definition

An abstract domain $D = (C, \mathcal{E}, \llbracket \cdot \rrbracket)$ consists of

- ▶ a set C of concrete states
- ▶ a join-semi-lattice $\mathcal{E} = (E, \sqsubseteq, \sqcup, \top)$
- ▶ a concretization function $[\![\cdot]\!]:E\to 2^C$ (assigns meaning of abstract states)
 - $ightharpoonup \|\top\| = C$
 - $\forall E_{\mathrm{sub}} \subseteq E : \bigcup_{e \in E_{\mathrm{sub}}} \llbracket e \rrbracket \subseteq \llbracket \sqcup E_{\mathrm{sub}} \rrbracket$ (join operator overapproximates)

Abstraction

$$\alpha:2^C\to E$$

Here:

- Not defined separately
- Returns smallest abstract state that covers set of concrete states

Galois Connection

Abstraction and concretization function fulfill the following connection

- 1. $\forall C_{\mathrm{sub}} \subseteq C : C_{\mathrm{sub}} \subseteq \llbracket \alpha(C_{\mathrm{sub}}) \rrbracket$ (abstraction safe approximation, but may loose information/precision)
- 2. $\forall e \in E : \alpha(\llbracket e \rrbracket) \sqsubseteq e$ (no loss in safety)

Abstract Semantics

Abstract interpretation of a program:

- Abstract domain with abstract states E
- ▶ CFA $P = (L, l_0, G)$ with control-flow edges $(l, op, l') = g \in G$

Transfer relation $\leadsto \subseteq E \times G \times E$

- $\forall e \in E, g \in G : \bigcup_{c \in \llbracket e \rrbracket} \{c' \mid (c, g, c') \in \mathcal{T}\} \subseteq \bigcup_{(e, g, e') \in \mathcal{A}} \llbracket e' \rrbracket$ (safe over-approximation)
- Depends on abstract domain

Properties of Transfer Relations

Monotony

$$\forall e, e' \in E, g \in G: e \sqsubseteq e' \Rightarrow \leadsto(e, g) \sqsubseteq \leadsto(e', g)$$

Distributivity (optional)

$$\forall e, e' \in E, g \in G : \leadsto(e, g) \sqcup \leadsto(e', g) = \leadsto(e \sqcup e', g)$$

Recap: Elements of Abstraction

- 1. Abstract domain
 - ightharpoonup Join-semi lattice $\mathcal E$ on set of abstract states E
 - ► Concretization of abstract states [·]
- 2. Abstract semantics ↔

Example Abstractions

Location Abstraction L

Tracks control-flow of program

▶ Uses flat lattice of set *L* of location states

 \blacktriangleright $(\ell, (l, op, l'), \ell') \in \leadsto_{\mathbb{L}} \text{ if } (\ell = l \lor \ell = \top) \text{ and } \ell' = l'$

Properties of Location Abstraction

Transfer relation $\leadsto_{\mathbb{L}}$

overapproximates, i.e.,

$$\forall e \in E_{\mathbb{L}}, g \in G : \bigcup_{c \in \llbracket e \rrbracket} \{c' \mid (c, g, c') \in \mathcal{T}\} \subseteq \bigcup_{(e, g, e') \in \leadsto_{\mathbb{L}}} \llbracket e' \rrbracket$$

- monotone
- distributive

Value Domain

Assigns values to (some) variables.

- ▶ Domain elements are partial functions $f: Var \longrightarrow \mathbb{Z}$
- $f \sqsubseteq f' \text{ if } dom(f') \subseteq dom(f) \\ \text{and } \forall v \in dom(f') : f(v) = f'(v)$
- $ightharpoonup \Box F = \bigcap F$
- ightharpoonup $T = \{\}$
- $[\![f]\!] = \{c \mid \forall v \in dom(f) : c(d)(v) = f(v)\}$

Value Abstraction $\mathbb V$

Uses variable-separated domain

- Base domain flat lattice of \mathbb{Z} , \top means any value
- $\begin{array}{ll} \blacktriangleright \ \, \text{Notation:} \,\, \phi(expr,f) := expr \,\, \land \,\, \bigwedge_{v \in dom(f)} v = f(v) \\ \blacktriangleright \ \, \text{Assignment:} \,\, (f,(\cdot,w = aexpr;,\cdot),f') \in \leadsto_{\mathbb{V}} \text{if} \end{array}$

$$f'(v) = \begin{cases} f(v) & \text{if } v \neq w \\ c & \text{if } v = w \text{ and } c \text{ is the only satisfying} \\ & \text{assignment for } v' \text{ in } \phi(v' = aexpr, f) \\ \top & \text{otherwise} \end{cases}$$

► Assume: $(f, (\cdot, expr, \cdot), f') \in \leadsto_{\mathbb{V}}$ if $\phi(expr, f)$ is satisfiable and

$$f'(v) = \begin{cases} c & \text{if } c \text{ is the only satisfying assignment} \\ & \text{for } v \text{ in } \phi(expr, f) \\ f(v) & \text{otherwise} \end{cases}$$

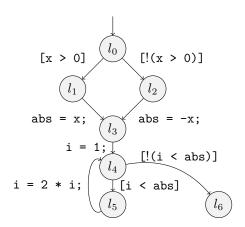
Properties of Value Abstraction $\mathbb V$

Transfer relation

- overapproximates
- monotone
- not distributive, e.g.,

```
\begin{array}{ll} f: x \mapsto 3; y \mapsto 2 & f': x \mapsto 2; y \mapsto 3 \\ \leadsto (f, x = x + y;) \sqcup \leadsto (f', x = x + y;) : x \mapsto 5; y \mapsto \top, \\ \mathrm{but} \leadsto (f \sqcup f', x = x + y;) : x \mapsto \top; y \mapsto \top \end{array}
```

Example Abstract Transitions



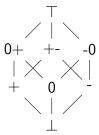
Start with

$$f_0: x \mapsto 2, abs \mapsto \top, i \mapsto \top$$

 $f'_0: x \mapsto \top, abs \mapsto \top, i \mapsto \top$

Sign Abstraction

Variable-separate domain using base domain



Transfer Relation of Sign Abstraction

Suggestion 1:

- $\blacktriangleright \rightsquigarrow (f,g) = f' \text{ with } \forall v \in Var : f'(v) = \top$
- sound, but not useful

Transfer Relation of Sign Abstraction

Suggestion 2:

Assignment: $\rightsquigarrow (f, aexpr) = f'$ $\mathbf{v=const}; \ f'(v) = \begin{cases} + & const \in \mathbb{N}^+ \\ 0 & const = 0 \\ - & else \end{cases}$ $\mathbf{v=w}; \ f'(v) = f(w)$ $\mathbf{v=expr}; \ f'(v) = \top$ and $\forall u \in Var: u \neq v \Rightarrow f'(u) = f(u)$

ightharpoonup Assume: $\leadsto (f, expr) = f$

sound, but could be more precise

Transfer Relation of Sign Abstraction (Incomplete)

More precise for special boolean expression like var>0, var==0, var<0, var>=0, var<=0

- can be decided
- used to restrict successor of assume expressions

Abstract evaluation of arithmetic expressions, e.g.

- ightharpoonup e + e = e, for any abstract value e except +-
- e + 0 = e
- e 0 = e
- e * 0 = 0

Interval Abstraction \mathbb{I}

Variable-separate domain based on interval domain

- $E = \mathbb{Z}^2 \cup \{\top, \bot\}$

$$\bigsqcup E_{\mathrm{sub}} = \left\{ \begin{array}{ll} \top & \text{if } \top \in E_{\mathrm{sub}} \\ \bot & \text{if } E_{\mathrm{sub}} \subseteq \{\bot\} \\ \left[\min_{[a,b] \in E_{\mathrm{sub}}} a, \max_{[a,b] \in E_{\mathrm{sub}}} b \right] & \text{else} \end{array} \right.$$

$$\qquad \qquad \llbracket [a,b] \rrbracket = \{x \in \mathbb{Z} \mid a \leq x \leq b\} \quad \llbracket \top \rrbracket = \mathbb{Z} \quad \llbracket \bot \rrbracket = \emptyset$$

Note: There are ascending chains that are not stabilizing.

Transfer Relation of Interval Abstraction

Relies on abstract evaluation of expressions in state f

Arithmetic expressions

- const: [const,const]
- var: f(var)
- ► -[a,b]=[-b,-a]
- $[a,b] op_a [c,d] =$ $[\min(a \ op_a \ c,b \ op_a \ d), \max(a \ op_a \ c,b \ op_a \ d)]$
- ightharpoonup special treatment of values \bot , \top

Transfer Relation of Interval Abstraction

Relies on abstract evaluation of expressions in state f

Boolean expression

$$[a,b] = \begin{cases} \{true\} & a>0 \lor b<0 \\ \{false\} & a=b=0 \\ \{true,false\} & \text{else} \end{cases}$$

$$[a,b] < [c,d] = \begin{cases} \{true\} & b$$

$$[a,b] < [c,d] = \begin{cases} \{true\} & b < c \\ \{false\} & a \ge d \\ \{true, false\} & \text{else} \end{cases}$$

- other comparison operators similar

Define transfer relation analogous to transition

Cartesian Predicate Abstraction

Represent states by first order logic formulae

- Restricted to a set of predicates Pred (subset of boolean expressions without boolean connectors)
- Conjunction of predicates

Cartesian Predicate Abstraction

- ▶ Power set lattice on predicates $(2^{\text{Pred}}, \supseteq, \cap, \cup, \emptyset, \text{Pred})$
- Transfer relation
 - Assignment $\begin{aligned} &(p,v=aexpr,p') \text{ with } \\ &p' = \left\{t \in \operatorname{Pred} \left| \left(\bigwedge_{t' \in p} t'[v \to v_{old}] \wedge v = aexpr[v \to v_{old}]\right) \Rightarrow t\right\} \end{aligned}$
 - Assume (p, bexpr, p') if $\bigwedge_{t \in p} t \wedge bexpr$ is satisfiable and $p' = \{t \in Pred \mid (\bigwedge_{t' \in p} t' \wedge bexpr) \Rightarrow t\}$

Properties of Cartesian Predicate Abstraction

Transfer relation

- overapproximates
- monotone
- not distributive

Example Abstract Transitions

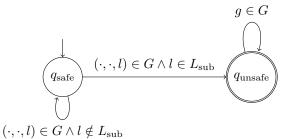
Consider set of predicates $\{i>0, x=10\}$

On the board:

- $ightharpoonup (\{x = 10\}, (l, i = 1; l'))$
- $ightharpoonup (\{i > 0\}, (l, i = i * 2; , l'))$
- $ightharpoonup \leadsto (\{x = 10, i > 0\}, (l, x > 10, l'))$

Property Encoding

An observer~automaton observes violations of the reachability property $\varphi_{L_{\mathrm{sub}}}$



Property Abstraction $\mathbb R$

Represent observer automaton-encoding of property $\varphi_{L_{\mathrm{sub}}}$ as abstraction

- ▶ Uses join-semilattice on set $\{q_{\text{safe}}, q_{\text{unsafe}}\}$ with $q_{\text{safe}} \sqsubseteq q_{\text{unsafe}}$
- $(q, (l, op, l'), q') \in \leadsto_{\mathbb{R}}$ if $q' = q_{\text{unsafe}} \land l' \in L_{\text{sub}} \text{ or } q' = q \land l' \notin L_{\text{sub}}$

Properties of Property Abstraction

Transfer relation $\leadsto_{\mathbb{R}}$

- overapproximates
- monotone
- distributive

Composite Abstraction

Combines two abstractions

- ▶ Product (join-semi) lattice $E_1 \times E_2$
- $[[(e_1, e_2)]] = [[e_1]]_1 \cap [[e_2]]_2$
- Product transfer relation $((e_1,e_2),g,(e_1',e_2')) \in \leadsto$ if $(e_1,g,e_1') \in \leadsto_1$ and $(e_2,g,e_2') \in \leadsto_2$
- More precise transfer relations possible

Properties of Composite Abstraction

Properties inherited from components

Transfer relation

- overapproximates
- monotone
- distributive

if respective property is fulfilled by both components.

Two Prominent Combinations

- ightharpoonup Value analysis $\mathbb{L} \times \mathbb{V} \times \mathbb{R}$
- ightharpoonup Predicate analysis $\mathbb{L} \times \mathbb{P} \times \mathbb{R}$

Configurable Program Analysis

Starting Position

3 analysis techniques

- ▶ Often, similar
- But, not identical

Use synergies \rightarrow combine into one configurable analysis

Comparing Analysis Algorithms

	Path-insensitive	Dataflow analysis	Model checking	
	program	program	program	program
input	abstraction	abstraction	abstraction	abstraction
	initial state e_0	widening operator $ abla$		e_0 , new operators
exploration	one element	reached, waitlist	reached, waitlist	reached, waitlist
	last state	pop from waitlist	pop from waitlist	pop from waitlist
	all successors	all successors	all successors	all successors
combination	least upper bound	upper bound $(abla)$	never	merge operator
		(same location)		
coverage	identical	same location, ⊑	same location, \sqsubseteq	stop operator
termination	!changed	empty waitlist	empty waitlist	empty waitlist

Merge Operator

Defines when and how to combine abstract states

$$\mathsf{merge}: E \times E \to E$$

Correctness criterion:

Must consume second parameter (already explored element)

$$\forall e, e' \in E : e' \sqsubseteq \mathsf{merge}(e, e')$$

Examples for Merge Operator

- Flow-insensitive: $merge(e, e') = \sqcup \{e, e'\}$
- Dataflow analysis:

$$\mathsf{merge}((l,e),(l',e')) = \begin{cases} \sqcup \{(l,e),(l',e')\} & \text{if } l = l' \\ (l',e') & \text{else} \end{cases}$$

Model checking: merge(e, e') = e'

Stop Operator

Defines when to stop exploration (termination check)

$$\mathsf{stop}: E \times 2^E \to \{true, false\}$$

Correctness criterion:

Must be covered by second parameter (set of explored elements)

$$\forall e \in E, E_{\mathrm{sub}} \subseteq E : \mathsf{stop}(e, E_{\mathrm{sub}}) \Rightarrow (\llbracket e \rrbracket \subseteq \bigcup_{e' \in E_{\mathrm{sub}}} \llbracket e' \rrbracket)$$

Examples for Stop Operator

- ightharpoonup stop $(e, E_{\text{sub}}) = false$
- Flow-insensitive: $stop(e, E_{sub}) = e \in E_{sub}$
- Dataflow analysis and model checking: $stop((l, e), E_{sub}) = \exists (l, e') \in E_{sub} : (l, e) \sqsubseteq (l, e')$ and

$$\mathsf{stop}(e, E_{\mathrm{sub}}) = \exists e' \in E_{\mathrm{sub}} : e \sqsubseteq e'$$

Configurable Program Analysis (CPA)

Abstraction plus merge and stop operator

A CPA
$$\mathbb{C} = ((C, (E, \sqsubseteq, \sqcup, \top), \llbracket \cdot \rrbracket), \leadsto, \mathsf{merge}, \mathsf{stop})$$
 consists of

- ▶ abstract domain $(C, (E, \sqsubseteq, \sqcup, \top), \llbracket \cdot \rrbracket)$
 - \triangleright join-semilattice $(E, \sqsubseteq, \sqcup, \top)$
 - $ightharpoonup
 bracket{0.5}{$ \llbracket \cdot \rrbracket : E \to 2^C$ with}$
 - ightharpoonup $\llbracket \top \rrbracket = C$
 - $\forall E_{\mathrm{sub}} \subseteq E : \bigcup_{e \in E_{\mathrm{sub}}} \llbracket e \rrbracket \subseteq \llbracket \sqcup E_{\mathrm{sub}} \rrbracket$
- ▶ transfer relation $\leadsto \subseteq E \times G \times E \ \forall e \in E, g \in G$: $\bigcup_{c \in \llbracket e \rrbracket} \{c' \mid (c, g, c') \in \mathcal{T}\} \subseteq \bigcup_{(e, g, e') \in \mathcal{A}} \llbracket e' \rrbracket$
- ightharpoonup merge operator merge : $E \times E \rightarrow E$

$$\forall e, e' \in E : e' \sqsubseteq \mathsf{merge}(e, e')$$

ightharpoonup stop stop : $E \times 2^E \rightarrow \{true, false\}$

$$\forall e \in E, E_{\mathrm{sub}} \subseteq E : \mathsf{stop}(e, E_{\mathrm{sub}}) \Rightarrow (\llbracket e \rrbracket \subseteq \bigcup_{e' \in E_{\mathrm{sub}}} \llbracket e' \rrbracket)$$

Value Dataflow Analyses as CPA

- ightharpoonup abstract domain $\mathbb{L} \times \mathbb{V}$
- lacktriangle transfer relation: product transfer relation $\leadsto_{\mathbb{L} imes \mathbb{V}}$
- merge operator $\mathsf{merge}((l,v),(l',v')) = \left\{ \begin{array}{l} \sqcup \{(l,v),(l',v')\} & \text{if } l = l' \\ (l',v') & \text{else} \end{array} \right.$
- ▶ stop operator $\mathsf{stop}((l,v), E_{\mathrm{sub}}) = \exists (l,v') \in E_{\mathrm{sub}} : (l,v) \sqsubseteq (l,v')$

Predicate Model Checking as CPA

- ightharpoonup abstract domain $\mathbb{L} \times \mathbb{P}$
- ightharpoonup transfer relation: product transfer relation $\leadsto_{\mathbb{L}\times\mathbb{P}}$
- ightharpoonup merge operator merge(e,e')=e'
- ▶ stop operator $\operatorname{stop}((l,p), E_{\operatorname{sub}}) = \exists (l,p') \in E_{\operatorname{sub}} : (l,p) \sqsubseteq (l,p')$

CPA Algorithm

```
Input: program P = (L, \ell_0, G)
           CPA ((C, (E, \sqsubseteq, \sqcup, \top), \llbracket \cdot \rrbracket), \rightsquigarrow, merge, stop)
           initial abstract state e_0 \in E
   reached=\{e_0\}; waitlist=\{e_0\};
   while (waitlist \neq \emptyset) do
        pop e from waitlist;
        for each e \rightsquigarrow e' do
             for each e_r \in \text{reached } \mathbf{do}
                  e_m = \mathsf{merge}(e', e_r)
                  if (e_m \neq e_r) then
                        reached=(reached \setminus \{e_r\}) \cup \{e_m\};
                        waitlist=(waitlist \setminus \{e_r\}) \cup \{e_m\};
             if (\neg stop(e', reached)) then
                   reached=reached\cup \{e'\}:
                   waitlist=waitlist\cup \{e'\};
```

return reached

Termination of CPA Algorithm

- Generally not guaranteed (inherited from model checking)
- Depends on configuration (even for loop-free programs may not terminate, e.g. $stop(e, E_{sub}) = false$)
- Guarantees for individual techniques (flow-insensitive, dataflow analysis, etc.) still apply

Soundness

Final set reached overapproximates all reachable states if the initial abstract state e_0 covers all initial states, i.e.,

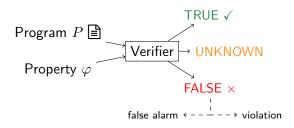
$$\{c \mid c(pc) = l_0\} \subseteq \llbracket e_0 \rrbracket \Rightarrow reach(P) \subseteq \bigcup_{e \in reached} \llbracket e \rrbracket$$

Reasons

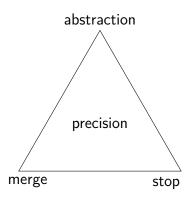
- Explore all successors of states in reached (always add state to waitlist if added to reached)
- Transfer relation overapproximates
- Replace state by more abstract (merge property), never only delete
- Must add abstract successor to reached if not covered (stop property)

Classifying Configurable Program Analysis

Overapproximating verifier (superset of program behavior) without precise counterexample check



Exploring the Configuration Space



- ▶ Which set of concrete elements can be distinguished?
- ightharpoonup merge: never \leftrightarrow always \top
- ▶ stop: $\llbracket e \rrbracket \subseteq \bigcup_{e' \in E_{\text{sub}}} \llbracket e' \rrbracket \leftrightarrow \text{false}$
- ⇒ Relaxation to become more efficient