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Organization
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Lecture and Exercise

Lecture
Mar 4, 2022, 10:00 — 12:00

Exercise
Mar 4, 2022, 13:00 — 16:00
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Course Material

https:
//www.sosy-lab.org/Teaching/2021-WS-Semantik/

Required software:

» Linux
Java 11
CPAchecker 2.1.1
Python >= 3.8

>
>
>
» pip (usually comes with python)
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https://www.sosy-lab.org/Teaching/2021-WS-Semantik/
https://www.sosy-lab.org/Teaching/2021-WS-Semantik/
https://cpachecker.sosy-lab.org/CPAchecker-2.1.1-unix.zip
https://pip.pypa.io/en/stable/

Introduction
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C Use-Def

Invariant Specification

State Space

Dead Code
Model Checking

Formal Verification

Taint Analysis
Least Upper Bound )
Constant Propagation

Partial Order Program Syntax
SMT CPAchecker

Axiomatic Semantics

Program Path Operational Semantics



Software Analysis

Computes an (over-)approximation of a program’'s behavior.

Applications
» Optimization
» Correctness
(i.e., whether program satisfies a given property)
» Developer Assist
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What Could an Analysis Find out?

double divTwiceCons(double y) {
int cons = 5;
int d = 2xcons;
if (cons |=0)
return y/(2xcons);
else
return 0;
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Some Analysis Results

double divTwiceCons(double y) {
int cons = 5;
// expression 2*cons has value 10
// variable d not used
int d = 2xcons;
if (cons |=0)
// expression 2*cons evaluated before
return y/(2xcons);
else
// dead code
return 0;
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One Resulting Code Optimization

double divTwiceCons(double y) {
int cons = 5;
// expression 2*cons has value 10
// variable d not used
int d = 2xcons;
if (cons !=0)
// expression 2*cons evaluated before
return y/(2xcons);
else
// dead code
return O;

double divTwiceConsOptimized(double y) {
return y/10;
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Software Verification

Formally proves whether a program P satisfies a property .

» Requires program semantics, i.e., meaning of program
> Relies on mathematical methods,

> logic

> induction

> ...
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Software Verification

Formally proves whether a program P satisfies a property .

TRUE v

FALSE x

Program P [9

Property ¢

Disprove (x) Find a program execution (counterexample)
that violates the property ¢

Prove (v') Show that every execution of the program
satisfies the property .
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Does This Code Work?

double avgUpTo(int[] numbers, int length) {
double sum = 0O;
for(int i=0;i<length;i++)
sum += numbers]i];
return sum/(double)length;
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Problems With This Code

double avgUpTo(int[] numbers, int length) {

double sum = 0;

for (int i=0;i<length;i++)
// possible null pointer access (numbers==null)
// index out of bounds (length>numbers.length)
sum += numbers[i];

// division by zero (length==0)

return sum/(double) length;
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Why Should One Care for Bugs?
Intel Pentium FDIV bug

Ariane V88

Mars Polar Lander

endanger human lives

~

Therac-25

Uber autonomous car
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Analysis and Verification Tools

Sapienz Klee PeX SymCC
Infer Lint Error Prone SLAM
CBMC SpotBugs UltimateAutomizer
CPAchecker
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Overview on Analysis and Verification Techniques

- Type -
Dynamic Sys{Ems Static
Rl'lr}tlm.e Interactive Automatic
Verification
Theorem Program Model

Proving ’7 Analysis T Checking

Dataflow Abstract
Analysis | | Interpretation

This lecture
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Why Different Static, Automatic Techniques?

Theorem of Rice
Any non-trivial, semantic property of programs is undecidable.

Consequences

Techniques are
» incomplete, e.g. answer UNKNOWN, or
» unsound, i.e., report

> false alarms (non-existing bugs),
> false proofs (miss bugs).
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Verifier Design Space

TRUE v
Program P [3
Ideal verifier UNKNOWN
Property ¢
FALSE x
false proof « - - ~--> correct
TRUE v
Program P [3)
Unreliable verifier UNKNOWN
Property ¢
FALSE x
false alarm < - - BN violation
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Verifier Design Space

» Overapproximating verifier (superset of program behavior)

without precise counterexample check

TRUE v
Program P [3)
" [Vertie |
Property ¢
FALSE x
false alarm < - - SN violation

» Underapproximating verifier (subset of program behavior)

false proof « - - b correct
TRUE v
Program P [
" {Variter
Property ¢
FALSE x
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Other Reasons to Use Different Static Techniques

> State space grows exponentially with number of variables

» (Syntactic) paths grow exponentially with number of
branches

= Precise techniques may require too many resources
(memory, time,...)

= Trade-off between precision and costs
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Flow-Insensitivity

Order of statements not considered

E.g., does not distinguish between these two programs

x=0; x=0;
y=X; x=x+1;
x=x+1; y=X;

= very imprecise

22 /111
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Flow-Sensitivity Plus Path-Insensitivity

> Takes order of statements into account

» Mostly, ignores infeasibility of syntactical paths
» lIgnores branch correlations

E.g., does not distinguish between these two programs

if (x>0)
y=1;
else
y=0;
if (x>0)
y=y+1;
else
y=y+2;

Thomas Lemberger

© SoSy-Lab

if (x>0)
y=1;

else
y=0;

if (x>0)
y=y+2;

else
y=y+1,;

LMU Munich, Germany
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Path-Sensitivity

> Takes (execution) paths into account

» Excludes infeasible, syntactic paths
(not necessarily all infeasible ones)

» Covers flow-sensitivity

if (x>0) To detect that y has value 0, 1, or 3
y=1 » must exclude infeasible, syntactic path
else along first else-branch and second
y=0; if-branch
if (x>0) _
y—y-2: > need to detect correlation between the
else if-conditions
y=y+1, > requires path-sensitivity
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Precision vs. Costs

Dataflow
Analysis
Abstract
Interpretation
Program Analysis Model Checking
Flow-insensitive Flow-sensitive Path-sensitive
imprecise precise‘
‘cheap expensive
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Program Syntax and Semantics
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Programs

Theory: simple while-programs
» Restriction to integer constants and variables
» Minimal set of statements (assignment, if, while)

» Techniques easier to teach/understand

Practice: C programs
» Widely-used language
» Tool support



While-Programs

» Arithmetic expressions
aexpr := 7 | var | -aexpr | aexpr op, aexpr
op, standard arithmetic operation like +,—, /, %, ...
» Boolean expressions
bexpr := aexpr | aexpr op. aexpr | !bexpr | bexpr op;, bexpr
> integer value 0 =false, remaining values represent true
> op. comparison operator like <, <=,>=,> == 1=
> opy logic connective like &&(A), || ( ), " (xor),...
» Program
S:= var=aexpr; | while bexpr S | if bexpr S else S |
if bexpr S | S;S
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Syntax vs. Semantics

Syntax
Representation of a program

Semantics
Meaning of a program
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How to Represent a Program?

1. Source code

if (x>0)
abs = x;
else > Basically sequence of characters
abs = —x; » No explicit information about the
i =1 structure or paths of programs
while(i<abs)

i = 2%i;
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How to Represent a Program?

2. Abstract-syntax tree (AST)

Program
\
Sequence
/ \
if Sequence
T T SN
Cor;{(ii(gion if-Block else-Block ASSiig_nlment while
| | o VRN
Assignement Assignement Condition  while-Block
abs=x; abs=-x; 1<abs ‘
Assignement
1=2%1;

» Hierarchical representation
» Flow, paths hard to detect
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How to Represent a Program?

3. Control-flow graph

TRUE / \FALSE

abs =X; | abs=-x;

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany
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How to Represent a Program?

3. Control-flow graph 4. Control-flow automaton
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Control-Flow Automaton

Definition
A control-flow automaton (CFA) is a three-tuple P = (L, ly, G)
consisting of

» the set L of program locations
(domain of program counter)

» the initial program location [y € L, and
» the control-flow edges G C L x Ops x L.
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Operations Ops

Two types
» Assumes (boolean expressions)

» Assignments (var = aexpr;)

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

34

111



From Source Code to Control-Flow Automaton

vV=expr;
Assignment var=expr;
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From Source Code to Control-Flow Automaton

V=expr;
Assignment var=expr;

While-Statement while (C) S
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From Source Code to Control-Flow Automaton

V=expr;
Assignment var=expr;

While-Statement while (C) S If-Statement if (C') S else Sy
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From Source Code to Control-Flow Automaton
V=expr;
Assignment var=expr;

While-Statement while (C) S If-Statement if (C') S else Sy

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 35 /111



From Source Code to Control-Flow Automaton
V=expr;
Assignment var=expr;

While-Statement while (C) S If-Statement if (C') S else Sy

—C S,
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Semantics

Different types
» Axiomatic semantics: based on pre- and postconditions,
e.g. {true}x=0;{x=0}
» Denotational semantics: function from inputs to outputs

» Operational semantics (v'): defines execution of program
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Operational Semantics

Defines program meaning by fixing program execution

» Transitions describe single execution steps

> Level of assignment or assume
» Change states
> Evaluate semantics of expressions in a state

» Execution: sequence of transitions
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Concrete States

Pair of program counter and data state (C'= L x X)
» Program counter
» Where am 17
» Location in CFA
> c¢(pc) =1 refers to program counter of concrete state
» Datastateo:V — 7Z

» Maps variables to values
» c¢(d) = o refers to data state of concrete state
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Semantics of Arithmetic Expressions

Evaluation function S, : aexpr x ¥ — Z

Defined recursively on structure
» const € Z : S,(const, o) = const
» variable var: S,(var,o) = o(var)
» unary operation: S,(—t,0) = —8S,(t,0)

» binary operation:
Sa(tl OPq tg, U) = Sa(tlva) OPq Sa(tQa U)
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Semantics of Boolean Expressions

Evaluation function S, : bexpr x ¥ — {true, false}

Defined recursively on structure

> arithmetic expression:

Syt o) = { true if Sy(t,0) #0

false else
» comparison: Sy(t1 op. ta,0) = Sy(t1,0) 0pe Su(ta, o)
» logic connection: Sy(by opy ba, o) = Sp(b1, 0) opy Sp(be, 0)
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Examples for Expression Evaluation

Consider ¢ : abs — 2;i — 0;x — —2

Derivation of the values of
» Su(—z,0)
> S.(2%i,0)
> Sp(z > 0,0)
» Sp(i < abs, o)
on the board.
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State Update

2 X Opsassignment — X

olvar = aexpr;] = o’

TR (D) if v # var
with o”(v) = { S.(aexpr,o) else

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany
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Examples for State Update

Consider ¢ : abs + 2;1i +— 0;x — —2

Computation of the state updates
> oli=1]
> olabs = —x; ]
> oli =2x%1;]

on the board.
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Transitions — Single Execution Steps

Transitions T C C' x G x C with (¢, (I,0p,'),d) € T if

1. Respects control-flow, i.e.,

clpe) =1 N d(pe) =T

2. Valid data behavior
> op assignment var=aexpr;
. A d(d) = c(d)[var = aexpr;]
> op assume bexpr
. N\ Sp(bexpr,c(d)) =true A c(d) = c(d)
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44 / 111



Program Paths

Defined inductively

> every concrete state ¢ with ¢(pc) = [y is a program path
> ifcg B ey L e, is a program path and

(cn; In+1, Cn—l—l) S T:

then cg B¢+ B¢, QA Cny1 IS @ program path

Set of all program paths of program P = (L, G, ) denoted by
paths(P).

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany
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Examples for Program Paths

On the board: Shortest and longest program path starting in
state (ly,0) with 0 : abs +— 2;1i +— 0;x — —2
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Reachable States

reach(P) :={c|3co & ¢1--- L ¢, € paths(P) : ¢, = ¢}
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Program Properties and
Program Correctness
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Program Properties

Trace Property Hyper Property
/ \ Information-Flow Security
Safety Liveness
Reachability - - - Type State  Termination - - - Responsiveness

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany
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Reachability Property vp

Defines that a set pr C C' of concrete states must not be
reached

In this lecture:
» Certain program locations must not be reached
» Denoted by ¢, :={c€ C | c(pc) € Lo}
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Correctness

Definition
Program P is correct wrt. reachability property g if

reach(P) N pr = 0.
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Formalizing Verification Terms

» False alarm: v(P, pr) = FALSE A reach(P) Nypr =0
» False proof: v(P,pr) = TRUE A reach(P) N g # 0

» Verifier v is sound if v does not produce false proofs and
v is complete if v does not produce false alarms.
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Abstract Domains
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Problem With Program Semantics

» Infinitely many data states o
= infinitely many reachable states

» Cannot analyze program paths individually
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How to deal with infinite state space?

Idea: analyze set of program paths together
» Group concrete states = abstract states

» Define (abstract) semantics for abstract states

= Abstract domain
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Partial Order (Recap)

Definition
Let £ be aset and C C E x E a binary relation on E. The
structure (F,C) is a partial order if C is

> reflexive Ve € E : e C e,

> transitive Vey,eq,e3 € E: (e Ceg Aeg Ce3) = e1 L e,

P antisymmetric
Ve, ea € E:(eg CeaANeg Cep) = e = e
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Examples for Partial Orders
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Upper Bound (Join)

Let (£,C) be a partial order.

Definition (Upper Bound)
An element e € E is an upper bound of a subset F,,;, C F if

Ve' € By, : € Ce.

Definition (Least Upper Bound (lub))
An element e € E is a least upper bound U of a subset
Eg, C B if

» ¢ is an upper bound of Eg,, and

» for all upper bounds ¢’ of Eg, it yields that e C €'
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Lower Bound (Meet)

Let (£,C) be a partial order.

Definition (Lower Bound)
An element e € E is an lower bound of a subset E,, C F if

Ve' € By, :e C €.

Definition (Greatest Lower Bound (glb))
An element e € E is a greatest lower bound 1 of a subset
Eg, C B if

> ¢ is a lower bound of E,, and

» for all lower bounds €’ of Ey, it yields that ¢’ C e.
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Computing Upper Bounds

PO subset L M
(2,<) {1,4,7} 7 1
(Z,<) Z X X
(N, <) 0 0 X
(29,C)  2¢ Q 0
290) @ 0 0
(22,C) Y C2° Upeyy Nyery
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Facts About Upper and Lower Bounds

1. Least upper bounds and greatest lower bound do not
always exist.
For example,
> (Z,<)
> (N, <)
> (N,2)
2. The least upper bound and the greatest lower bound are
unique if they exist.
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Lattice

Definition
A structure £ = (E,C, 1,1, T, 1) is a lattice if
» (E,C) is a partial order
> least upper bound LI and greater lower bound I exist for
all subsets E.,, C E
» T=UE=and L =ME =10

Note:
For any set () the structure (29, C,U, N, Q, ) is a lattice.
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Which Partial Orders Are Lattices?

(a) (b)

! N o
O o n

- (d)

()
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Flat-Lattice
Definition
A flat lattice of set () consists of
> Extended set Q] = QU {T, 1}
» Flat ordering C,ie. Vge @ : L CqgCE Tand L C T
1 X=0vX={Ll}
X={gvX={Ldqg

else

T

T X=0vX={T}
> = q

1

)fz{q}VXZ{T,q}

mberger © SoSy-Lab, LMU Munich, Germany
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Product Lattice

Let & = (B, £y, Uy, My, Ty, Ly) and
&y = (Ey, Ty, Uy, My, Ty, Ly) be lattices.

The product lattice £ = (Ey X Eo, Ty, Uy, My, Ty, Ly) with
> (e1,e2) Ty (€],€h) if eg 1 €) Neg Co €
> Ux Egub = (Ui{er | (e1,+) € Esun}, Uz{eza | (-, e2) € Egup})
> MxEsup = (Mi{e1 | (e1,+) € Esun},Ma{e | (-, e2) € Esun})
> Ty =(T1,Te)and Ly = (L, Ls)

is a lattice.
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Join-Semi-Lattice

Complete lattice not always required
= remove unused elements

Definition

Join-Semi-Lattice A structure £ = (E,C, U, T) is a lattice if
» (E,C) is a partial order
> least upper bound LI exists for all subsets Eg,, C F
> T =UFE

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany
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Abstract Domain

Join-semi-lattice on set of abstract states
+ meaning of abstract states

Definition
An abstract domain D = (C,&,[ - ]) consists of
> aset C of concrete states
» a join-semi-lattice £ = (E,C, L, T)
> a concretization function [ -] : E — 2¢
(assigns meaning of abstract states)
> [T]=C
> VEup € B Ueen,, [€] € [U Esu]
(join operator overapproximates)
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Abstraction

a:2¢ 5 F

Here:
» Not defined separately

> Returns smallest abstract state that covers set of concrete
states
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Galois Connection

Abstraction and concretization function fulfill the following
connection

1. vC(sub g C: C’sub g [[a(osub)]]
(abstraction safe approximation,
but may loose information/precision)

2. Vee E:afe]) Ce
(no loss in safety)
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Abstract Semantics

Abstract interpretation of a program:
» Abstract domain with abstract states £
» CFA P = (L,1y,G)
with control-flow edges (I,0p,l') =g € G

Transfer relation ~C E x G x E
> Yee E,ge G:

Ueega{c | (¢,9,¢) € T} C Uegene [€]
(safe over-approximation)

» Depends on abstract domain
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Properties of Transfer Relations

» Monotony
Ve, e E,geG: eC e = ~(e,g) C~(e,9)
» Distributivity (optional)

Ve,el € E,ge G: ~(e,g) U ~(e,g) = ~(ele,g)

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany
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Recap: Elements of Abstraction

1. Abstract domain

» Join-semi lattice £ on set of abstract states E
> Concretization of abstract states [ - |

2. Abstract semantics ~~

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany
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Example Abstractions



Location Abstraction IL

Tracks control-flow of program

> Uses flat lattice of set L of location states
C if =T
> []:=< 0 if ¢ =1

{ce C|c(pc) =1} else
(guarantees that join overapproximates)

> (0, (Lop, ), ') €~y if ((=1VE=T)and ¢ =1
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Properties of Location Abstraction

Transfer relation ~1,

> overapproximates, i.e.,

Vee Er,geG: J{d|(cg,)eTrC U €]

ce ﬂeﬂ (67976/) Seai

» monotone
> distributive
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Value Domain

Assigns values to (some) variables.

» Domain elements are partial functions f : Var —e+ 7Z
> fCfif dom(f') C dom(f)
and Vv € dom(f"): f(v) = f'(v)
> UF=NF
> T={}
> [f] =A{cl Vv e dom(f): c(d)(v) = flv)}
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Value Abstraction V
Uses variable-separated domain
» Base domain flat lattice of Z, T means any value
» Notation: ¢(expr, f) := expr A A v=f(v)

vedom(f)
» Assignment: (f, (-,w = aexpr;,-), f') € ~y if
fv) ifv#w
c if v =w and c is the only satisfying

assignment for v in ¢(v' = aexpr, f)
T otherwise

» Assume: (f, (-,expr,-), f') € ~vy if
¢(expr, f) is satisfiable and

c if ¢ is the only satisfying assignment

f'(v)= for v in ¢(expr, f)
f(v) otherwise
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Properties of Value Abstraction V

Transfer relation
P overapproximates
» monotone

» not distributive, e.g.,
fix=3y—2  ffirxe—2y—3

~(fir=r+y)Uw(fle=a+y) = bye T,
but ~(fUfe=x+y;):z— T;y—T
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Example Abstract Transitions

Start with
forx—2,abs— T,i— T
flrxm— Tabs— T i T
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Sign Abstraction

Variable-separate domain using base domain
T
VLI
0+ + -0
XX
+ 0
NS

L

[Tl1=2 [+]=N* [-]1=2\N{ [o]={0}
[+-1=2\{0} [0+]=N; [-0]=Z\N* [1]=0
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Transfer Relation of Sign Abstraction

Suggestion 1:
> s (f,g) = fwithVv e Var: f'(v) =T
» sound, but not useful
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Transfer Relation of Sign Abstraction

Suggestion 2:
> Assignment: ~ (f,aexpr) = f
+ const € NT
v=const; f'(v)=¢ 0 const=0
— else

vews f(v) = fw)
v=expr; f'(v)="T

and Yu € Var:u#v = f'(u) = f(u)
» Assume: ~~ (f,expr) = f
sound, but could be more precise
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Transfer Relation of Sign Abstraction (Incomplete)

More precise for special boolean expression like
var>0, var==0, var<0, var>=0, var<=0

» can be decided

» used to restrict successor of assume expressions

Abstract evaluation of arithmetic expressions, e.g.

> e+ e = e, for any abstract value e except +—

P et+0=e
P e—0=e
P ex0=0
> .
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Interval Abstraction I

Variable-separate domain based on interval domain
> E=7*U{T,1}
> 1 Ce el Tandab Cle,difc<anb<d
T if T e Egwp
> UEBgp, =4 L if Fgy, C {1}
[Min(g pep,, @ MaX[ pep,, b  else

> lla,t]l ={zr €Z|a<z<b} [T]=Z [L]=0

Note: There are ascending chains that are not stabilizing.
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Transfer Relation of Interval Abstraction

Relies on abstract evaluation of expressions in state f

Arithmetic expressions
> const: [const,const]
> var: f(var)
> -[a,b]=[-b,-a]
> [a,b] op, [c,d] =
[min(a op, ¢,b op, d), max(a op, ¢,b op, d)]
> special treatment of values 1, T
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Transfer Relation of Interval Abstraction

Relies on abstract evaluation of expressions in state f

Boolean expression

{true} a>0Vb<0
> [a,b]=¢ {false} a=b=0
{true, false} else
{true} b<c
» [a,b]<[cd]=¢ {false} a>d

{true, false} else
» other comparison operators similar
> ...

Define transfer relation analogous to transition
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Cartesian Predicate Abstraction

Represent states by first order logic formulae

» Restricted to a set of predicates Pred
(subset of boolean expressions without boolean connectors)

» Conjunction of predicates
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Cartesian Predicate Abstraction

» Power set lattice on predicates (2F*, D, N, U, (), Pred)

> [Tl=W]=C
for p £ L:
[p] = {c € C | Vpred € p: Sy(pred, c(d)) = true}
(guarantees that join overapproximates)

» Transfer relation
> Assignment
(p,v = aexpr,p’) with
p = {t € Pred } (/\t’ep t'[v = vord] A v = aexpriv — Uold]) = t}
> Assume
(p, bexpr,p') if Nt A bexpr is satisfiable and
p'={t € Pred| (Apept' Nbexpr) =t}
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Properties of Cartesian Predicate Abstraction

Transfer relation
> overapproximates
> monotone
» not distributive
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Example Abstract Transitions

Consider set of predicates {i>0, x=10}

On the board:
>~ ({2 =10}, (1,i = 1;,1"))
> s ({i >0}, (Li=1%x2;,0))
>~ ({i >0}, (1,7 < abs,l'))
> (o =10,i > 0}, (I,x > 10,1')
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Property Encoding

An observer automaton observes violations of the reachability

property ©r. .,
geG

() € GALE Lgyp

Gsafe GQunsafe

(','?l) EG/\Z¢Lsub
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Property Abstraction R

Represent observer automaton-encoding of property ¢y,
abstraction

as

sub

> Uses join-semilattice on set {safe; Qunsafe }
with (safe ; Qunsafe

L C if ¢ = qunsate
> ld = { {ce C|c(pc) ¢ Lo} else

> (Q> (la op, l/)a q/) € R
if q, = Qunsafe /\ I" € Ly, or q/ =qA I ¢ J R
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Properties of Property Abstraction

Transfer relation ~~»g
> overapproximates
> monotone
> distributive
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Composite Abstraction

Combines two abstractions
» Product (join-semi) lattice E x Es

> [(e1, e2)] = [ea], N [e2],
> Product transfer relation
((61, 62)7 g, (ella 6/2)) Sha
if (e1,9,€]) €~1 and (eq, g, €}) E~sg

» More precise transfer relations possible
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Properties of Composite Abstraction

Properties inherited from components

Transfer relation
> overapproximates
> monotone
» distributive

if respective property is fulfilled by both components.
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Two Prominent Combinations

» Value analysis L x V x R
» Predicate analysis L x P x R
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Configurable Program Analysis
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Starting Position

3 analysis techniques
» Often, similar
> But, not identical

Use synergies — combine into one configurable analysis
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Comparing Analysis Algorithms

Path-insensitive

Dataflow analysis

Model checking

input

exploration

combination

coverage
termination

Thomas Lemberger

program
abstraction

initial state e,
one element

last state

all successors
least upper bound

identical
Ichanged

© SoSy-Lab

program
abstraction

widening operator V

reached, waitlist
pop from waitlist
all successors
upper bound (V)
(same location)
same location, C
empty waitlist

program
abstraction

reached, waitlist
pop from waitlist
all successors
never

same location, T
empty waitlist

LMU Munich, Germany

program
abstraction

€y, new operators
reached, waitlist
pop from waitlist
all successors
merge operator

stop operator
empty waitlist
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Merge Operator

Defines when and how to combine abstract states

merge: E X E — FE

Correctness criterion:
Must consume second parameter (already explored element)

Ve,e' € E: ¢ C merge(e, €)
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Examples for Merge Operator

» Flow-insensitive: merge(e, ') = L{e, e’}

» Dataflow analysis:
merge((l7 6), (ll, e/)) = { I_l{(l7 6)7 (l , € )} ifl=1

» Model checking: merge(e,e’) =e
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Stop Operator

Defines when to stop exploration (termination check)

stop : E x 2% — {true, false}

Correctness criterion:
Must be covered by second parameter (set of explored elements)

Ve € E, Equ, C E : stop(e, Egu) = ([e] C U €'
e/EEsub
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Examples for Stop Operator

> stop(e, Esup) = false
> Flow-insensitive: stop(e, Eqp) = € € Egp

» Dataflow analysis and model checking:
stop((l, ), Esup) = 3(1,€¢') € Egu : (l,e) C (I, €)
and
stop(e, Fsup) = 3¢’ € Egp i e C €
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Configurable Program Analysis (CPA)

Abstraction plus merge and stop operator

ACPAC=((C,(E,C,1, T),[-]),~, merge, stop) consists of
» abstract domain (C,(E,C,U, T),[-])

> join-semilattice (E,C,L, T)
> [-]: E— 29 with
> [T]=C
> VEgw C E: UCEEsub [[6]] c [[u Esub]]

> transfer relation wC ExGx EVee E,g € G :
Ueepegle' | (¢,9,¢) € TH C Ueg,e1e [€]
> merge operator merge: E X E — E
Ve,e' € E: ¢’ C merge(e, €)

> stop operator stop : E x 2F — {true, false}

Ve € E, Eqy, € E : stop(e, Eq) = ([e] € | [€])

!
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Value Dataflow Analyses as CPA

v

abstract domain L x V

transfer relation: product transfer relation ~~p v

v

P> merge operator
. L{(l,v), (", 0"} it l=1
merge(1,0), (.11) = { ({5 KL

P stop operator
stop((,v), Esup) = 3(,0") € Egu : (I,v) C (1,0)
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Predicate Model Checking as CPA

abstract domain L x P
transfer relation: product transfer relation ~~p .p

merge operator merge(e,e') = €’
b

vvyyvyy

stop operator
stop((l, p), Esun) = 3(1, 1) € Esu = (1,p) E (I, p)
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CPA Algorithm

Input: program P = (L, ¥, G)
CPA ((C,(E,C,U, T),[-]), ~, merge, stop)
initial abstract state eg € E
reached={ep}; waitlist={ep};
while (waitlist # () do
pop e from waitlist;
for each e ~~ ¢’ do
for each e, € reached do
em = merge(e’, e;)
if (e # €,) then
reached=(reached \{e,}) U {em};
waitlist=(waitlist \{e,}) U{en};
if (—stop(e’, reached)) then
reached=reachedU{¢'};
waitlist=waitlistU{e’};

return reached



Termination of CPA Algorithm

» Generally not guaranteed (inherited from model checking)

» Depends on configuration
(even for loop-free programs may not terminate, e.g.
stop(e, Esu,) = false)

» Guarantees for individual techniques (flow-insensitive,
dataflow analysis, etc.) still apply
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Soundness

Final set reached overapproximates all reachable states if the
initial abstract state ey covers all initial states, i.e.,

{c|c(pe) =lo} C [eo] = reach(P) S |J [e]

e€reached

Reasons

» Explore all successors of states in reached
(always add state to waitlist if added to reached)

» Transfer relation overapproximates

> Replace state by more abstract (merge property), never
only delete
» Must add abstract successor to reached if not covered

(stop property)



Classifying Configurable Program Analysis

Overapproximating verifier (superset of program behavior)
without precise counterexample check

TRUE v
Program P [3
UNKNOWN
Property ¢
FALSE x
false alarm < - - - violation
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Exploring the Configuration Space

abstraction

precision

merge stop

» Which set of concrete elements can be distinguished?
> merge: never <> always T
» stop: [e] C Uwep,,, [€] < false

= Relaxation to become more efficient
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