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Lecture and Exercise

Lecture
Mar 4, 2022, 10:00 – 12:00

Exercise
Mar 4, 2022, 13:00 – 16:00
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Course Material

https:
//www.sosy-lab.org/Teaching/2021-WS-Semantik/

Required software:
I Linux
I Java 11
I CPAchecker 2.1.1
I Python >= 3.8
I pip (usually comes with python)
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Software Analysis

Computes an (over-)approximation of a program’s behavior.

Applications
I Optimization
I Correctness

(i.e., whether program satisfies a given property)
I Developer Assist

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 7 / 111



What Could an Analysis Find out?

double divTwiceCons(double y) {
int cons = 5;
int d = 2∗cons;
if (cons != 0)

return y/(2∗cons);
else

return 0;
}
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Some Analysis Results

double divTwiceCons(double y) {
int cons = 5;
// expression 2*cons has value 10
// variable d not used
int d = 2∗cons;
if (cons != 0)

// expression 2*cons evaluated before
return y/(2∗cons);

else
// dead code
return 0;

}
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One Resulting Code Optimization

double divTwiceCons(double y) {
int cons = 5;
// expression 2*cons has value 10
// variable d not used
int d = 2∗cons;
if (cons != 0)

// expression 2*cons evaluated before
return y/(2∗cons);

else
// dead code
return 0;

}

double divTwiceConsOptimized(double y) {
return y/10;

}
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Software Verification

Formally proves whether a program P satisfies a property ϕ.

I Requires program semantics, i.e., meaning of program
I Relies on mathematical methods,

I logic
I induction
I . . .
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Software Verification

Formally proves whether a program P satisfies a property ϕ.

Program P q

Property ϕ
Verifier

TRUE X

FALSE ×

Disprove (×) Find a program execution (counterexample)
that violates the property ϕ

Prove (X) Show that every execution of the program
satisfies the property ϕ.
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Does This Code Work?

double avgUpTo(int[] numbers, int length) {
double sum = 0;
for( int i=0;i<length; i++)

sum += numbers[i];
return sum/(double)length;

}
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Problems With This Code

double avgUpTo(int[] numbers, int length) {
double sum = 0;
for ( int i=0;i<length;i++)

// possible null pointer access (numbers==null)
// index out of bounds (length>numbers.length)
sum += numbers[i];

// division by zero (length==0)
return sum/(double) length;

}
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Why Should One Care for Bugs?

CostsAriane V88

Intel Pentium FDIV bug

. . .

Mars Polar Lander

Safety-criticality

endanger human lives

Therac-25

Uber autonomous car

. . .
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Analysis and Verification Tools

SpotBugs

Lint Error Prone

Klee PeX SymCCSapienz

CPAchecker

Infer

CBMC

SLAM

UltimateAutomizer

. . .
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Overview on Analysis and Verification Techniques

Dataflow
Analysis

Abstract
Interpretation

Program
Analysis

Model
Checking

AutomaticInteractive

Theorem
Proving

Static
Type

SystemsDynamic

Testing Runtime
Verification

This lecture
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Why Different Static, Automatic Techniques?

Theorem of Rice
Any non-trivial, semantic property of programs is undecidable.

Consequences
Techniques are
I incomplete, e.g. answer UNKNOWN, or
I unsound, i.e., report

I false alarms (non-existing bugs),
I false proofs (miss bugs).
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Verifier Design Space

Program P q

Property ϕ
VerifierIdeal verifier

TRUE X

UNKNOWN

FALSE ×

Program P q

Property ϕ
VerifierUnreliable verifier

TRUE X

UNKNOWN

FALSE ×

false alarm violation

false proof correct
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Verifier Design Space
I Overapproximating verifier (superset of program behavior)

without precise counterexample check

Program P q

Property ϕ
Verifier

TRUE X

UNKNOWN

FALSE ×

false alarm violation

I Underapproximating verifier (subset of program behavior)

Program P q

Property ϕ
Verifier

TRUE X

UNKNOWN

FALSE ×

false proof correct
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Other Reasons to Use Different Static Techniques

I State space grows exponentially with number of variables
I (Syntactic) paths grow exponentially with number of

branches

⇒ Precise techniques may require too many resources
(memory, time,. . . )

⇒ Trade-off between precision and costs
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Flow-Insensitivity

Order of statements not considered

E.g., does not distinguish between these two programs
x=0;
y=x;
x=x+1;

x=0;
x=x+1;
y=x;

⇒ very imprecise
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Flow-Sensitivity Plus Path-Insensitivity
I Takes order of statements into account
I Mostly, ignores infeasibility of syntactical paths
I Ignores branch correlations

E.g., does not distinguish between these two programs

if (x>0)
y=1;

else
y=0;

if (x>0)
y=y+1;

else
y=y+2;

if (x>0)
y=1;

else
y=0;

if (x>0)
y=y+2;

else
y=y+1;
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Path-Sensitivity
I Takes (execution) paths into account
I Excludes infeasible, syntactic paths

(not necessarily all infeasible ones)
I Covers flow-sensitivity

if (x>0)
y=1;

else
y=0;

if (x>0)
y=y+2;

else
y=y+1;

To detect that y has value 0, 1, or 3
I must exclude infeasible, syntactic path

along first else-branch and second
if-branch

I need to detect correlation between the
if-conditions

I requires path-sensitivity
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Precision vs. Costs

Program Analysis Model Checking

Abstract
Interpretation

Dataflow
Analysis

Flow-insensitive Flow-sensitive Path-sensitive

imprecise precise

cheap expensive
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Program Syntax and Semantics
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Programs

Theory: simple while-programs
I Restriction to integer constants and variables
I Minimal set of statements (assignment, if, while)
I Techniques easier to teach/understand

Practice: C programs
I Widely-used language
I Tool support
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While-Programs

I Arithmetic expressions
aexpr := Z | var | -aexpr | aexpr opa aexpr
opa standard arithmetic operation like +,−, /,%, . . .

I Boolean expressions
bexpr := aexpr | aexpr opc aexpr | !bexpr | bexpr opb bexpr
I integer value 0 ≡false, remaining values represent true
I opc comparison operator like <,<=, >=, >,==, ! =
I opb logic connective like &&(∧), || (∨), ˆ (xor), . . .

I Program
S:= var=aexpr; | while bexpr S | if bexpr S else S |

if bexpr S | S;S
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Syntax vs. Semantics

Syntax
Representation of a program

Semantics
Meaning of a program
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How to Represent a Program?

1. Source code
if (x>0)

abs = x;
else

abs = −x;
i = 1;
while( i<abs)

i = 2∗i;

I Basically sequence of characters
I No explicit information about the

structure or paths of programs
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How to Represent a Program?

2. Abstract-syntax tree (AST)

Program

Sequence

if

if-BlockCondition else-Block
x>0

Assignement Assignement
abs=x; abs=-x;

Sequence

Assignment
i=1; while

while-BlockCondition
i<abs

Assignement
i=2*i;

I Hierarchical representation
I Flow, paths hard to detect
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How to Represent a Program?

3. Control-flow graph

x>0

abs=x; abs=-x;

i=1;

i<abs

i=2*i;

TRUE FALSE

TRUE FALSE

4. Control-flow automaton

l0

l1 l2

l3

l4

l5 l6

[x > 0] [!(x > 0)]

abs = x; abs = -x;

i = 1;

[i < abs]

[!(i < abs)]

i = 2 * i;
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Control-Flow Automaton

Definition
A control-flow automaton (CFA) is a three-tuple P = (L, l0, G)
consisting of
I the set L of program locations

(domain of program counter)
I the initial program location l0 ∈ L, and
I the control-flow edges G ⊆ L×Ops× L.
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Operations Ops

Two types
I Assumes (boolean expressions)
I Assignments (var = aexpr;)
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From Source Code to Control-Flow Automaton
Assignment var=expr;

v=expr;

While-Statement while (C) S
S

S
C

¬ C

If-Statement if (C) S1 else S2

S1 S2

S1

S2

C

¬C
If-Statement if (C) S

S

SC

¬C

Sequential Composition S1;S2

S1 S2

S1 S2
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Semantics

Different types
I Axiomatic semantics: based on pre- and postconditions,

e.g. {true}x=0;{x=0}
I Denotational semantics: function from inputs to outputs
I Operational semantics (X): defines execution of program
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Operational Semantics

Defines program meaning by fixing program execution

I Transitions describe single execution steps
I Level of assignment or assume
I Change states
I Evaluate semantics of expressions in a state

I Execution: sequence of transitions

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 37 / 111



Concrete States

Pair of program counter and data state (C = L× Σ)
I Program counter

I Where am I?
I Location in CFA
I c(pc) = l refers to program counter of concrete state

I Data state σ : V → Z
I Maps variables to values
I c(d) = σ refers to data state of concrete state
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Semantics of Arithmetic Expressions

Evaluation function Sa : aexpr × Σ→ Z

Defined recursively on structure
I const ∈ Z : Sa(const, σ) = const
I variable var: Sa(var, σ) = σ(var)
I unary operation: Sa(−t, σ) = −Sa(t, σ)
I binary operation:
Sa(t1 opa t2, σ) = Sa(t1, σ) opa Sa(t2, σ)
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Semantics of Boolean Expressions

Evaluation function Sb : bexpr × Σ→ {true, false}

Defined recursively on structure
I arithmetic expression:

Sb(t, σ) =
{
true if Sa(t, σ) 6= 0
false else

I comparison: Sb(t1 opc t2, σ) = Sa(t1, σ) opc Sa(t2, σ)
I logic connection: Sb(b1 opb b2, σ) = Sb(b1, σ) opb Sb(b2, σ)
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Examples for Expression Evaluation

Consider σ : abs 7→ 2; i 7→ 0; x 7→ −2

Derivation of the values of
I Sa(−x, σ)
I Sa(2 ∗ i, σ)
I Sb(x > 0, σ)
I Sb(i < abs, σ)

on the board.
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State Update

Σ×Opsassignment → Σ

σ[var = aexpr; ] = σ′

with σ′(v) =
{
σ(v) if v 6= var
Sa(aexpr, σ) else
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Examples for State Update

Consider σ : abs 7→ 2; i 7→ 0; x 7→ −2

Computation of the state updates
I σ[i = 1; ]
I σ[abs = −x; ]
I σ[i = 2 ∗ i; ]

on the board.
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Transitions – Single Execution Steps

Transitions T ⊆ C ×G× C with (c, (l, op, l′), c′) ∈ T if

1. Respects control-flow, i.e.,

c(pc) = l ∧ c′(pc) = l′

2. Valid data behavior
I op assignment var=aexpr; :

... ∧ c′(d) = c(d)[var = aexpr; ]
I op assume bexpr :

... ∧ Sb(bexpr, c(d)) = true ∧ c(d) = c′(d)
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Program Paths

Defined inductively

I every concrete state c with c(pc) = l0 is a program path
I if c0

g1→ c1 · · ·
gn→ cn is a program path and

(cn, gn+1, cn+1) ∈ T ,
then c0

g1→ c1 · · ·
gn→ cn

gn+1→ cn+1 is a program path

Set of all program paths of program P = (L,G, l0) denoted by
paths(P ).
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Examples for Program Paths

l0

l1 l2

l3

l4

l5 l6

[x > 0] [!(x > 0)]

abs = x; abs = -x;

i = 1;

[i < abs]

[!(i < abs)]

i = 2 * i;

On the board: Shortest and longest program path starting in
state (l0, σ) with σ : abs 7→ 2; i 7→ 0; x 7→ −2
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Reachable States

reach(P ) := {c | ∃c0
g1→ c1 · · ·

gn→ cn ∈ paths(P ) : cn = c}
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Program Properties and
Program Correctness
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Program Properties

Trace Property Hyper Property

Safety Liveness
. . .Termination Responsiveness. . .Reachability Type State

Information-Flow Security
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Reachability Property ϕR

Defines that a set ϕR ⊆ C of concrete states must not be
reached

In this lecture:
I Certain program locations must not be reached
I Denoted by ϕLsub := {c ∈ C | c(pc) ∈ Lsub}
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Correctness

Definition
Program P is correct wrt. reachability property ϕR if

reach(P ) ∩ ϕR = ∅.
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Formalizing Verification Terms

I False alarm: v(P, ϕR) = FALSE ∧ reach(P ) ∩ ϕR = ∅
I False proof: v(P, ϕR) = TRUE ∧ reach(P ) ∩ ϕR 6= ∅
I Verifier v is sound if v does not produce false proofs and
v is complete if v does not produce false alarms.
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Abstract Domains

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 53 / 111



Problem With Program Semantics

I Infinitely many data states σ
⇒ infinitely many reachable states

I Cannot analyze program paths individually
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How to deal with infinite state space?

Idea: analyze set of program paths together
I Group concrete states ⇒ abstract states
I Define (abstract) semantics for abstract states

⇒ Abstract domain
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Partial Order (Recap)

Definition
Let E be a set and v ⊆ E × E a binary relation on E. The
structure (E,v) is a partial order if v is
I reflexive ∀e ∈ E : e v e,
I transitive ∀e1, e2, e3 ∈ E : (e1 v e2 ∧ e2 v e3)⇒ e1 v e3,
I antisymmetric
∀e1, e2 ∈ E : (e1 v e2 ∧ e2 v e1)⇒ e1 = e2.

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 56 / 111



Examples for Partial Orders

I (Z,≤)
I (2Q,⊆)
I (Σ∗, lexicographic order)
I (Σ∗, suffix)
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Upper Bound (Join)

Let (E,v) be a partial order.

Definition (Upper Bound)
An element e ∈ E is an upper bound of a subset Esub ⊆ E if

∀e′ ∈ Esub : e′ v e.

Definition (Least Upper Bound (lub))
An element e ∈ E is a least upper bound t of a subset
Esub ⊆ E if
I e is an upper bound of Esub and
I for all upper bounds e′ of Esub it yields that e v e′.
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Lower Bound (Meet)

Let (E,v) be a partial order.

Definition (Lower Bound)
An element e ∈ E is an lower bound of a subset Esub ⊆ E if

∀e′ ∈ Esub : e v e′.

Definition (Greatest Lower Bound (glb))
An element e ∈ E is a greatest lower bound u of a subset
Esub ⊆ E if
I e is a lower bound of Esub and
I for all lower bounds e′ of Esub it yields that e′ v e.
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Computing Upper Bounds

PO subset t u
(Z,≤) {1, 4, 7} 7 1
(Z,≤) Z × ×
(N,≤) ∅ 0 ×
(2Q,⊆) 2Q Q ∅
(2Q,⊆) {∅} ∅ ∅
(2Q,⊆) Y ⊆ 2Q ⋃

y∈Y y
⋂

y∈Y y
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Facts About Upper and Lower Bounds

1. Least upper bounds and greatest lower bound do not
always exist.
For example,
I (Z,≤)
I (N,≤)
I (N,≥)

2. The least upper bound and the greatest lower bound are
unique if they exist.
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Lattice

Definition
A structure E = (E,v,t,u,>,⊥) is a lattice if
I (E,v) is a partial order
I least upper bound t and greater lower bound u exist for

all subsets Esub ⊆ E

I > = tE = u∅ and ⊥ = uE = t∅

Note:
For any set Q the structure (2Q,⊆,∪,∩, Q, ∅) is a lattice.
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Which Partial Orders Are Lattices?

(a)

. . .

(b)

. . .

(c)
(d)

(e)
(f)
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Flat-Lattice
Definition
A flat lattice of set Q consists of
I Extended set Q>⊥ = Q ∪ {>,⊥}
I Flat ordering v, i.e. ∀q ∈ Q : ⊥ v q v > and ⊥ v >

I t =


⊥ X = ∅ ∨X = {⊥}
q X = {q} ∨X = {⊥, q}
> else

I u =


> X = ∅ ∨X = {>}
q X = {q} ∨X = {>, q}
⊥ else

>

. . . Q

⊥
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Product Lattice

Let E1 = (E1,v1,t1,u1,>1,⊥1) and
E2 = (E2,v2,t2,u2,>2,⊥2) be lattices.

The product lattice E× = (E1×E2,v×,t×,u×,>×,⊥×) with

I (e1, e2) v× (e′1, e′2) if e1 v1 e
′
1 ∧ e2 v2 e

′
2

I t×Esub = (t1{e1 | (e1, ·) ∈ Esub},t2{e2 | (·, e2) ∈ Esub})

I u×Esub = (u1{e1 | (e1, ·) ∈ Esub},u2{e2 | (·, e2) ∈ Esub})

I >× = (>1,>2) and ⊥× = (⊥1,⊥2)

is a lattice.
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Join-Semi-Lattice

Complete lattice not always required
⇒ remove unused elements

Definition
Join-Semi-Lattice A structure E = (E,v,t,>) is a lattice if
I (E,v) is a partial order
I least upper bound t exists for all subsets Esub ⊆ E

I > = tE
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Abstract Domain

Join-semi-lattice on set of abstract states
+ meaning of abstract states

Definition
An abstract domain D = (C, E , [[ · ]]) consists of
I a set C of concrete states
I a join-semi-lattice E = (E,v,t,>)
I a concretization function [[ · ]] : E → 2C

(assigns meaning of abstract states)
I [[>]] = C
I ∀Esub ⊆ E :

⋃
e∈Esub

[[e]] ⊆ [[ t Esub]]
(join operator overapproximates)
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Abstraction

α : 2C → E

Here:
I Not defined separately
I Returns smallest abstract state that covers set of concrete

states
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Galois Connection

Abstraction and concretization function fulfill the following
connection
1. ∀Csub ⊆ C : Csub ⊆ [[α(Csub)]]

(abstraction safe approximation,
but may loose information/precision)

2. ∀e ∈ E : α([[e]]) v e
(no loss in safety)
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Abstract Semantics

Abstract interpretation of a program:
I Abstract domain with abstract states E
I CFA P = (L, l0, G)

with control-flow edges (l, op, l′) = g ∈ G

Transfer relation  ⊆ E ×G× E
I ∀e ∈ E, g ∈ G :⋃

c∈[[e]]{c′ | (c, g, c′) ∈ T } ⊆
⋃

(e,g,e′)∈ [[e′]]
(safe over-approximation)

I Depends on abstract domain
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Properties of Transfer Relations

I Monotony

∀e, e′ ∈ E, g ∈ G : e v e′ ⇒  (e, g) v (e′, g)

I Distributivity (optional)

∀e, e′ ∈ E, g ∈ G :  (e, g) t  (e′, g) =  (e t e′, g)
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Recap: Elements of Abstraction

1. Abstract domain
I Join-semi lattice E on set of abstract states E
I Concretization of abstract states [[ · ]]

2. Abstract semantics  
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Example Abstractions
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Location Abstraction L

Tracks control-flow of program

I Uses flat lattice of set L of location states

I [[`]] :=


C if ` = >
∅ if ` = ⊥
{c ∈ C | c(pc) = `} else

(guarantees that join overapproximates)

I (`, (l, op, l′), `′) ∈ L if (` = l ∨ ` = >) and `′ = l′
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Properties of Location Abstraction

Transfer relation  L

I overapproximates, i.e.,

∀e ∈ EL, g ∈ G :
⋃

c∈[[e]]
{c′ | (c, g, c′) ∈ T } ⊆

⋃
(e,g,e′)∈ L

[[e′]]

I monotone
I distributive
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Value Domain

Assigns values to (some) variables.

I Domain elements are partial functions f : Var −→◦ Z
I f v f ′ if dom(f ′) ⊆ dom(f)

and ∀v ∈ dom(f ′) : f(v) = f ′(v)
I tF = ⋂

F

I > = {}
I [[f ]] = {c | ∀v ∈ dom(f) : c(d)(v) = f(v)}
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Value Abstraction V
Uses variable-separated domain
I Base domain flat lattice of Z, > means any value
I Notation: φ(expr, f) := expr ∧ ∧

v∈dom(f)
v = f(v)

I Assignment: (f, (·, w = aexpr; , ·), f ′) ∈ V if

f ′(v) =


f(v) if v 6= w

c if v = w and c is the only satisfying
assignment for v′ in φ(v′ = aexpr, f)

> otherwise
I Assume: (f, (·, expr, ·), f ′) ∈ V if
φ(expr, f) is satisfiable and

f ′(v) =


c if c is the only satisfying assignment

for v in φ(expr, f)
f(v) otherwise
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Properties of Value Abstraction V

Transfer relation
I overapproximates
I monotone
I not distributive, e.g.,

f : x 7→ 3; y 7→ 2 f ′ : x 7→ 2; y 7→ 3
 (f, x = x+ y; ) t (f ′, x = x+ y; ) : x 7→ 5; y 7→ >,
but  (f t f ′, x = x+ y; ) : x 7→ >; y 7→ >
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Example Abstract Transitions

l0

l1 l2

l3

l4

l5 l6

[x > 0] [!(x > 0)]

abs = x; abs = -x;

i = 1;

[i < abs]

[!(i < abs)]

i = 2 * i;

Start with
f0 : x 7→ 2, abs 7→ >, i 7→ >
f ′0 : x 7→ >, abs 7→ >, i 7→ >
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Sign Abstraction

Variable-separate domain using base domain
>

+-0+ -0

0 -+

⊥

[[>]] = Z [[ + ]] = N+ [[− ]] = Z \ N+
0 [[0]] = {0}

[[ +−]] = Z \ {0} [[0 + ]] = N+
0 [[− 0]] = Z \N+ [[⊥]] = ∅
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Transfer Relation of Sign Abstraction

Suggestion 1:
I  (f, g) = f ′ with ∀v ∈ V ar : f ′(v) = >
I sound, but not useful
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Transfer Relation of Sign Abstraction

Suggestion 2:
I Assignment:  (f, aexpr) = f ′

v=const; f ′(v) =


+ const ∈ N+

0 const = 0
− else

v=w; f ′(v) = f(w)
v=expr; f ′(v) = >

and ∀u ∈ V ar : u 6= v ⇒ f ′(u) = f(u)
I Assume:  (f, expr) = f

sound, but could be more precise
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Transfer Relation of Sign Abstraction (Incomplete)

More precise for special boolean expression like
var>0, var==0, var<0, var>=0, var<=0
I can be decided
I used to restrict successor of assume expressions

Abstract evaluation of arithmetic expressions, e.g.
I e+ e = e, for any abstract value e except +−
I e+ 0 = e

I e− 0 = e

I e ∗ 0 = 0
I . . .
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Interval Abstraction I

Variable-separate domain based on interval domain
I E = Z2 ∪ {>,⊥}
I ⊥ v e, e v > and [a, b] v [c, d] if c ≤ a ∧ b ≤ d

I tEsub =


> if > ∈ Esub
⊥ if Esub ⊆ {⊥}
[min[a,b]∈Esuba,max[a,b]∈Esubb] else

I [[[a, b]]] = {x ∈ Z | a ≤ x ≤ b} [[>]] = Z [[⊥]] = ∅

Note: There are ascending chains that are not stabilizing.
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Transfer Relation of Interval Abstraction

Relies on abstract evaluation of expressions in state f

Arithmetic expressions
I const: [const,const]
I var: f(var)
I -[a,b]=[-b,-a]
I [a,b] opa [c,d] =

[min(a opa c, b opa d),max(a opa c, b opa d)]
I special treatment of values ⊥,>
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Transfer Relation of Interval Abstraction

Relies on abstract evaluation of expressions in state f

Boolean expression

I [a,b]=


{true} a > 0 ∨ b < 0
{false} a = b = 0
{true, false} else

I [a,b]<[c,d]=


{true} b < c
{false} a ≥ d
{true, false} else

I other comparison operators similar
I . . .

Define transfer relation analogous to transition
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Cartesian Predicate Abstraction

Represent states by first order logic formulae
I Restricted to a set of predicates Pred

(subset of boolean expressions without boolean connectors)
I Conjunction of predicates
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Cartesian Predicate Abstraction
I Power set lattice on predicates (2Pred,⊇,∩,∪, ∅,Pred)

I [[>]] = [[∅]] = C
for p 6= ⊥:
[[p]] = {c ∈ C | ∀pred ∈ p : Sb(pred, c(d)) = true}
(guarantees that join overapproximates)

I Transfer relation
I Assignment

(p, v = aexpr, p′) with
p′ =

{
t ∈ Pred

∣∣ (∧
t′∈p

t′[v → vold] ∧ v = aexpr[v → vold]
)
⇒ t

}
I Assume

(p, bexpr, p′) if
∧

t∈p t ∧ bexpr is satisfiable and
p′ = {t ∈ Pred | (

∧
t′∈p t

′ ∧ bexpr)⇒ t}
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Properties of Cartesian Predicate Abstraction

Transfer relation
I overapproximates
I monotone
I not distributive
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Example Abstract Transitions

Consider set of predicates {i>0, x=10}

On the board:
I  ({x = 10}, (l, i = 1; , l′))
I  ({i > 0}, (l, i = i ∗ 2; , l′))
I  ({i > 0}, (l, i < abs, l′))
I  ({x = 10, i > 0}, (l, x > 10, l′))
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Property Encoding

An observer automaton observes violations of the reachability
property ϕLsub

qsafe qunsafe

(·, ·, l) ∈ G ∧ l /∈ Lsub

g ∈ G

(·, ·, l) ∈ G ∧ l ∈ Lsub
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Property Abstraction R

Represent observer automaton-encoding of property ϕLsub as
abstraction

I Uses join-semilattice on set {qsafe, qunsafe}
with qsafe v qunsafe

I [[q]] :=
{
C if q = qunsafe
{c ∈ C | c(pc) /∈ Lsub} else

I (q, (l, op, l′), q′) ∈ R
if q′ = qunsafe ∧ l′ ∈ Lsub or q′ = q ∧ l′ /∈ Lsub
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Properties of Property Abstraction

Transfer relation  R

I overapproximates
I monotone
I distributive
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Composite Abstraction

Combines two abstractions
I Product (join-semi) lattice E1 × E2

I [[(e1, e2)]] = [[e1]]1 ∩ [[e2]]2

I Product transfer relation
((e1, e2), g, (e′1, e′2)) ∈ 
if (e1, g, e

′
1) ∈ 1 and (e2, g, e

′
2) ∈ 2

I More precise transfer relations possible
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Properties of Composite Abstraction

Properties inherited from components

Transfer relation
I overapproximates
I monotone
I distributive

if respective property is fulfilled by both components.
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Two Prominent Combinations

I Value analysis L× V× R
I Predicate analysis L× P× R
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Configurable Program Analysis
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Starting Position

3 analysis techniques
I Often, similar
I But, not identical

Use synergies → combine into one configurable analysis
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Comparing Analysis Algorithms

Path-insensitive Dataflow analysis Model checking
program program program program

input abstraction abstraction abstraction abstraction
initial state e0 widening operator ∇ e0, new operators

exploration one element reached, waitlist reached, waitlist reached, waitlist
last state pop from waitlist pop from waitlist pop from waitlist
all successors all successors all successors all successors

combination least upper bound upper bound (∇) never merge operator
(same location)

coverage identical same location, v same location, v stop operator
termination !changed empty waitlist empty waitlist empty waitlist
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Merge Operator

Defines when and how to combine abstract states

merge : E × E → E

Correctness criterion:
Must consume second parameter (already explored element)

∀e, e′ ∈ E : e′ v merge(e, e′)
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Examples for Merge Operator

I Flow-insensitive: merge(e, e′) = t{e, e′}
I Dataflow analysis:

merge((l, e), (l′, e′)) =
{
t{(l, e), (l′, e′)} if l = l′

(l′, e′) else
I Model checking: merge(e, e′) = e′
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Stop Operator

Defines when to stop exploration (termination check)

stop : E × 2E → {true, false}

Correctness criterion:
Must be covered by second parameter (set of explored elements)

∀e ∈ E,Esub ⊆ E : stop(e, Esub)⇒ ([[e]] ⊆
⋃

e′∈Esub

[[e′]])
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Examples for Stop Operator

I stop(e, Esub) = false

I Flow-insensitive: stop(e, Esub) = e ∈ Esub

I Dataflow analysis and model checking:
stop((l, e), Esub) = ∃(l, e′) ∈ Esub : (l, e) v (l, e′)
and
stop(e, Esub) = ∃e′ ∈ Esub : e v e′
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Configurable Program Analysis (CPA)
Abstraction plus merge and stop operator

A CPA C = ((C, (E,v,t,>), [[ · ]]), ,merge, stop) consists of
I abstract domain (C, (E,v,t,>), [[ · ]])

I join-semilattice (E,v,t,>)
I [[ · ]] : E → 2C with

I [[>]] = C
I ∀Esub ⊆ E :

⋃
e∈Esub

[[e]] ⊆ [[ t Esub]]

I transfer relation  ⊆ E ×G× E ∀e ∈ E, g ∈ G :⋃
c∈[[e]]{c′ | (c, g, c′) ∈ T } ⊆

⋃
(e,g,e′)∈ [[e′]]

I merge operator merge : E × E → E

∀e, e′ ∈ E : e′ v merge(e, e′)

I stop operator stop : E × 2E → {true, false}
∀e ∈ E,Esub ⊆ E : stop(e, Esub)⇒ ([[e]] ⊆

⋃
e′∈Esub

[[e′]])
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Value Dataflow Analyses as CPA

I abstract domain L× V
I transfer relation: product transfer relation  L×V

I merge operator

merge((l, v), (l′, v′)) =
{
t{(l, v), (l′, v′)} if l = l′

(l′, v′) else
I stop operator

stop((l, v), Esub) = ∃(l, v′) ∈ Esub : (l, v) v (l, v′)
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Predicate Model Checking as CPA

I abstract domain L× P
I transfer relation: product transfer relation  L×P

I merge operator merge(e, e′) = e′

I stop operator
stop((l, p), Esub) = ∃(l, p′) ∈ Esub : (l, p) v (l, p′)
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CPA Algorithm
Input: program P = (L, `0, G)

CPA ((C, (E,v,t,>), [[ · ]]), ,merge, stop)
initial abstract state e0 ∈ E

reached={e0}; waitlist={e0};
while (waitlist 6= ∅) do

pop e from waitlist;
for each e e′ do

for each er ∈ reached do
em = merge(e′, er)
if (em 6= er) then

reached=(reached \{er}) ∪ {em};
waitlist=(waitlist \{er}) ∪ {em};

if (¬stop(e′, reached)) then
reached=reached∪{e′};
waitlist=waitlist∪{e′};

return reached
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Termination of CPA Algorithm

I Generally not guaranteed (inherited from model checking)
I Depends on configuration

(even for loop-free programs may not terminate, e.g.
stop(e, Esub) = false)

I Guarantees for individual techniques (flow-insensitive,
dataflow analysis, etc.) still apply
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Soundness
Final set reached overapproximates all reachable states if the
initial abstract state e0 covers all initial states, i.e.,

{c | c(pc) = l0} ⊆ [[e0]]⇒ reach(P ) ⊆
⋃

e∈reached

[[e]]

Reasons
I Explore all successors of states in reached

(always add state to waitlist if added to reached)
I Transfer relation overapproximates
I Replace state by more abstract (merge property), never

only delete
I Must add abstract successor to reached if not covered

(stop property)
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Classifying Configurable Program Analysis

Overapproximating verifier (superset of program behavior)
without precise counterexample check

Program P q

Property ϕ
Verifier

TRUE X

UNKNOWN

FALSE ×

false alarm violation
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Exploring the Configuration Space

precision

abstraction

merge stop

I Which set of concrete elements can be distinguished?
I merge: never ↔ always >
I stop: [[e]] ⊆ ⋃e′∈Esub [[e′]] ↔ false
⇒ Relaxation to become more efficient
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