Semantics: Application to C Programs

Lecture

Thomas Lemberger

© SoSy-Lab, LMU Munich, Germany
Slides and Material prepared by D. Beyer, M.-C. Jakobs, M. SpieBI, and
T. Lemberger

MAXIMIL -
MAXIMILIANS:
LMU i Software Systems

Organization

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 2 /111

Lecture and Exercise

Lecture
Mar 4, 2022, 10:00 — 12:00

Exercise
Mar 4, 2022, 13:00 — 16:00

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 3 /111

Course Material

https:
//www.sosy-lab.org/Teaching/2021-WS-Semantik/

Required software:

» Linux
Java 11
CPAchecker 2.1.1
Python >= 3.8

>
>
>
» pip (usually comes with python)

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 4 /111

https://www.sosy-lab.org/Teaching/2021-WS-Semantik/
https://www.sosy-lab.org/Teaching/2021-WS-Semantik/
https://cpachecker.sosy-lab.org/CPAchecker-2.1.1-unix.zip
https://pip.pypa.io/en/stable/

Introduction

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 5 /111

C Use-Def

Invariant Specification

State Space

Dead Code
Model Checking

Formal Verification

Taint Analysis
Least Upper Bound)
Constant Propagation

Partial Order Program Syntax
SMT CPAchecker

Axiomatic Semantics

Program Path Operational Semantics

Software Analysis

Computes an (over-)approximation of a program’'s behavior.

Applications
» Optimization
» Correctness
(i.e., whether program satisfies a given property)
» Developer Assist

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 7 /111

What Could an Analysis Find out?

double divTwiceCons(double y) {
int cons = 5;
int d = 2xcons;
if (cons |=0)
return y/(2xcons);
else
return 0;

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 8 /111

Some Analysis Results

double divTwiceCons(double y) {
int cons = 5;
// expression 2*cons has value 10
// variable d not used
int d = 2xcons;
if (cons |=0)
// expression 2*cons evaluated before
return y/(2xcons);
else
// dead code
return 0;

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 9 /111

One Resulting Code Optimization

double divTwiceCons(double y) {
int cons = 5;
// expression 2*cons has value 10
// variable d not used
int d = 2xcons;
if (cons !=0)
// expression 2*cons evaluated before
return y/(2xcons);
else
// dead code
return O;

double divTwiceConsOptimized(double y) {
return y/10;

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

10

111

Software Verification

Formally proves whether a program P satisfies a property .

» Requires program semantics, i.e., meaning of program
> Relies on mathematical methods,

> logic

> induction

> ...

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 11 /111

Software Verification

Formally proves whether a program P satisfies a property .

TRUE v

FALSE x

Program P [9

Property ¢

Disprove (x) Find a program execution (counterexample)
that violates the property ¢

Prove (v') Show that every execution of the program
satisfies the property .

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

2 /111

Does This Code Work?

double avgUpTo(int[] numbers, int length) {
double sum = 0O;
for(int i=0;i<length;i++)
sum += numbers]i];
return sum/(double)length;

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

13 /111

Problems With This Code

double avgUpTo(int[] numbers, int length) {

double sum = 0;

for (int i=0;i<length;i++)
// possible null pointer access (numbers==null)
// index out of bounds (length>numbers.length)
sum += numbers[i];

// division by zero (length==0)

return sum/(double) length;

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

14 /

111

Why Should One Care for Bugs?
Intel Pentium FDIV bug

Ariane V88

Mars Polar Lander

endanger human lives

~

Therac-25

Uber autonomous car

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 15 / 111

Analysis and Verification Tools

Sapienz Klee PeX SymCC
Infer Lint Error Prone SLAM
CBMC SpotBugs UltimateAutomizer
CPAchecker

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

16 / 111

Overview on Analysis and Verification Techniques

- Type -
Dynamic Sys{Ems Static
Rl'lr}tlm.e Interactive Automatic
Verification
Theorem Program Model

Proving ’7 Analysis T Checking

Dataflow Abstract
Analysis | | Interpretation

This lecture

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 17 /

Why Different Static, Automatic Techniques?

Theorem of Rice
Any non-trivial, semantic property of programs is undecidable.

Consequences

Techniques are
» incomplete, e.g. answer UNKNOWN, or
» unsound, i.e., report

> false alarms (non-existing bugs),
> false proofs (miss bugs).

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

18

111

Verifier Design Space

TRUE v
Program P [3
Ideal verifier UNKNOWN
Property ¢
FALSE x
false proof « - - ~--> correct
TRUE v
Program P [3)
Unreliable verifier UNKNOWN
Property ¢
FALSE x
false alarm < - - BN violation

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 19

111

Verifier Design Space

» Overapproximating verifier (superset of program behavior)

without precise counterexample check

TRUE v
Program P [3)
" [Vertie |
Property ¢
FALSE x
false alarm < - - SN violation

» Underapproximating verifier (subset of program behavior)

false proof « - - b correct
TRUE v
Program P [
" {Variter
Property ¢
FALSE x

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

20 / 111

Other Reasons to Use Different Static Techniques

> State space grows exponentially with number of variables

» (Syntactic) paths grow exponentially with number of
branches

= Precise techniques may require too many resources
(memory, time,...)

= Trade-off between precision and costs

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 21 /111

Flow-Insensitivity

Order of statements not considered

E.g., does not distinguish between these two programs

x=0; x=0;
y=X; x=x+1;
x=x+1; y=X;

= very imprecise

22 /111

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

Flow-Sensitivity Plus Path-Insensitivity

> Takes order of statements into account

» Mostly, ignores infeasibility of syntactical paths
» lIgnores branch correlations

E.g., does not distinguish between these two programs

if (x>0)
y=1;
else
y=0;
if (x>0)
y=y+1;
else
y=y+2;

Thomas Lemberger

© SoSy-Lab

if (x>0)
y=1;

else
y=0;

if (x>0)
y=y+2;

else
y=y+1,;

LMU Munich, Germany

23

111

Path-Sensitivity

> Takes (execution) paths into account

» Excludes infeasible, syntactic paths
(not necessarily all infeasible ones)

» Covers flow-sensitivity

if (x>0) To detect that y has value 0, 1, or 3
y=1 » must exclude infeasible, syntactic path
else along first else-branch and second
y=0; if-branch
if (x>0) _
y—y-2: > need to detect correlation between the
else if-conditions
y=y+1, > requires path-sensitivity

:}h()‘/e\rwnmecise © SoSy-Lab, LMU Munich, Germany 24 /111

Precision vs. Costs

Dataflow
Analysis
Abstract
Interpretation
Program Analysis Model Checking
Flow-insensitive Flow-sensitive Path-sensitive
imprecise precise‘
‘cheap expensive

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 25 /111

Program Syntax and Semantics

Thomas Lemberger © SoSy-Lab, LMU Munich, German y 26 /111

Programs

Theory: simple while-programs
» Restriction to integer constants and variables
» Minimal set of statements (assignment, if, while)

» Techniques easier to teach/understand

Practice: C programs
» Widely-used language
» Tool support

While-Programs

» Arithmetic expressions
aexpr := 7 | var | -aexpr | aexpr op, aexpr
op, standard arithmetic operation like +,—, /, %, ...
» Boolean expressions
bexpr := aexpr | aexpr op. aexpr | !bexpr | bexpr op;, bexpr
> integer value 0 =false, remaining values represent true
> op. comparison operator like <, <=,>=,> == 1=
> opy logic connective like &&(A), || (), " (xor),...
» Program
S:= var=aexpr; | while bexpr S | if bexpr S else S |
if bexpr S | S;S

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 28

111

Syntax vs. Semantics

Syntax
Representation of a program

Semantics
Meaning of a program

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 29 /111

How to Represent a Program?

1. Source code

if (x>0)
abs = x;
else > Basically sequence of characters
abs = —x; » No explicit information about the
i =1 structure or paths of programs
while(i<abs)

i = 2%i;

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 30 /111

How to Represent a Program?

2. Abstract-syntax tree (AST)

Program
\
Sequence
/ \
if Sequence
T T SN
Cor;{(ii(gion if-Block else-Block ASSiig_nlment while
| | o VRN
Assignement Assignement Condition while-Block
abs=x; abs=-x; 1<abs ‘
Assignement
1=2%1;

» Hierarchical representation
» Flow, paths hard to detect

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 31 /111

How to Represent a Program?

3. Control-flow graph

TRUE / \FALSE

abs =X; | abs=-x;

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

32/

111

How to Represent a Program?

3. Control-flow graph 4. Control-flow automaton

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 32 /111

Control-Flow Automaton

Definition
A control-flow automaton (CFA) is a three-tuple P = (L, ly, G)
consisting of

» the set L of program locations
(domain of program counter)

» the initial program location [y € L, and
» the control-flow edges G C L x Ops x L.

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 33 /111

Operations Ops

Two types
» Assumes (boolean expressions)

» Assignments (var = aexpr;)

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

34

111

From Source Code to Control-Flow Automaton

vV=expr;
Assignment var=expr;

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 35 /111

From Source Code to Control-Flow Automaton

V=expr;
Assignment var=expr;

While-Statement while (C) S

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 35 /111

From Source Code to Control-Flow Automaton

V=expr;
Assignment var=expr;

While-Statement while (C) S If-Statement if (C') S else Sy

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 35 /111

From Source Code to Control-Flow Automaton
V=expr;
Assignment var=expr;

While-Statement while (C) S If-Statement if (C') S else Sy

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 35 /111

From Source Code to Control-Flow Automaton
V=expr;
Assignment var=expr;

While-Statement while (C) S If-Statement if (C') S else Sy

—C S,

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 35 /111

Semantics

Different types
» Axiomatic semantics: based on pre- and postconditions,
e.g. {true}x=0;{x=0}
» Denotational semantics: function from inputs to outputs

» Operational semantics (v'): defines execution of program

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 36 / 111

Operational Semantics

Defines program meaning by fixing program execution

» Transitions describe single execution steps

> Level of assignment or assume
» Change states
> Evaluate semantics of expressions in a state

» Execution: sequence of transitions

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

37

111

Concrete States

Pair of program counter and data state (C'= L x X)
» Program counter
» Where am 17
» Location in CFA
> c¢(pc) =1 refers to program counter of concrete state
» Datastateo:V — 7Z

» Maps variables to values
» c¢(d) = o refers to data state of concrete state

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

38

111

Semantics of Arithmetic Expressions

Evaluation function S, : aexpr x ¥ — Z

Defined recursively on structure
» const € Z : S,(const, o) = const
» variable var: S,(var,o) = o(var)
» unary operation: S,(—t,0) = —8S,(t,0)

» binary operation:
Sa(tl OPq tg, U) = Sa(tlva) OPq Sa(tQa U)

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 39 /111

Semantics of Boolean Expressions

Evaluation function S, : bexpr x ¥ — {true, false}

Defined recursively on structure

> arithmetic expression:

Syt o) = { true if Sy(t,0) #0

false else
» comparison: Sy(t1 op. ta,0) = Sy(t1,0) 0pe Su(ta, o)
» logic connection: Sy(by opy ba, o) = Sp(b1, 0) opy Sp(be, 0)

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 40 / 111

Examples for Expression Evaluation

Consider ¢ : abs — 2;i — 0;x — —2

Derivation of the values of
» Su(—z,0)
> S.(2%i,0)
> Sp(z > 0,0)
» Sp(i < abs, o)
on the board.

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 41 / 111

State Update

2 X Opsassignment — X

olvar = aexpr;] = o’

TR (D) if v # var
with o”(v) = { S.(aexpr,o) else

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

42 /111

Examples for State Update

Consider ¢ : abs + 2;1i +— 0;x — —2

Computation of the state updates
> oli=1]
> olabs = —x;]
> oli =2x%1;]

on the board.

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

43 / 111

Transitions — Single Execution Steps

Transitions T C C' x G x C with (¢, (I,0p,'),d) € T if

1. Respects control-flow, i.e.,

clpe) =1 N d(pe) =T

2. Valid data behavior
> op assignment var=aexpr;
. A d(d) = c(d)[var = aexpr;]
> op assume bexpr
. N\ Sp(bexpr,c(d)) =true A c(d) = c(d)

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

44 / 111

Program Paths

Defined inductively

> every concrete state ¢ with ¢(pc) = [y is a program path
> ifcg B ey L e, is a program path and

(cn; In+1, Cn—l—l) S T:

then cg B¢+ B¢, QA Cny1 IS @ program path

Set of all program paths of program P = (L, G,) denoted by
paths(P).

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

45 / 111

Examples for Program Paths

On the board: Shortest and longest program path starting in
state (ly,0) with 0 : abs +— 2;1i +— 0;x — —2

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

46 / 111

Reachable States

reach(P) :={c|3co & ¢1--- L ¢, € paths(P) : ¢, = ¢}

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 47 / 111

Program Properties and
Program Correctness

Thomas Lemberger © SoSy-Lab, LMU Munich, German y 48 / 111

Program Properties

Trace Property Hyper Property
/ \ Information-Flow Security
Safety Liveness
Reachability - - - Type State Termination - - - Responsiveness

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

49

111

Reachability Property vp

Defines that a set pr C C' of concrete states must not be
reached

In this lecture:
» Certain program locations must not be reached
» Denoted by ¢, :={c€ C | c(pc) € Lo}

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

50 / 111

Correctness

Definition
Program P is correct wrt. reachability property g if

reach(P) N pr = 0.

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 51 /111

Formalizing Verification Terms

» False alarm: v(P, pr) = FALSE A reach(P) Nypr =0
» False proof: v(P,pr) = TRUE A reach(P) N g # 0

» Verifier v is sound if v does not produce false proofs and
v is complete if v does not produce false alarms.

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

52 /111

Abstract Domains

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 53 / 111

Problem With Program Semantics

» Infinitely many data states o
= infinitely many reachable states

» Cannot analyze program paths individually

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

54 /111

How to deal with infinite state space?

Idea: analyze set of program paths together
» Group concrete states = abstract states

» Define (abstract) semantics for abstract states

= Abstract domain

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 55 /111

Partial Order (Recap)

Definition
Let £ be aset and C C E x E a binary relation on E. The
structure (F,C) is a partial order if C is

> reflexive Ve € E : e C e,

> transitive Vey,eq,e3 € E: (e Ceg Aeg Ce3) = e1 L e,

P antisymmetric
Ve, ea € E:(eg CeaANeg Cep) = e = e

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 56

111

Examples for Partial Orders

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 57 / 111

Upper Bound (Join)

Let (£,C) be a partial order.

Definition (Upper Bound)
An element e € E is an upper bound of a subset F,,;, C F if

Ve' € By, : € Ce.

Definition (Least Upper Bound (lub))
An element e € E is a least upper bound U of a subset
Eg, C B if

» ¢ is an upper bound of Eg,, and

» for all upper bounds ¢’ of Eg, it yields that e C €'

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 58 / 111

Lower Bound (Meet)

Let (£,C) be a partial order.

Definition (Lower Bound)
An element e € E is an lower bound of a subset E,, C F if

Ve' € By, :e C €.

Definition (Greatest Lower Bound (glb))
An element e € E is a greatest lower bound 1 of a subset
Eg, C B if

> ¢ is a lower bound of E,, and

» for all lower bounds €’ of Ey, it yields that ¢’ C e.

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 59 /111

Computing Upper Bounds

PO subset L M
(2,<) {1,4,7} 7 1
(Z,<) Z X X
(N, <) 0 0 X
(29,C) 2¢ Q 0
290) @ 0 0
(22,C) Y C2° Upeyy Nyery

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 60 / 111

Facts About Upper and Lower Bounds

1. Least upper bounds and greatest lower bound do not
always exist.
For example,
> (Z,<)
> (N, <)
> (N,2)
2. The least upper bound and the greatest lower bound are
unique if they exist.

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 61 / 111

Lattice

Definition
A structure £ = (E,C, 1,1, T, 1) is a lattice if
» (E,C) is a partial order
> least upper bound LI and greater lower bound I exist for
all subsets E.,, C E
» T=UE=and L =ME =10

Note:
For any set () the structure (29, C,U, N, Q,) is a lattice.

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

2 /111

Which Partial Orders Are Lattices?

(a) (b)

! N o
O o n

- (d)

()

Thomas Lemberger © SoSy-Lab, LMU Munich, German y 63 / 111

Flat-Lattice
Definition
A flat lattice of set () consists of
> Extended set Q] = QU {T, 1}
» Flat ordering C,ie. Vge @ : L CqgCE Tand L C T
1 X=0vX={Ll}
X={gvX={Ldqg

else

T

T X=0vX={T}
> = q

1

)fz{q}VXZ{T,q}

mberger © SoSy-Lab, LMU Munich, Germany

64 /111

Product Lattice

Let & = (B, £y, Uy, My, Ty, Ly) and
&y = (Ey, Ty, Uy, My, Ty, Ly) be lattices.

The product lattice £ = (Ey X Eo, Ty, Uy, My, Ty, Ly) with
> (e1,e2) Ty (€],€h) if eg 1 €) Neg Co €
> Ux Egub = (Ui{er | (e1,+) € Esun}, Uz{eza | (-, e2) € Egup})
> MxEsup = (Mi{e1 | (e1,+) € Esun},Ma{e | (-, e2) € Esun})
> Ty =(T1,Te)and Ly = (L, Ls)

is a lattice.

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

65 / 111

Join-Semi-Lattice

Complete lattice not always required
= remove unused elements

Definition

Join-Semi-Lattice A structure £ = (E,C, U, T) is a lattice if
» (E,C) is a partial order
> least upper bound LI exists for all subsets Eg,, C F
> T =UFE

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

66 / 111

Abstract Domain

Join-semi-lattice on set of abstract states
+ meaning of abstract states

Definition
An abstract domain D = (C,&,[-]) consists of
> aset C of concrete states
» a join-semi-lattice £ = (E,C, L, T)
> a concretization function [-] : E — 2¢
(assigns meaning of abstract states)
> [T]=C
> VEup € B Ueen,, [€] € [U Esu]
(join operator overapproximates)

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 67 / 111

Abstraction

a:2¢ 5 F

Here:
» Not defined separately

> Returns smallest abstract state that covers set of concrete
states

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 68 / 111

Galois Connection

Abstraction and concretization function fulfill the following
connection

1. vC(sub g C: C’sub g [[a(osub)]]
(abstraction safe approximation,
but may loose information/precision)

2. Vee E:afe]) Ce
(no loss in safety)

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

69 / 111

Abstract Semantics

Abstract interpretation of a program:
» Abstract domain with abstract states £
» CFA P = (L,1y,G)
with control-flow edges (I,0p,l') =g € G

Transfer relation ~C E x G x E
> Yee E,ge G:

Ueega{c | (¢,9,¢) € T} C Uegene [€]
(safe over-approximation)

» Depends on abstract domain

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 70 / 111

Properties of Transfer Relations

» Monotony
Ve, e E,geG: eC e = ~(e,g) C~(e,9)
» Distributivity (optional)

Ve,el € E,ge G: ~(e,g) U ~(e,g) = ~(ele,g)

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

71 /111

Recap: Elements of Abstraction

1. Abstract domain

» Join-semi lattice £ on set of abstract states E
> Concretization of abstract states [- |

2. Abstract semantics ~~

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

72 /111

Example Abstractions

Location Abstraction IL

Tracks control-flow of program

> Uses flat lattice of set L of location states
C if =T
> []:=< 0 if ¢ =1

{ce C|c(pc) =1} else
(guarantees that join overapproximates)

> (0, (Lop,), ') €~y if ((=1VE=T)and ¢ =1

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 74 /111

Properties of Location Abstraction

Transfer relation ~1,

> overapproximates, i.e.,

Vee Er,geG: J{d|(cg,)eTrC U €]

ce ﬂeﬂ (67976/) Seai

» monotone
> distributive

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 75 /111

Value Domain

Assigns values to (some) variables.

» Domain elements are partial functions f : Var —e+ 7Z
> fCfif dom(f') C dom(f)
and Vv € dom(f"): f(v) = f'(v)
> UF=NF
> T={}
> [f] =A{cl Vv e dom(f): c(d)(v) = flv)}

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 76 / 111

Value Abstraction V
Uses variable-separated domain
» Base domain flat lattice of Z, T means any value
» Notation: ¢(expr, f) := expr A A v=f(v)

vedom(f)
» Assignment: (f, (-,w = aexpr;,-), f') € ~y if
fv) ifv#w
c if v =w and c is the only satisfying

assignment for v in ¢(v' = aexpr, f)
T otherwise

» Assume: (f, (-,expr,-), f') € ~vy if
¢(expr, f) is satisfiable and

c if ¢ is the only satisfying assignment

f'(v)= for v in ¢(expr, f)
f(v) otherwise

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

77 /111

Properties of Value Abstraction V

Transfer relation
P overapproximates
» monotone

» not distributive, e.g.,
fix=3y—2 ffirxe—2y—3

~(fir=r+y)Uw(fle=a+y) = bye T,
but ~(fUfe=x+y;):z— T;y—T

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 78 / 111

Example Abstract Transitions

Start with
forx—2,abs— T,i— T
flrxm— Tabs— T i T

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 79 /111

Sign Abstraction

Variable-separate domain using base domain
T
VLI
0+ + -0
XX
+ 0
NS

L

[Tl1=2 [+]=N* [-]1=2\N{ [o]={0}
[+-1=2\{0} [0+]=N; [-0]=Z\N* [1]=0

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 80 / 111

Transfer Relation of Sign Abstraction

Suggestion 1:
> s (f,g) = fwithVv e Var: f'(v) =T
» sound, but not useful

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

81 /111

Transfer Relation of Sign Abstraction

Suggestion 2:
> Assignment: ~ (f,aexpr) = f
+ const € NT
v=const; f'(v)=¢ 0 const=0
— else

vews f(v) = fw)
v=expr; f'(v)="T

and Yu € Var:u#v = f'(u) = f(u)
» Assume: ~~ (f,expr) = f
sound, but could be more precise

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

82 /111

Transfer Relation of Sign Abstraction (Incomplete)

More precise for special boolean expression like
var>0, var==0, var<0, var>=0, var<=0

» can be decided

» used to restrict successor of assume expressions

Abstract evaluation of arithmetic expressions, e.g.

> e+ e = e, for any abstract value e except +—

P et+0=e
P e—0=e
P ex0=0
> .

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 83

111

Interval Abstraction I

Variable-separate domain based on interval domain
> E=7*U{T,1}
> 1 Ce el Tandab Cle,difc<anb<d
T if T e Egwp
> UEBgp, =4 L if Fgy, C {1}
[Min(g pep,, @ MaX[pep,, b else

> lla,t]l ={zr €Z|a<z<b} [T]=Z [L]=0

Note: There are ascending chains that are not stabilizing.

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 84 /111

Transfer Relation of Interval Abstraction

Relies on abstract evaluation of expressions in state f

Arithmetic expressions
> const: [const,const]
> var: f(var)
> -[a,b]=[-b,-a]
> [a,b] op, [c,d] =
[min(a op, ¢,b op, d), max(a op, ¢,b op, d)]
> special treatment of values 1, T

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 85 / 111

Transfer Relation of Interval Abstraction

Relies on abstract evaluation of expressions in state f

Boolean expression

{true} a>0Vb<0
> [a,b]=¢ {false} a=b=0
{true, false} else
{true} b<c
» [a,b]<[cd]=¢ {false} a>d

{true, false} else
» other comparison operators similar
> ...

Define transfer relation analogous to transition

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

86 / 111

Cartesian Predicate Abstraction

Represent states by first order logic formulae

» Restricted to a set of predicates Pred
(subset of boolean expressions without boolean connectors)

» Conjunction of predicates

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 87 / 111

Cartesian Predicate Abstraction

» Power set lattice on predicates (2F*, D, N, U, (), Pred)

> [Tl=W]=C
for p £ L:
[p] = {c € C | Vpred € p: Sy(pred, c(d)) = true}
(guarantees that join overapproximates)

» Transfer relation
> Assignment
(p,v = aexpr,p’) with
p = {t € Pred } (/\t’ep t'[v = vord] A v = aexpriv — Uold]) = t}
> Assume
(p, bexpr,p') if Nt A bexpr is satisfiable and
p'={t € Pred| (Apept' Nbexpr) =t}

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

88 / 111

Properties of Cartesian Predicate Abstraction

Transfer relation
> overapproximates
> monotone
» not distributive

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 89 / 111

Example Abstract Transitions

Consider set of predicates {i>0, x=10}

On the board:
>~ ({2 =10}, (1,i = 1;,1"))
> s ({i >0}, (Li=1%x2;,0))
>~ ({i >0}, (1,7 < abs,l'))
> (o =10,i > 0}, (I,x > 10,1')

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

90 / 111

Property Encoding

An observer automaton observes violations of the reachability

property ©r. .,
geG

() € GALE Lgyp

Gsafe GQunsafe

(','?l) EG/\Z¢Lsub

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 91 /111

Property Abstraction R

Represent observer automaton-encoding of property ¢y,
abstraction

as

sub

> Uses join-semilattice on set {safe; Qunsafe }
with (safe ; Qunsafe

L C if ¢ = qunsate
> ld = { {ce C|c(pc) ¢ Lo} else

> (Q> (la op, l/)a q/) € R
if q, = Qunsafe /\ I" € Ly, or q/ =qA I ¢ J R

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 92 /111

Properties of Property Abstraction

Transfer relation ~~»g
> overapproximates
> monotone
> distributive

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 93 /111

Composite Abstraction

Combines two abstractions
» Product (join-semi) lattice E x Es

> [(e1, e2)] = [ea], N [e2],
> Product transfer relation
((61, 62)7 g, (ella 6/2)) Sha
if (e1,9,€]) €~1 and (eq, g, €}) E~sg

» More precise transfer relations possible

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

94 /111

Properties of Composite Abstraction

Properties inherited from components

Transfer relation
> overapproximates
> monotone
» distributive

if respective property is fulfilled by both components.

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

95 /111

Two Prominent Combinations

» Value analysis L x V x R
» Predicate analysis L x P x R

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 96 / 111

Configurable Program Analysis

Thomas Lemberger © SoSy-Lab, LMU Munich, German y 97 / 111

Starting Position

3 analysis techniques
» Often, similar
> But, not identical

Use synergies — combine into one configurable analysis

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

111

Comparing Analysis Algorithms

Path-insensitive

Dataflow analysis

Model checking

input

exploration

combination

coverage
termination

Thomas Lemberger

program
abstraction

initial state e,
one element

last state

all successors
least upper bound

identical
Ichanged

© SoSy-Lab

program
abstraction

widening operator V

reached, waitlist
pop from waitlist
all successors
upper bound (V)
(same location)
same location, C
empty waitlist

program
abstraction

reached, waitlist
pop from waitlist
all successors
never

same location, T
empty waitlist

LMU Munich, Germany

program
abstraction

€y, new operators
reached, waitlist
pop from waitlist
all successors
merge operator

stop operator
empty waitlist

99 / 111

Merge Operator

Defines when and how to combine abstract states

merge: E X E — FE

Correctness criterion:
Must consume second parameter (already explored element)

Ve,e' € E: ¢ C merge(e, €)

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

100

111

Examples for Merge Operator

» Flow-insensitive: merge(e, ') = L{e, e’}

» Dataflow analysis:
merge((l7 6), (ll, e/)) = { I_l{(l7 6)7 (l , €)} ifl=1

» Model checking: merge(e,e’) =e

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

101 / 111

Stop Operator

Defines when to stop exploration (termination check)

stop : E x 2% — {true, false}

Correctness criterion:
Must be covered by second parameter (set of explored elements)

Ve € E, Equ, C E : stop(e, Egu) = ([e] C U €'
e/EEsub

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 102 / 111

Examples for Stop Operator

> stop(e, Esup) = false
> Flow-insensitive: stop(e, Eqp) = € € Egp

» Dataflow analysis and model checking:
stop((l,), Esup) = 3(1,€¢') € Egu : (l,e) C (I, €)
and
stop(e, Fsup) = 3¢’ € Egp i e C €

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

103 / 111

Configurable Program Analysis (CPA)

Abstraction plus merge and stop operator

ACPAC=((C,(E,C,1, T),[-]),~, merge, stop) consists of
» abstract domain (C,(E,C,U, T),[-])

> join-semilattice (E,C,L, T)
> [-]: E— 29 with
> [T]=C
> VEgw C E: UCEEsub [[6]] c [[u Esub]]

> transfer relation wC ExGx EVee E,g € G :
Ueepegle' | (¢,9,¢) € TH C Ueg,e1e [€]
> merge operator merge: E X E — E
Ve,e' € E: ¢’ C merge(e, €)

> stop operator stop : E x 2F — {true, false}

Ve € E, Eqy, € E : stop(e, Eq) = ([e] € | [€])

!
Thomas Lemberger © SoSy-Lab, LMU Munich, Germany '€ Esupb

104 / 111

Value Dataflow Analyses as CPA

v

abstract domain L x V

transfer relation: product transfer relation ~~p v

v

P> merge operator
. L{(l,v), (", 0"} it l=1
merge(1,0), (.11) = { ({5 KL

P stop operator
stop((,v), Esup) = 3(,0") € Egu : (I,v) C (1,0)

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 105 / 111

Predicate Model Checking as CPA

abstract domain L x P
transfer relation: product transfer relation ~~p .p

merge operator merge(e,e') = €’
b

vvyyvyy

stop operator
stop((l, p), Esun) = 3(1, 1) € Esu = (1,p) E (I, p)

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 106 / 111

CPA Algorithm

Input: program P = (L, ¥, G)
CPA ((C,(E,C,U, T),[-]), ~, merge, stop)
initial abstract state eg € E
reached={ep}; waitlist={ep};
while (waitlist # () do
pop e from waitlist;
for each e ~~ ¢’ do
for each e, € reached do
em = merge(e’, e;)
if (e # €,) then
reached=(reached \{e,}) U {em};
waitlist=(waitlist \{e,}) U{en};
if (—stop(e’, reached)) then
reached=reachedU{¢'};
waitlist=waitlistU{e’};

return reached

Termination of CPA Algorithm

» Generally not guaranteed (inherited from model checking)

» Depends on configuration
(even for loop-free programs may not terminate, e.g.
stop(e, Esu,) = false)

» Guarantees for individual techniques (flow-insensitive,
dataflow analysis, etc.) still apply

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany 108 / 111

Soundness

Final set reached overapproximates all reachable states if the
initial abstract state ey covers all initial states, i.e.,

{c|c(pe) =lo} C [eo] = reach(P) S |J [e]

e€reached

Reasons

» Explore all successors of states in reached
(always add state to waitlist if added to reached)

» Transfer relation overapproximates

> Replace state by more abstract (merge property), never
only delete
» Must add abstract successor to reached if not covered

(stop property)

Classifying Configurable Program Analysis

Overapproximating verifier (superset of program behavior)
without precise counterexample check

TRUE v
Program P [3
UNKNOWN
Property ¢
FALSE x
false alarm < - - - violation

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

110 / 111

Exploring the Configuration Space

abstraction

precision

merge stop

» Which set of concrete elements can be distinguished?
> merge: never <> always T
» stop: [e] C Uwep,,, [€] < false

= Relaxation to become more efficient

Thomas Lemberger © SoSy-Lab, LMU Munich, Germany

111 /111

	Organization
	Motivation
	Program Description
	Program Syntax and Semantics
	Program Properties and Program Correctness

	Abstract Domains
	Example Domains

	Configurable Program Analysis

