Handout

2025/02/28

1 Configurable Program Analysis

1.1 Semi-Lattice

Semi-lattice $\mathcal{E} = (E, \sqsubseteq, \sqcup, \top)$ over elements of a set *E*, if:

- \sqsubseteq : $E \times E$ partial order over E,
- every subset $M \subseteq E$ has a least upper bound $e \in E$,
- $\Box : E \times E \rightarrow E$ denotes the leat upper bound of two elements,
- top element \top is the least upper bound of *E*.

1.2 CPAs

A CPA $\mathbb{D} = (D, \rightsquigarrow, \text{merge, stop})$ for a CFA (L, l_0, G) consists of the following components:

- Abstract domain $D = (C, \mathcal{E}, \llbracket \cdot \rrbracket)$ with concrete states C, semi-lattice $\mathcal{E} = (E, \sqsubseteq, \sqcup, \top)$, and concretization function $\llbracket \cdot \rrbracket : E \to 2^C$
- Abstract transfer relation \rightsquigarrow : $E \times G \times E$ assigns to each abstract state $e \in E$ possible abstract successors $e' \in E$, labelled with a corresponding CFA edge $g \in G$.
- Merge operator merge : $E \times E \rightarrow E$ combines two abstract states into a new one
- Termination check stop : *E* × 2^{*E*} → 𝔅 checks whether an abstract state is already covered by a set of given abstract states

Some CPAs you should know:

- 1. Location CPA
- 2. Observer Analysis
- 3. Value Abstraction
- 4. Predicate Abstraction

Algorithm 2 $CPA(\mathbb{D}, e_0)$

Input: a CPA $\mathbb{D} = (D, \rightsquigarrow, \text{merge}, \text{stop}),$ an initial abstract state $e_0 \in E$, where E denotes the set of elements of the lattice of D **Output:** a set of reachable abstract states **Variables:** a set reached $\subseteq E$, a set waitlist $\subseteq E$ 1: waitlist := $\{e_0\}$ 2: reached := $\{e_0\}$ 3: while waitlist \neq {} do 4: choose e from waitlist 5: waitlist := waitlist $\setminus \{e\}$ for each e' with $e \rightsquigarrow e'$ do 6: 7: for each $e'' \in$ reached do 8: // combine with existing abstract state 9: $e_{new} := merge(e', e'')$ if $e_{new} \neq e''$ then 10: waitlist := (waitlist $\cup \{e_{new}\}) \setminus \{e''\}$ 11: 12: reached := (reached $\cup \{e_{new}\}) \setminus \{e''\}$ 13: if \neg stop(e', reached) then

15: reached := reached $\cup \{e'\}$

waitlist := waitlist $\cup \{e'\}$

```
16: return reached
```

14: