
Verifier Selection using LLMs - Patrik Felbinger 1

Verifier Selection using LLMs
By Patrik Felbinger

This project was completed during Google Summer of Code 2025 in collaboration with LMU Munich. It

addresses the challenge of selecting the most effective software verifier for a given C program, a central

task in the annual Software Verification Competition (SV-COMP) [Beyer & Strejček, 2025]. Since no

single verifier consistently outperforms others, predicting the most suitable verifier can reduce CPU and

memory usage while improving verification quality.

To tackle this problem, we developed a machine-learning framework that predicts which verifier is most

likely to succeed on a given program. The project produced two complementary components: Verifier-

Moira, a modular library for verifier selection, and Verifier-Moira-Data, a companion repository for

training and publishing predictors. Verifier-Moira allows users to choose an embedder, such as

microsoft/graphcodebert-base, to represent C programs as vectors, and a predictor, such as LightGBM or

XGBoost, trained on SV-COMP 2025 data to estimate verifier performance. The system outputs a ranked

list of verifiers and can be easily extended with new embedders, predictors, or datasets.

Verifier-Moira-Data provides the training pipelines and pretrained predictors used by Verifier-Moira,

simplifying the integration of new predictors and embedders. Predictors are trained on SV-COMP

datasets, validated, and published for direct use. Evaluation against two baselines—the virtual best

verifier as an upper bound and the best verifier-per-property as a lower bound—showed that trained

predictors can consistently perform between these baselines, demonstrating improvements over static

selection methods while remaining computationally efficient.

Training

We trained four types of predictors on the SV-COMP 2025 dataset1 using Verifier-Moira and Verifier-

Moira-Data:

• LightGBM (LGBM). A gradient boosting framework based on decision trees, optimized for

efficiency in both memory and computation [Ke et al., 2017].

• XGBoost. An optimized gradient boosting library that incorporates regularization and advanced

parallelization strategies, widely used in machine learning competitions [Chen & Guestrin, 2016].

• CatBoost. A gradient boosting algorithm designed to handle categorical features effectively and

to reduce overfitting through ordered boosting [Dorogush et al., 2018].

• Neural Classifier. A feed-forward neural network classifier trained on embedding representations,

serving as a deep learning baseline for comparison with boosting-based methods.

To evaluate predictor performance, we selected a diverse set of embedding models in terms of training

domain and size that are summarized in Table 1. Codet5p (110M) and GraphCodeBERT (125M) are

code-specialized, capturing syntactic and semantic program features, while MiniLM (33M) provides

general-purpose text embeddings for contrast. Jina-embeddings-v2 (161M) covers multi-language code,

and nomic-embed-text:v1.5 (137M) was trained on a mixture of text and code, bridging both domains.

This set enables assessment across specialized, general, and hybrid embeddings of varying capacities.

1 https://sv-comp.sosy-lab.org/2025/results/results-verified/

Verifier Selection using LLMs - Patrik Felbinger 2

Table 1: Summary of embedding models used in this work, categorized by architecture type and parameter count (in millions).

Embedder Type Parameters (in M)

Salesforce/codet5p-110m-embedding2 Transformers 110

jinaai/jina-embeddings-v2-base-code3 Transformers 161

sentence-transformers/all-MiniLM-L12-v24 Transformers 33

microsoft/graphcodebert-base5 Transformers 125

nomic-embed-text:v1.56 Ollama 137

The predictors were trained on the SV-COMP 2025 results for a selected set of verifiers [Beyer &

Strejček, 2025]. During evaluation, the verifier with the highest predicted score was chosen, and its actual

outcome was retrieved from the SV-COMP dataset to assess prediction accuracy. To interpret the results,

we used the official SV-COMP scoring scheme (Table 2), where correct verifications receive positive

points, incorrect outcomes are penalized with larger negative scores, and missing results (e.g., timeouts or

crashes) yield zero points.

Table 2: Adapted from https://sv-comp.sosy-lab.org/2025/rules.php

Points
Reported

result
Description

0 UNKNOWN Failure to compute verification result, out of resources, program crash.

+1
FALSE

correct
The error in the program was found and a violation witness was confirmed.

−16
FALSE

incorrect

An error is reported for a program that fulfills the specification (false alarm, incomplete

analysis).

+2
TRUE

correct
The program was analyzed to be free of errors and a correctness witness was confirmed.

−32
TRUE

incorrect

The program had an error but the competition candidate did not find it (missed bug,

unsound analysis).

Results

This section presents the performance of the trained predictors for each embedder. In addition to the listed

predictors, a K-Nearest Neighbor (KNN, k=5) approach was applied for each embedder. For a given

verification task, KNN selects the best verifier based on the five most similar software verification tasks.

The models are trained only on the most relevant verifiers rather than the full set. To assess predictor

performance, the following baselines were used:

• Virtually Best Verifier: The most optimal verifier selection for SV-COMP25 as an upper

boundary if predictors were trained on all verifiers.

2 https://huggingface.co/Salesforce/codet5p-110m-embedding
3 https://huggingface.co/jinaai/jina-embeddings-v2-base-code
4 https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2
5 https://huggingface.co/microsoft/graphcodebert-base
6 https://ollama.com/library/nomic-embed-text:v1.5

Verifier Selection using LLMs - Patrik Felbinger 3

• Virtually Best Verifier (Filtered): The most optimal verifier selection for SV-COMP25 given a

predefined selection of verifiers that are used in training, therefore serving as the real upper

boundary for the predictor performance.

• Best Verifier per Property: This selects the best verifier for each property given the SV-COMP25

results. This serves as a medium boundary and should be beaten by predictors.

• Random: A random verifier selector given the filter of verifiers. This serves as the lowest

boundary to evaluate low performing predictors.

Average Score per Predictor

Figure 1 shows the average score of each predictor, with baselines indicated as vertical lines in the bar

plot. Among the predictors, the neural classifiers, XGBoost, and LGBM achieve the strongest

performance, consistently outperforming the Best Verifier per Property baseline, though still falling short

of the Virtually Best Verifier (filtered)—the upper bound given the verifiers used during training.

The neural classifier with the jinaai embedder achieves the highest overall score. XGBoost follows

closely, showing more stable performance across embedders and generally surpassing LGBM. KNN

ranks next, with slightly higher scores than the Best Verifier per Property baseline. By contrast, the

current CatBoost configuration underperforms compared to the Best Verifier per Property but still

exceeds the random baseline, indicating that the model is either insufficiently trained or not well-suited to

the task.

Figure 1: Average score per predictor and embedder. Baselines are vertical lines.

Average Score in relation to CPU Time

To provide a broader view of performance, Figure 2 compares the average score with the average CPU

time, while bubble size indicates memory consumption (larger bubbles correspond to higher memory

usage). The vertical and horizontal reference lines mark the performance of the Best Verifier per

Property. As in Figure 1, predictors that lie above the horizontal line outperform this baseline. Points to

the left of the vertical line indicate lower CPU time, and these are often associated with smaller bubbles,

suggesting reduced memory usage. A clear overall trend emerges: higher scores generally coincide with

lower CPU time and lower memory consumption. The neural classifier requires slightly more CPU time

because it was trained solely to predict scores, without incorporating any information about CPU or

memory usage, whereas the other predictors included a small CPU and memory component in their

scoring.

Verifier Selection using LLMs - Patrik Felbinger 4

Figure 2: Average Score in relation to the average CPU time (s).

Score in relation to Embedder Size

The following figure illustrates predictor performance in relation to embedder size, measured by the

number of parameters. Notably, embedder size appears to have little to no impact on predictor

performance. Future studies should explore larger embedders, such as Qwen3 0.6B which offers an

extended context window. In addition, the effect of verbose .i input files should be investigated, as it

might introduce noise into embeddings.

Figure 3: Average Score in relation to Embedder Size

Verifier Selection using LLMs - Patrik Felbinger 5

Influence of Predictor Size

The capability of a predictor can be assessed by its size. Since models of different predictor types cannot

easily be compared, a proxy metric is introduced – the Predictor Size. It is the file size of the model.txt,

the serialized model content, and for neural classifier the file size of model.onnx. The following figure

depicts this relation. The catboost models on the other hand are larger but less capable at the same time.

XGBoost models have more reliable performance on various embedders but are larger than LightGBM.

Neural Classifiers offer strong performance with little predictor size. It should be noted that those sizes

depend on training setup and therefore should not be used to evaluate the capabilities of a predictor type.

Figure 4: Average score in relation to predictor size

Predictor Aggregation Table

The overall performance of each predictor type is summarized in Table 3.

Table 3. Performance comparison of predictor types based on total verification score, average CPU time, memory consumption,

and model size.

Predictor Type Total Score Avg. CPU Time (s) Avg. Memory (MB) Size (MB)

Virtually Best Verifier 9243 11 194 -

Virtually Best Verifier

(Filtered)

7743 18 452 -

xgboost 7232.4 128 777 10.84

neural_classifier 7208.4 164 1007 0.68

lgbm 7132.8 135 794 5.94

KNN 6360 120 692 -

Best Verifier per Property 6320 237 1526 -

catboost 5876 215 1374 16.08

Random 3997 271 1749 -

Verifier Selection using LLMs - Patrik Felbinger 6

All trained predictors, except CatBoost, outperform the Best Verifier per Property baseline. XGBoost and

the Neural Classifier achieve the highest scores (~7200), approaching the Virtually Best Verifier

(Filtered) upper bound. LGBM performs slightly weaker but remains competitive, while KNN provides

moderate accuracy with lower CPU and memory usage. CatBoost underperforms in both accuracy and

efficiency, indicating limitations in its current setup. Overall, XGBoost offers the best balance of

performance and resource usage, whereas the Neural Classifier achieves similar accuracy at a higher

computational cost.

Conclusion

This project demonstrates that machine-learning predictors can effectively support verifier selection for C

programs in the SV-COMP setting. By leveraging diverse embedding models—ranging from code-

specialized transformers to general-purpose and hybrid text-code embeddings—and training predictors

such as XGBoost, LightGBM, CatBoost, and neural classifiers on SV-COMP 2025 data, Verifier-Moira

consistently outperforms the best verifier per property while remaining computationally efficient.

Evaluation shows that neural classifiers and XGBoost achieve the highest verification scores, closely

approaching the upper bound defined by the Virtually Best Verifier (Filtered), while smaller or less

optimized predictors still surpass naive baselines. These results highlight the use of embedders and

careful predictor design. Future work may explore larger embeddings, enhanced preprocessing, and

neural regressors to further improve prediction accuracy and resource efficiency.

Future Work

Future extensions may include the use of larger and more diverse embedders, the exploration of neural

regressors, and improved preprocessing to clean .i files, which sometimes introduce noise into

embeddings. Additional improvements in error handling and version validation for predictors would also

further strengthen the robustness of the system.

Links

Verifier-Moira: https://gitlab.com/sosy-lab/software/verifier-moira

Verifier-Moira-Data: https://gitlab.com/sosy-lab/research/data/verifier-moira-data

Acknowledgements

I gratefully acknowledge the guidance of Marian Lingsch-Rosenfeld, whose expertise and mentorship

were essential in shaping this project into a complete end-to-end workflow. His support ensured that both

libraries could be successfully realized in a single summer, and I look forward to seeing them utilized in

the upcoming SV-COMP 2026.

https://gitlab.com/sosy-lab/software/verifier-moira
https://gitlab.com/sosy-lab/research/data/verifier-moira-data

Verifier Selection using LLMs - Patrik Felbinger 7

References

1. Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In Proceedings of

the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

(KDD '16) (pp. 785–794). Association for Computing Machinery.

https://doi.org/10.1145/2939672.2939785

2. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.-Y. (2017).

LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Advances in Neural

Information Processing Systems (NeurIPS 30), 3146–3154.

3. Dorogush, A. V., Ershov, V., & Gulin, A. (2018). CatBoost: Gradient Boosting with Categorical

Features Support. arXiv:1810.11363. https://arxiv.org/abs/1810.11363

4. Beyer, D., Strejček, J. (2025). Improvements in Software Verification and Witness Validation:

SV-COMP 2025. In: Gurfinkel, A., Heule, M. (eds) Tools and Algorithms for the Construction

and Analysis of Systems. TACAS 2025. Lecture Notes in Computer Science, vol 15698.

Springer, Cham. https://doi.org/10.1007/978-3-031-90660-2_9

https://doi.org/10.1145/2939672.2939785?utm_source=chatgpt.com
https://arxiv.org/abs/1810.11363

	Training
	Results
	Average Score per Predictor
	Average Score in relation to CPU Time
	Score in relation to Embedder Size
	Influence of Predictor Size
	Predictor Aggregation Table

	Conclusion
	Future Work
	Links
	Acknowledgements
	References

