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By Patrik Felbinger 

This project was completed during Google Summer of Code 2025 in collaboration with LMU Munich. It 

addresses the challenge of selecting the most effective software verifier for a given C program, a central 

task in the annual Software Verification Competition (SV-COMP) [Beyer & Strejček, 2025]. Since no 

single verifier consistently outperforms others, predicting the most suitable verifier can reduce CPU and 

memory usage while improving verification quality. 

To tackle this problem, we developed a machine-learning framework that predicts which verifier is most 

likely to succeed on a given program. The project produced two complementary components: Verifier-

Moira, a modular library for verifier selection, and Verifier-Moira-Data, a companion repository for 

training and publishing predictors. Verifier-Moira allows users to choose an embedder, such as 

microsoft/graphcodebert-base, to represent C programs as vectors, and a predictor, such as LightGBM or 

XGBoost, trained on SV-COMP 2025 data to estimate verifier performance. The system outputs a ranked 

list of verifiers and can be easily extended with new embedders, predictors, or datasets. 

Verifier-Moira-Data provides the training pipelines and pretrained predictors used by Verifier-Moira, 

simplifying the integration of new predictors and embedders. Predictors are trained on SV-COMP 

datasets, validated, and published for direct use. Evaluation against two baselines—the virtual best 

verifier as an upper bound and the best verifier-per-property as a lower bound—showed that trained 

predictors can consistently perform between these baselines, demonstrating improvements over static 

selection methods while remaining computationally efficient. 

Training 

We trained four types of predictors on the SV-COMP 2025 dataset1 using Verifier-Moira and Verifier-

Moira-Data: 

• LightGBM (LGBM). A gradient boosting framework based on decision trees, optimized for 

efficiency in both memory and computation [Ke et al., 2017]. 

• XGBoost. An optimized gradient boosting library that incorporates regularization and advanced 

parallelization strategies, widely used in machine learning competitions [Chen & Guestrin, 2016]. 

• CatBoost. A gradient boosting algorithm designed to handle categorical features effectively and 

to reduce overfitting through ordered boosting [Dorogush et al., 2018]. 

• Neural Classifier. A feed-forward neural network classifier trained on embedding representations, 

serving as a deep learning baseline for comparison with boosting-based methods. 

To evaluate predictor performance, we selected a diverse set of embedding models in terms of training 

domain and size that are summarized in Table 1. Codet5p (110M) and GraphCodeBERT (125M) are 

code-specialized, capturing syntactic and semantic program features, while MiniLM (33M) provides 

general-purpose text embeddings for contrast. Jina-embeddings-v2 (161M) covers multi-language code, 

and nomic-embed-text:v1.5 (137M) was trained on a mixture of text and code, bridging both domains. 

This set enables assessment across specialized, general, and hybrid embeddings of varying capacities. 

 
1 https://sv-comp.sosy-lab.org/2025/results/results-verified/ 
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Table 1: Summary of embedding models used in this work, categorized by architecture type and parameter count (in millions). 

Embedder Type Parameters (in M) 

Salesforce/codet5p-110m-embedding2 Transformers 110 

jinaai/jina-embeddings-v2-base-code3 Transformers 161 

sentence-transformers/all-MiniLM-L12-v24 Transformers 33 

microsoft/graphcodebert-base5 Transformers 125 

nomic-embed-text:v1.56 Ollama 137 

The predictors were trained on the SV-COMP 2025 results for a selected set of verifiers [Beyer & 

Strejček, 2025]. During evaluation, the verifier with the highest predicted score was chosen, and its actual 

outcome was retrieved from the SV-COMP dataset to assess prediction accuracy. To interpret the results, 

we used the official SV-COMP scoring scheme (Table 2), where correct verifications receive positive 

points, incorrect outcomes are penalized with larger negative scores, and missing results (e.g., timeouts or 

crashes) yield zero points. 

Table 2: Adapted from https://sv-comp.sosy-lab.org/2025/rules.php 

Points 
Reported 

result 
Description 

0 UNKNOWN Failure to compute verification result, out of resources, program crash. 

+1 
FALSE 

correct 
The error in the program was found and a violation witness was confirmed. 

−16 
FALSE 

incorrect 

An error is reported for a program that fulfills the specification (false alarm, incomplete 

analysis). 

+2 
TRUE 

correct 
The program was analyzed to be free of errors and a correctness witness was confirmed. 

−32 
TRUE 

incorrect 

The program had an error but the competition candidate did not find it (missed bug, 

unsound analysis). 

Results 

This section presents the performance of the trained predictors for each embedder. In addition to the listed 

predictors, a K-Nearest Neighbor (KNN, k=5) approach was applied for each embedder. For a given 

verification task, KNN selects the best verifier based on the five most similar software verification tasks. 

The models are trained only on the most relevant verifiers rather than the full set. To assess predictor 

performance, the following baselines were used: 

• Virtually Best Verifier: The most optimal verifier selection for SV-COMP25 as an upper 

boundary if predictors were trained on all verifiers. 

 
2 https://huggingface.co/Salesforce/codet5p-110m-embedding 
3 https://huggingface.co/jinaai/jina-embeddings-v2-base-code 
4 https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2 
5 https://huggingface.co/microsoft/graphcodebert-base 
6 https://ollama.com/library/nomic-embed-text:v1.5 
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• Virtually Best Verifier (Filtered): The most optimal verifier selection for SV-COMP25 given a 

predefined selection of verifiers that are used in training, therefore serving as the real upper 

boundary for the predictor performance.  

• Best Verifier per Property: This selects the best verifier for each property given the SV-COMP25 

results. This serves as a medium boundary and should be beaten by predictors. 

• Random: A random verifier selector given the filter of verifiers. This serves as the lowest 

boundary to evaluate low performing predictors. 

Average Score per Predictor 

Figure 1 shows the average score of each predictor, with baselines indicated as vertical lines in the bar 

plot. Among the predictors, the neural classifiers, XGBoost, and LGBM achieve the strongest 

performance, consistently outperforming the Best Verifier per Property baseline, though still falling short 

of the Virtually Best Verifier (filtered)—the upper bound given the verifiers used during training.  

The neural classifier with the jinaai embedder achieves the highest overall score. XGBoost follows 

closely, showing more stable performance across embedders and generally surpassing LGBM. KNN 

ranks next, with slightly higher scores than the Best Verifier per Property baseline. By contrast, the 

current CatBoost configuration underperforms compared to the Best Verifier per Property but still 

exceeds the random baseline, indicating that the model is either insufficiently trained or not well-suited to 

the task. 

 

Figure 1: Average score per predictor and embedder. Baselines are vertical lines. 

Average Score in relation to CPU Time 

To provide a broader view of performance, Figure 2 compares the average score with the average CPU 

time, while bubble size indicates memory consumption (larger bubbles correspond to higher memory 

usage). The vertical and horizontal reference lines mark the performance of the Best Verifier per 

Property. As in Figure 1, predictors that lie above the horizontal line outperform this baseline. Points to 

the left of the vertical line indicate lower CPU time, and these are often associated with smaller bubbles, 

suggesting reduced memory usage. A clear overall trend emerges: higher scores generally coincide with 

lower CPU time and lower memory consumption. The neural classifier requires slightly more CPU time 

because it was trained solely to predict scores, without incorporating any information about CPU or 

memory usage, whereas the other predictors included a small CPU and memory component in their 

scoring. 
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Figure 2: Average Score in relation to the average CPU time (s). 

Score in relation to Embedder Size 

The following figure illustrates predictor performance in relation to embedder size, measured by the 

number of parameters. Notably, embedder size appears to have little to no impact on predictor 

performance. Future studies should explore larger embedders, such as Qwen3 0.6B which offers an 

extended context window. In addition, the effect of verbose .i input files should be investigated, as it 

might introduce noise into embeddings.  

 

Figure 3: Average Score in relation to Embedder Size 
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Influence of Predictor Size 

The capability of a predictor can be assessed by its size. Since models of different predictor types cannot 

easily be compared, a proxy metric is introduced – the Predictor Size. It is the file size of the model.txt, 

the serialized model content, and for neural classifier the file size of model.onnx. The following figure 

depicts this relation. The catboost models on the other hand are larger but less capable at the same time. 

XGBoost models have more reliable performance on various embedders but are larger than LightGBM. 

Neural Classifiers offer strong performance with little predictor size. It should be noted that those sizes 

depend on training setup and therefore should not be used to evaluate the capabilities of a predictor type. 

 

Figure 4: Average score in relation to predictor size 

Predictor Aggregation Table 

The overall performance of each predictor type is summarized in Table 3.  

Table 3. Performance comparison of predictor types based on total verification score, average CPU time, memory consumption, 

and model size. 

Predictor Type Total Score Avg. CPU Time (s) Avg. Memory (MB) Size (MB) 

Virtually Best Verifier 9243 11 194 - 

Virtually Best Verifier 

(Filtered) 

7743 18 452 - 

xgboost 7232.4 128 777 10.84 

neural_classifier 7208.4 164 1007 0.68 

lgbm 7132.8 135 794 5.94 

KNN 6360 120 692 - 

Best Verifier per Property 6320 237 1526 - 

catboost 5876 215 1374 16.08 

Random 3997 271 1749 - 
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All trained predictors, except CatBoost, outperform the Best Verifier per Property baseline. XGBoost and 

the Neural Classifier achieve the highest scores (~7200), approaching the Virtually Best Verifier 

(Filtered) upper bound. LGBM performs slightly weaker but remains competitive, while KNN provides 

moderate accuracy with lower CPU and memory usage. CatBoost underperforms in both accuracy and 

efficiency, indicating limitations in its current setup. Overall, XGBoost offers the best balance of 

performance and resource usage, whereas the Neural Classifier achieves similar accuracy at a higher 

computational cost. 

Conclusion 

This project demonstrates that machine-learning predictors can effectively support verifier selection for C 

programs in the SV-COMP setting. By leveraging diverse embedding models—ranging from code-

specialized transformers to general-purpose and hybrid text-code embeddings—and training predictors 

such as XGBoost, LightGBM, CatBoost, and neural classifiers on SV-COMP 2025 data, Verifier-Moira 

consistently outperforms the best verifier per property while remaining computationally efficient. 

Evaluation shows that neural classifiers and XGBoost achieve the highest verification scores, closely 

approaching the upper bound defined by the Virtually Best Verifier (Filtered), while smaller or less 

optimized predictors still surpass naive baselines. These results highlight the use of embedders and 

careful predictor design. Future work may explore larger embeddings, enhanced preprocessing, and 

neural regressors to further improve prediction accuracy and resource efficiency. 

Future Work 

Future extensions may include the use of larger and more diverse embedders, the exploration of neural 

regressors, and improved preprocessing to clean .i files, which sometimes introduce noise into 

embeddings. Additional improvements in error handling and version validation for predictors would also 

further strengthen the robustness of the system. 

Links 

Verifier-Moira: https://gitlab.com/sosy-lab/software/verifier-moira 

Verifier-Moira-Data: https://gitlab.com/sosy-lab/research/data/verifier-moira-data 
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