
Block-AbstractionMemoizationwithCEGAR
(In-Placevs. Copy-On-WriteRefinement)

Karlheinz Friedberger

Overview
Block-abstraction memoization (BAM) [5] is a tech-
nique for software verification that aims towards a
modular scalable analysis for large programs.
It is based on common concepts like
• configurable program analysis (CPA) [1] and
• caching and information reuse.

BAM is independent of the underlying analysis and
can be used in combination with
• predicate abstraction [2]
• explicit-state model checking [3]
• BDD-based software verification [4]

Source
Code

Spec

ResultsParser &
CFABuilder

CEGAR
Algorithm

CPA
Algorithm

BAM
CPA

Spec
CPA

Location
CPA

Callstack
CPA

Predicate
CPA

Control Flow of BAM
BAM computes new states for the state space based
on blocks, the cache, and the underlying analysis.

leave
block?

enter
block?

entry in
cache?

no further exploration

compute successors with
underlying analysis

return block abstraction
from cache

compute block abstraction
with nested CPA-algorithm

no

yes

yes

no

yes

no

State-Space Exploration
Basic steps of BAM:
• program is divided into blocks (functions or

loops)
• nested CPA algorithm explores and analyzes the

state space of each block
• block abstractions are cached for reuse

A B C

Figure 1: Block A is analyzed, nested blocks B and C
already finished

A B C

Figure 2: Block abstraction for state space B is reused
from cache

A B C

serror

scut

Figure 3: Finding a (spurious) counterexample to an
error state serror and determining a cutpoint scut for
the refinement

Optimization and Heuristics
• Reducer : hide unnecessary information in states
to increase cache hit rate

• Aggressive caching: over-approximate entries
when accessing the cache

• Refinement strategies: refine one, some, or all
states along a counterexample trace

In-Place Refinement
• change existing block abstractions
• remove several parts of the reached state space

A B C
scut

Problems:
• contradicts the idea of lazy refinement by updat-

ing or deleting too many states
• overhead for recomputing previously deleted

block abstractions
• recomputation can lead to repeated counterex-

amples due to information loss

Copy-on-Write Refinement
• invalidate only some reached states
• use copies of existing block abstractions

A B C

partial
copy

scut

scut′

B’ C’

Benefits:
• correct usage of lazy refinement by updating or

deleting only necessary parts
• all important data remains in the cache
• better for programs with more refinements

Evaluation
For simple tasks with only zero or one refinements
both approaches behave identical. For difficult
tasks that need more refinements (and thus more
runtime) the copy-on-write approach shows its ben-
efit over the in-place approach.

0 250 500 750
1

10

100

1 000

n-th fastest result

C
PU

tim
e
(s
) in-place

copy-on-write

Figure 4: Quantile plot of BAM with predicate analy-
sis, results with less than two refinements

0 500 1 000 1 500 2 000
1

10

100

1 000

n-th fastest result

C
PU

tim
e
(s
) in-place

copy-on-write

Figure 5: Quantile plot of BAM with predicate analy-
sis, results with at least two refinements

References
[1] D. Beyer, T. A. Henzinger, and G. Théoduloz. Con-

figurable software verification: Concretizing the conver-
gence of model checking and program analysis. In Proc.
CAV, LNCS 4590, pages 504–518. Springer, 2007.

[2] D. Beyer, M. E. Keremoglu, and P. Wendler. Predi-
cate abstraction with adjustable-block encoding. In Proc.
FMCAD, pages 189–197. FMCAD, 2010.

[3] D. Beyer and S. Löwe. Explicit-state software model
checking based on CEGAR and interpolation. In Proc.
FASE, LNCS 7793, pages 146–162. Springer, 2013.

[4] D. Beyer and A. Stahlbauer. BDD-based software
model checking with CPAchecker. In Proc. MEMICS,
LNCS 7721, pages 1–11. Springer, 2013.

[5] K. Friedberger. CPA-BAM: Block-abstraction memoiza-
tion with value analysis and predicate analysis (competi-
tion contribution). In Proc. TACAS, LNCS 9636, pages
912–915. Springer, 2016.


