
CPA-BAM: Block-Abstraction Memoization
with Value Analysis and Predicate Analysis

(Competition Contribution)

Karlheinz Friedberger

University of Passau

Abstract. The software verification framework CPAchecker is built on
basic approaches like CPA and CEGAR. The configuration for the SV-
COMP’16 uses the concept of block-abstraction memoization and com-
bines it with the parallel execution of value analysis and predicate analysis.
The CEGAR loop uses a refinement strategy that prefers to refine the
precision of the lightweight value analysis, such that the precision of the
predicate analysis remains abstract and concise as long as possible. The
usage of mature analyses like value analysis and predicate analysis allows
us to bring together the potential of lazy abstraction and interpolation
and the benefits of block-abstraction memoization.

1 Software Architecture
CPAchecker is a software verification framework that is build on Configurable
Program Analysis (CPA) [1] and allows developers to easily integrate new
analyses in a predefined way. CPAs are available for distinct tasks like tracking
program locations, call stacks, function pointers, and assignments to variables.
Also well-known approaches like value analysis and predicate analysis are inte-
grated in CPAchecker in this manner. CPAs can be combined to form a more
complex program analysis. The framework can execute a (configurable) algorithm
like the CEGAR algorithm or a sequence of algorithms to verify reachability
properties. There are analyses that support checking memory-safety properties
and overflow detection, but this contribution does not use them.

CPAchecker is written in Java and uses the C-parser of the Eclipse CDT
project (https://eclipse.org/cdt/). There are bindings for external libraries
that allow to use BDDs, octagons, and SMT formulas. The predicate analysis
in our configuration uses the SMT solver MathSAT5 (http://mathsat.fbk.eu/),
because it supports bit-precise reasoning and interpolation for SMT formulae.

2 Verification Approach
Our configuration uses block-abstraction memoization (BAM) [4] to speedup the
analysis. BAM divides the program into blocks and analyzes them separately.
We choose functions as block size, such that a function call corresponds with a
block entry and a function exit refers to a block exit, respectively. BAM aims for

https://eclipse.org/cdt/
http://mathsat.fbk.eu/


a modular analysis, i.e. if a block has been already analyzed, the re-analysis of
this block uses the stored result from a cache.

In SV-COMP’12, BAM was used with predicate analysis [3], and in SV-
COMP’15, value analysis and predicate analysis were combined in a sequential
way [2]. With several improvements and extensions done in the last year, we
are now able to combine BAM not only with predicate analysis, but also with
value analysis, interval analysis, and combinations thereof. We have defined and
implemented the operators of BAM for the corresponding domains. For this year’s
SV-COMP, value analysis and predicate analysis are executed in a parallel manner
to leverage the advantages of both approaches within the analysis with BAM.

BAM itself does not track any assignments or predicates over variables, but
delegates this task to other more precise analyses. In our submission, the value
analysis tracks assignments of variables and the predicate analysis uses predicates
to analyze the program. Each of these two analyses is implemented as a CPA
and uses a precision that determines which facts (assignments or predicates)
are important for reasoning over the program, for example, for the reachability
of a property violation. Figure 1 shows the CEGAR loop that updates the
precisions during the refinements of the corresponding analysis. In CPAchecker,
a reachability analysis uses the configured CPAs to examine the program until
either a counterexample is reached or the program is analyzed completely. The
second case refers to a program without any property violation. In the first
case however, if the reachability analysis finds a counterexample, we check it for
feasibility with both analyses in sequence. For a spurious counterexample one
of the analyses should find the cause and perform the refinement, i.e. updating
the corresponding precision. As the value analysis is more efficient in tracking
many assignments, the counterexample is first checked with this analysis. As
soon as one of the analyses cannot confirm the counterexample, the precision of
this analysis is refined in order to exclude the spurious counterexample in the
next iteration of the CEGAR loop. If both analyses confirm the counterexample,
we report an error witness.

Recursive tasks are analyzed by an extension of BAM that was already used
in SV-COMP’15. However, last year’s contribution is improved by using the
parallel combination of value analysis and predicate analysis in the way described
above. Additionally, if no cached block abstraction can be reused before unrolling
the recursive function up to a depth of 30, we abort the analysis of any deeper
recursion. This bound is sufficient for the currently available recursive tasks.

Reachability Analysis
with BAM

Value Analysis
Counterexample Check

Value Analysis
Refinement

Predicate Analysis
Counterexample Check

Predicate Analysis
Refinement

FALSE

TRUE
true

counterexample

feasible

spurious

feasiblespurious

Fig. 1: Refinement for value analysis and predicate analysis in the CEGAR loop



3 Strengths and Weaknesses
The contributed configuration of BAM is most effective for solving large programs
consisting of many functions, such that the benefit of using a cache justifies the
overhead of BAM itself, i.e. the reuse of block abstractions outperforms the
application of special operators in BAM. We report only a few wrong results for
all tasks and none of them is a wrong proof. As our approach in CPAchecker uses
its available analyses, some weaknesses are inherited. For example, value analysis
and predicate analysis do not support large arrays or complex data structures.
Our configuration does not check for memory-safety properties, termination or
overflows, but simply ignores those cases and reports UNKNOWN.

4 Setup and Configuration
The CPAchecker project is available at http://cpachecker.sosy-lab.org and
needs a Java 7 runtime environment. We submit version 1.4-svcomp16c for
participation in all categories. The tool can be downloaded from
http://cpachecker.sosy-lab.org/CPAchecker-1.4-svcomp16c-unix.tar.bz2.
CPAchecker has to be executed with the following command line:
scripts/cpa.sh -sv-comp16-bam -disable-java-assertions -heap 10000m -spec prop.prp program.i

The parameter -64 should be added for C programs in categories assuming
a 64-bit environment. CPAchecker will report the result of the verification
to the console, including the violated property and the name of the output
directory. In case of finding a property violation, the witness is written to
the file witness.graphml within the output directory. CPAchecker can be
executed using the tool-info module cpachecker.py and the benchmark definition
cpa-bam.xml available at http://sv-comp.sosy-lab.org/2016/systems.php.

5 Project and Contributors
CPAchecker is licensed as an open-source project, headed by Dirk Beyer, and
developed by members of the Software Systems Lab at the University of Passau.
The framework is utilized and extended by an international group of develop-
ers. Our thanks go to all contributors for their work on CPAchecker, espe-
cially the members of the Institute for System Programming of the Russian
Academy of Sciences for reporting several bugs in our implementation of block-
abstraction memoization. More information about CPAchecker is provided at
http://cpachecker.sosy-lab.org, where also a list of all contributors is available.

References
1. D. Beyer, T. A. Henzinger, and G. Théoduloz. Configurable software verification:

Concretizing the convergence of model checking and program analysis. In Proc. CAV,
LNCS 4590, pages 504–518. Springer, 2007.

2. M. Dangl, S. Löwe, and P. Wendler. CPAchecker with support for recursive
programs and floating-point arithmetic. In Proc. TACAS. Springer, 2015.

3. D. Wonisch. Block abstraction memoization for CPAchecker (competition contri-
bution). In Proc. TACAS. Springer, 2012.

4. D. Wonisch and H. Wehrheim. Predicate analysis with block-abstraction memoization.
In Proc. ICFEM, LNCS 7635, pages 332–347. Springer, 2012.

http://cpachecker.sosy-lab.org
http://cpachecker.sosy-lab.org/CPAchecker-1.4-svcomp16c-unix.tar.bz2
http://sv-comp.sosy-lab.org/2016/systems.php
http://cpachecker.sosy-lab.org

