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Overview
CPAchecker is a modern framework for software verification and is
based on well-known concepts like

• CEGAR
• Configurable program analysis (CPA) [2]
• Interpolation
• Predicate abstraction [3]
• Explicit-state model checking [4]
• k-induction [1]
• Lazy abstraction
• Abstract interpretation
• Block-abstraction memoization [7]

CPAchecker has support for several abstract domains, such as val-
ues, intervals, octagons, BDDs, predicates, and memory graphs, which
can all be used to build an analysis that matches the user’s require-
ments.
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Up to four bit-accurate analyses are executed in sequence. After a time limit is exceeded the next analysis is started, if no result is available yet.
(1,2) The value analysis [4] tracks values of integer variables explicitly. It is efficient but imprecise for non-deterministic variables.
(3) The predicate analysis [3] uses interpolation and predicate abstraction.
(4) k-induction [1] uses auxiliary invariants and extends bounded model checking from falsification to verification.

Counterexamples are cross-checked with a bit-accurate counterexample check, i.e., with predicate analysis for (1,2) and CBMC for (3,4).

Setup and Configuration
Download CPAchecker from

https://cpachecker.sosy-lab.org

and execute

scripts/cpa.sh -sv-comp17
-disable-java-assertions -heap 10000m
-spec property.prp program.i

The configuration sv-comp17 is
• optimized for checking a wide range of properties,
• an effective approach for solving a heterogeneous set of
verification tasks, and

• based on several verification approaches,
from reachability analysis to synthesized ranking functions.
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