
CPAchecker for Reachability, Memory Safety,
Overflows, Concurrency, and Termination

(Competition Contribution for SVCOMP’17)

Matthias Dangl and Karlheinz Friedberger

Overview
CPAchecker is a modern framework for software verification and is
based on well-known concepts like

• CEGAR
• Configurable program analysis (CPA) [2]
• Interpolation
• Predicate abstraction [3]
• Explicit-state model checking [4]
• k-induction [1]
• Lazy abstraction
• Abstract interpretation
• Block-abstraction memoization [7]

CPAchecker has support for several abstract domains, such as val-
ues, intervals, octagons, BDDs, predicates, and memory graphs, which
can all be used to build an analysis that matches the user’s require-
ments.

Verification Strategy for SV-COMP’17

Reachability

Overflow

Termination

MemSafety

Recursion

Concurency

Other

Block-abstraction memoization [7] with predicate and value analysis

Concurrency analysis [8] combined with BDDs

Sequential composition [6] of four bit-accurate analyses

Abstract-interpretation with sets of intervals

Lassos [5] and ranking functions

Concrete memory graphs that model the memory accesses

Pr
op

er
ty
?

St
ru
ct
ur
e?

Sequential Composition

(1)
Value Analysis
without CEGAR
(Time Limit: 90 s)

(2)
Value Analysis
with CEGAR

(Time Limit: 60 s)

(3)
Predicate Analysis

with CEGAR
(Time Limit: 200 s)

(4)
k-Induction

Counterexample Check

unknown

false

true

false false false false
spurious spurious spurious spurious

unknown unknown unknown unknown

true true true true

feasible

Up to four bit-accurate analyses are executed in sequence. After a time limit is exceeded the next analysis is started, if no result is available yet.
(1,2) The value analysis [4] tracks values of integer variables explicitly. It is efficient but imprecise for non-deterministic variables.
(3) The predicate analysis [3] uses interpolation and predicate abstraction.
(4) k-induction [1] uses auxiliary invariants and extends bounded model checking from falsification to verification.

Counterexamples are cross-checked with a bit-accurate counterexample check, i.e., with predicate analysis for (1,2) and CBMC for (3,4).

Setup and Configuration
Download CPAchecker from

https://cpachecker.sosy-lab.org

and execute

scripts/cpa.sh -sv-comp17
-disable-java-assertions -heap 10000m
-spec property.prp program.i

The configuration sv-comp17 is
• optimized for checking a wide range of properties,
• an effective approach for solving a heterogeneous set of
verification tasks, and

• based on several verification approaches,
from reachability analysis to synthesized ranking functions.

Contributors
CPAchecker is an open-source project, developed by members of
Dirk Beyer’s Software Systems Lab at LMU Munich, and is used and
extended by associates from

• the Institute for System Programming of the Russian Academy
of Sciences,

• Universities of Darmstadt, Paderborn, Passau, and Vienna,
• VERIMAG in Grenoble, and
• several other universities and institutes.

We thank all contributors for their work on CPAchecker.

References
[1] D. Beyer, M. Dangl, and P. Wendler. Boosting k-induction with continuously-refined invariants. In Proc. CAV, LNCS 9206, pages 622–640. Springer, 2015.
[2] D. Beyer, T. A. Henzinger, and G. Théoduloz. Configurable software verification: Concretizing the convergence of model checking and program analysis. In Proc.

CAV, LNCS 4590, pages 504–518. Springer, 2007.
[3] D. Beyer, M. E. Keremoglu, and P. Wendler. Predicate abstraction with adjustable-block encoding. In Proc. FMCAD, pages 189–197. FMCAD, 2010.
[4] D. Beyer and S. Löwe. Explicit-state software model checking based on CEGAR and interpolation. In Proc. FASE, LNCS 7793, pages 146–162. Springer, 2013.
[5] B. Cook, A. Podelski, and A. Rybalchenko. Terminator: Beyond safety. In Proc. CAV, LNCS 4144, pages 415–418. Springer, 2006.
[6] M. Dangl, S. Löwe, and P. Wendler. CPAchecker with support for recursive programs and floating-point arithmetic (competition contribution). In Proc. TACAS,

LNCS 9035, pages 423–425. Springer, 2015.
[7] K. Friedberger. CPA-BAM: Block-abstraction memoization with value analysis and predicate analysis (competition contribution). In Proc. TACAS, LNCS 9636, pages

912–915. Springer, 2016.
[8] K. Friedberger and D. Beyer. A light-weight approach for verifying multi-threaded programs with CPAchecker. In Proc. MEMICS, EPTCS 233, pages 61–71.

EPTCS, 2016.


