
Bachelor’s Thesis

in Internet Computing

Octagon-Based Software Verification
with CPAchecker

Thomas Stieglmaier

Supervisor:

Prof. Dr. Dirk Beyer

July 10, 2014

Abstract

This work introduces a formalism for a configurable program anal-
ysis (CPA) based on the octagon abstract domain. Several different
configurations of this CPA and how it can be used to analyze pro-
grams in a time- and memory-efficient manner are discussed. The
evaluation of these approaches is done on two implementations of
octagon-based CPAs in CPACHECKER, a CPA using the Octagon
Abstract Domain Library and a CPA using the APRON library. Both
CPAs are compared to other analyses implemented in CPACHECKER

and other tools. Overall, octagon-based CPAs are not as memory-
efficient as an explicit-value analysis, but they perform strictly better
on programs which rely on inter-variable relations.

Contents

1 Introduction 8
1.1 Motivation . 8
1.2 Structure of this Bachelor’s Thesis . 9

2 Background 10
2.1 Program Representation . 10
2.2 Configurable Program Analysis with Dynamic Precision Adjustment 11

2.2.1 Formalism of a CPA+ . 12
2.2.2 The Reachability Algorithm . 14
2.2.3 Composite Program Analysis 16

2.3 The CPACHECKER Framework . 17
2.3.1 Basic Architecture . 17
2.3.2 Composite CPAs in CPACHECKER 18
2.3.3 Explicit-Value Analysis . 19
2.3.4 Counterexample Check and Sequential Combination of Analyses 19

2.4 Counterexample-Guided Abstraction Refinement for Analyses with
Explicit Values . 20
2.4.1 Example . 21
2.4.2 Interpolation and Precision Refinement 23

2.5 The Octagon Abstract Domain . 24
2.5.1 Formalism . 25
2.5.2 The Octagon Abstract Domain Library 27
2.5.3 APRON Library Architecture & Interface 29
2.5.4 PAGAI . 29

3 Octagon-Based Software Verification 30
3.1 The Octagon CPA . 30
3.2 Influence of the merge Operator on the Analysis 32

3

3.3 Advanced Algorithms for the Octagon CPA 35
3.3.1 The Octagon CPA and CEGAR 35
3.3.2 Sequential Combination of different Configurations of the

Octagon CPA . 36

4 Implementation of Octagon-Based CPAs 38
4.1 A CPA Using the Octagon Abstract Domain Library 38

4.1.1 Architecture Overview . 39
4.1.2 Specific Configuration Options of the OADL CPA 41

4.2 A CPA Using the APRON Library . 41
4.2.1 Architecture Overview . 42
4.2.2 Specific Configuration Options for the APRON CPA 44

4.3 Common Parts of the OADL CPA and the APRON CPA 44
4.3.1 The CEGAR Implementation 45
4.3.2 Configuration Options . 46

4.4 Comparison of the OADL CPA and the APRON CPA Regarding the
Programming Effort . 48

5 Evaluation 50
5.1 Benchmark Programs . 50
5.2 Configurations . 51
5.3 Evaluation Environment . 53
5.4 Performance Evaluation of the OADL CPA and the APRON CPA . . 53

5.4.1 Evaluation of Integer-Related Programs 54
5.4.2 Evaluation of Float-Related Programs 60
5.4.3 Custom Programs for Showing the Abilities of the OADL CPA 61
5.4.4 Conclusion of the Performance Evaluation 62

5.5 Restrictions and Challenges . 63

6 Conclusion 65
6.1 Summary . 65
6.2 Future Work . 65

Bibliography 67

4

List of Algorithms

1 CPA+(D, R0, W0) algorithm, adapted from Beyer and Löwe [BL13] . 15

2 CEGAR(D, e0, π0), taken from Beyer and Löwe [BL13] 22

5

List of Figures

2.1 The CFA for the program in Listing 2.1 11
2.2 CPACHECKER Architecture, after Beyer and Keremoglu [BK11] . . . 17
2.3 CPACHECKER CPA design, after Beyer and Keremoglu [BK11] 18
2.4 Octagon Abstract Domain – A comparison of some numerical do-

mains regarding over-approximation, after Miné [Min06] 24

3.1 The Octagon CPA and CEGAR . 36
3.2 Sequential combination of different configurations of the Octagon CPA 36

4.1 An example octagon . 40

5.1 A plot of quantile functions of the configurations oadlSep, oadl-refiner,
eva-basic and eva-refiner . 56

5.2 A plot of quantile functions of the configurations oadlWidening-cex,
oadl-refiner and oadl-seq-W-R-100 . 59

6

List of Tables

2.1 Constraints and their equivalent as octagonal constraint, taken from
Miné [Min06] . 26

2.2 Difference-Bound Matrice for the octagon from Figure 2.4 28

3.1 Results of an analysis with the Octagon CPA when using different
merge operators . 33

5.1 Overall Performance of the Analyses on the SV-COMP Benchmarks . 55
5.2 Average Number of refinements, states in the set reached and memory

consumption for certain configurations, only successfully-analyzed
verification tasks are considered . 57

5.3 Number of created states, states in the set reached and average mem-
ory consumption for certain configurations 58

5.4 Overall performance of the analyses on the SV-COMP benchmarks . 60
5.5 Overall Performance of the Analyses on the SV-COMP Benchmarks . 61

7

1 Introduction

Bugs exist since the invention of programming languages. Finding them is often
much more work than writing the program itself. One possibility to find bugs is
writing tests for a program, but tests can only cover a small range of the possible
states that can occur in a program. And as software gets more and more important
in nowadays life, the need for correct and reliable software is growing. The solution
is a formal approach which guarantees that a program is safe or unsafe with regard
to a certain specification.

1.1 Motivation

Regarding the results of the International Competition on Software Verification from
2014 [Bey14] one can see several tools which aim at providing a solution to the
problem mentioned in the last paragraph.

CPACHECKER is the second winner in the category “Overall”1, and because of its
software-design, it is the ideal platform for implementing new analyses. Along with
the explicit-value and predicate analysis, the two main analyses in CPACHECKER,
there are several others existing. Apart from the predicate analysis none of the
widely used analyses is currently capable of handling relations between variables.
This work introduces a new analysis in CPACHECKER which is able to do so. The
octagon abstract domain [Min06] handles linear constraints between numeric vari-
ables. For that reason it is more precise than an explicit-value analysis. Through
the limitation to maximally two variables per linear constraint the octagon abstract
domain is also limited in terms of the computation time. Thus it is more efficient
than a predicate analysis. Furthermore it is also relatively lightweight compared to

1 The complete results can be seen at the following website:
http://sv-comp.sosy-lab.org/2014/results/index.php

8

http://sv-comp.sosy-lab.org/2014/results/index.php

other relational domains like the polyhedron abstract domain [Min06]. Therefore it
is a promising candidate for combining it with other analyses in CPACHECKER.

1.2 Structure of this Bachelor’s Thesis

At first all the necessary background information is given. This includes describing
the formal CPA algorithm, the octagon abstract domain (and its implementations in
the Octagon Abstract Domain Library and the APRON library), CPACHECKER itself
and at last the Counterexample-Guided Abstraction Refinement algorithm.

The background section is followed by a formal definition of an octagon-based
CPA and an in detail description of additional features. Implementations of this
formal CPA definition are introduced in the next step and afterwards evaluated with
regard to their efficiency and effectiveness:

• with different kinds of programs, as included in the benchmark set of the
International Competition on Software Verification, but also with artificial
programs of other benchmark suits and some custom benchmarks,

• compared to other state-of-the-art analyses done with CPACHECKER, and

• compared to other software-verification tools using octagons.

The evaluation also covers the strengths and weaknesses of different configurations
of these CPAs, for example with alternative merge strategies or advanced analysis
algorithms. Finally a summary of the whole work is provided, and there is an
outlook on features which could improve octagon-based CPAs even more.

9

2 Background

In this chapter all theoretical concepts that are necessary to create a configurable
program analysis based on the octagon abstract domain get introduced. Furthermore
some advance concepts, such as counterexample-guided abstraction refinement or
parts of conditional model checking will be described.

2.1 Program Representation

A program is represented by a control-flow automaton (CFA) [BHT07]. This is a graph
that consists of a set L of nodes / locations, modeling the program counter (pc), a set
G ⊆ L×Ops× L of edges which represent the control-flow and an initial location
pc0 (the program entry point). We limit the operations at control-flow edges to
assumptions and assignments, consisting of linear expressions. Variables may only
represent unbounded integers and rationals. The concrete state c of a program assigns
to each variable from the set X ∪ {pc} a value. Let C be the set of all concrete states,
and let every edge g ∈ G define the transition relation

g−→⊆ C× {g} × C. Then by
unifying all edges the complete transition relation→=

⋃
g∈G

g−→ is created. On a
CFA we now define reachability in the following way:

Reachability. If there exists a chain of concrete states 〈c0, c1, ..., cn〉 with the re-
quirement that ∀i : 1 ≤ i ≤ n =⇒ ci−1 → ci and a region r such that c0 ∈ r, then
we call the state cn reachable from the region r.

Example. In Figure 2.1 one can see the CFA for the program from Listing 2.1.
While each arrow represents a control-flow edge of G, the circles represent the
program locations L. The red circle with index 1 is the initial program location pc0.
Blue circles mark end points of the CFA.

10

1 int main(void) {
2 int flag = nondet_int();
3 int ticks = 0;

5 while (!systemCall()) {
6 ticks = ticks + 1;
7 }

9 if (flag <= 0) { return 0; }
10 if (flag > 0) { return 0; }

12 __VERIFIER_error();
13 return 0;
14 }

Listing 2.1: Example program 1 Figure 2.1: The CFA for the program in List-
ing 2.1

2.2 Configurable Program Analysis with Dynamic

Precision Adjustment

In automated software verification two main approaches are model checking and
program (data-flow) analysis [BHT07]. Both methods have their downsides. While
software model checkers have an exploding state space for large programs, pro-
gram or data-flow analyzers are usually path-insensitive. This means that in model
checking, the amount of states created can often only be handled through abstrac-
tion and over-approximation. For that reason false alarms are a major problem
of this approach. The path insensitivity of data-flow analyzers (they merge states
with equal locations) makes the analysis imprecise regarding join points in programs.

By combining both approaches one can, on the one hand, reduce the state space
drastically by merging at least some states, compared to a pure model checker. And
on the other hand, by merging only states with certain attributes the accuracy will
not suffer as much as with a pure program analysis.

The original configurable program analysis [BHT07] consists of four components,
which influence the cost and accuracy of the analysis. By adding a so called precision
to each abstract state and providing a precision adjustment function the CPA with
dynamic precision adjustment (CPA+) was created [BHT08]. As an example for the

11

usage of precision one can imagine having a coarse-grained precision which specifies
to only track certain variables in the analysis process. An other option would be
to specify how detailed a variable should be tracked, depending on the progress
of an analysis. The ability to adjust the precision at run time has a great influence
on the verification performance. Two extreme examples are either switching off the
tracking of any variable at all, or tracking every variable with the highest detail
possible.

2.2.1 Formalism of a CPA+

A CPA+ [BHT08] D = (D, Π, , merge, stop, prec) consists of six parts, an abstract
domain D, a set Π of precisions, a transfer relation , a merge operator merge, a
termination check stop and a precision adjustment function prec. Those parts will be
briefly described in the following paragraph:

• The abstract domain D = (C, E , J·K) consists of three components. The first
two parts are a set C of concrete states and a semi-lattice E = (E,>,⊥,v,t)
consisting of

– a potentially infinite set E of elements (those will be called abstract states
later on),

– a top element > and a bottom element ⊥ with >,⊥ ∈ E,

– a preorder v⊆ E× E,

– and a total function t : E× E→ E (which is the join operator).

The third part is a concretization function J·K : E→ 2C. It assigns its meaning
to each abstract state, thus the set of concrete states it is representing. For
soundness the abstract domain has to follow two requirements:

1. J>K = C and J⊥K = ∅

2. ∀e, e′ ∈ E : Je t e′K ⊇ JeK ∪ Je′K (either the join operator is precise or it
over-approximates)

• The set Π models the possible precisions of the abstract domain D. Let e be
an abstract state and π a precision. We call a pair (e, π) the abstract state e with
precision π. Moreover all operators on the abstract domain are parametric in
the precision.

12

• The transfer relation ⊆ E × G × E ×Π assigns for a CFA edge g ∈ G all
possible new abstract states e′ with precision π to every abstract state e ∈ E.
If (e, g, e′, π) ∈ then we write e

g
 (e′, π) and if an edge g exists with e

g
 (e′, π)

we write e (e′, π). For soundness the transfer relation has to follow the re-
quirement that ∀e ∈ E, g ∈ G, π ∈ Π :

⋃
e (e′,π) Je′K ⊇ ⋃c∈JeK

{
c′|c g−→ c′

}
(the

transfer relation over-approximates all operations for every fixed precision).

• The merge operator merge : E × E × Π → E merges the information of two
abstract states. Soundness is achieved by the requirement that

∀e, e′ ∈ E, π ∈ Π : e′ v merge(e, e′, π)

(the result may only be equal to or more abstract than the second parameter).
This means that depending on e and the precision π the merge result can
be anything between e′ and > and furthermore that the merge operator is
not commutative. Although the merge operator is not the same as the join
operator t from the semi-lattice, it can be based on it. The two most commonly
used merge operators are mergesep(e, e′) = e′ and mergejoin(e, e′) = e t e′.

• The termination check stop : E× 2E ×Π→ B checks whether the set of abstract
states R, given as second parameter, covers the state with its precision given as
first and third parameter. To ensure soundness the termination check has to
satisfy the requirement

∀e ∈ E, R ⊆ E, π ∈ Π : stop(e, R, π) = true⇒ JeK ⊆
⋃

e′∈R

q
e′

y
.

This means that if an abstract state e is covered by the set R also every con-
crete state represented by e corresponds to an abstract state from the set R.
Equivalent to the merge operator, the termination check is not the same as
the preorder v of the semi-lattice, but can be based on it. For example the
termination check can iterate over all elements from the second parameter and
search for a single element that contains (v) the first parameter. Later on, the
termination check stopsep(e, R) = (∃e′ ∈ R : e v e′) will be used.

• The precision adjustment function prec : E×Π× 2E×Π → E×Π creates a new
abstract state with precision for a given abstract state with precision and a
given set of abstract states with precisions. During the precision change the

13

prec function may also perform a widening of the abstract state, thus it is able
to decrease or increase the precision of abstract states. The requirement which
has to be fulfilled to ascertain soundness is, that

∀e, ê ∈ E, π, π̂ ∈ Π, R ⊆ E×Π : (ê, π̂) = prec(e, π, R)⇒ JeK ⊆ JêK .

2.2.2 The Reachability Algorithm

In the last section all necessary members of a CPA+ were introduced. The algorithm
which computes a set of abstract states (for example an over-approximation of the
set of reachable concrete states) for a given CPA+ and an initial abstract state is a
reachability algorithm [BHT08]. During the execution of this algorithm two sets get
updated permanently:

• the set reached where all found reachable states are stored, and

• the set waitlist where all abstract states which have yet been found but not
processed (frontier) are stored.

The reachability algorithm of the CPA+ computes a set of reachable abstract states
with accompanying precision out of an initial abstract state with precision. The
first step during the abstract successor computation is the precision adjustment
with the prec function, thus the precision may change dynamically from abstract
state to abstract state. Afterwards each successor state with precision is combined
with every abstract state with precision from the set reached using the given merge
operator. If additional information has been added, such that the old abstract state
with precision is less abstract than the new abstract state with precision, it is replaced
by the new one in the set reached. If the state with precision resulting from the merge
step is not covered by any state in the set reached it is added to both, the set reached

and the set waitlist.

In order to have an algorithm that may already be used for counterexample-guided
abstraction refinement (c.f. Section 2.4) we adapt the input parameters of the CPA+
algorithms, such that instead of an initial abstract state with precision, a set R0 of
abstract states with precision is used. Additionally a subset W0 ⊆ R0 of frontier
abstract states with precision has to be given as parameter [BL13]. Algorithm 1 is
the resulting reachability algorithm.

14

Algorithm 1 CPA+(D, R0, W0) algorithm, adapted from Beyer and Löwe [BL13]

Input : a configurable program analysis D = (D, Π, , merge, stop, prec),
a set R0 ⊆ (E×Π) of abstract states with precision, and
a subset W0 ⊆ R0 of frontier abstract states with precision,
where E denotes the set of elements of the semi-lattice of D

Output : a set of reachable abstract states with precision
Variables : a set reached of elements of E×Π,

a set waitlist of elements of E×Π
waitlist := W0

reached := R0

while waitlist 6= ∅ do
choose (e, π) from waitlist;
waitlist := waitlist \{(e, π)};
for each e′ with e (e′, π) do

(ê, π̂) := prec(e′, π, reached); // precision adjustment
if isTargetState(ê) then

return (reached∪{(ê, π̂)}, waitlist∪{(ê, π̂)});
end
for each (e′′, π′′) ∈ reached do

enew := merge(ê, e′′, π̂); // combine with existing abstract state
if enew 6= e′′ then

waitlist := (waitlist∪{(enew, π̂)})\{(e′′, π′′)};
reached := (reached∪{(enew, π̂)})\{(e′′, π′′)};

end
end
if ¬ stop(ê, {e|(e, ·) ∈ reached}, π̂) then

// add new abstract state
waitlist := waitlist∪{(ê, π̂)};
reached := reached∪{(ê, π̂)};

end
end

end
return (reached, ∅);

15

2.2.3 Composite Program Analysis

The combination of several configurable program analyses [BHT07] is a composite
program analysis1 C = (D1, ..., Dn, Π×, ×, merge×, stop×, prec×) with n ∈ N. It
consists of a finite amount of CPAs and the combined parts:

• a set of precisions Π×,

• a transfer relation ×,

• the merge operator merge×,

• the stop operator stop×,

• and the prec operator prec×.

The four composites are any expressions over the components of the involved
CPAs (Πi, i, mergei, stopi, preci, J·Ki , Ei,>i,⊥i,vi,ti) with i ∈ [1; n], as well as the
strengthening operator ↓: ×n

i=1Ei → E1 and the comparison operator �⊆ ×n
i=1Ei.

Strengthening is used for computing a stronger element from the lattice set E1 by us-
ing the information from an element of the lattice sets E2...En, thus ↓ (e1, ..., en) v e1

has to be fulfilled. The comparison operator allows us to compare elements of
different lattices.

For a given composite analysis C = (D1, D2, Π×, ×, merge×, stop×) the CPA
D× = (D×, Π×, ×, merge×, stop×) can be constructed. The product precision
is defined by Π× = Π1 × Π2. Equally, the components of the product domain
D× = D1 × D2 = (C, E×, J·K×) are then defined by the

• product lattice E× = E1 × E2 = (E1 × E2, (>1,>2), (⊥1,⊥2),v×,t×) with
(e1, e2) v× (e′1, e′2) iff e1 v1 e′1 and e2 v2 e′2, and
(e1, e2) t× (e′1, e′2) = (e1 t1 e′1, e2 t2 e′2)

• and the product concretization function J·K× in such a way, that
J(d1, d2)K× = Jd1K1 ∩ Jd2K2 is met.

1 This is still a CPA.

16

Figure 2.2: CPACHECKER Architecture, after Beyer and Keremoglu [BK11]

2.3 The CPACHECKER Framework

CPACHECKER2 is a free and open-source software verification framework pub-
lished under the Apache 2.0 license. It is the successor of the model-checker
BLAST [BHJM05]. CPACHECKER is based on the concepts of configurable pro-
gram analysis and dynamic precision adjustment [BK11]. The program analysis is
performed by the implemented CPAs3. These CPAs can be combined freely, either
for parallel usage at the same time (c.f. Section 2.2.3) or for a sequential usage (c.f.
Section 2.3.4). The focus of CPACHECKER lies on the evaluation of programs written
in C.

2.3.1 Basic Architecture

The basic architecture of CPACHECKER [BK11] is shown in Figure 2.2. CPACHECKER

uses the parser of the Eclipse CDT project4. Subsequently the CFA (c.f. Section 2.1)

2 More information and the sources can be found on the website of CPACHECKER:
http://cpachecker.sosy-lab.org/

3 Although it would be more correct to write CPA+ in the scope of CPACHECKER all implemented
analyses are called CPAs, disregarding whether they are using dynamic precision adjustment or
not.

4 More information about the Eclipse CDT can be found here:
http://www.eclipse.org/cdt/

17

http://cpachecker.sosy-lab.org/
http://www.eclipse.org/cdt/

Figure 2.3: CPACHECKER CPA design, after Beyer and Keremoglu [BK11]

is created, and then the CPA+ algorithm computes the result. This algorithm is the
core of CPACHECKER, it performs the reachability analysis (see Algorithm 1), and
works on an instance of the abstract type CPA (so it doesn’t know anything about the
actual CPA). For that reason, every distinct CPA must implement the CPA interface
(c.f. Figure 2.3) and all belonging methods.

2.3.2 Composite CPAs in CPACHECKER

Through the concept of having a composite analysis consisting of several CPAs,
which was introduced in Section 2.2.3, we are able to split up some analyses imple-
mented in CPACHECKER into several CPAs and then combine them on demand. For
example, most analyses need a call stack and have to track the program counter,
in order to be able to use the merge or stop operators properly. Thus, instead of
implementing call stack and location-aware CPAs over and over, one can now create
a CPA which models the call-stack and one CPA which tracks the program counter.
These can then be reused together with every other CPA implementation which is in
need of a call-stack and location-awareness.

18

2.3.3 Explicit-Value Analysis

As mentioned before, there are several different analyses and configurations which
can be used with CPACHECKER. The explicit-value analysis works on distinct
values for program variables[BL13]. As this analysis needs to be location-aware, it
is constructed from a composite CPA which includes a CPA tracking the program
locations, and a CPA for the explicit values. The abstract domain D = (C, E , J·K)
for the Explicit Value CPA consists of a set C of concrete states, the semi-lattice
E = (V,>,⊥,v,t) and the concretization function J·K : V → 2C. V is the
set of abstract variable assignments V = (X → R), where X is the set of all
variables and R is denoted by R = R ∪ {>,⊥}. In contrast to the ⊥ element,
which denotes that there is no value assignment possible, the > element has no
specific value for any variable. By v v v′ the partial orderv⊆ V×V is defined when
∀x ∈ X : v(x) = v′(x) ∨ v(x) = ⊥ ∨ v′(x) = >. Thus, the explicit-value analysis
is not able to infer any information about the relations between program variables.
The operators and functions that were not mentioned in the last paragraph, and
more detailed information about the explicit-value analysis can be found in related
literature [BL13].

2.3.4 Counterexample Check and Sequential Combination of
Analyses

For a better control of the verification performance the dynamic precision adjust-
ment was introduced in Section 2.2. Also by using CEGAR (c.f. Section 2.4) or
different merge operator strategies the efficiency and effectiveness of the analyses
can be influenced. What is missing, is the ability to reuse the results and additional
information from previous verification runs. The counterexample check and starting
another analysis after receiving a certain result, are part of the conditional model
checking [BW13], which enables us to reuse exactly this information and results.

In contrast to traditional model checking, where the result of a verification run
is either “safe” or “unsafe” (if a result was produced), conditional model checking
puts out a condition Ψ that shows which conditions have to be fulfilled that the
analyzed program satisfies a given specification. By producing such conditions in
case of failures the consumed resources are not wasted. For example in case of a
timeout the model checker could summarize the part of the program which was ver-

19

ified successfully in the outputted condition, declaring that as long as the program
execution stays within this part, the program is safe. For a complete analysis “safe”
is represented by Ψ = true and “unsafe” is represented by Ψ = f alse.
Whereas the first verification run of a model checker starts per default with f alse
as input condition, in a sequential combination the second verification run of a
model checker may get the condition outputted by the first model checker as input
condition.
The restart algorithm used in this bachelor’s thesis is such a sequential combination
of verification tasks. Whenever the result of a verification run is not true or f alse,
the next configuration is started with the input condition f alse and has to verify the
program again.
By using a previously found error path as input condition, a counterexample check
can be realized. This counterexample check can either be done with the same analy-
sis or with another analysis, also one from another model checking tool. By using
a counterexample check one can also enhance the restart algorithm that was intro-
duced before. For example by using a quite imprecise analysis which produces fast
results but lots of false negatives at first. The feasibility of the error paths of these
false negatives is then rechecked, and if the error path is infeasible, instead of a f alse
result, a condition is reported which states that the analysis was not complete. As a
consequence, the restart algorithm does not only consider the next specified model
checker when no result was outputted due to for example timeouts, but also due
to impreciseness of analyses. Because of limiting the control flow to a certain path,
checking a counterexample is easier and produces less states than a full analysis of a
program.

2.4 Counterexample-Guided Abstraction Refinement

for Analyses with Explicit Values

If a variable x ∈ X is not necessary for proving a program safe with regard to a certain
specification, it could be omitted in the abstract successor computation. Finding
such unnecessary variables is done iteratively by a technique called counterexample-
guided abstraction refinement (CEGAR) [BL13]. It is based on three concepts:

1. a precision, determining the tracked variables, and thus the current abstraction
level,

20

2. a feasibility check for checking the validity of a found error path,

3. and a refinement function that creates a new precision out of an infeasible error
path, such that the same error path cannot be reached again during the path
exploration.

By starting with an initially empty precision, meaning not tracking variables at
all, we will, in most cases, encounter infeasible counterexamples (paths through
the control-flow graph that end in a state violating the given specification). The
CEGAR algorithm for analyses with explicit values now computes the variables
which have to be tracked additionally in order to avoid encountering the same
infeasible counterexample once again. Then the analysis is restarted from a certain
point with the refined precision. If the analysis is still too imprecise and due to a too
coarse precision another infeasible counterexample is found, this loop of refining the
precision and restarting the analysis is repeated over and over. The iterations of this
loop last until either a feasible counterexample is found, or the program analyses
terminates without finding a specification violation. The formal CEGAR algorithm,
is shown in Algorithm 2.

To sum up the essence of the last paragraph, CEGAR is a technique where by
continuous precision refinement the state space is kept as small as possible and as
large as necessary. The computed states are mostly still more abstract, and at least
as abstract as without CEGAR. For this reason CEGAR is a highly effective way to
analyze programs with less effort than before. The following section shows this with
an example.

2.4.1 Example

The example in Listing 2.1 illustrates the advantages of CEGAR compared to a
traditional analysis, which stores explicit values for all variables. Due to the variable
which is incremented in the while loop a traditional explicit-value analysis will
discover a new abstract state with each loop iteration. The return value of the
systemCall function is non-deterministic, and therefore the program analysis will
never finish unrolling the loop, always discovering new abstract states.
When using CEGAR, at first the precision is empty, thus the error location will be
reached. Then, through the refinement process we discover that the variable flag has
to be tracked in order to prove that either the assumption f lag ≤ 0 or the assumption

21

Algorithm 2 CEGAR(D, e0, π0), taken from Beyer and Löwe [BL13]

Input : CPA with dynamic precision adjustment D = (D, Π, , merge, stop, prec),
an initial abstract state e0 ∈ E with precision π0 ∈ Π, where E denotes the
set of elements of the semi-lattice of D

Output : verification result safe or unsafe
Variables : set reached ⊆ E×Π,

set waitlist ⊆ E×Π,
error path σ = 〈(op1, l1), ..., (opn, ln)〉

reached := {(e0, π0)};
waitlist := {(e0, π0)};
while true do

(reached, waitlist) := CPA(D, reached, waitlist);
if waitlist = ∅ then return sa f e ;
else

σ := extractErrorPath(reached);

// error path is feasible: report bug
if isFeasible(σ) then return unsa f e;

// error path is not feasible: refine and restart
else

π := π
⋃

Refine(σ);
reached := (e0, π);
waitlist := (e0, π);

end
end

end

22

f lag > 0 holds. Afterwards the analysis is restarted, and the error cannot be reached
any more. Because ticks is still not tracked, unrolling the while loop creates no
states which cannot be covered by those that were already found. So the analysis
terminates in time, proving the program correct.

2.4.2 Interpolation and Precision Refinement

Craig interpolation [Cra57] is a technique from logics. It computes a new formula ψ

for two contradicting formulas ϕ− and ϕ+ where ϕ− ∧ ϕ+ is unsatisfiable, called
interpolant, that contains less information than the first formula, but is still contra-
dicting the second formula. Thus it has to meet three requirements:

1. ϕ− ⇒ ψ,

2. the conjunction ψ ∧ ϕ+ has to be unsatisfiable, and

3. ψ may only contain symbols which occur in ϕ− and ϕ+.

In CEGAR such interpolants are mostly used for finding an appropriate precision re-
finement. The predicate analysis uses for example SMT solvers for the interpolation
step. But also without SMT solvers, when having a precision which controls only
which variables should be tracked, an interpolation can be done. This is the case for
the explicit-value analysis [BL13], and will also be like that for the octagon-based
analyses introduced in this work. While the predicate analysis has predicates /
formulas for which the interpolation is made, the interpolation for analyses with ex-
plicit values works on counterexample paths. Such paths consist of abstract variable
assignments (constraint sequences). For each path, a precision has to be determined,
such that in future explorations the infeasible error path is eliminated.
This is done via iterating over all variables defined in the constraint sequence of
the feasible part of the error path γ−. γ+ is the contradicting constraint sequence.
Initially the strongest post-condition / the abstract successor of γ− is computed and
assigned to the abstract variable assignment v. Then in the interpolation process
single variables are removed from v. If v still contradicts γ+ the removed variable is
not necessary for refuting the counterexample, otherwise the variable should occur
in the interpolant.
From the interpolant a new precision is created in the Refine method, which is then
unified with the old precision. The analysis should now be able to eliminate the
error path with this refined precision in its next CEGAR algorithm iteration. The

23

complete idea of a refinement based on explicit interpolation is described in related
literature [BL13].

2.5 The Octagon Abstract Domain

The octagon abstract domain is a weakly relational numerical domain [Min01]. It is
based on Difference-Bound Matrices (c.f. Section 2.5.1) and therefore able to handle
constraints of the form ±X ± Y ≤ c with X and Y being variables and c being a
constant number in the range of the real numbers. Thus it can be seen as a more
specific version of the polyhedron domain, which allows the representation of linear
constraints with an arbitrary number of variables [CH78].

X

Y

I

X

Y

II

X

Y

III

X

Y

IV

Figure 2.4: Octagon Abstract Domain – A comparison of some numerical domains
regarding over-approximation, after Miné [Min06]

Figure 2.4 shows the differences between an interval domain, the octagon domain
and a polyhedron domain while trying to get the most precise approximation of
the values for X and Y. In the figure, (I) shows a set of points with distinct values
for the variables X and Y. In all other graphs, the small dots in the colored areas
mark points which are only considered as valid values for both variables due to
over-approximation. While with intervals (II) only the lowest and the highest bound
are taken into consideration, and therefore the resulting value range for X and Y
is quite imprecise, the polyhedron domain (IV) is able to reduce the amount of
over-approximated points5. Yet less precise than the polyhedron domain due to the
bounded number of variables per constraint, the octagon domain (III) is also far less
time and memory consuming, and still capable of representing more constraints

5 In the polyhedron abstract domain the state space for X and Y could be reduced further through
representing also relations with other variables. For the sake of this example two variables were
considered sufficient.

24

than an interval domain. Its name refers to the maximum number of edges of the
resulting shape in the coordinate system.

2.5.1 Formalism

The most important aspects about the octagon abstract domain are the internal
representation through Difference-Bound Matrices and the way they are used for
representing all kinds of constraints. The following two paragraphs give a brief
overview over these parts.

Difference-Bound Matrices

Difference-Bound Matrices (DBMs) are a widely used representation in model-
checking for constraints of the form x − y ≤ c and ±x ≤ c. More formally, for a
given set V of variables V = {v1, ..., vn} we call vi − vj ≤ c a potential constraint
over V . The variables as well as the constant must belong to the the numerical set

_
I.

_
I can be either R, Z or Q extended with the element +∞. Then a set C of potential
constraints over V can be represented by a n× n matrix m [Min01]:

mij ,

c if (vj − vi ≤ c) ∈ C,

+∞ elsewhere.

m is called Difference-Bound-Matrix.

To be able to encode all octagonal constraints (±x± y ≤ c) it is necessary to have
each variable twice in the DBM (m+), in its positive and negative form. Thus, given
a set of variables V = {V1, ..., Vn} the set V ′ = {V′1, ..., V′2n} contains for each element
Vi the positive form in V′2i−1 and the negative form in V′2i [Min06]. Due to the
expansion of the DBM to twice the original size, the former constraints have to be
converted (c.f. Table 2.1) and afterwards they can be represented as a DBM.

25

Constraint represented as

Vi −Vj ≤ c (i 6= j) V′2i−1 −V′2j−1 ≤ c and V′2j −V′2i ≤ c

Vi + Vj ≤ c (i 6= j) V′2i−1 −V′2j ≤ c and V′2j−1 −V′2i ≤ c

−Vi −Vj ≤ c (i 6= j) V′2i −V′2j−1 ≤ c and V′2j −V′2i−1 ≤ c

Vi ≤ c V′2i−1 −V′2i ≤ 2c

Vi ≥ c V′2i −V′2i−1 ≤ −2c

Table 2.1: Constraints and their equivalent as octagonal constraint, taken from
Miné [Min06]

Point-Wise Partial Order. A Point-Wise Partial Order E is induced by the ≤
order on the numerical set I on DBMs [Min01]: m E n

4⇔ ∀i, j, mij ≤ nij.

V-domain. The V-domain is any subset of V 7→ I satisfying the constraint

∀i, j, vi ∈ V , vj ∈ V : vj − vi ≤ mij.

The V-domain is denoted by D(m). The V+-domain is the extension of the V-
domain, this is necessary due to the extension of the DBM. As the variables in V ′ are
dependent (v2i−1 = −v2i) the V+-domain is denoted by D+(m+) with:

D+(m+) ,
{
(s0, ..., sN−1) ∈ IN|(s0,−s1, ..., s2N−1,−s2N) ∈ D(m+)

}
Because of m E n⇒ D+(m) ⊆ D+(n) the ranges of the variables of m are a subset
of the ranges of the variables of n when m E n.

Operators and Transfer Functions. The operators and transfer functions on
DBMs reach from equality and inclusion tests, over intersection and union to widen-
ing, assignments and constraint satisfaction tests. While most of these operators are
defined quite intuitively, widening, assignments and the constraint tests need some
further explanation. The idea of the widening O is to remove the constraints in m+

that are not stable by union in n+:

26

[m+On+]ij ,

m+
ij if n+

ij ≤ m+
ij ,

+∞ elsewhere.

For assigning a linear arithmetic expression e to a variable vi ∈ V+, what can be
expressed as vi ← e(v0, ..., vN−1), we write m+

(vi←e) for the DBM representing the set
of possible values of V+. Except for some cases, where over-approximation is done,
the assignment function is exact.
For the result of a successful constraint satisfiability test g on m, we write m+

(g) for
the DBM representing the set of possible values of V+. It is exact in most cases, like
the assignment function. All operators and transfer functions are described in more
detail in the related literature [Min01].

Example for Octagonal Constraints and a DBM

The name of the octagon abstract domain refers to the amount of edges the shape
features at most in the second dimension. The constraints bounding the octagon
from Figure 2.4 could be:

• X ≥ 1

• X ≤ 6

• Y ≥ 6

• Y ≤ 5

• Y− X ≤ 3

• X + Y ≤ 10

• X−Y ≤ 4

• −X−Y ≤ −3

After converting these constraints to the form described in Table 2.1 they can be
shown as a DBM. The matrix resulting from the constraints shown in Figure 2.4 part
(III) and mentioned in the list above can be seen in the Table 2.2. Further information
about the internal representation of constraints and assignments in the Octagon
Abstract Domain can be found in the related literature [Min06].

2.5.2 The Octagon Abstract Domain Library

Based on the Octagon Abstract Domain introduced in the last section, the Octagon
Abstract Domain Library6 was implemented. It is written in C and also provides an
OCaml interface.
6 The current version is 0.9.10, it can be found here: http://www.di.ens.fr/~mine/oct/

27

http://www.di.ens.fr/~mine/oct/

1 2 3 4
1 +∞ -2 3 -3
2 12 +∞ 10 4
3 4 -3 +∞ -2
4 10 3 10 +∞

Table 2.2: Difference-Bound Matrice for the octagon from Figure 2.4

Library Configuration Options

The Octagon Abstract Domain Library has some options which can be configured
at compile time. The most important one is the ability to choose the underlying
numerical representation from integers, fractions, floats and the related GMP7 and
MPFR8 types. This way one can chose between fast computation which is unsafe
in case of overflows (integer representation) and slower, more memory consuming
but also more precise computation with floats, or the arbitrary precision types. The
choice of which numerical representation should be used depends on the program
which should be analyzed. For most programs where only integers occur, the integer
representation suffices, for programs where floats occur the float representation
should be used.

Library Interface9

The library provides methods for creating octagons with a parameterized amount of
variables (dimension) which are either unsatisfiable (bottom) or always satisfiable
(top). Like an equality test, also tests on top and bottom exist. The available operators
reach from the intersection of octagons to the widening of one octagon with another
one. Regarding transfer functions, the library is able to forget the information
which is stored about a variable, it can handle all the constraints introduced in the
last section, and also handle variable assignments with both intervals and distinct
values. Additionally the dimension of the octagon can be changed. Because of this,
variables can be removed and added from and to the octagon. Furthermore both the

7 GMP is a library for arbitrary precision arithmetic on integer, rational and floating-point numbers.
C.f. https://gmplib.org/

8 MPFR is a library for multiple-precision floating-point computations with correct rounding.
C.f. http://www.mpfr.org/

9 The complete documentation of the library’s interface can be found here:
http://www.di.ens.fr/~mine/oct/current/doc/doc_oct.pdf

28

https://gmplib.org/
http://www.mpfr.org/
http://www.di.ens.fr/~mine/oct/current/doc/doc_oct.pdf

constraints of the octagon and the interval for each variable can be printed out. Each
of these operations creates a new octagon, while the old one is immutable.

2.5.3 APRON Library Architecture & Interface

In contrast to the Octagon Abstract Domain Library, the APRON10 library aims
at providing a generic interface to several abstract domains. The octagon abstract
domain, an abstract domain for boxes and one for polyhedras are included.

Configuration Options

Like the Octagon Library, the APRON library is configured at compile time. Through
several options in the Makefile, additional abstract domains and OCaml / Java
bindings can be enabled.

Library Interface

The interface of the APRON library differs considerably from the Octagon libraries
interface. It is more abstract and allows a simpler creation of variable assignments
and constraints. As in the Octagon Abstract Domain Library, octagons can be joined,
widened and intersected. Additionally the APRON library is able to differentiate
between integer and float variables.

2.5.4 PAGAI

PAGAI [HMM12] is a freely available static analyzer written in C. It uses the octagon
abstract domain implemented in the APRON library. Unlike CPACHECKER PAGAI
takes LLVM11 bitcode as input. It is also not able to check the analyzed program on
custom specifications but only on the standard C/C++ assert makro.

10 The APRON library was also implemented by Antoine Miné, it can be found here:
http://apron.cri.ensmp.fr/library/

11 The LLVM Project is a modern compilation framework. Its intermediate representation is called
bitcode. More information can be found here:
http://llvm.org/

29

http://apron.cri.ensmp.fr/library/
http://llvm.org/

3 Octagon-Based Software
Verification

In this chapter we define a CPA+ (c.f. Section 2.2) based on the octagon abstract
domain. It will be called Octagon CPA. At first, an overview of the basic CPA+ parts
is given. Later on some advanced strategies for improving the Octagon CPA are
introduced.

3.1 The Octagon CPA

The formal requirements of a CPA+ were introduced in Section 2.2. The realization
of these requirements, and so the definitions of all essential parts of the Octagon
CPA are given in this section.

The Abstract Domain. The three pieces of the abstract domain D = (C, E , J·K) are
a set C of concrete states, a semi-lattice E = (E,>,⊥,v,t) and a concretization
function J·K : E→ 2C. The semi-lattices components are:

• an infinite set E of octagons (these are represented by DBMs),

• a top element >, thus an octagon with no constraints or specific assignments
(in the DBM each cell has the value +∞),

• a bottom element ⊥ which is an octagon that is, due to some constraints, not
satisfiable at all,

• a preorder v⊆ E× E represented by the point-wise partial order E on DBMs,
introduced in Section 2.5.1, for two abstract states e, e′ we define
v (e, e′) = e E e′.

• and a total function t : E× E→ E, available through the union operator ∪ on
DBMs, for two abstract states e, e′ we define t(e, e′) = e ∪ e′.

30

The concretization function J·K : E→ 2C is given through the V+-domain.

The Set Π of Precisions. The set Π is a power set of all program variables X,
such that Π = 2X. A single precision defines the variables which should be tracked
during the analysis.

The Transfer Relation. In the transfer relation the assignment of linear expres-
sions to variables and assumptions are handled. For assignments, the assignment
transfer function m+

vi←e on DBMs (c.f. Section 2.5.1) is used. Equally to the assign-
ment transfer function there is a transfer function m+

(g) for testing whether a certain
constraint g holds. It is used for handling assumptions in the transfer relation.
Both, assignments and assumptions, depend on the precision. This means that
assignments to untracked variables are ignored, and assignments from untracked
variables to tracked variables result in forgetting all limitations and constraints of
this variable (its interval is afterwards [−∞,+∞]). The same interval is used when
any assumptions about untracked variables should be made.

The merge Operator. In CPAs there can be several different versions of the merge

operator. For octagon-based CPAs three different operators are considered in this
bachelor’s thesis. These reach (related to an analysis) from very precise but slow to
very imprecise but much faster. For working correctly, all octagon merge operators
assume both octagons belong to the same program location. The differences between
the three versions are explained in the next sections.

The mergesep Operator. The mergesep operator is the most precise merge operator
and one of the standard merge operators. It never merges states, so there is no
over-approximation caused by unifying two octagon states. For two abstract
states e, e′ and a precision π the operator is defined by mergesep(e, e′, π) = e′.

The mergejoin Operator. The mergejoin operator joins two abstract states using the
total function t : E× E→ E defined in the abstract domain. It is also one of
the standard merge operators. For two abstract states e, e′ and a precision π

the mergejoin operator is defined by mergejoin(e, e′, π) = e t e′ = e ∪ e′. It is
therefore not as precise as the mergesep operator.

31

The mergewidening Operator. The mergewidening operator is the most imprecise merge

operator. It over-approximates even more than the mergejoin operator, due
to using the widening transfer function O of the DBMs instead of the union
operator. For two abstract states e, e′ and a precision π the mergewidening op-
erator is defined by mergewidening(e, e′, π) = eOe′. On widening one octagon
with another, each variable gets the maximal possible value range assigned,
depending on all variable relations in these octagons, such that the least stable
constraint by union is removed (c.f. Section 2.5.1).
In practice this means that loops are not unrolled. Instead the maximal possible
state for each control flow edge (with call-stack) is computed at the second
occurrence of the same control flow edge (the second iteration of a loop). All
states for these locations, which will be computed afterwards (e.g. in the third
iteration of the loop) are already covered by the widened state, and there-
fore they do not have to be considered once again in the abstract successor
computation.

The Termination Check stop. The termination check stop is based on the preorder
v of the abstract domain. It uses the point-wise partial order E on DBMs for
inclusion testing. For two abstract states e, e′ the termination check is defined by
stop(e, e′, π) = e v e′ = e E e′.

The Precision Adjustment Function prec. For the Octagon CPA precision adjust-
ment is not used, thus the precision adjustment function prec can be defined for two
abstract states e, e′ and a set R ⊂ 2E×Π as prec(e, π, R) = (e, π).

3.2 Influence of the merge Operator on the Analysis

In the introduction of the merge operators their preciseness and degree of over-
approximation was briefly described. To further illustrate this, the example from
Listing 2.1 is taken. It features a loop with a non-deterministic loop exit condition
and an increasing variable inside the loop. Thus the analysis will, in contrast to the
mergewidening operator, never stop when using the mergesep or the mergejoin operator.
The Table 3.1 shows some measures and their values for each of the merge operators.
They will be explained in the following paragraph. Afterwards these values will be
compared and interpreted.

32

mergesep mergejoin mergewidening

(a) Results for the CFA in Figure 2.1

terminates
no yes

result / true

size of the
final set
reached 2 + 9 ∗

#LoopTraversals

11

amount
of states
created

2 + 9 ∗ 2 ∗
#LoopTraversals 30

precision
single values for
ticks in each state

slowly increasing
interval for ticks in
the state for each

location

after the widening
ticks is in the

interval [0,+∞]

(b) Results for the CFA in Figure 2.1 but with changed loop condition:
ticks < 100

terminates
yes

result true

size of the
final set
reached 902

11

amount
of states
created

1802 30

precision
single values for
ticks in each state

slowly increasing
interval for ticks in
the state for each
location, finally

[0, 100]

after the widening
ticks is in the

interval [0, 100]

Table 3.1: Results of an analysis with the Octagon CPA when using different merge
operators

33

Measures and Their Computation. Besides self explanatory measures like termi-
nation, the result, or the precision, two other measures are interesting for comparing
the merge operators. These are the size of the set reached and the overall amount of
created states. The set reached has an impact on the amount of checks with the stop

operator and also greatly influences the evaluation performance due to the amount
of states which have to be kept. By contrast, the overall amount of created states
includes not only the states which are in the set reached, but also all states which are
created during the analysis. Both measures can be computed as following for the
example CFA in Figure 2.1:
There are two locations before the loop head. The amount of all other reachable
locations, inside the loop, as well as outside, is nine1. The mergesep operator now
considers both subtrees each time the loop head is reached (endless (a) or 100 times
for (b)). As there is no new state created while merging, and instead both sets are kept
in the set reached, this set, and the amount of created states are equal. With mergejoin

each of the nine locations has to be considered twice: once for the abstract successor
computation, and once again for the state created in the merge step. This state then
replaces both other states in the set reached. For this reason, for the mergejoin the
amount of created states is much higher (even infinite for the non-deterministic
loop) than the size of the set reached. With mergewidening the two subtrees of the loop
head at location three have to be considered separately. The widening is done in the
second traversal of the loop, starting with location three, two states are created (one
for the mergewidening, and one for the abstract successor computation). Afterwards
the left subtree is visited once again (6 states, for each a widening and an abstract
successor) and the right subtree, namely the loop is also unrolled another time. On
reaching the loop head the created state is equal to the one in the set reached, thus the
stop operator stops the abstract successor computation at this point, and the overall
amount of created states is 30.

Differences of the merge Operators. In Table 3.1 it can be seen that a mergewidening

is not only creating less states, it also over-approximates, such that instead of a
distinct value for ticks, in (a) the interval [0,+∞] is saved. In case of a bounded
loop (b) the interval is [0, 100]. While for an analysis using the Octagon CPA with the

1 The locations 12, 13 and 14 can never be reached. This is because of the assumptions before. At
first the variable f lag needs to be greater than zero in order to get to location 9. And at second, at
location 9 the variable would have to be smaller or equal to zero in order to reach location 12. This
is not possible.

34

mergesep operator the size of the set reached is the same as the amount of states which
are created, an analysis with the mergejoin operator creates much more states (after
the computation of the abstract successors, the merge function creates an additional
new state which replaces both other states) as there are in the set reached. Both
analyses do only terminate if the loop is bounded. The mergewidening operator is not
restricted by unbounded loops. Through the coarse over-approximation after the
second iteration of the loop each of the created states is covering the states, that will
get created in the third loop iteration. This is an advantage on the one hand, here
the analysis terminates and even produces the correct result, but on the other hand
if the error location would not be dependent on the variable f lag but on the variable
ticks the result would probably be a false negative. The mergejoin operator has the
same disadvantage.

3.3 Advanced Algorithms for the Octagon CPA

The theory for the Octagon CPA introduced in the last section suffices to implement
a working analysis. This analysis will then either have a huge state space or it will
be very imprecise. In the following two sections two approaches are introduced,
that reduce those disadvantages. On the one hand CEGAR will be applied to
the Octagon CPA, and on the other hand the performance will be improved by
combining different configurations of the Octagon CPA sequentially.

3.3.1 The Octagon CPA and CEGAR

One of the major problems of the Octagon CPA with a mergesep operator is the
exploding state space. Through CEGAR the state space can be kept as small as
possible, because only the variables necessary to prove all occurring counterexam-
ples infeasible are tracked. These variables are found with the interpolation of the
explicit-value analysis. As the explicit-value analysis is in some cases not precise
enough2 to be able to prove a counterexample infeasible, a second feasibility check
on error paths is done with an octagon-based analysis. If the counterexample can
be proved infeasible there, the variables which have to be tracked additionally can
be computed. By taking the difference of the current precision and the variables
which are collected from all in the path occurring assumptions (or variables they

2 In cases with non-deterministic or interval values for variables, octagons can assume interval
bounds for the variable whereas the explicit analysis is not able to save any value at all.

35

Figure 3.1: The Octagon CPA and CEGAR

Figure 3.2: Sequential combination of different configurations of the Octagon CPA

depend on) we get the necessary precision increment. In this way, the efficiency of
the explicit value interpolation is combined with the precision of the octagon-based
analysis, thus the state space does not grow that much and more programs can be
analyzed. The flow diagram in Figure 2.4 illustrates the usage of CEGAR with the
Octagon CPA.

3.3.2 Sequential Combination of different Configurations of the
Octagon CPA

In contrast to the last section where the improvement of analyses based on the Oc-
tagon CPA using a mergesep operator was addressed, this approach aims at creating
new analyses out of different Octagon CPA configurations. The restart algorithm (c.f.
Section 2.3.4) provides an appropriate possibility to sequentially combine different
analyses. It makes sense to use a fast configuration of the Octagon CPA (for example

36

one with a mergewidening operator) first (with the most precise Octagon CPA as coun-
terexample check). And afterwards, if necessary, a more precise analysis using the
mergesep operator. By defining upper bounds for time or memory consumption, we
can limit the run time of single analyses. When one of these limits is reached, the
currently executed analysis is stopped, and unknown is reported as result. Figure 3.2
shows both combinations of configurations, that are considered in this bachelor’s
thesis.

37

4 Implementation of Octagon-Based
CPAs

For the implementation of the Octagon CPA in CPACHECKER two octagon libraries
were used. The Octagon Abstract Domain Library which exists in its current version
0.9.10 since April 2006 and the APRON library which is still maintained. While both
libraries support the creation and manipulation of octagons, the main difference
is their API. The changes in the programming interface are too huge to have only
one CPA which can use both libraries as back-end. Instead two CPAs, one for each
library were implemented. These implementations are described in detail in the
following two sections.

4.1 A CPA Using the Octagon Abstract Domain

Library

The Octagon Abstract Domain Library (OADL) is a library written in C. Through the
Java Native Interface (JNI) this library will be used as back-end for the OADL CPA1.
As mentioned in Section 2.5.2, the library can be compiled with different numerical
types used as internal representation. This influences the performance of the library
regarding speed and accuracy. Two library configurations were considered useful
for this bachelor’s thesis:

• The fastest and most memory-saving configuration with integers as internal
representation will be used for analyzing integer related programs,

• and the library configuration with floats as numeric type for analyzing pro-
grams with floats.

1 In the implementation all classes and packages are prefixed with “octagon” instead of “OADL”,
also the CPA is called OctagonCPA, the name was only changed in this thesis in order to emphasize
the difference between the CPAs based on the APRON library and the Octagon Abstract Domain
Library.

38

The choice which library should be used is made via a configuration option. Every-
thing besides numerical variables, like pointers, structs, unions, arrays or strings
is over-approximated, thus it is always assumed to have an unknown value. Cast
expressions are ignored as well. The ability to represent relations between variables
in the OADL CPA is one of the major advantages compared to the explicit-value
analysis. In the following sections the OADL CPA is described in detail.

4.1.1 Architecture Overview

The OADL CPA has the same architecture as every other CPA, hence the general
architecture is not described in detail. However there are some implementation
features and enhancements for the CPA that are not intuitive. These are shown in
the following sections.

The Octagon and NumArray Classes

As we are accessing the OADL via JNI the octagon object cannot be used directly in
CPACHECKER. Thus for having the relation between an octagon in the OADL and
an octagon in the CPA, the C pointer to the octagon is wrapped in an object of the
class Octagon. Additionally the OADL has no memory management like it is known
from Java, therefore we have to do another implementation trick in order to free
octagons we do not need any more. When an octagon object is garbage collected
in Java we do not get notified. One possibility to free the referring octagon in the
OADL is by overwriting the finalize() method. Because this is deprecated (one can-
not rely on the execution of finalize()) another approach using phantom references
was implemented. Thus by creating an Octagon, a phantom reference is created
additionally. This reference is then added to a queue when the corresponding Java
object cannot be addressed any longer, and was garbage collected. At this point we
do now free the octagon with the memory management functions of the OADL.

While integers or doubles can be easily used as parameters for functions called
over the JNI, sometimes more complex parameters of different types are needed.
The OADL requires for assignments an array of the library specific type num_t.
Equally to the handling of octagons we use the same approach here. Instead of
having the array as a parameter for the functions, only the pointer to the num_t
array is exchanged between CPACHECKER and the OADL. This pointer is wrapped

39

in an object of the class NumArray. In contrast to the octagons, the num_t arrays
are only needed in the scope of a function call, thus they can be allocated and freed
directly before and after calling the function on the OADL. Therefore no additional
code for the garbage collection is needed.

Coefficient Creation

The parameters of the functions oct_assign_variable and oct_interv_assign_variable
are quite special. In the OADL for an assignment the index idx of the assigned
variable vidx ∈ V , and a coefficient coe f f (either a single value or an interval) for
each variable stored in the octagon plus one for a constant value are needed. The
following formula represents the assignment:

vidx ←
(

N−1

∑
i=0

vi · coe f fi

)
+ coe f fN

The translation of an expression that should be assigned to a variable into such
coefficients is handled in special classes. In order to being able to handle non-linear
expressions at least partly, multiplication and division on the coefficients classes were
implemented. An example for the additional feature is the non-linear assignment
x = x ∗ y in the octagon o, which cannot be handled directly by the octagon abstract
domain (and so the OADL). We are able to do parts of the multiplication during the
coefficient creation process. By either substituting x with the value of x and using
this value as coefficient for y or the other way round, we make the assignment linear.
Hence, x = x ∗ y can be represented by x ← valueOf(x) ∗ y, and afterwards the
OADL is able to handle this assignment.

1 2 3 4 5

1

2

3

4

5

X

Y

Figure 4.1: An example octagon

40

Although this is quite imprecise, it is the best approximation we can get with the
octagon abstract domain. Figure 4.1 demonstrates this clearly. Despite the variables
x and y are, each for itself, in the interval [1, 4], there are further constraints, such
that y <= 5− x and y >= 3− x. By resolving this non linear assignment through
multiplying y with the value range of x which is [1, 4], the further constraints are
lost, and the resulting value range for x is [1, 16] instead of the real range [2, 6.25].

4.1.2 Specific Configuration Options of the OADL CPA

In addition to the configuration options in Section 4.3.2, the OADL CPA provides
further configurability regarding the handling of floats and the library usage:

• Via the option cpa.octagon.octagonLibrary one can choose which library should
be used. It can either be set to INT or to FLOAT.

• The option cpa.ocaton.handleFloats toggles the float handling in the transfer
relation. If turned off, float variables are ignored, if turned on, they are taken
into consideration in the abstract successor computation. Enabling this option
only makes sense while the version of the OADL compiled with floats as
internal numerical representation is chosen. This option exists to be able to
use the library compiled with floats, although only integer variables should be
considered.

4.2 A CPA Using the APRON Library

The APRON library is like the OADL, written in C. Through the JNI this library
will be used as back-end for the APRON CPA. For the APRON library there are
also some options which can be set during compile time, for example additional
abstract domains, or the JNI Wrapper files may be created and compiled. In contrast
to the OADL the underlying numerical representation does not have to be changed
in order to handle floats and integers, the APRON library can handle floats and
integers at the same time. Because of that, the APRON CPA does not have the
possibility to toggle the evaluation of floats. They are, as well as integers, always
tracked depending on the used precision. Everything besides numerical variables,
like pointers, structs, unions, arrays or strings is over-approximated. For this reason
those variables are assumed to have an unknown value. Cast expressions for numeric
variables are partly handled. The ability to represent relations between variables in

41

1 Texpr0BinNode right =
2 new Texpr0BinNode(
3 Texpr0BinNode.OP_ADD,
4 new Texpr0UnNode(
5 Texpr0UnNode.OP_CAST, // several options for creating
6 Texpr0Node.RTYPE_INT, // a cast that behaves like
7 Texpr0Node.RDIR_ZERO, // original c code
8 new Texpr0CstNode(new DoubleScalar(1.2))
9),

10 new Texpr0DimNode(1) // the variable b, referenced by its index
11);

13 int assignedVarIndex = 0; // the variable a referenced by its index

15 state.assignCopy(
16 manager, // the manager, not important here, assumed to be a global

variable
17 assignedVarIndex,
18 new Texpr0Intern(right), // the righthandside of the assignment,

converted
19 // to the internal type of the APRON

library
20 null
21);

Listing 4.1: Example to show the use of tree expressions for assignment creation in
the APRON library

the APRON CPA is one of the major advantages compared to the Value Analysis
CPA. Unfortunately there was not enough time to finish the implementation of this
CPA. There are some bugs in the usage of the APRON library that make the APRON
CPA unusable for larger programs2. This will be explained in the evaluation section.
In the following sections the APRON CPA is described in detail.

4.2.1 Architecture Overview

The APRON CPA has the same architecture as every other CPA, so the general
architecture is not described in detail. However there are some implementation
features and enhancements for the CPA that are not intuitive. Through the object-

2 The expectation of this CPA was to be at least as precise as the OADL CPA. Both libraries and
CPAs are using octagons, thus their ability to prove constraints and handle assignments are equal.
However the APRON library handles some inputs for functions in other ways, than we expect
them to be handled, and there is no proper documentation about these border cases.

42

oriented implementation of the JNI wrapper the APRON library greatly takes away
programming work from the CPA developer. There is for example no need for
coefficient classes, like they are used in the OADL CPA. The parameters for the
assignment and constraint creation functions are tree and linear expressions. These
are organized like normal c expressions. The assignment:

a = ((int)1.2) + b;

could for example be converted to the function calls to the APRON library in List-
ing 4.1 (assuming a and b are variables 0 and 1 in the APRON state state). This
example also shows another big advantage of the APRON library compared to the
OADL, the ability of handling floats and integers at the same time, and casts. For the
OADL the coefficients classes were introduced in order to create the parameters of
the library functions. These classes also contain logic in order to handle multiplica-
tion and division. With the APRON library this logic is already implemented inside
the library. Through transformations, equal to those implemented in the coefficients
classes, the APRON library is able to handle non-linear expressions, too. These
are also over-approximated, because octagons are not able to handle polynomial or
exponential assignments and constraints. The following paragraphs briefly describe
each class, that is important for the APRON CPA.

The ApronState. Each ApronState is a wrapper around an APRON object. The
APRON object (called Abstract0 in the implementation) is like in the OADL CPA
holding a pointer to the object of the APRON library. As the APRON library also
includes the JNI part, it will not be described in more detail. Besides the APRON
object, the ApronState also keeps track of the mapping from variable names to their
referring ids in the APRON object. These ids are more complex than the ones of the
OADL state. In an ApronState one has to differentiate between float and integer
variables. Both variable types have their own dimensions. However if one wants
to add a variable the overall index is needed. For integers this is the index in the
integer domain, for floats this is size of the dimension of the integer domain plus
the index of the float variable in the float domain.

43

4.2.2 Specific Configuration Options for the APRON CPA

In addition to the configuration options in Section 4.3.2, the APRON CPA pro-
vides the choice which abstract domain should be used3. It is made via the option
cpa.apron.domain and can either be set to

• BOX, an abstract domain which uses boxes,

• or POLKA, an abstract domain which uses and manipulates convex polyhedra,

• or POLKA_STRICT, an subtype of the POLKA domain which is able to repre-
sent strict inequalities,

• or POLKA_EQ an abstract domain which can manipulate linear equalities,

• or to OCTAGON, which is the abstract domain introduced during this bache-
lor’s thesis, and which will therefore be used for the analyses with the APRON
CPA.

4.3 Common Parts of the OADL CPA and the APRON

CPA

This section mentions all parts of the OADL CPA and the APRON CPA which are
equal up to their class names. As both CPAs have the same goal, and both CPAs use
octagons, this is the case for many higher level parts of the CPAs. Thus everything
that is not related to the underlying libraries, such as most configuration options,
the precision and also CEGAR is described here.

Two Implementations of Precisions. For the OADL CPA and the APRON CPA
two precisions were implemented. A static precision which is already “full” in the
beginning and thus tracks all variables that can be tracked at every point of the
analysis is the first implementation. It is used for all configurations besides the ones
using CEGAR. The second precision was explicitly created for the use with CEGAR.
It is refineable (variables that should be tracked additionally, can be added to the
precision) and starts “empty”, hence no variables are tracked at the beginning of the
analysis.

3 The information about the different options was found in the Java documentation of the JNI
wrapper.

44

4.3.1 The CEGAR Implementation

For the implementation of CEGAR in CPACHECKER, a refiner which finds the vari-
ables that have to be tracked in order to refute a found error path is needed. The
interpolation step is quite difficult and costly. For that reason implementing the
complete refinement would go beyond the scope of this bachelor’s thesis. Hence the
explicit-value analysis, which is relatively similar to an analysis with the OADL and
APRON CPA, is used for computing the interpolants. Through this step we get inter-
polants4 precise enough for many programs. However this step is not applicable to
all kinds of analyzed programs or at least not to every part of the analyzed program.

In the example program from Listing 2.1 the VERIFIER_error() call5 is unreachable.
But as the explicit-value analysis cannot handle intervals, the path feasibility check
with the explicit-value analysis does not yield the expected result. In contrast, it
reports a feasible counter-example where only the variable f lag would have to be
tracked to prove that the complete program satisfies the specification.
In order to compensate this weakness of the explicit-value analysis, the refiners of
the OADL CPA and the APRON CPA have a backup feasibility checker which is
made with octagons. It is used when the explicit-analysis cannot successfully refute
a found counterexample. Their feasibility checker uses a precision which is initially
full to check the found error-path on feasibility. If the counterexample is still feasible
with the feasibility checker of the OADL and APRON CPA, the verification process
ends, and the counterexample violating the specification is returned. Otherwise
their refiners compute their own interpolant in a very basic way:

1. The feasible prefix of the infeasible counterexample is computed with the
feasibility checker.

2. Then the variables that occur in the assumptions (and their dependencies,
e.g. assignments of other variables to this variables) of the feasible prefix get
computed and are added to a set.

3. The difference between the previously tracked variables and the variables in
the computed set represent the final precision increment.

4 variables which have to be added to the precision in order to refute the found counterexample
5 By the if conditions the variable f lag is limited to certain interval bounds. At first, if f lag is in

the interval from [−∞, 0] the program quits, thus f lag has to be in the interval]0, ∞] when the
program reaches the second if condition. This condition is then fulfilled because]0, ∞] > 0, and
the program has to quit here in every case.

45

With the found precision increment, finding the same error path in the next CEGAR
iteration can be avoided. This approach is quite coarse and adds often variables
to the precision which would not be needed in order to refute the counterexample.
For that reason, this kind of interpolation is only used if the explicit-value analysis
fails to refute a counterexample. If the interpolation is done once with octagons, the
following CEGAR iterations can only be done with octagons, as well.

4.3.2 Configuration Options

The configurability of CPACHECKER is a big advantage. In one CPA several options
can be defined which change the behavior of the analysis. For analyses with the
OADL CPA and the APRON CPA there are some options which need to be set in
order to make it work properly and others which can be chosen freely. Because of
that, a “basic configuration” that is used by every other configuration using the
OADL CPA or the APRON CPA, can be created.

Basic Configuration Options. Besides declaring the LocationCPA, the Callstack-
CPA, the FunctionPointerCPA and the OADL CPA / APRON CPA as components
of the CompositeCPA only one option has to be enabled for a basic analysis. This
option is named cfa.moveDeclarationsToFunctionStart. By enabling it, all declarations
are moved to the beginning of each function. This makes dimension changes in the
OADL easier and less costly6. These dimension changes are always necessary when
adding variables or when comparing, unifying or widening states with different
amounts of variables.

Configuration Options for Using CEGAR. In order to use the CEGAR algorithm,
the previously mentioned configuration options have to be extended. At first
CEGAR is enabled by setting the option analysis.algorithm.CEGAR to true. Then in
the cegar.refiner option we either specify cpa.octagon.refiner.OctagonDelegatingRefiner
or cpa.apron.refiner.ApronDelegatingRefiner as its value. Finally the initial preci-
sion type of the CPA has to be a refineable precision. This is realized by set-
ting the option cpa.octagon.initialPrecisionType or cpa.apron.initialPrecisionType to
REFINEABLE_EMPTY.

6 Inserting or deleting new dimensions at the highest index of the DBM is less costly than for example
in the middle, as no permutations have to be done inside the DBM.

46

Configuration Options for Using The Restart Algorithm. The restart algorithm
is the sequential combination of different analyses. Whenever an analysis fails to
compute a proper result, the next analysis is used until the last specified analysis is
reached. In the option restartAlgorithm.configFiles all configurations of analyses are
mentioned in the order they should be used during the restart analysis.

Additional Configuration Options In addition to the already mentioned configu-
ration options, the OADL CPA and the APRON CPA provide further configurability
regarding the merge operator, and a time limit for the feasibility check while using CE-
GAR. All configuration options are named equally for both CPAs, the part domain
should be replaced by octagon for the OADL CPA and apron for the APRON CPA:

• The merge operator, cpa.domain.mergeop.type can be chosen among SEP, JOIN
and WIDENING. The default configuration uses the mergesep operator.

• By enabling the option cpa.domain.mergeop.onlyMergeAtLoopHeads (it is dis-
abled per default), one can further influence the behavior of the mergejoin and
mergewidening operators. By only merging the states which occur at a loop head7

the analysis becomes more precise. However, every time the loop head is
reached, the join or widening is done. So on each iteration of a loop the infor-
mation in the states becomes more abstract and therefore the analysis is less
precise than an analysis with the mergesep operator.

• The option cpa.domain.refiner.timeForOctagonFeasibilityCheck allows to adjust
the time limit for the feasibility check made with octagons while using CEGAR.
One can set the maximal time in seconds the check may last. Zero means there
is no limit, which is the default behavior.

7 A loop head is the entry point of each loop. For the CFA in Figure2.1 the location three is a loop
head.

47

4.4 Comparison of the OADL CPA and the APRON

CPA Regarding the Programming Effort

In the sections about the implementation of the OADL CPA and the APRON CPA
some similarities and differences have already been mentioned. The advantages and
disadvantages of both CPAs and libraries will now be regarded in a more detailed
way from the view of a programmer.

Support. In contrast to the OADL, which was developed from 2000 to 20068, the
APRON library is still maintained. On the one hand this is an argument against
using the OADL, but on the other hand, the requirements and the scope of the
octagon abstract domain did not change. Thus both libraries can be equally used
without having any disadvantages due to missing support (despite recently found
bugs).

Abstract Domains. The OADL is an an implementation of the octagon abstract
domain. The API of the OADL provides all kinds of functions for creating and
changing octagons. The APRON library is not only aimed at providing an API to
an implementation of the octagon abstract domain, it also supports other abstract
domains, like boxes or polyhedra. Hence there is the need for a larger interface.
This interface is divided into a special part for each abstract domain and a generic
part for the whole library. As the scope of this bachelor’s thesis is the theory and
implementation of octagon-based CPAs, both libraries are appropriate.

Programming. When it comes to the implementation of octagon-based CPAs with
both libraries the important differences can be seen. At first the OADL has especially
for the assignment functions a relatively complicated signature. A great part of the
OADL CPA is therefore the conversion of expressions to a form that the OADL can
handle. This includes some optimizations which enable us to handle at least some
non-linear expressions, what would not be possible otherwise. Second, the OADL is
only able to handle either floats or integers at time. Compared to the APRON CPA
this is quite inconvenient.

8 More details can be found in the documentation of the library:
http://www.di.ens.fr/~mine/oct/current/doc/doc_oct.pdf

48

http://www.di.ens.fr/~mine/oct/current/doc/doc_oct.pdf

The APRON library has a complex system of expressions, such that casts, binary
expressions and unary expressions with arbitrary nesting can be represented. This
works in a similar way as the representation in C code. This simplifies the creation of
the parameters needed for the transfer functions of the APRON library. Additionally
to the omission of the coefficient creation, the APRON library handles all statements
which are too complex for a certain domain itself. For that reason the transforma-
tions on coefficients in the OADL CPA, that were made in order to be able to handle
some non-linear assignments, are also not needed. Furthermore APRON is able to
handle floats and integers at once. This is on the one hand an advantage, but it also
leads to the disadvantages of APRON. For floats and integers there are no implicit
casts as they exist in C. By assigning a float value which has decimal places to an
integer variable the returned APRON object is always ⊥. This is quite unintuitive.
Throwing an exception or at least any kind of warning would be better. These ⊥
states also occur if other parts of assignments fail and the same applies to constraint
additions. Overall the OADL CPA was more implementation and theoretical work
compared to the APRON CPA, the APRON CPA in contrast is harder to debug
and has unintuitive return values for functions which are called with inappropriate
parameters.

49

5 Evaluation

In this chapter the OADL CPA and the APRON CPA will be evaluated in terms of
their performance with different kinds of programs. Also several configurations of
the CPAs are taken into consideration. The evaluation is not limited to analyses in
CPACHECKER, another analyzer, PAGAI, which uses octagons as well, is used for
comparison purposes.

5.1 Benchmark Programs

For the evaluation and comparison many kinds of programs will be used. From
the benchmark suite of the International Competition on Software Verification (SV-
COMP), the appropriate categories were chosen. And we have some custom bench-
mark files, for illustrating the abilities of the octagon abstract domain on certain
kinds of problems. Additionally there are some benchmarks that require the han-
dling of floats, which are taken into consideration as well.

The SV-COMP Benchmark Set. The benchmark set of the SV-COMP features
many categories which cover different program types1. Some categories, namely
Memory Safety, Concurrency, Recursive, Heap Manipulation and Bit Vectors use features
like recursion, concurrency, bitvectors or pointers. As our configurations do not
support these features those categories are excluded from the evaluation. The
benchmarks of the SV-COMP that are applicable to our configurations are Control
Flow and Integer Variables2, Device Drivers Linux 64, Sequentialized Concurrent Programs3

and Simple. These categories do not include pointers and are therefore considered

1 A more detailed description of the certain categories can be found here:
http://sv-comp.sosy-lab.org/2014/benchmarks.php

2 For the eca files ranging from Problem10_* to Problem19_* the verdict is currently unclear. Hence
these files are excluded from the evaluation.

3 From the Sequentialized Concurrent Programs set only the files in the systemc folder are taken for the
evaluation. The other files rely on function pointers and arrays. The octagon-based CPAs cannot
handle either of them.

50

http://sv-comp.sosy-lab.org/2014/benchmarks.php

meaningful for the following benchmarks. All programs in these categories do
rely on floating-point variables. Because of the variability of the programs in this
benchmark, a good overview over the performance of the OADL CPA and the
APRON CPA analyzing “real life” problems, is given. Overall 2310 files are included
in this set.

CBMC Benchmarks for Float Analyses. For showing the ability to analyze pro-
grams with floating-point arithmetic, some artificial benchmarks from the regression
testing suite of the analysis tool CBMC and a special suite called CDFPL are used4.
Unfortunately those programs make use of non-linear expressions in assignments,
so they do not perfectly match the abilities of the octagon abstract domain. Due to
the lack of other, non-artificial, programs these benchmarks can only give an idea of
the performance of the OADL CPA and the APRON CPA when real world problems
should be analyzed.

Custom Programs. To compensate the gaps regarding certain kinds of programs
some artificial benchmarks were created. For example, there is a program that relies
on float variables. Other benchmarks can only be proved correct by considering
relations between variables. These programs will be evaluated in an other way than
the SV-COMP benchmark set. They should show certain abilities of the analyses and
not make an overall statement on the performance of OADL CPA and the APRON
CPA.

5.2 Configurations

For the evaluation we used several configurations of the OADL CPA. They are briefly
described here:

oadlSep This is the basic configuration. It uses all default values for the imple-
mented configurations options, so the merge operator is mergesep.

oadlJoin In this configuration the merge operator is changed to mergejoin.

4 More information about CBMC can be found here:
http://www.cs.cmu.edu/~modelcheck/cbmc/
http://svn.cprover.org/svn/cbmc/trunk/regression/cbmc/
http://www.cprover.org/cdfpl/

51

http://www.cs.cmu.edu/~modelcheck/cbmc/
http://svn.cprover.org/svn/cbmc/trunk/regression/cbmc/
http://www.cprover.org/cdfpl/

oadlJoin-cex This is the oadlJoin configuration with counterexample check. If a
counterexample occurs it is rechecked with the oadlSep configuration.

oadlJoin-LH This is the oadlJoin-cex configuration with a changed merge strategy.
Instead of merging when possible, this configuration merges only states that
are at loop heads.

oadlWidening In this configuration the merge operator is changed to mergewidening.

oadlWidening-cex This is the oadlWidening configuration with counterexample
check. If a counterexample occurs it is rechecked with the oadlSep configura-
tion.

oadlWidening-LH This is the oadlWidening-cex configuration with a changed
merge strategy. Instead of merging when possible this configuration merges
only states that are at loop heads.

oadl-refiner This is the basic oadlSep configuration which uses CEGAR addition-
ally.

oadl-seq-J-R In this configuration the oadlJoin-cex configuration and the oadl-
refiner configuration are sequentially combined. At first the oadlJoin-cex
configuration is used for analyzing the program. If then a counterexample was
reported which can be proved infeasible with the counterexample check or if
the analysis is ended due to a time or memory limit, the second analysis with
the oadl-refiner configuration is started. The first configuration is limited to
250 seconds time for the analysis, and the subsequent configuration gets all
the rest.

oadl-seq-W-R In this configuration the oadlWidening-cex configuration and the
oadl-refiner configuration are sequentially combined. By appending either
-100 or -250 we express the run time limit for the widening configuration. At
first the oadlWidening-cex configuration is used for analyzing the program.
If then a counterexample was reported which can be proved infeasible with
the counterexample check or if the analysis is ended due to a time or memory
limit, the second analysis with the oadl-refiner configuration is started.

-float is appended to the configuration name to show that the float handling is en-
abled during the analysis. For the APRON CPA the basic configuration apronSep

52

with a mergesep operator is used. Furthermore two configurations of the explicit-
value analysis are used for comparison purposes. These are an analysis without
CEGAR and without final counterexample check5 (eva-basic), and an analysis with
CEGAR but also without final counterexample check (eva-refiner). From the predi-
cate analysis only the standard configuration (predicate) was considered.

5.3 Evaluation Environment

The evaluation was performed on machines with a 2.6 GHz Octa Core CPU (Intel
Xeon E5-2650 v2) and 128 GB of RAM. The operating system is an Ubuntu 12.04
(64-bit) with a Linux 3.13.0-30 kernel. For the Java support OpenJDK 1.7 is used. The
CPACHECKER revision for the evaluation is 128836. Each single verification run was
limited to 32 GB of RAM and to 500 seconds of run-time. The Java heap was set to
2 GB for analysis with the OADL and APRON CPA, to 29 GB for the explicit-value
analysis and to 25 GB for the predicate analysis. PAGAI7 was also run with 32 GB of
RAM. For each verification run the overall amount of CPU time8 and memory usage
is measured. In all tables time and memory consumption will be given in hours and
megabytes with two significant digits unless it is specified in another way. For the
conversion of bytes we use SI units. This means that 1 MB is composed of 1000 KB
not 1024 KB.

5.4 Performance Evaluation of the OADL CPA and

the APRON CPA

In this section both implementations of the Octagon CPA that were introduced
in this bachelor’s thesis, are evaluated. Several measures, such as the number of

5 The explicit-value analysis uses by default CBMC to recheck found counterexamples. In order to
make it better comparable, this check is deactivated.

6 Some minor changes that only effect the evaluation of the floating-point benchmarks were made in
revision 12904 in the branch octagon-bathesis. Thus the floating-point benchmarks were performed
on this CPACHECKER version.

7 PAGAI can be downloaded as a statically linked binary here:
http://pagai.forge.imag.fr/
However, the downloadable version has the release number 14-04-07, but the version used here
was especially compiled for us (14-04-09), and does not match the version which is on this website.

8 This time measure refers to the CPU time of the whole verification run.

53

http://pagai.forge.imag.fr/

created states, the time and memory consumption of the analyses, and the amount
of successfully analyzed programs are taken into consideration.

5.4.1 Evaluation of Integer-Related Programs

The integer-related programs from the International Competition on Software Ver-
ification build the largest part of the applied benchmark set. The variety of these
programs is a big advantage compared to the small amount of floating-point related
benchmarks. In this section these programs will be used to compare different config-
urations of the OADL CPA regarding their strengths and weaknesses. Unfortunately
the APRON CPA contains bugs (c.f. Section 5.5) that make the analysis of large-scale
problems, like they are included in the integer benchmark set, impossible. For that
reason a comparison between these CPAs is not meaningful.

Overview. In Table 5.1 one can see the aggregated results of all integer-related
benchmarks. Besides the predicate analysis, which is able to prove the most pro-
grams correctly, the oadl-refiner configuration is the third best single-analysis con-
figuration after eva-refiner regarding the amount of successfully proved programs.
It is able to successfully analyze about 200 to 300 programs more than the other
single-analysis configurations using the OADL CPA. Compared to the eva-refiner
configuration, eleven programs less could be verified successfully, but for twelve
programs less a wrong result was returned. Big differences in the performance can
be seen between configurations using differing merge operators. When it comes to
the sequential combination of analyses, oadl-seq-W-R-100 and oadl-seq-W-R-250
achieved better results than the single-analysis configurations. The given time in the
table refers to the overall amount of used computation time (including the time of
verification runs that did not terminate or yield a wrong result). The bad result of
the apronSep configuration is caused by the remaining bugs in the APRON CPA.
All results are discussed in the following paragraphs.

Comparison of Single-Analysis Configurations. By taking a closer look at the
single-analysis configurations we can determine three groups which are interesting
for a further evaluation.

• The comparison of oadlSep, eva-basic, oadl-refiner and eva-refiner is worth-
while, as these configurations use the same merge strategy and also the same
refiner. This illustrates the differences in the abstract domains in much detail.

54

Configuration #correct #false alarms #false proves Time (h)

Analyses with the OADL CPA and the APRON CPA

apronSep 703 1162 1 46

oadlSep 1506 57 0 90

oadlJoin 1577 188 0 61

oadlJoin-cex 1433 35 0 77

oadlJoin-LH 1247 20 0 120

oadlWidening 1714 276 0 40

oadlWidening-cex 1507 19 0 53

oadlWidening-LH 1352 23 0 95

oadl-refiner 1801 50 0 52

oadl-seq-J-R 1549 37 0 83

oadl-seq-W-R-100 1870 51 0 50

oadl-seq-W-R-250 1842 51 0 56

Explicit-Value and Predicate Analyses

eva-basic 1747 63 0 68

eva-refiner 1812 62 0 50

predicate 1994 11 1 33

Table 5.1: Overall Performance of the Analyses on the SV-COMP Benchmarks

55

• The comparison of oadlSep, oadlJoin and oadlWidening, allows a deeper
insight into the differences of the merge operators.

• The comparison of oadlSep,oadlJoin and oadlWidening is interesting, be-
cause the latter use the oadlSep configuration as counterexample check. There-
fore these analyses do already profit of a more precise second configuration.

In the following paragraphs, the results of the before-mentioned configurations will
be discussed.

 1

 10

 100

 0 200 400 600 800 1000 1200 1400 1600 1800

C
P
U

 t
im

e
 i
n
 s

e
co

n
d

s

n-th fastest correct result

oadlSep
oadl-refiner

eva-basic
eva-refiner

Figure 5.1: A plot of quantile functions of the configurations oadlSep, oadl-refiner,
eva-basic and eva-refiner

Comparison of oadlSep, eva-basic, oadl-refiner and eva-refiner. When only
regarding the correctly proved programs, one can see that the OADL CPA profits
much more of CEGAR than the explicit-value analysis does (c.f. Figure 5.1). While
the eva-refiner configuration is able to successfully analyze 65 programs more than
the eva-basic configuration, for the OADL CPA the difference is larger. Instead
of 1507 programs with oadlSep, 1801 programs can be analyzed successfully (c.f.
Table 5.1). This is an improvement by approximately 20%. Table 5.2 gives some
indications for that. At first, the average amount of states in the sets reached for
analyses with the OADL CPA is much lower than with the explicit-value analysis.

56

Configuration ∅ #reached states ∅ #refinements ∅ memory (MB)

oadlSep 15000 − 1200

oadl-refiner 11000 6.0 630

eva-basic 42000 − 320

eva-refiner 16000 14 560

Table 5.2: Average Number of refinements, states in the set reached and memory
consumption for certain configurations, only successfully-analyzed verifi-
cation tasks are considered

The oadlSep configuration creates even less states than the eva-refiner configuration.
The explanation for that behavior are the relations between variables that limit the
amount of possible states. By using CEGAR (oadl-refiner) the state space is reduced
once more. Also when looking at the average memory consumption per verification
task, savings of over 50% can be seen. For the eva-refiner configuration in contrast
the memory consumption increases while the state space is smaller than without
using CEGAR. Another advantage of the availability of linear constraints is the
smaller amount of necessary refinements.

Comparison of oadlSep, oadlJoin and oadlWidening. The analysis results of
these configurations differ greatly. The amount of reached states and the memory
consumption decreases (c.f. Table 5.3) with the precision of the analysis. This hap-
pens due to reaching error locations earlier than a more precise analysis would reach
them. As no counterexample check is done at the end of the analyses, the amount
of successfully proved programs is not a meaningful measure for these configura-
tions. Although the report of an unsafe program with oadlJoin or oadlWidening
may be correct, the counterexample found will in most cases not be a valid one. In
this case a better measure for the performance is the number of created successors.
While the oadlSep configuration creates the fewest successors of all configurations,
oadlJoin creates the most. Due to the small amount of abstraction which is added
when joining states, the oadlJoin configuration finds many new abstract states that
are not covered by those that exist at this point. Additionally through the over-
approximation many assumptions are considered satisfiable even if they are not.
The oadlWidening shows a better approach for the merge than simply joining two
states. Due to the widening the over-approximation is coarser than with oadlJoin.

57

Configuration #reached states #successors ∅ memory (MB)

oadlSep 109592186 113575288 5700

oadlJoin 53446165 336858179 4400

oadlWidening 25248833 190570792 2000

oadlJoin-cex 57508907 356710324 5700

oadlWidening-cex 24585622 210071521 3300

oadlJoin-LH 112254046 118817033 7300

oadlWidening-LH 105635978 260048702 7200

Table 5.3: Number of created states, states in the set reached and average memory
consumption for certain configurations

This makes it the fastest and also most memory saving configuration among this
three. By adding more over-approximation, newly created states are covered more
often by already existing states, hence they do not have to be considered once again
in the abstract successor computation. However more states which should not be
reachable can be reached, and because of this more false alarms, compared to the
oadlJoin configuration, are reported (c.f. Table 5.1).

Comparison of oadlSep, oadlJoin-cex and oadlWidening-cex. The counterex-
ample check with the oadlSep configuration is a first approach on improving the
imprecise oadlJoin and oadlWidening analyses. According to Table 5.1 this works
quite well. The false alarms reported by the analyses can be reduced to a minimum.
So both configurations, oadlJoin-cex and oadlWidening-cex are at least as precise
(only with regard to false alarms) as the oadlSep configuration. When it comes to
the time consumed, the counterexample configurations are also better, compared
to analyses with oadlSep. While with the mergejoin operator only about 10 hours of
computation time can be saved, the mergewidening saves 35 hours, over 30% of the
time of mergesep.

The Effect of Only Merging at Loop Heads. By only joining or widening states
at loop heads the configurations are intended to achieve a higher precision inside of
certain loop iterations. However, merging only at loop heads is counterproductive.

58

 1

 10

 100

 0 200 400 600 800 1000 1200 1400 1600 1800

C
P
U

 t
im

e
 i
n
 s

e
co

n
d

s

n-th fastest correct result

oadl-refiner
oadlWidening-cex
oadl-seq-W-R-100

Figure 5.2: A plot of quantile functions of the configurations oadlWidening-cex,
oadl-refiner and oadl-seq-W-R-100

While the initial state for each loop iteration becomes more and more abstract, the
states which are created inside the loop are not merged. This leads to much higher
amounts of created successors and reached states as usual for configurations which
do a merge join or widening (c.f. Table 5.3). The precision of the analysis could not
be increased, as the over-approximation at loop heads is too coarse. Because of that,
these two configurations are considered the worst configurations that were tested.

Comparison of the Sequential Combinations of Analyses. When creating a
sequential combination of analyses, the goal is to find analyses that complement
each other. As one goal of this thesis is the evaluation of the Octagon CPAs that were
implemented, only sequential combinations of these CPAs were considered. Table 5.1
gives an overview over all single-analysis configurations and their abilities. As
expected of the results for the oadlJoin-cex and oadlWidening-cex configurations,
the combinations with widening were clearly better. The optimization with using
a smaller time limit of 100 seconds for the first analysis (instead of splitting up the
time into two equal parts of 250 seconds), increases the correctly analyzed programs
from 1842 to 1870. This can be explained by the results of the oadlWidening-cex
configuration. The results are either computed fast or they tend to be unknown due

59

Configuration #correct #false alarms #false proves Time (h)

oadlSep 632 45 0 15

oadl-seq-W-R-100 619 35 0 28

PAGAI 322 0 11 30

Table 5.4: Overall performance of the analyses on the SV-COMP benchmarks

to the time limit. The reason for exceeding the time limit is that some conditions
cannot be widened. In such cases, the oadl-refiner configuration is more likely to
return a proper result. So the configuration oadl-seq-W-R-100 is considered being
the best among the ones using the OADL CPA. Furthermore, it is able to correctly
analyze 58 programs more than the explicit-value analysis while they take about
the same time. Additionally eleven programs less are analyzed wrongly. Figure 5.2
shows the components and the combinations results. The x-axis denotes the number
of the program (they are sorted ascending after run time) and the y-axis the amount
of time, that each verification run took.

Comparison of the OADL CPA to PAGAI PAGAI is a static analyzer which can
use the octagon abstract domain for its verification process. Due to the lack of
further benchmarks that are prepared in a way that PAGAI is able to handle them,
the SV-COMP set had to be reduced to the categories Simple and Control-Flow In-
teger. The total number of benchmark programs used is therefore 819. While the
oadl-seq-W-R-100 and oadlSep configurations are able to analyze over 600 pro-
grams correctly, PAGAI is only able to successfully analyze 322 files (c.f. Table 5.4).
Furthermore it produces eleven false proves. Regarding the amount of CPU time,
the oadlSep configuration is approximately twice as fast as PAGAI.

5.4.2 Evaluation of Float-Related Programs

The floating-point arithmetic benchmarks cover only a small range of possible
programs. All benchmarks in this set are artificial, therefore the results do not have
the same significance as the benchmarks from the SV-COMP set.

CBMC Regression and CDFPL Benchmark Suite. Because of the small pro-
grams, analyses with CEGAR or sequential combinations of other configurations

60

Configuration #correct #false alarms #false proves Time (min)

apronSep 27 44 0 3.7

oadlSep-float 24 48 0 3.5

oadl-refiner-float 24 48 0 3.7

oadl-seq-W-R-250-float 24 48 0 3.6

eva-basic 30 42 0 3.4

eva-refiner 30 42 0 3.6

predicate 23 49 0 3.7

Table 5.5: Overall Performance of the Analyses on the SV-COMP Benchmarks

do not have any advantages compared the basic oadlSep-float configuration. This
can be seen in Table 5.5. As these benchmarks rely on non-linear expressions, the
performance of the analyses done with configurations of the OADL CPA is quite
bad. Out of 74 files only 24 can be analyzed correctly with either of the OADL
CPA configurations. The explicit-value analysis is able to analyze 30 programs of
this suite correctly, whereas the predicate analysis can only analyze 23 programs
successfully. The overall time consumptions of each analysis are quite similar. This
is another evidence for the small amount of programs and it also shows that the
programs are comparably simple, otherwise the analysis results, as well as the time
consumption, would be more divergent. The results of the apronSep configuration
are once again not taken into consideration for the comparison, due to the bugs in
the implementation.

5.4.3 Custom Programs for Showing the Abilities of the OADL
CPA

In this section the abilities, such as the handling of relations, or the handling of
floating-point variables, of the OADL CPA are illustrated on certain examples. We
used CBMC9 for the comparison. All example programs are safe.

Variable Relations. The program in Listing 5.1 exhibits a linear constraint (y = x),
such that the assumption x < −70∨ x > 70 is never satisfiable. The explicit-value

9 CBMC is a bounded model-checker, c.f. http://www.cprover.org/

61

http://www.cprover.org/

1 int main(void) {
2 float x = __VERIFIER_nondet_float();
3 float y = x;

5 if (y < 0) {
6 y = -y;
7 }
8 if (y <= 69) {
9 if (x < -70 || x > 70) {

10 __VERIFIER_error();
11 }
12 }
13 return 0;
14 }

Listing 5.1: Example program 2

analysis is not able to infer this information, hence it cannot prove this program
correct. This is somewhat similar to the problem the explicit-value analysis has
by analyzing the program from Listing 2.1. CBMC, the predicate analysis and the
OADL CPA are able to prove the program correct.

Floating-Point Variables. The octagon abstract domain is only able to handle
linear assignments. Thus every expression which is at least polynomial has to be
transformed into an other expression, for example by resolving the value of some
variables. The example in Listing 5.2 features many polynomial expressions, the
bounds check at the end was chosen such that the __VERIFIER_error() call cannot be
reached. However, the predicate analysis, as well as the explicit-value analysis report
the error location as reachable. The OADL CPA is with its oadlSep configuration
able to prove the program correct as well as CBMC.
The program in Listing 5.3 does not feature polynomial expressions. It consists
simply of a loop which has a high amount of iterations. By using the oadlWidening
configuration, this program can be analyzed in less than half a minute. The predicate
analysis is also able to prove this program correct. Whereas the explicit-value
analysis unrolls the loop and therefore does not finish within 900 seconds of run
time, CBMC has the same problem.

5.4.4 Conclusion of the Performance Evaluation

When using the mergesep operator the OADL CPA is in many ways equal to the
explicit-value analysis. Its basic configuration oadlSep is, due to the high memory
consumption, not as good as the basic configuration of the explicit-value analysis

62

1 float f(float x) {
2 return x*x*x;
3 }

5 float fp(float x) {
6 return x*x;
7 }

9 int main()
10 {
11 float IN;
12 __VERIFIER_assume(IN > 0.1f && IN < 0.2f);

14 float x = IN - f(IN)/fp(IN);

16 if(!(x > -0.8 && x < 0.2))
17 __VERIFIER_error();

19 return 0;
20 }

Listing 5.2: Example program 3

1 int main(void) {
2 float step = 0.00000000001;
3 float value = 0;
4 int counter = 0;

6 while (value < 10) {
7 counter ++;
8 value += step;
9 }

11 if (counter < 1000000000000) {
12 __VERIFIER_error();
13 }

15 return 0;
16 }

Listing 5.3: Example program 4

eva-basic. However when using CEGAR the increase in performance of the OADL
CPA is much higher than the one of the explicit-value analysis. Due to not tracking
unimportant variables the average memory consumption per verification run can
be reduced by approximately 50%. For getting another performance boost, the
oadlWidening-cex configuration and the oadl-refiner configuration can be com-
bined sequentially. In this configuration about 70 programs can additionally be
analyzed successfully. The possibility to have that many different configurations
with one abstract domain is another advantage of the OADL CPA.

5.5 Restrictions and Challenges

During the implementation and the evaluation of the OADL CPA and the APRON
CPA several difficulties were encountered. These are described in the following
paragraphs.

Floating-Point Benchmarks. Due to the lack of non-artificial floating-point bench-
marks we cannot make any statement about the performance of the OADL CPA
and the APRON CPA when proving floating-point programs. The programs that
were used for the evaluation suffice to show that both CPAs are able to handle
float variables. However their performance on industrial-size samples could not be
tested.

63

The APRON CPA. While the OADL CPA works well, as discussed in the former
sections, the APRON CPA still struggles with bugs that render it unusable. Although
the API defines some exceptions which are thrown by the library when any problem
appears, the behavior of the library regarding certain inputs does not match the
intuitive behavior. For example, the library is not directly able to assign a float value
to an integer variable. The float value has to be explicitly casted (by adding a cast
expression) to an integer. If this cast expression is missing, the library does not throw
an exception as it would be expected if a situation occurs that is not supported.
Instead, a bottom state is returned and the analysis stops at this path. Finding this
bug was quite easy as bottom states may never appear after assignments. However
the same applies to assumptions, and in this case it is quite normal that the control
flow ends. So the bottom states after assumptions can’t be checked. Moreover, while
analyzing the integer-related benchmarks from the SV-COMP cases with missing
states or program paths appeared, such that false proves occur. As the APRON
CPA should similarly to the OADL CPA strictly over-approximate everything that is
unknown, false proves should never occur. Hence they are a definite sign for a bug.
The short implementation time for the APRON CPA did not suffice to find and fix all
bugs. For that reason the APRON CPA is not usable for industrial-sized programs.

64

6 Conclusion

In this chapter a summary of the thesis is given. Additionally some enhancements
that could further improve the performance of the OADL CPA and the APRON CPA
will be mentioned.

6.1 Summary

By defining the Octagon CPA the base for verification with octagons in CPACHECKER

was provided. The Octagon CPA was formalized as a CPA+ with CEGAR as an
additional feature. Besides that sequential combinations of differently configured
Octagon CPAs were used to reduce the individual downsides of the single con-
figurations. Two implementations of the Octagon CPA, namely the OADL CPA
and the APRON CPA were introduced. They are available in the trunk of the SVN
repository of CPACHECKER1. Furthermore, the advantages and weaknesses of the
implemented CPAs were discussed. Altogether, the OADL CPA is more precise than
the explicit-value analysis, because it is able to handle relations between variables.
This is the reason for the higher amount of correctly proved programs. Hence, this
analysis could also be considered as being a valuable candidate in combination with
the predicate analysis or other CPAs.

6.2 Future Work

Starting at this thesis, the OADL CPA and the APRON CPA can be extended in
several ways. A first approach would be to reduce the amount of variables saved in
each octagon. This can be done by only adding global variables and the variables of
the current function to it. At the moment, for successive function calls all variables
from the caller function are also part of the octagons in the called functions. This

1 The SVN repository is available at:
https://svn.sosy-lab.org/software/cpachecker/trunk

65

https://svn.sosy-lab.org/software/cpachecker/trunk

leads to a higher memory consumption and in some cases it is less precise. For
example, when a widening is done due to any loop iteration, the variables from
outside of the function are widened equally to those inside the functions, although
their values cannot be affected by this loop iteration. The implementation could
be done via Block Abstraction Memoization[Won12], which is already a part of
CPACHECKER and could be reused. A second approach would be to improve the
strategy of the mergewidening operator by using widening with thresholds2 instead
of a normal widening. The introduction of these and further techniques could
have great effects on the overall evaluation time and memory consumption. Hence
making the octagon-based CPAs more attractive for a combined verification with
other CPAs.

2 A widening with thresholds has the advantage that also loops with a descending variable as
condition can be widened to the exact limit. With a normal widening the lower bounds of variables
with descending values are always set to−∞. More information can be found in the documentation
of the OADL:
http://www.di.ens.fr/~mine/oct/current/doc/doc_oct.pdf

66

http://www.di.ens.fr/~mine/oct/current/doc/doc_oct.pdf

Bibliography

[Bey14] Dirk Beyer. Status Report on Software Verification (Competition Summary
SV-COMP 2014). Proceedings of the 20th International Conference on
Tools and Algorithms for the Construction and of Analysis Systems
(TACAS 2014, Grenoble, France, April 5-13), LNCS 8413. Springer-Verlag,
2014.

[BHJM05] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar.
The Software Model Checker BLAST: Applications to Software Engineering.
International Journal on Software Tools for Technology Transfer (STTT),
volume 9, number 5-6, pages 505–525. Springer-Verlag, 2007. Invited to
special issue of selected papers from FASE 2004/05.

[BHT07] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Configurable
Software Verification: Concretizing the Convergence of Model Checking and
Program Analysis. CAV, volume 4590 of Lecture Notes in Computer Science,
pages 504–518. Springer-Verlag, 2007.

[BHT08] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Program
Analysis with Dynamic Precision Adjustment. Proceedings of the 23rd
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE 2008, L’Aquila, September 15-19), pages 29–38. IEEE Computer
Society Press, Los Alamitos (CA), 2008.

[BK11] Dirk Beyer and M. Erkan Keremoglu. CPAchecker: A Tool for Configurable
Software Verification. CAV, volume 6806 of Lecture Notes in Computer
Science, pages 184–190. Springer-Verlag, 2011.

[BL13] Dirk Beyer and Stefan Löwe. Explicit-State Software Model Checking Based
on CEGAR and Interpolation. Proceedings of the 16th International Confer-
ence on Fundamental Approaches to Software Engineering (FASE 2013,

67

Rome, Italy, March 20-22), LNCS 7793, pages 146–162. Springer-Verlag,
Heidelberg, 2013.

[BW13] Dirk Beyer and Philipp Wendler. Reuse of Verification Results: Conditional
Model Checking, Precision Reuse, and Verification Witnesses. Proceedings
of the 2013 International Symposium on Model Checking of Software
(SPIN 2013, Stony Brook, NY, USA, July 8-9), LNCS 7976, pages 1–17.
Springer-Verlag, 2013.

[CH78] Patrick Cousot and Nicolas Halbwachs. Automatic Discovery of Lin-
ear Restraints Among Variables of a Program. Proceedings of the 5th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL ’78, pages 84–96, New York, NY, USA, 1978. ACM.

[Cra57] William Craig. Linear Reasoning. A New Form of the Herbrand-Gentzen
Theorem. The Journal of Symbolic Logic, volume 22, number 3, pages
250–268. Association for Symbolic Logic, September 1957.

[HMM12] Julien Henry, David Monniaux, and Matthieu Moy. PAGAI: a path sensitive
static analyzer. CoRR, volume abs/1207.3937, . Else4, 2012.

[Min01] A. Miné. The Octagon Abstract Domain. AST 2001 in WCRE 2001, IEEE,
pages 310–319. IEEE CS Press, October 2001.

[Min06] Antoine Miné. The octagon abstract domain. Higher-Order and Symbolic
Computation, volume 19, number 1, pages 31–100. 2006.

[Won12] Daniel Wonisch. Block Abstraction Memoization for CPAchecker - (Competi-
tion Contribution). TACAS, pages 531–533, 2012.

68

Eidesstattliche Erklärung

Hiermit versichere ich, dass ich diese Bachelorarbeit selbstständig und ohne Benut-
zung anderer als der angegebenen Quellen und Hilfsmittel angefertigt habe und
alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, als solche
gekennzeichnet sind, sowie dass ich die Bachelorarbeit in gleicher oder ähnlicher
Form noch keiner anderen Prüfungsbehörde vorgelegt habe.

Passau, den 10. Juli 2014

Thomas Stieglmaier

	Introduction
	Motivation
	Structure of this Bachelor's Thesis

	Background
	Program Representation
	Configurable Program Analysis with Dynamic Precision Adjustment
	Formalism of a CPA+
	The Reachability Algorithm
	Composite Program Analysis

	The CPAchecker Framework
	Basic Architecture
	Composite CPAs in CPAchecker
	Explicit-Value Analysis
	Counterexample Check and Sequential Combination of Analyses

	Counterexample-Guided Abstraction Refinement for Analyses with Explicit Values
	Example
	Interpolation and Precision Refinement

	The Octagon Abstract Domain
	Formalism
	The Octagon Abstract Domain Library
	APRON Library Architecture & Interface
	PAGAI

	Octagon-Based Software Verification
	The Octagon CPA
	Influence of the `39`42`"613A``45`47`"603Amerge Operator on the Analysis
	Advanced Algorithms for the Octagon CPA
	The Octagon CPA and CEGAR
	Sequential Combination of different Configurations of the Octagon CPA

	Implementation of Octagon-Based CPAs
	A CPA Using the Octagon Abstract Domain Library
	Architecture Overview
	Specific Configuration Options of the OADL CPA

	A CPA Using the APRON Library
	Architecture Overview
	Specific Configuration Options for the APRON CPA

	Common Parts of the OADL CPA and the APRON CPA
	The CEGAR Implementation
	Configuration Options

	Comparison of the OADL CPA and the APRON CPA Regarding the Programming Effort

	Evaluation
	Benchmark Programs
	Configurations
	Evaluation Environment
	Performance Evaluation of the OADL CPA and the APRON CPA
	Evaluation of Integer-Related Programs
	Evaluation of Float-Related Programs
	Custom Programs for Showing the Abilities of the OADL CPA
	Conclusion of the Performance Evaluation

	Restrictions and Challenges

	Conclusion
	Summary
	Future Work

	Bibliography

