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Abstract

Symbolic execution is a powerful approach to automatic software
verification we already applied to the domain of configurable
software verification in previous work. Unfortunately, it suffers
from bad runtime performance, mainly due to path explosion
caused by its high precision. To mitigate this problem, we apply
counterexample-guided abstraction refinement (CEGAR), an ab-
straction technique mostly used in model checking, to our config-
urable program analysis (CPA) for symbolic execution. We design
two different refinement procedures for its compositional domain,
considering two strongly intertwined domains at the same time.
First, applying CEGAR to multiple domains is a novel approach
compared to the existing single or combined refinement procedures,
which only handle one domain at a time. Second, often seen as two
opposites, we are, to our knowledge, the first to apply CEGAR to
symbolic execution. Both refinement procedures were implemented
in the verification framework CPACHECKER and evaluated with
different configurations and optimizations to find the one yielding
the best results. We are able to show a significant boost in runtime
performance compared to symbolic execution without CEGAR for
most programs. This concludes CEGAR as a valid mean to improve
the runtime performance of symbolic execution and shows a valid
way to apply CEGAR to multiple domains.
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1 Introduction

Software systems are prone to error due to multiple factors: The developer’s skills,
humans’ limited understanding of software principles, communication problems in
development, missing or sparse documentation and unforeseen inter-dependencies
between software components are just some of them.

Because of this, testing has been an integral part of software development for
quite some time, often claiming about 50% of development effort and more than
50% of the budget [MSB11]. Software testing describes the execution of a program
with the intention of finding errors. The tester, either a person or another program,
uses different inputs and checks that the proper output is produced. The nature
of this approach determines that only a finite amount of inputs is possible in finite
time. As a result, it is impossible to ensure the error-less execution of a program
with arbitrary input.

An alternative to testing is formal verification, which tries to produce formal
statements that are true for all possible behaviours of a system, using mathematical
methods. These statements are then used for proving that a specific specification
is met. One area of formal verification is automated software verification. It tries to
reach the above goal by only using software that works without the help or feed-
back of humans. CPACHECKER [BK11] is such a program that yielded excellent
performance in the last iterations of the Competition on Software Verification (SV-
COMP) [Bey13] [Bey14] [Bey15b]. CPACHECKER is a framework for Configurable
Software Verification [BHT07] utilizing different configurable program analyses (CPAs)
to locate possible property violations of a specification in a program. Three such
CPAs are the value analysis CPA, which uses concrete variable assignments, the
predicate CPA, which creates predicates for describing properties of program paths,
and the symbolic execution CPA, which uses an extension of the value analysis
CPA tracking non-deterministic values as symbolic ones in combination with the
constraints CPA, which tracks constraints to symbolic values on program paths.
While the value analysis CPA has high efficiency due to its simplicity, it can’t handle
complex program characteristics like pointers or non-deterministic values. The pred-
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1 extern __VERIFIER_nondet_int();

3 int main() {
4 int a = __VERIFIER_nondet_int();
5 int b;

7 if (a >= 0) {
8 b = a;

10 } else {
11 b = a + 1;
12 }

14 if (b < a) {
15 ERROR:
16 return -1;
17 }
18 }

∅

∅

∅ ∅

∅ ∅

∅
merge

∅ ∅

a := __VERIFIER_nondet_int()

[!(a ≥ 0)] [a ≥ 0]

b := a + 1 b := a

[!(b < a)] [b < a]

return 0

Figure 1.1: Simple program and its execution by the value analysis CPA

icate CPA, in contrast, is very expressive, but has low efficiency since satisfiability
(SAT) checks are necessary for computing the feasibility of a program path. The
symbolic execution CPA based on the concepts of symbolic execution [Kin76] poses
something in between these two, not being able to handle some complex program
characteristics as it is partly based on the value analysis CPA, but being able to
handle non-deterministic values. On the other hand, it uses SAT checks, too, though
less often and over smaller formulas.

Figure 1.1 displays an example program that uses non-deterministic values and its
analysis using the classic value analysis CPA. Each node in the graph represents one
abstract state of analysis, with the edges denoting its children. Highlighted nodes
are abstract states at target locations.

Since the CPA does not store any information about non-deterministic assign-
ments, no information about the relation between a and b exists and the property
violation is reachable according to the analysis. This produces a false alarm. In
contrast to this, the symbolic execution CPA based on symbolic execution [Kin76]
tracks non-deterministic values. It can handle the assignment to a and its later usage.
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({}, {})

({a→ s1}, {})

({a → s1},
{s1 < 0})

({a → s1},
{s1 ≥ 0})

({a → s1,
b→ s1+ 1},
{s1 < 0})

({a → s1,
b → s1},
{s1 ≥ 0})

({a → s1,
b → s1 + 1},
{s1 < 0, s1 +
1 ≥ s1})

( f alse,
{s1 < 0})

( f alse,
{s1 ≥ 0})

({a → s1,
b → s1},
{s1 < 0,
s1 ≥ s1})

a := __VERIFIER_nondet_int()

[!(a ≥ 0)] [a ≥ 0]

b := a + 1 b := a

[!(b < a)] [b < a] [b < a] [!(b < a)]

return 0 return 0

Figure 1.2: Analysis of the program in Figure 1.1 by the symbolic execution CPA

It returns that the program is safe, correctly. Figure 1.2 shows this analysis, with
abstract states computed as infeasible dashed out.

Symbolic execution CPA’s ability to track non-deterministic values is able to
reduce the number of false alarms to a great extent, as we already showed in
[Lem15]. Runtime wise, it performs poorly, though, when compared to the value
analysis CPA. Since it considers all variable assignments, both deterministic and
non-deterministic, and all occurring assumptions, its state space is exponential to
the amount of occurring assumptions. If a infinite loop occurs, the state space is
infinite, too. This problem is called path explosion and characteristic to symbolic
execution.[AGT08] Obviously, an exponential amount of states does not scale to
large programs. In addition, the cost for SAT checks, which are performed at every
assumption, are exponential to the amount of non-deterministic values occurring in
all encountered assumptions on the currently considered program path. Evaluation
in [Lem15] showed that the symbolic execution CPA spends up to 95% of its runtime
for SAT checks.

In this work we design, implement and evaluate different approaches to improv-
ing the performance of the symbolic execution CPA. Our main contribution is the
application of CEGAR [CGJ+03] to the composition of the two strongly intertwined

12



CPAs symbolic value analysis CPA and constraints CPA (which constitute the main
semantics of the symbolic execution CPA). We design two different precision re-
finements, both handling the two CPAs’ domains and different sets of precisions
successfully in one procedure. Along the way, we propose variations to the existing
merge and less-or-equal operators of the constraints CPA and two different sets of
precision for the same.

This work is divided into four parts: Theoretical background and contributions,
their implementation, their evaluation, and future work and a conclusion. First
we will describe the concepts that are the basis for our work, such as Configurable
Software Verification, used CPAs and CEGAR. Next, we will illustrate the theory
behind our own contribution, before explaining details about the existing and newly
added implementation and deviations from theory. We will evaluate all presented
concepts and compare them to the performance of the value analysis CPA, predicate
CPA, and symbolic execution CPA of our old work. Last, we will give a short outlook
to possible future work in this field and close with a conclusion.
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2 Related Work

Symbolic execution was first introduced by [Kin76] in 1976 for program testing
and verification. In this classic symbolic execution, a programming language is
extended to be able to handle symbolic values without changing its syntax. Then,
a program in this language is executed using symbolic values as its input. If a
fork in the program control flow occurs, for example because of an if-statement,
for which both branches are possible, execution splits into two parallel executions,
recording the particular branching condition. Each such execution represents the
execution of the program for a set of concrete input values, which can be derived
based on all recorded branching conditions of an execution. This way, a lot less
symbolic executions are necessary for reaching a certain test coverage than when
using concrete executions. Verification at this stage was only possible by providing
conditions the output of the program had to fulfill. Today, symbolic execution is
used for testing, test case generation and verification.

Concolic testing In the context of testing, concolic testing [SMA05] [GKS05] [MS07]
evolved from symbolic execution. In concolic testing, a program is executed with
some arbitrary, but concrete input values, while tracking the conditions created by
the branches the concrete execution takes. When finished, the last encountered, not
yet negated condition is negated and new input values are created based on the
conjunction of this negated condition and all other encountered conditions. The
program is then executed with these new values, forced to take the previously
unexplored branch the negated condition stems from. While this technique alone
still suffers from path explosion, single executions are very fast as only concrete
values are used, which allow easy and precise reasoning about complex data struc-
tures [BS08] and allows the simplification of constraints unsolvable using symbolic
values by concrete values. In addition, the used concrete input values can be used
for easy test case generation. Nevertheless, concolic testing is obviously not suitable
for verification, as program properties can only be examined based on the current
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set of concrete input. It still deserves a mention because of its wide use and as most
techniques we will present in the following use it.

There are four major areas improvements focus on for mitigating the path-
explosion problem: (1) Search heuristics for achieving a high level of branch or
path coverage, (2) Compositional execution, this means creating summaries of
functions or paths to reuse them instead of recomputing already explored states,
(3) Handling of unbounded loops, which cause infinite path exploration when using
symbolic execution, and (4) Using interpolants for tracking reasons why a certain
path is infeasible.

While the concepts are presented in the context of testing, they can be applied to
verification, too.

Search heuristics [BS08] proposes three different heuristics for exploring a CFA
in concolic testing to reach a target or uncovered branches faster, instead of simply
using a depth-first search. The first heuristic chooses branches to take based on
their distance in the CFA to currently uncovered branches/the target. The second
heuristic, inspired by random testing1, chooses random paths. For each branch at
each execution, it is randomly decided whether to take it. The third heuristic chooses
of all branches at the current path one it will not take in the next iteration, randomly.
They were able to prove the increased effectiveness when using any of these three
heuristics, with the first being the best in terms of coverage, quickly followed by
the third. Klee [CDE08], a tool for automatic test generation running one symbolic
execution for each branch taken in parallel, uses two different heuristics in turn to
decide at each program location which execution to continue first. The first heuristic,
called random path selection, maintains a binary tree representing the program path
followed by all active executions. The leaves of the tree are the executions, while
each node represents a fork in the program control flow. The tree is traversed from
the root and each branch is taken with a possibility of 1/2. This way, executions high
in the tree, which have the most freedom to reach currently uncovered branches, are
more likely to be chosen. In addition, starvation is impossible due to the randomness
of the heuristic. 1. Using the first heuristic increases the chance to cover previously
uncovered code as soon as possible. 2. Choosing each processes at a program
location with the same probability, starting at the top of the execution tree, favors
executions currently high up in the tree.

1 Testing technique using input values randomly generated
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While heuristics can assist in speeding up the process of finding an error, they
hardly mitigate the problem of path explosion when trying to prove that a program
is error-free.

Compositional execution Compositional symbolic execution [God07] tests func-
tions in isolation to create summaries of them. A summary of a function is a formula
describing preconditions for its input and postconditions for its output. If the precon-
ditions are met for the current used input, the function summary can be used instead
of executing the function again. Summaries are computed for functions whenever
no fitting summary exists, based on their call hierarchy. This use of summaries is
implemented as an extension to the symbolic execution testing tool DART [GKS05],
called SMART. [AGT08] extends this notion by lazy and relevant exploration, comput-
ing new function summaries only if no conjunction of summaries can be used to
reach a certain branch or program location and recognizing branches that are not
able to reach a certain branch or program location. It uses uninterpreted functions
and predicates describing a functions (possibly not fully known) semantics for this.
Thanks to its flexibility, it can be combined with any search heuristic. CPACHECKER

supports block- and function summaries for the predicate CPA and value analysis
CPA, so it should be easy to adapt this for the symbolic execution CPA. The use of
such summaries might prove useful for programs requiring a high precision, but we
assume that, when analyzing a program which only requires to track few program
variables and constraint, just reducing the state space by using CEGAR and as such
minimizing repeated computations is more useful. Both approaches are orthogonal
though, and can be used in combination.

Handling of unbounded loops In classic symbolic execution, unbounded loops
result in infinite execution. Lazy Annotation [McM10] tackles this problem by com-
puting inductive invariants for loops, unrolling loops up to the point interpolants
which are also loop invariants can prove infeasiblity of an error path. A major down-
side to this approach is that it will only terminate if such invariants can be found.
Inspired by this approach, [JNS12] abstracts symbolic states at loop headers to only
consist of invariants that hold for one path. If these invariants are too coarse to prove
the infeasiblity of a counterexample, a refinement procedure similar to CEGAR is
used to refine them. This is a compromise between performing eager symbolic
execution and lazy CEGAR when encountering unbounded loops. [SST13] analyzes
cyclic paths in the CFA and computes a so called template for each one, describing
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all possible program states that may leave the cycle after any number of iterations.
Using these templates, a new compact CFA without any cycles is created. In the
symbolic execution of this compact CFA, these templates are then used when en-
countering loops to directly jump to the loop exits, resulting in symbolic states based
on the path to the cycle, a parameter k of iterations along the cycle, and the execution
step leading to the exit. This mitigates the path explosion problem considerably, as
no more loops exist in execution. In exchange, the complexity of formulas to solve
deepens due to the parameter k. To prove the infeasibility of a program path based
on an abstract state containing such a parameter k, the infeasibility has to be proved
for all k. This introduces quantifiers to SAT checks. Evaluation shows that despite
this trade-off, analysis can still be speeded up considerably.

Using CEGAR with symbolic execution mitigates the problem of unbounded
loops, since no information altered by the loop is necessary, most of the time. But if
it is, it results in infinite execution, also. One advantage of configurable software
verification over classic symbolic execution is the possibility to combine multiple
CPAs. For handling unbounded loops, a CPA specialized on doing so can be used
in parallel to the symbolic execution CPA instead of extending it. A strengthening
operator could be used to derive information about symbolic identifiers. In this
work, we focus on the symbolic execution CPA’s performance only.

Interpolation A technique closely related to the two concepts of CEGAR and
the functionality of the termination check of configurable program verification
is based on interpolation. If a path is found to be infeasible, an interpolant is
computed for each program location on the path and stored. If such a program
location is visited again on a different path, it is checked whether the interpolant
is implied by the current abstract state. If it is, execution on this path can halt,
as it is known that it is infeasible based on the interpolant. [JSV09] introduced
this concept for the first time in the context of the Constraint Logic Programming
Scheme [JMSY92]. [JNS12] stated the idea of using weakest preconditions instead of
strongest postconditions for the computation of weaker interpolants in the context of
verification. [JMN13] adapted it for concolic testing with arbitrary search heuristics
and [CJM14] added the notion of lazy symbolic execution. Instead of computing
interpolants immediately after a path is proven to be infeasible, execution continues
on this path ignoring the infeasibility to be able to learn better interpolants. This
is similar to the selection of sliced path prefixes [BLW15b] to influence the kind of
interpolants that will be computed in CEGAR.
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Lazy Annotation [McM10] uses interpolants to store conditions for nodes and
edges on the CFA under which no target is reachable from this node or using this
edge. Instead of annotating all edges on an infeasible path with interpolants in one
procedure, interpolants are computed bottom-up if the current program path using
this edge is infeasible up to the next possible branch.

A main difference that persists between symbolic execution with CEGAR and
symbolic execution using interpolants is the amount of information stored. CEGAR
is lazy, starting with a coarse precision and refining it, while symbolic execution
is eager, tracking all information and computing interpolants for subsuming new
states only. Using CEGAR, expensive refinements and iterative analysis happens,
but the probability of a successful termination check is higher from the beginning
due to the abstraction. This pays off if only few program variables/constraints have
to be tracked or only few possible error paths exist by generally eliminating the path
explosion problem.

CEGAR with predicate CPA/model checking and with value analysis CEGAR
was introduced for boosting the speed of symbolic model checking in [CGJ+03].
First applied to the predicate CPA [BW12] in the context of configurable software
verification, it was adapted to work with value analysis (e.g. the value analysis
CPA) in [BL13]. While the first takes interpolants computed by an off-the-shelf
SMT solver, the trial-and-error technique for computing interpolants of the latter
was extended in this work for symbolic execution. Conceptually, the symbolic
execution CPA is between the value analysis CPA and predicate CPA. Just like the
value analysis CPA, it uses abstract variable assignments to track the explicit values
of variables, where possible. In addition, symbolic values are tracked for values
of unknown explicit value. The predicate CPA creates a boolean formula over a
program path’s statements and assumptions and checks its satisfiability. Similarly,
the symbolic execution CPA tracks constraints created by assumptions on a path
to derive more information about symbolic values. A SMT solver is needed to
check the satisfiability of both. In contrast to the predicate CPA, formulas are not
based on program variables, but on symbolic values/identifiers. Due to this, no
transformation to a single static assignment form (SSA) is necessary for SAT checks.
In addition, since only conditions of assumptions are tracked as constraints, boolean
formulas are significantly smaller in the symbolic execution CPA and as such faster
to solve. Still, the predicate CPA is a sophisticated and matured CPA that supports a
lot of features and optimizations.
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3 Theoretical Background

3.1 General Overview of Configurable Program

Analysis

For the sake of simplicity, all theoretical concepts are based on a fictional program-
ming language that only consists of variable assignments (e.g. x := 5 or y := x) and
assumptions (e.g. [x > 5] or [y < x]). All values are integers of arbitrary magnitude.
The implementation of our presented concepts is performed in CPACHECKER, a
verification tool for C programs.

We represent a program by a control flow automaton (CFA) [BGS][BW12]. A CFA
A = (L, l0, G) is a directed graph whose nodes L represent the program locations
of the program. The initial node l0 ∈ L represents the program entry. An edge
g ∈ G ⊆ L × Ops × L exists between two nodes if a program statement exists
that transfers control between the program locations represented by the nodes.
Each edge is labeled with the operation that transfers the control. If a node has
no leaving edges, it is a final node. Final nodes represent the program exit. A
CFA for the previously mentioned example program can be seen in Figure 3.1. A
path σ [BLW15b] is a sequence 〈(op1, l1), ..., (opn, ln) of program locations and their
corresponding operations. A path σ is a program path if σ represents a syntactic
walk through the CFA, that means for every 1 ≤ i ≤ n a CFA edge g = (li−1, opi, li)
exists and l0 is the initial program location. Every path σ = 〈(op1, l1), ..., (opn, ln)〉
defines a constraint sequence γσ = 〈op1, ..., opn〉. The conjunction of two constraint
sequences γ = 〈op1, ..., opn〉 and γ′ = 〈op′1, .., op′n〉 is defined as their concatenation,
that means γ ∧ γ′ = 〈op1, ..., opn, op′1, ..., op′n〉. The set X is the set of all program
variables occurring in a program.
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1 extern __VERIFIER_nondet_int();

3 int main() {
4 int a = __VERIFIER_nondet_int();
5 int b;

7 if (a >= 0) {
8 b = a;

10 } else {
11 b = a + 1;
12 }

14 if (b < a) {
15 ERROR:
16 return -1;
17 }
18 }

4

7

11 8

12 10

14

17 16

a := __VERIFIER_nondet_int()

[!(a ≥ 0)] [a ≥ 0]

b := a + 1 b := a

[!(b < a)] [b < a]

Figure 3.1: An example program and a CFA representing it

3.1.1 Concrete state

A concrete state c is a total function c : X ∪ {pc} → Z that assigns a specific value of
Z to every program variable x ∈ X and to the program counter pc. The program
counter pc represents the current location in the program. The set of all concrete
states of a program is C. A set r ⊆ C is called a region. A region of concrete states
that violate a given specification is called target region σt.

3.1.2 Abstract state

An abstract domain [BHT07] D = (C,E, J·K) consists of a set of possible concrete states
C, a semi-lattice E that describes the abstract states and their possible relation to
each other and a concretization function J·K : E→ 2C which maps each element of E
to a subset of C.

A semi-lattice E = (E,>,⊥,v,t) consists of a set E of elements, a top element
> ∈ E, a partial order v ⊆ (E× E) and the total function t : (E× E) → E called
join operator. The elements e ∈ E of an abstract domain are called abstract states.
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Two approaches for software verification are model checking and program analysis,
also called data flow analysis. While model checking is mostly concerned with
finding a program abstraction with a precision high enough to eliminate false alarms,
program analysis tries to reach high efficiency by looking at only a few chosen
characteristics of a program.

Program analysis starts with an initial abstract state, usually>, and uses a transfer
relation to derive new abstract states from old abstract states and program statements.
Customization of program analysis usually means to choose one or more abstract
interpreters, that is the abstract domains, transfer functions and widening operators
to use.[BHT07]

Configurable software verification tries to bridge the gap of precision finding of
model checking and the efficiency focus of program analysis to allow for arbitrary
algorithms between these two extremes by providing the possibility to control the
precision and efficiency of the algorithm by choosing all of the following:

a) one or more abstract domains to work in and the transfer functions that de-
scribe the possible transfers between abstract states,

b) a set of precision that describes the degree of abstraction within the abstract
domains,

c) a merge operator which controls when two abstract states are merged,

d) a stop operator that controls when the exploration of a path is stopped, i.e. when
a state is already covered by the existing reached states (this is also called
termination check), and

e) a precision adjustment operator that can weaken or strengthen an abstract state
based on a precision.

These elements are encapsulated in a configurable program analysis [BHT08], which
is used by the CPA algorithm.

3.1.3 Configurable program analysis

A CPA with dynamic precision adjustment D = (D, Π, ,merge, stop, prec) consists of:

1. The abstract domain D, as described above. E is the set of its semi-lattice’s
elements. For soundness (i.e. if a property violation exists, it is always found)
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and progress of the program analysis, the following requirements have to be
fulfilled:[BHT07][BHT08]

a) the top element of abstract states has to represent all possible concrete states
and the bottom element must represent none, formally put J>K = C and
J⊥K = ∅,

b) the join operator has to be precise or over-approximating. That means the
join of two abstract states always has to represent the same or more concrete
states than the union of the concrete states both abstract states represent.
This can be formally expressed as ∀e, e′ ∈ E : Je t e′K ⊇ JeK∪ Je′K, and

c) if one abstract state e is smaller than another abstract state e′, the concrete
states it represents must be a subset of the concrete states e′ represents.
Formally, that is ∀e, e′ ∈ E : e v e′ ⇒ JeK ⊆ Je′K

2. A set Π of precisions.

3. The transfer relation ⊆ (E× G× E×Π). It assigns to each abstract state e ∈ E
possible abstract successors e′ ∈ E with a precision π ∈ Π. For every program
statement g ∈ G we write e

g
 (e′, π) if (e, g, e′, π) ∈ and e  (e′, π) if a

program statement g with e
g
 (e′, π) exists.

The transfer relation has to be total, that is ∀e ∈ E : ∃e′ ∈ E : e  e′, and it
has to be precise or over-approximating. That means the union of all concrete
states represented by all possible abstract successors of an abstract state e and a
program statement g have to be the same or more than the union of all concrete
successors of statement g and all concrete states represented by e. This can be
formally expressed as ∀e ∈ E, g ∈ G :

⋃
e

g
 e′

Je′K ⊇ ⋃
c∈JeK{c′| c

g→ c′}

4. The merge operator merge : E× E×Π→ E, which weakens the information of
the second given state based on the first state. It returns an abstract state of the
given precision. The result of merge(e, e′, π) can be anywhere between e′ and >.
Two common merge operators are

mergesep(e, e′, π) = e′

and
mergejoin(e, e′, π) = e t e′.
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5. The stop operator stop : E× 2E ×Π→ B, which checks if the given abstract state
with the given precision is covered by the set of abstract states given as second
parameter. The value stop(e, R, π) = true always has to imply JeK ⊆ ⋃

e′∈RJe′K to
ensure soundness. Two common stop operators are

stopsep(e, R, π) = ∃e′ ∈ R : e v e′

and
stopjoin(e, R, π) = e v

⊔
e′∈R

e′.

For stopjoin, the abstract domain has to be a powerset domain, that means
e v e′ ⇒ e ⊇ e′ for abstract states e, e′.

6. The precision adjustment prec : E × Π × 2E×Π → E × Π. It computes a new
abstract state and precision for a given abstract state, a given precision and a
given set of abstract states with precision. It can both strengthen and weaken an
abstract state. The following condition has to hold:

∀e, ê ∈ E, π, π̂ ∈ Π, R ⊆ (E×Π) : (ê, π̂) = prec(e, π, R)⇒ JeK ⊆ JêK.

3.1.4 CPA algorithm

The CPA algorithm displayed in Algorithm 1 uses an arbitrary CPA of this form to
verify programs. Given a CPA D, an initial set R0 of reached abstract states with
their precisions and a subset W0 ⊆ R0 of abstract states that have to be examined, the
algorithm computes the set reached of abstract states reachable without encoun-
tering a target state and the currently unprocessed abstract states of that set. After
initializing reached and waitlist with the given sets R0 and W0, the following
steps are repeated until waitlist is empty: An abstract state e ∈ waitlist is
removed from the waitlist and each possible abstract successor e′ and its precision π

is examined:
First, precision adjustment is performed on e′ based on π and reached. This

produces a new abstract state ê and a new precision π̂.
Next, it is checked whether the adjusted abstract state ê is a target state, i.e. repre-

sents any concrete state that violates a property. This is done by isTargetState : E→ B (Line 8,
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Algorithm 1 CPA(D, R0, W0), adapted from [BL13]

Input: a CPA D = (D, Π, ,merge, stop, prec), a set R0 ⊆ (E×Π) of abstract states
with their precision and a subset W0 ⊆ R0 of frontier abstract states with their
precision, with E being the set of elements of D.

Output: a set of reachable abstract states with precision and a subset of it of the
frontier abstract states with precision

Variables: reached and waitlist, both subsets of E×Π
1: reached := R0
2: waitlist := W0
3: while waitlist 6= ∅ do
4: choose (e, π) from waitlist
5: remove (e, π) from waitlist
6: for each e′ with e (e′, π) do
7: (ê, π̂) := prec(e′, π,reached) . Precision adjustment
8: if isTargetState(ê) then
9: return (reached∪ {(ê, π̂)}, waitlist∪ {(ê, π̂)})

10: for each (e′′, π′′) ∈ reached do
11: enew := merge(ê, e′′, π̂) . Combine with existing state
12: if enew 6= e′′ then
13: waitlist := (waitlist∪ {(enew, π̂)}) \ {(e′′, π′′)}
14: reached := (reached∪ {(enew, π̂)}) \ {(e′′, π′′)}
15: if ¬ stop(ê, {e| (e, ·) ∈ reached}, π̂) then
16: waitlist := waitlist∪ {(ê, π̂)}
17: reached := reached∪ {(ê, π̂)}
18: return (reached,∅)

Alg. 1), whose behaviour can be defined arbitrarily. If ê is a target state, reached
and waitlist are returned, both containing ê.

Otherwise, each already reached abstract state e′′ ∈ reached is individually
merged with the new state ê with precision π̂. If the merge weakened e′′, it and its
precision are replaced with the weakened state and the new precision π̂ in reached
and waitlist (Lines 11 – 14, Alg. 1). Next, the termination check checks whether
the new abstract successor ê is already covered by the current reached set. If it is not,
it is added to waitlist and reached. After this it the algorithm continues with
the next element in waitlist. If waitlist is empty, there are no more reachable
states and the reached set is returned, accompanied by the empty waitlist.
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3.2 Basic Definition of CPAs used

The following CPAs are used and extended in this work.

3.2.1 Composite CPA

It is often useful to use multiple CPAs in parallel to combine their individual
strengths, mitigate their weaknesses, and simplify CPAs by separating concerns. A
composition of two CPAs [BHT08] can be expressed as

(D1, D2, Π×, ×,merge×, stop×, prec×).

It consists of:

1. Two CPAs D1 and D2. The CPAs have to share the same set of concrete states C,
but can differ in any other way.

2. A composite set of precisions Π×.

3. A composite transfer relation ×⊆ (E1 × E2)× G× (E1 × E2)×Π×.

4. A composite merge operator merge× : (E1 × E2)× (E1 × E2)×Π× → (E1 × E2).

5. A composite termination check stop× : (E1 × E2)× 2E1×E2 ×Π× → B.

6. A composite precision adjustment

prec× : (E1 × E2)×Π× × 2(E1×E2)×Π× → (E1 × E2)×Π×.

The three composite operators 3. – 5. use the corresponding operators of the con-
tained CPAs D1 and D2 as well as strengthening operators ↓j and compare relations �j

with 1 ≤ j ≤ 2. They only alter lattice elements through these components.
The strengthening operator ↓: Ek × El → Ek computes a stronger abstract state

of the type Ek by using the information of an abstract state of the type El, with
1 ≤ k, l ≤ 2 and k 6= l. It has to meet the requirement ↓ (e, e′) v e. The use of
strengthening operators in the transfer relation  × allows the use of a transfer
relation that is stronger than the simple combination of the transfer relations of D1

and D2.
A compare relation � ⊆ Ek × El allows the comparison of two abstract states of

different types.
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The composition of CPAs can be used to construct a composite CPA

C = (D×, Π×, ×,merge×, stop×, prec×)

with abstract domain D× = D1 × D2 = (C,E×, J·K×) and semi-lattice E× =

E1 × E2 = (E1 × E2, (>1,>2), (⊥1,⊥2),v×,t×). The semi-lattice uses the less-or-
equal operator v× defined as (e1, e2) v× (e′1, e′2) if e1 v1 e′1 and e2 v2 e′2 and the
join operator defined as (e1, e2) t× (e′1, e′2) = (e1 t1 e′1, e2 t2 e′2). The concretization
function J·K× is defined as J(e1, e2)K× = Je1K1 ∩ Je2K2.

A special merge operator in this context is

mergeagree : (E1 × E2)× (E1 × E2)× (Π1 ×Π2)→ (E1 × E2).

It uses the merge operators of each CPA on the corresponding abstract states indi-
vidually, if, after the merge, every component’s state is less or equal the both given
states. Otherwise it behaves like mergesep, i.e. no merge is performed. We extend
this definition of composite CPA to allow the composition of an arbitrary number of
CPAs.

mergeagree(e1, e2, e′1, e′2, π1, π2) =
(merge1(e1, e′1, π1),merge2(e2, e′2, π2))

if merge1(e1, e′1, π1) v e1, e′1 and
merge2(e2, e′2, π2) v e2, e′2

(e′1, e′2) otherwise

3.2.2 Location CPA

The location CPA [BHT08] L = (DL, Π̃, L,mergesep, stopsep, p̃rec) is a CPA that
analyzes the syntactical reachability of program locations. It does not consider any
semantics and is mostly used to track the program location for other CPAs by using
a composite CPA. This allows for simpler CPAs since they do not have to care about
location tracking individually. The location CPA contains:

1. The abstract domain DL = (C,L, J·K). It consists of the set C of possible
concrete states, the semi-lattice L and the concretization function J·K. L =

(L ∪ {>},>L,⊥,v,t) is defined by its less-or-equal operator v, which has the
following properties: l v >L, l 6= l′ ⇒ l 6v l′ and ⊥ v l for all l, l′ ∈ L (this
implies >L t l = >L and l t l′ = >L for all l, l′ ∈ L with l 6= l′) A semi-lattice
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with these properties is also called flat semi-lattice. The concretization function is
defined as J>LK = C, JlK = {c ∈ C| c(pc) = l} for all l ∈ L.

2. The set Π̃ = {π̃} of a single precision that tracks all information.

3. The transfer relation L, which has the transfer l
g
 L (l′, π̃) if g = (l, op, l′) for

any operation op and the transfer >L

g
 L (>L, π̃) for all g ∈ G.

4. The already mentioned merge operator mergesep, defined as mergesep(l, l′, π) = l′

for all l, l′ ∈ L.

5. The already mentioned termination check stopsep, defined as stopsep(l, R, π) =

∃l′ ∈ R : l v l′.

6. The precision adjustment p̃rec that does not change anything: p̃rec(l, π, R) =

(l, π).

3.2.3 Predicate CPA

A predicate is a boolean formula using linear-arithmetic expressions and equality with
uninterpreted functions. The predicate CPA [BGS] [BHT08] uses predicate abstraction
[BPR02] to compute abstract states from a formula φ and a set π of predicates (the
precision). Two different kinds of predicate abstraction exist: The cartesian predicate
abstraction (φ)π

C is the strongest conjunction of predicates from π that is implied
by φ. The boolean predicate abstraction (φ)π

B is the strongest boolean combination of
predicates from π that is implied by φ. In this work, we will only look at cartesian
predicate abstraction because of its greater simplicity. For a set r ⊆ π, ϕr denotes the
conjunction of all predicates in r, with ϕ{} = true.

The predicate CPA P = (DP, ΠP, P,mergesep, stopsep, p̃rec) consists of:

1. The abstract domain DP = (C,P, J·K) with concrete states C, the semi-lattice P

and the concretization function J·K. The semi-lattice is defined by

P = (2P,>P,⊥,v,t).

Each abstract state is a finite subset r ∈ P of predicates, with P denoting the set
of quantifier-free predicates over program variables X. An abstract state can be
interpreted as the conjunction of all its predicates. >P = ∅ is an abstract state
without any constraints (true) and represents all possible concrete states. The
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bottom element ⊥ = { f alse} represents no concrete state. An abstract state r is
less or equal to another abstract state r′, if r contains all predicates of r′, formally
r v r′ if r ⊇ r′. The join of two abstract states r, r′ is defined by r t r′ = r ∩ r′.

The concretization function J·K is defined by JrK = {c ∈ C| c � ϕr}.

2. The precisions of set ΠP = 2P describe the precision of an abstract state as a set
of predicates. If predicate p ∈ P is in a precision π, p is tracked by the analysis
when π is used.

3. The transfer relation P has the transfer r
g
 P (r′, π) if post(ϕr, g) is satisfiable

and r′ is the largest set of predicates from π so that ϕr ⇒ pre(p, g) for each p ∈ r′.
The operations post(ϕ, g) and pre(ϕ, g) describe the strongest post-condition
and the weakest pre-condition for a formula ϕ and an operation g. They are
defined such that

Jpost(ϕ, g)K = {c′ ∈ C| ∃c ∈ C : c
g
 c′ ∧ c � ϕ}

and
Jpre(ϕ, g)K = {c ∈ C| ∃c′ ∈ C : c

g
 c′ ∧ c′ � ϕ}.

4. The already mentioned merge operator mergesep, defined as mergesep(r, r′, π) = r′

for all r, r′ ∈ P.

5. The already mentioned termination check stopsep, defined as stopsep(r, R, π) =

∃r′ ∈ R : r v r′.

6. The precision adjustment p̃rec that does not change anything: p̃rec(r, π, R) =

(r, π).

3.2.4 Value analysis CPA

The value analysis CPA [BL13] tracks integer values for all program variables with
a known value explicitly. It does so by using abstract variable assignments [BL13].
An abstract variable assignment v : X ◦→Z ∪ {⊥} is a partial function that maps
program variables x ∈ X to integer values - if their assignment is known - or to
⊥, if no possible value assignment exists. An abstract variable assignment v is
contradicting if v(x) = ⊥ for any x ∈ def(v). For two abstract variable assignments
v and v′, v is implied by v′, that is v′ ⇒ v, if v′ is contradicting or if def(v′) ⊆ def(v)
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and for each variable x ∈ def(v) ∩ def(v′) : v(x) = v′(x). The conjunction v ∧ v′ is
defined as

(v ∧ v′)(x) =


⊥ if x ∈ def(v) ∩ def(v′) and v(x) 6= v′(x)

v(x) if x ∈ def(v)
v′(x) if x ∈ def(v′)

We define the definition range of a partial function f as def( f ) ={x| ∃y : (x, y) ∈ f }
and the restriction of a partial function f to a new definition range Y as f|Y =

f ∩ (Y× (Z∪ {⊥})).
The value analysis CPA C = (DC, ΠC, C,mergesep, stopsep, p̃rec) consists of the

following components:

1. The abstract domain DC = (C,V, J·K) contains the set C of possible concrete
states, the semi-lattice V and the concretization function J·K. The semi-lattice V =

(V,>C,⊥,v,t) consists of the set V = X ◦→Z of abstract variable assignments,
with X being the set of program variables and Z = Z ∪ {⊥Z} the set of integer
values and the bottom element. The top element >C of the abstract domain
is defined as >C = ∅. It represents an unknown assignment for all program
variables. The bottom element ⊥ is defined as ⊥(x) = ⊥Z for all x ∈ X. It
represents an impossible variable assignment, that is a state that cannot be reached
in the program execution. The less-or-equal operator v ⊆ V ×V defines v v v′

if def(v′) ⊆ def(v) and for all x ∈ def(v′) : v(x) = v′(x) or v(x) = ⊥Z. This
means that an abstract state v is less or equal to an abstract state v′ if v contains
all variable assignments of v′ or restricts them even further.

The join operator t defines the least upper bound of two abstract variable assign-
ments, but is never used in our configuration.

The concretization function J·K assigns to each abstract state v the concrete states
it represents, JvK = {c ∈ C| c(x) = v(x) for all x ∈ def(v)}. If an abstract state v
contains an impossible variable assignment, that is v(x) = ⊥Z for any x ∈ def(v),
then it represents no concrete state: JvK = ∅.

2. The set of precisions ΠC = L → 2X. A precision π ∈ ΠC specifies for each
program location l ∈ L a subset of program variables of X that are tracked at this
location.
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3. The transfer relation C has the transfer v
g
 C (v′, π) if one of the following is

true:

a) g = (·,assume(p), ·) and for all x ∈ def(v′):

v′(x) =


⊥Z if ∃y ∈ X : v(y) = ⊥Z or p/v unsatisfiable

c if c is the only satisfying assignment of p/v for x

v(x) if none of the above and x ∈ def(v)

p/v is the interpretation of a predicate p using the known variable assign-
ments of v, that is p/v = p ∧ ∧

x∈def(v),v(x)∈Z

x = v(x) ∧ ¬∃x ∈ def(v) :

v(x) = ⊥Z.

b) g = (·, w := exp, ·) and

v′(x) =

{
exp/v if x = w and exp/v 6= >Z

v(x) if x 6= w and x ∈ def(v)

exp/v denotes the interpretation of an expression exp using the values of
abstract variable assignment v, that is

exp/v =



⊥Z if ∃y : v(y) = ⊥Z

>Z if y 6∈ def(v) for some y ∈ X that occurs in exp

c otherwise, where expression exp is evaluated to
c after replacing each occurrence of variable x ∈
def(v) in exp with v(x)

with >Z denoting an unknown value.

4. The merge operator mergesep. That means that no merge is performed. This is the
only aspect in which constant propagation CPA [BGS] and value analysis CPA
differ.

5. The termination check stopsep, which checks every abstract state individually.

6. The precision adjustment p̃rec that does not change anything: p̃rec(v, π, R) =

(v, π). Since we only track the program location in the location CPA, a composite
precision adjustment has to handle the correct adjustment of abstract states to
precisions of ΠC.
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3.2.5 Symbolic value analysis CPA

The symbolic value analysis CPA (introduced in [Lem15] without dynamic precision
adjustment and using a different less-or-equal operator) is an extension to the value
analysis CPA. It introduces symbolic values to handle non-deterministic values and
expressions of unknown value.

The symbolic value analysis CPA CS = (DCS
, ΠCS

, CS
,mergeCS

, stopsep, p̃rec) con-
sists of:

1. The abstract domain DCS
= (C,E, J·K) with the set C of concrete states, the

semi-lattice E and the concretization function J·K. The semi-lattice is defined
as E = (VCS

,>CS
,⊥,v,t). Its elements are abstract symbolic value assignments

VCS
= X ◦→ZCS

mapping program variables in its definition range to values of
ZCS

= Z∪ S ∪ {⊥Z}. The value range of an abstract variable assignment of the
type VCS

consists of the set Z of concrete integer values, the set S of symbolic
values and the bottom element ⊥Z, which represents an impossible variable
assignment. S = SI ∪ SE consists of symbolic identifiers SI and symbolic expressions
SE. Each expression that contains at least one symbolic identifier is a symbolic
expression. The definition range of an abstract variable assignment of VCS

consists
of all program variables whose value is known as either a concrete value (of Z), a
symbolic value (of S) or as invalid (⊥Z). The top element >CS

= ∅ represents no
known assignment.

The less-or-equal operator is equal to the one of the value analysis CPA, but
implicitly considers symbolic values: For two abstract states v, v′ ∈ VCS

, v is less or
equal to v′, i.e. v v v′, if def(v′) ⊆ def(v) and for all x ∈ def(v′) : v(x) = v′(x)
or v(x) = ⊥Z. Note that with this operator v′ v v ⇒ Jv′K ⊆ JvK, but in general
Jv′K ⊆ JvK 6⇒ v′ v v.

In our previous work [Lem15] we used a more complex less-or-equal operator,
using the semantics of the value analysis CPA for concrete values only, and
defining a new behaviour for symbolic values. We defined it as follows: v v′ v′,
if all of the following conditions hold: (a) v′ must only contain value assignments
also present in v, that is def(v′) ⊆ def(v), (b) for every concrete or invalid
assignment of v, v′ must contain the same or a weaker one, that means

∀x ∈ def(v′) : v(x) ∈ Z∪ {⊥Z} ⇒ v′(x) = v(x) ∨ v(x) = ⊥Z
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and (c) a bijective function alias : SI → SI exists that maps each symbolic iden-
tifier of SI to another symbolic identifier, so that the condition

∀x ∈ def(v′) : v′(x) ∈ S⇒ v(x)

is true for the abstract state resulting from v′(x) by replacing all i ∈ SI occurring
in v′(x) with alias(i).

This operator can result in wrong behaviour when used in conjunction with the
constraints CPA, so we will not use it in this work. An example for its wrong
behaviour will be presented in Section 4.2.

The join t : VCS
×VCS

is defined as

(v t v′)(x) =

{
v(x) if v(x) = v′(x)

⊥Z if v(x) = ⊥Z or v′(x) = ⊥Z

for all x ∈ def(v t v′).

2. The set ΠCS
= L→ 2X of precisions. Just like ΠC, a precision π ∈ Π contains for

each program location all program variables of X that are tracked at this location.

3. The transfer relation CS
contains the transfer v

g
 CS

v′′, if one of the following
conditions is true:

a) g = (·,assume(p), ·), p/v is satisfiable and for all x ∈ def(v′′)

v′′(x) =



c if c is the only satisfying assignment for p/v and
x 6∈ def(v)

y if x 6∈ def(v) and x appears in p. y ∈ SI is a
new symbolic values that has not been used in any
other state before

v(x) if none of the above and x ∈ def(v)

p/v performs an over-approximation in this case, as variables with a symbolic
assignment are not considered. Reminder:

p/v = p ∧
∧

x∈def(v),v(x)∈Z

x = v(x) ∧ ¬∃x ∈ def(v) : v(x) = ⊥Z
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b) g = (·, w := exp, ·) and

v′′(x) =

{
exp/v′ if x = w

v′(x) if x ∈ def(v) and x 6= w

with

v′(x) =


y if x 6∈ def(v) and x appears in exp. y ∈ SI is a

new symbolic identifier that has not been used in
any other state before

v(x) if x ∈ def(v)

and exp/v′ defined as before. If any symbolic value occurs in exp after
replacing all occurrences x ∈ X in exp with v′(x), the expression is only
partially evaluated. In this case exp/v′ ∈ S.

c) v′′ = >CS
.

4. The use of mergeCS
= mergesep means that no merge of abstract states is per-

formed.

5. The termination check stopsep already mentioned considers every state indepen-
dently when checking for coverage.

6. The precision adjustment p̃rec that does not change anything: p̃rec(v, π, R) =

(v, π). We rely on a composite CPA to perform precision adjustment, as a location
is needed.

3.2.6 Constraints CPA

The constraints CPA (introduced in [Lem15] without dynamic precision adjustment
and with a less-or-equal operator using an alias function) tracks constraints (i.e.
boolean formulas) on symbolic identifiers created by assume edges. For this, it
relies on the values provided by the symbolic value analysis CPA to partially
evaluate assume edges and create constraints out of them. The constraints CPA
A = (DA, ΠA, A,mergeA,mergesep, p̃rec) is defined by:

1. The abstract domain DA = (C,A, J·K), which consists of concrete states C, the
semi-lattice A and the concretization function J·K.
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The abstract states described by A = (2γ,>A,⊥,vsub,t) are subsets of the set
γ of all possible boolean expressions over the possible values of the symbolic
value analysis CPA, ZCS

, and program variables, X. This includes concrete and
symbolic values. An abstract state a ⊆ γ can be interpreted as the conjunction of
all its constraints, where each symbolic identifier i ∈ SI is handled as a variable.
The top element >A = ∅ contains no constraints (it represents true). The bottom
element ⊥ represents a program state that can never be reached. It represents
f alse. vsub is defined in the following way: For two given states a, a′ ⊆ γ, a is
less or equal a′, that is avsuba′, if a contains all constraints of a′, that is a ⊃ a′.

In [Lem15] we used a less-or-equal operator using an alias function like the
symbolic value analysis CPA did, but we will not do so in this work because it
does not always work with CEGAR for the same reasons as the symbolic value
analysis CPA’s aliasing less-or-equal operator. The join t computes the least
upper bound of two abstract states, but is never used.

The concretization function J·K maps an abstract state to all concrete states that
satisfy its constraints:

JaK = {c ∈ C| c � ϕa}

with ϕa denoting the conjunction of all predicates in a, ϕa =
∧

p∈a
p.

2. The set ΠA = L → 2γ+
of precisions. Each precision π ∈ ΠA contains for each

program location l ∈ L all tracked constraints, with γ+ ⊆ γ being the set of
all possible boolean expressions over ZCS

. The constraints of γ+ do not contain
any program variables, but the only variables occurring in them are symbolic
identifiers of SI .

A second option is to use the location-based precision ΠL ⊆ L, which is a subset
of program locations. A precision π ∈ ΠL tracks all constraints for every location
l ∈ π. This type of precision is less fine-grained then ΠA and leads to more
constraints being tracked faster.

Example: If p = s1 > s2 + 5 with s1, s2 ∈ SI was created from an edge
assume(a > b) by using an abstract variable assignment v = {(a, s1), (b, s2+ 5)}
and π(l) = {a, b}, then π contains all program variables p originated from and it
is tracked by π.

3. The transfer relation A contains the transfer a
g
 A a′ if one of the following is

true:
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a) g = (·,assume(p), ·), a′ = a ∪ p and a does not contain any variable x ∈ X.
We just add the condition of the assume as a new constraint to the ab-
stract state. Since a may not contain any program variables we enforce that
variables must always be replaced by concrete or symbolic values through
strengthening before the next assume edge occurs. As two assume edges
might follow each other, we even enforce immediate strengthening.

b) g = (·, w := e, ·) and a′ = a. The constraints CPA only cares about assume
edges.

4. The merge operator mergeA = mergesep. No merge is performed when the control
flow meets. We will introduce an alternative merge operator later on.

5. The termination check stopsep(e, R) = ∃e′ ∈ R : e v e′ considers every reached
abstract state individually.

6. The precision adjustment p̃rec that does not change anything: p̃rec(r, π, R) =

(r, π). Since we only track the program location in the location CPA, a composite
precision adjustment has to handle the correct adjustment of abstract states to
precisions of ΠA.

3.2.7 Symbolic execution CPA

The symbolic execution CPA [Lem15] is the composition of location CPA, symbolic
value analysis CPA and constraints CPA. Besides connecting the location CPA to the
other CPAs so abstract states can be mapped to a program location, its most impor-
tant task is the definition of a strengthening operator that creates new constraints in
the constraints CPA and checks their satisfiability.

The symbolic execution CPA S is the composite CPA implied by the composition
(L, CS, A, ΠS, S,mergeS, stopS, precS). It consists of:

1. The three CPAs L, CS and A and their abstract domains defined above.

2. The set ΠS = ΠCS
×ΠA of precisions that contains the individual precisions

of the symbolic value analysis CPA and constraints CPA. We do not need the
precision of the location CPA because it never changes.

3. The transfer relation S. It contains the transfer (l, v, a)
g
 S (l′, v′, a′, π), if:

1. l
g
 L (l′, π̃).
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2. v
g
 CS

(v′, πCS
).

3. One of the following two is true:

a) g = (·,assume(p), ·) and ↓A,CS
(a′′, v′) = a′ is defined, with the existing

transfer a
g
 A (a′′, πA).

b) g = (·, w := e, ·) and a
g
 (a, πA).

4. π = (π̃, πCS
, πA).

It uses the strengthening operator ↓A,CS
: 2γ × VCS

→ γ+ that strengthens an
abstract state of the constraints CPA by using an abstract state of the symbolic
value analysis CPA. ↓A,CS

(a′′, v) = a′ is defined if the following conditions are
true:

a) a′ results from a′′ by first replacing all program variables x occurring in the
constraints of a′′ by their abstract value assignment v(x) (denoted as a′′/v)
and then removing all constraints that still contain program variables:

a′ = a′′/v ∩ γ+.

v(x) can be a concrete or symbolic value as well as⊥Z. We define a constraint
containing ⊥Z as f alse, though, and as such, the strengthen operator is not
defined if ⊥Z is occurs.

b) ϕa′ is satisfiable.

4. The merge operator mergeS = mergeagree uses the merge operators of each CPA
on the corresponding abstract states individually, if, after the merge, every com-
ponent’s state is less or equal the both previous states. Otherwise no merge is
performed.

5. The stop operator stopS uses the stop operators of each CPA on the corresponding
abstract state and reached set individually. It only returns true if all of them return
true.

6. The precision adjustment operator precS performs precision adjustment on the
abstract state of the symbolic value analysis CPA and the constraints CPA. It uses
the abstract state of the location CPA in both cases to get the tracked program
variables/constraints for the current location.

precS(l, v, a, π×, R) = (l, precCS
(v, l, πCS

), precA(a, l, πA), π×)
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Figure 3.2: The general idea of CEGAR

with π× = (πCS
, πA). The precision adjustment of the symbolic value state

removes the abstract variable assignments of all program variables that are not
tracked by π ∈ ΠCS

at the current location.

precCS
(v, l, π) = v|π(l).

The precision adjustment of the constraints state depends on the type of precision
used for the constraints CPA: The adjustment precA removes all constraints that
are not tracked at the current location. Its concrete implementation depends on
the used set of precisions of the constraints CPA: If ΠA is used, which stores all
tracked constraints explicitly, the adjustment is defined as

precA(a, l, π) = a ∩ π(l).

If ΠCS
is used, which only stores the program variables constraints may origi-

nate from, the adjustment deletes all constraints that originate from at least one
program variable that does not occur in π(l) with π being the current precision.
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3.3 CEGAR

3.3.1 CEGAR and interpolation in general

Counterexample-guided abstraction refinement (CEGAR) [CGJ+03] is a technique to
find an abstraction that contains as few information as possible while retaining the
possibility to prove or disprove a program’s correctness. This technique can greatly
reduce the number of abstract states in a program’s analysis and is considered ”the
most general and flexible for handling the state explosion problem,”[CGJ+03] the
major problem we are facing with our symbolic execution CPA.

The technique starts analysis with a coarse abstraction and refines it based on
counterexamples. A counterexample is a witness of a property violation.[BL13] If
no error path is found by the analysis, it terminates and reports that no property
violation exists. If an error path is found, it is checked whether the path is feasible
(i.e. a possible program execution) by repeating the analysis with full precision. If
the path is feasible, the analysis terminates and reports the found property violation.
If the error path is infeasible it was only found because the abstraction is too coarse.
As a consequence, the abstraction is refined using the error path. After this, the
analysis starts again, using the new abstraction.

Since the problem of finding the coarsest possible refinement of an abstraction
based on an error path is NP-hard, [CGJ+03] good heuristics have to be used to
find good refinements. Interpolation [HJMM04] is one such technique originally
proposed for model checking. As such stemming from a boolean context, we use
interpolation for refinement of both the predicate CPA and value analysis CPA.

3.3.2 CEGAR and interpolation in the context of configurable
software verification

The CEGAR algorithm displayed in Alg. 2 uses a CPA using dynamic precision
adjustment D, an initial state e0 and an initial precision π0 to compute whether a
property violation exists.

First, the CPA algorithm is used to compute a set of reached abstract states
(reached) and a subset of this set that contains all reached abstract states that
have not been handled yet (waitlist). If waitlist is empty, the CPA algorithm
has handled all reachable states without encountering any target state. If this is the
case, no property violation was found and the algorithm can return sa f e. Otherwise,
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Algorithm 2 CEGAR(D, e0, π0), adapted from [BL13]

Input: a CPA D = (D, Π, ,merge, stop, prec) with dynamic precision adjustment,
an initial abstract state e0 ∈ E with precision π0 ∈ Π, with E denoting the set of
elements of the semi-lattice of D

Output: the verification result sa f e or unsa f e
Variables: the sets reached and waitlist of elements of E×Π, an error path

σ = 〈(op1, l1), ..., (opn, ln)〉
1:
2: reached := {(e0, π0)}
3: waitlist := {e0, π0}
4: π := π0
5: while true do
6: (reached,waitlist) := CPA(D,reached,waitlist)
7: if waitlist = ∅ then return sa f e
8: else
9: σ := extractErrorPath(reached)

10: if isFeasible(σ) then . error path feasible: report bug
11: return unsa f e
12: else . error path infeasible: refine and restart from the beginning
13: π := π ∪ refine(σ)
14: reached := (e0, π)
15: waitlist := (e0, π)

an error path is extracted from the reached set. If the error path is reported as
feasible, a property violation exists or the algorithm is not able to prove that none
exists. It returns unsa f e. If the error path is infeasible, the current precision is too
abstract. It is refined based on the infeasible error path by using refine : Σ→ Π
with Σ being the set of all error paths, so that it can prove its infeasibility. After this,
the reached set and waitlist are reset to their initial values and the algorithm repeats
analysis with the refined precision. It is important to notice that the return type of
refine has to be equal to the set Π of precisions used in D. Because of this, CPAs
are not exchangeable without changing refinement, too, in general.

For refinement, the priorly mentioned technique of interpolation is used to de-
termine a location-specific precision that is strong enough for the CPA algorithm
with precision adjustment to prove that a given error path is infeasible. A boolean
formula ψ is a Craig interpolant [Cra57] for two boolean formulas γ− (called prefix)
and γ+ (called suffix), if the following three conditions are fulfilled:

a) The prefix implies ψ, that is γ− ⇒ ψ.

39



b) ψ contradicts the suffix, that means ψ ∧ γ+ is contradicting.

c) ψ only contains variables occurring in both prefix and suffix.

It is proven that such an interpolant always exists in the domain of abstract variable
assignments [BL13] as well as in the theory of linear arithmetic [Cra57].

Refinement for explicit-state model checking

Our work is strongly based on the refinement technique for abstract variable as-
signments. The strongest-post operator SPop describes the semantics of an oper-
ation op ∈ Ops. It is the analogy to the transfer relation in the domain of CPAs.
It maps a region of concrete states, implied by an abstract variable assignment,
to the region of all concrete states that can be reached by executing op. The se-
mantics of a path σ = 〈(l1, op1), ..., (ln, opn)〉 is defined as the consecutive appli-
cation of the strongest-post operator to its constraint sequence γσ = 〈op1, ..., opn〉:
SPγσ(v) = SPopn(SPopn−1(... SPop1(v)...)). We use strongest-post operators during
interpolation and refinement to evaluate paths.

Strongest-post Operator The strongest-post operator SPop is defined in the fol-
lowing way: For an assignment operation s := exp, SPs:=exp(v) = v|X\{s} ∧ vs:=exp

with vs:=exp = {(s, exp/v)} and exp/v denoting the evaluation of exp using the ab-
stract variable assignment v, as defined in Section 3.2.4. For an assume operation
assume(p), SPassume(p)(v) = v′ with

v′(x) =


⊥ if ∃y ∈ def(v) : v(y) = ⊥ or p/v is unsatisfiable

c if c is the only satisfying assignment of p/v for x

v(x) if none of the above and x ∈ def(v)

with p/v as defined in Section 3.2.4.

Interpolation The algorithm for interpolation in the domain of abstract variable
assignments is shown in Algorithm 3. For a prefix γ− and a suffix γ−, the abstract
variable assignment v, that results from applying γ− to the initial abstract variable
assignment ∅ is computed. Next, for each variable assignment in v it is checked
whether the assignment is necessary to prove that γ+ is contradicting. If it is not, it
can be removed from v. After all variable assignments are checked, v only contains
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Algorithm 3 interpolate(γ−, γ+), adapted from [BL13]

Input: two constraint sequences γ− and γ+, with γ− ∧ γ+ contradicting
Output: a constraint sequence Γ, which is an interpolant for γ− and γ+

Variables: an abstract variable assignment v
1: v := SPγ−(∅)
2: for each x ∈ def(v) do
3: if SPγ+(v|def(v)\{x}) is contradicting then
4: v := v|def(v)\{x} . x not relevant, should not occur in interpolant

5: Γ := 〈〉
6: for each x ∈ def(v) do
7: Γ := Γ ∧ 〈assume(x = v(x))〉
8: return Γ

Algorithm 4 refine(σ), adapted from [BLW15b]

Input: infeasible error path σ = 〈(op1, l1), ..., (opn, ln)〉
Output: precision π
Variables: interpolating constraint sequence Γ

1: Γ := 〈〉
2: π(l) := ∅ for all program locations l
3: for i := 1 to n− 1 do
4: γ+ := 〈opi+1, ..., opn〉
5: Γ := interpolate(Γ ∧ 〈opi〉, γ+) . inductive interpolation
6: π(li) := extractPrecision(Γ)
7: return π

variable assignments that are necessary to prove that γ+ is contradicting. From
these, the interpolant is built (Lines 6 – 8, Alg. 3).

Refinement The interpolants produced are used in the refinement of the precision
(Alg. 4). We use a location-specific precision π : L→ 2X that returns for a program
location l ∈ L all program variables of X which are relevant for the analysis at
this location. The algorithm starts with an initial, empty interpolant Γ and empty
precision π with π(l) = ∅ for all l ∈ L. For each location (li, opi) on the error path,
the suffix γ+ of this location are set and the interpolant is computed inductively
from the existing interpolant in conjunction with the current operation opi and the
suffix (Line 5, Alg. 4). A precision for the current program location is then extracted
from the interpolant. One straightforward way to do this is by using all program
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variables with a valid assignment in the abstract variable assignment resulting from
the application of the strongest-post operator to our interpolant:

extractPrecision(Γ) = {x| (x, z) ∈ SPΓ(∅) and z 6= ⊥Z}.

It is not only sufficient, but also required to use Γ ∧ 〈opi〉 instead of the full prefix
γ− = 〈op1, ..., op1〉 for interpolation. The full prefix cannot be used as it has to be
assured that the precision resulting from these consecutive interpolations proves the
error path infeasible. All information necessary for proving the infeasibility of the
remaining error path is present in the current interpolant and operation.

This refinement procedure can be used in CEGAR (Alg. 2) in combination with
a CPA with precision adjustment that expects these precision types, like the value
analysis CPA in combination with refinement for abstract variable assignments.

Lazy Abstraction Resetting the reached set and waitlist to their initial values after
every refinement results in the CPA algorithm starting at the first state, always. Most
of the time, this is not actually necessary though, because precision only changed for
a few program locations. Because of this, lazy abstraction [HMS02] resumes analysis
not at the beginning of the CFA, but at the first location that has to be revisited
with its new precision so that the current error path is computed as infeasible. This
location is the one before the first pair (opi, li) whose corresponding interpolant is
not the empty constraint sequence (i.e. the location before the first location with a
new precision). We realize lazy abstraction by not resetting the waitlist and reached
set in the CEGAR algorithm after each refinement procedure to (e0, π0). Instead,
only abstract states for locations whose precision has changed and all their children
are removed from the reached set and added to the waitlist. This way redundant
computations without any finer precision are avoided.

Path Prefix Selection When computing the interpolant for a prefix and a suffix,
the resulting interpolant is random if more than one possible interpolant exist. But
some interpolants are better suited for creating a precision reaching a fast termination
of analysis than others. The enhanced refinement procedure proposed by [BLW15b]
allows to guide the interpolation process based on arbitrary criteria. A sliced path
prefix is a path in an error path σ resulting from omitting pairs of operations and
locations from the end and replacing assume operations by no-op operations. If a
sliced prefix of σ is infeasible, σ is infeasible.[BLW15b]
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Algorithm 5 refine+(σ), taken from [BLW15b]

Input: an infeasible error path σ = 〈(op1, l1), ..., (opn, ln)〉
Output: a precision π ∈ L→ 2Π

Variables: a set Σ of infeasible sliced prefixes of σ, a mapping τ from infeasible
sliced prefixes and program locations to precisions, and a sliced path prefix φselected
Σ := extractSlicedPrefixes(σ) . compute precisions for each infeasible
sliced prefix
for each φj ∈ Σ do

τ(φj) := refine(φj) . Alg. 4
. select suitable sliced prefix based on the prefix and its precision

φselected := selectSlicedPrefix(()τ) . return precision for CEGAR based on
selected sliced prefix return τ(φselected)

Algorithm 6 extractSlicedPrefixes(σ), taken from [BLW15b]

Input: infeasible path σ = 〈(op1, l1), ..., (opn, ln)〉
Output: non-empty set Σ = {σ1, ..., σm} of infeasible sliced prefixes of σ
Variables: a path σf that is always feasible

Σ := ∅
σf := 〈〉
for each (op, l) ∈ σ do

if SPσf∧(op,l)(∅) = ⊥ then . σf ∧ (op, l) is an infeasible sliced prefix
Σ := Σ ∪ {σf ∧ (op, l)}
σf := σf ∧ ([true], l) . append no-op to be able to continue

else
σf := σf ∧ (op, l) . append original pair

return Σ

Algorithm 5 shows the enhanced refinement procedure. For a given error path
σ, all infeasible sliced prefixes are extracted using extractSlicedPrefixes. For
each such sliced prefix, refinement as described above is performed to derive a
precision sufficient to prove σ infeasible. After this, one such precision is selected
based on the prefix and its precision and returned to be used with CEGAR.

The algorithm for extracting all infeasible prefixes is shown in Alg. 6. For each
operation (op, l) on a given infeasible path σ, it is checked whether it is contradicting
with the already computed path σf , which is always feasible. If it is contradicting,
the path σf ∧ (op, l) is added to the set of infeasible sliced prefixes and the operation
doing nothing (no-op), [true], l) is appended to σf so that it stays feasible and new
infeasible prefixes can be found using it. If it is not contradicting, σf is just extended
by (op, l). After this, the next operand-location pair on the path is examined.
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This enhanced refinement procedure allows to enhance CEGAR by selecting
precisions best fit for analysis.

Refinement for the domain of linear arithmetic

Refinement in the domain of linear arithmetic, as used for the predicate CPA, uses a
standard approach to refinement based on lazy abstraction and Craig interpolation.
The task of interpolation is delegated to an off-the-shelf SMT solver.

In this chapter, we gave an overview of all theoretical concepts that are necessary
to describe our own work. We introduced the concept of configurable software
verification and configurable program analyses (CPAs), a very versatile approach
to automated software verification. We introduced different CPAs we use in this
work and CEGAR with precision refinement for both linear arithmetic and abstract
variable assignments, which we will use when applying CEGAR to the symbolic
execution CPA.
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4 Efficient Symbolic Execution

To increase the performance of the symbolic execution CPA, multiple approaches
are designed and evaluated. Symbolic execution suffers from two major issues: Path
explosion due to its high precision and the bad performance of SAT checks. Since
we use off-the-shelf SMT solvers for checking satisfiability we can not influence the
performance of SAT checks. Instead almost all of our approaches focus on decreasing
the state space.

We will first look at some optimizations to the existing symbolic execution CPA
without using CEGAR before adapting this algorithm.

4.1 Alternative Merge Operator for Constraints CPA

For every operation assume(p) at a location l that transfers the control flow to a
location l′ there exists another operation assume(¬p) at the same location transfer-
ring the control flow to a location l′′ 6= l′. In most programs it is probable that the
two different program branches starting at l′ and l′′ meet again, that means that for
a later program location l′′′ two abstract states a, a′ of the constraints CPA (in the
following called constraints states) exist with a containing p and a′ containing ¬p.

If a constraint p is part of an abstract state a, p is true in all concrete states
represented by a (just like a predicate in an abstract state of the predicate CPA
[BHT08]). If for one program location l two constraints states a, a′ exist with p ∈ a
and ¬p ∈ a′ and a \ {p} = a′ \ {¬p}, then a represents all concrete states for which
p ∧ a \ {p} is true and a′ represents all concrete states for which ¬p ∧ a \ {p} is true.
At this point, the analysis will never be able to prove a program location as infeasible
because of p or ¬p. If a′ reaches a program location and computes it as infeasible by
using p, the abstract state a will compute the same program location as feasible, if it
reaches it. Because of this, it seems legit to delete these obsolete constraints and only
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continue with one more abstract state instead of two more concrete ones by using
the merge operator

merge(a, a′, π) =

{
a′ \ ¬Q if a v a′ \ ¬Q

a′ otherwise

with ¬Q = {¬p| p ∈ a ∧ ¬p ∈ a′} and Q = {p| p ∈ a ∧ ¬p ∈ a′}. It is not
necessary that a′ \ ¬Q = a \Q. If a′ \ ¬Q represents a super set of the concrete states
represented by a \Q, that is a \Q v a′ \ ¬Q, then the above condition is true, and
a v a \Q.

This condition is automatically checked by the mergeagree operator, so we can
simply use merge(a, a′, π) = a′ \¬Q. Unfortunately, we can’t use this merge operator
for the constraints CPA in combination with CEGAR, as our design of CEGAR does
not consider merges. Only mergesep is possible.

4.2 Different Less-or-equal Operators

The less-or-equal operator is the operator executed the most often during analyses
as stopsep uses it once for every state in the reached set, at every iteration of the
CPA algorithm. In addition, it is responsible for determining whether a new state
is already covered and analysis can be stopped at this point. Although the imple-
mentation framework CPACHECKER only performs a termination check for reached
states at the same location, its speed and precision can make a great difference for
the performance of our analysis.

Aliasing operator The less-or-equal operators we used for symbolic value analysis
CPA and constraints CPA in [Lem15] using an alias function try to be more precise
than a simple subset check. Unfortunately, they can result in false behaviour because
of their independent behaviour. Consider the two pairs of value state and constraint
state e = (v, a) with v = {x → s1, y→ s2}, a = {s1 > 0}) and e′ = (v′, a′) with v′ =
{x → s2, y→ s1}, a′ = {s1 > 0}). When using the aliasing less-or-equal operators
of the symbolic value analysis CPA and of the constraints CPA, the symbolic value
analysis CPA states v v v′ for alias function alias(s1) = s2, alias(s2) = s1
and the constraints CPA states a v a′ for alias(s1) = s1. Because of this, e v e′,
although the concrete states JeK = {c ∈ C| c(x) > 0} and Je′K = {c ∈ C| c(y) > 0}
represented by e and e′ are two different sets. This violates the definition of the
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less-or-equal operator for abstract domains (Section 3.1.2). For this example, the less-
or-equal operator of the constraints CPA actually behaves like the subset operator,
since alias represents the identity. This shows that the less-or-equal operator of
the symbolic value analysis CPA cannot be used, regardless of the operator used by
the constraints CPA. Besides the default less-or-equal operator for the constraints
CPA presented in Section 3.2.6, another operator might prove useful.

Implication operator Since a constraints CPA’s abstract state a is interpreted as the
conjunction of its constraints ϕa, it seems fit to use implication as the less-or-equal
operator. Remember that JaK = {c ∈ C| c � ϕa}. If a formula ϕa implies a formula
ϕa′ and c satisfies ϕa, then c also satisfies ϕa′ . Because of this

JaK = {c ∈ C| c � ϕa} ⊆ {c ∈ C| c � ϕa′} = Ja′K if ϕa ⇒ ϕa′ .

The less-or-equal operator for the constraints CPA using implication is defined as
avimpla′ if ϕa ⇒ ϕa′ . This operator has a higher precision thanvsub but requires SAT
checks, which are definitely worse in performance than merely checking whether
one set is the subset of another.

4.3 CEGAR for Symbolic Execution

For using the symbolic execution CPA with CEGAR, we have to define a refinement
procedure that returns a precision of type ΠS that fits the precision of the symbolic
execution CPA. We designed two such refinement procedures: The first uses adjusted
versions of the refinement and interpolation algorithms as used for abstract variable
assignments, with an adjusted strongest-post operator and a set of precisions that fits
ΠS. The second refinement procedure extracts a precision for the symbolic execution
CPA from the precision created by the refinement of the predicate CPA, which is
based on interpolation in the domain of linear arithmetic.

4.3.1 Refinement based on refinement for explicit-state model
checking

We adjust the refinement algorithm for abstract variable assignments (Alg. 4). The
feasibility check of an error path σ is performed by executing the symbolic execution
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CPA with full precision for all program locations l. If the error location of σ is
reached by the analysis, the path is feasible. It is infeasible, otherwise.

We use a strongest-post operator that reflects the semantics of our symbolic
execution CPA by defining a composite operator SPS

op : VCS
× 2γ+ → VCS

× 2γ+
. It

is the composition of the transfer relations of the symbolic value analysis CPA and the
constraints CPA, as well as the strengthen operator ↓A,CS

to create useful constraints
states. The result of SPS

op is contradicting if ↓A,CS
is not defined (that means that the

conjunction of constraints are contradicting) or the transfer relation of the symbolic
value analysis CPA produces a contradicting abstract variable assignment. Formally:

SPS
op(v, a) =


(v′, a′′) if v

g
 CS

v′, a
g
 A a′, ↓A,CS

(a′, v′) is defined with
↓A,CS

(a′, v′) = a′′ and g = (·, op, ·)
⊥ otherwise

The contradiction ⊥ represents the bottom element for both the symbolic value
analysis CPA as well as for the constraints CPA. Both the transfer relation of the
symbolic value analysis CPA CS

and the transfer relation of the constraints CPA
 A always produce only one successor, so we can use them in our definition while
keeping SPS

op unambiguous. The performance of this strongest-post operator can
be significantly worse than when only using abstract variable assignments since SAT
checks have to be performed in the strengthen operation. Because of this, the amount
of calls of the strongest-post operator can make a notable difference in performance.

Using this strongest-post operator for interpolation (Alg. 7) allows the computa-
tion of an interpolant for a prefix γ− and a suffix γ+ at a specific program location
based on the semantics of the symbolic execution CPA. Since we want to create an
interpolant Γ that contains all information necessary for proving that SPS

Γ∧γ+ is
contradicting, not only abstract variable assignments but also constraints have to
be considered. First, we compute the strongest-post condition (v, a) for the prefix
γ− based on the initial state ∅ to get the complete prefix’s strongest-post condi-
tion. Similar to interpolation for abstract variable assignments, we then eliminate
all constraints from a that are not necessary for proving that γ+ is contradicting.
Next, we remove all assignments from v that are not required. This way we try
to get the weakest interpolant possible. We then build the interpolant from all left
constraints in a and all left assignments of v. Contrary to Algorithm 7, we build the
interpolant Γ not by using assume operations for each x ∈ def(v), but assignment
operations. By using assume operations only for the constraints of a we can easily
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Algorithm 7 interpolateS(γ
−, γ+), a modified version of Alg. 3

Input: two constraint sequences γ− and γ+, with γ− ∧ γ+ contradicting
Output: a constraint sequence Γ, which is an interpolant for γ− and γ+

Variables: an abstract variable assignment v and a constraints state a
1: (v, a) := SPS

γ−(∅)
2: for each p ∈ a do
3: if SPS

γ+(v, a \ {p}) is contradicting then
4: a := a \ {p} . p not relevant, should not occur in interpolant
5: for each x ∈ def(v) do
6: if SPS

γ+(v|def(v)\{x}, a) is contradicting then
7: v := v|def(v)\{x} . x not relevant, should not occur in interpolant

8: Γ := 〈〉
9: for each p ∈ a do

10: Γ := Γ ∧ 〈assume(p)〉
11: for each x ∈ def(v) do
12: Γ := Γ ∧ 〈x := v(x)〉
13: return Γ

distinguish between both domains. It is not wrong to only use assume operations,
but it would unnecessarily increase the precision for the constraints CPA and the
constraints sets used in the inductive interpolations, as all assumptions are added
here. This could significantly decrease performance during interpolation due to
the for-loop over all constraints in Line 9 and the strongest-post operators bad
performance. It might even be more effective to just use all constraints and not
perform these additional strongest-post computations by omitting Lines 2 – 4 of
the algorithm. Since constraints made of assume edges whose occurring program
variables have an unknown value are discarded in strengthening of the constraints
CPA, the precision of the value analysis CPA indirectly influences the constraints
the constraints CPA tracks. Additionally, it is also possible to eliminate variable
assignments first, and constraints second. We will examine all three possibilities
later in detail (Section 7.2.2).

After interpolation is done, a precision of type ΠS must be extracted from this
interpolant so that future executions of the CPA algorithm with the symbolic ex-
ecution CPA can prove the examined error path as infeasible. To get a precision
that consists of the two individual precisions of symbolic value analysis CPA and
constraints CPA from an interpolant Γ, we define the extractPrecision function
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Algorithm 8 refineS(σ), a modified version of Alg. 4

Input: infeasible error path σ = 〈(op1, l1), ..., (opn, ln)〉
Output: precision (πCS

, πA) ∈ ΠS

Variables: interpolating constraint sequence Γ
1: Γ := 〈〉
2: (πCS

(l), πA(l)) := (∅,∅) for all program locations l
3: for i := 1 to n− 1 do
4: γ+ := 〈opi+1, ..., opn〉
5: Γ := interpolateS(Γ ∧ 〈opi〉, γ+) . inductive interpolation
6: (πCS

(li), πA(li)) := extractPrecisionS(Γ)

7: return (πCS
, πA)

as the composition of two new functions, each of which extracts the precision for
one of these CPAs based on Γ:

extractPrecisionS(Γ) = (extractPrecisionCS
(Γ),extractPrecisionA(Γ))

with

extractPrecisionCS
(Γ) = {x| (x, z) ∈ v, z 6= ⊥Z and SPS

Γ(∅) = (v, a)}

and
extractPrecisionA(Γ) = a with SPS

Γ(∅) = (v, a)

if the constraints CPA uses the precision L→ 2γ+
, or

extractPrecisionA(Γ) = {x| ∃p ∈ a : p originates from an expression with x}

if the constraints CPA uses the precision L→ 2X. The symbolic value analysis CPA
is based on the value analysis CPA, so it also works with the default refinement
procedure for abstract variable assignments described in Section 3.3.2. We simply
use the existing extractPrecision for this CPA. The precision of the constraints
CPA is the set of all tracked constraints, so the constraints that result from applying
the strongest-post operator to the interpolant provide the precision needed at the
current location for proving the current error path as infeasible in future analysis.
The adjusted refinement procedure is shown in Algorithm 8.

Since sliced prefix selection (Sec. 3.3.2) only relies on a strongest-post operator and
an existing refinement procedure, we can easily use it with our refinement procedure
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and SPS. Evaluation will show that prefix selection can boost the performance of
symbolic execution with CEGAR significantly.

4.3.2 Refinement based on refinement for predicate CPA

Another possible way of refinement is to delegate the procedure to the refinement
of the predicate CPA and extract a precision of type ΠS from the created predicate
precision. This might not always work as the predicate CPA is able to handle more
complex operations than the symbolic execution CPA, for example non-deterministic
arrays. Even if an error path σ is infeasible by using the symbolic execution CPA with
full precision, the interpolant (and resulting precision) computed by the predicate
CPA’s refinement could rely on unsupported operations.

Two other drawbacks exist due to the predicate CPA’s set of precisions: In the
current implementation of CPACHECKER, we are not able to create constraints
out of the predicates of the precision created by the predicate CPA’s refinement,
but can only extract program variables’ names. Due to this it is not possible to
use the constraint-specific precision set ΠA = L → 2γ+

as part of ΠS, but only
ΠCS

(see Sec. 3.2.6). Secondly, the set ΠP = 2P of precisions of the predicate CPA
is not location-based per definition. Because of this, we have to assign the same
set of tracked program variables for each location. This is not a problem in the
implementation though, because a more detailed adjustment of the predicate CPA is
possible there.

Despite these problems this approach might still yield better performance than
refineS. Though both have to rely on SMT solvers, our own procedure performs
one SAT check for every constraint, while the predicate CPA’s refinement utilizes a
SMT solver to handle the complete interpolation process, which is presumably more
performant due to its specialization. Algorithm 9 shows the refinement procedure
delegating to predicate CPA’s refinement. After computing the precision π′ of the
predicate CPA, the variables used in the predicates of π′ are extracted and assigned
as the precision πCS

(l) for every location l. The precision πCS
is then returned as

precision for both symbolic value analysis CPA and constraints CPA.
Figure 4.1 shows the benefit of using CEGAR with the symbolic execution CPA.

The figure shows how analysis without CEGAR creates a lot of abstract states with
information not necessary for proving that, increasing exponentially with the amount
of assumptions in the program. In contrast, analysis with CEGAR consists of two
iterations: While the target state is reachable in the analysis with empty precision, it
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Algorithm 9 refine′S(σ)

Input: infeasible error path σ = 〈(op1, l1), ..., (opn, ln)〉
Output: precision (πCS

, πA) ∈ ΠS = ΠCS
×ΠCS

Variables: predicate precision π′ ∈ ΠP = 2P

1: (πCS
(l), πA(l)) := (∅,∅) for all program locations l

2: π′ = refineP(γ)
3: πCS

(l) := extractPrecision′S(π
′) for all l

4: return (πCS
, πCS

)

n assumptions⇒ 2n states

(a) Analysis without CEGAR

(b) Analysis with CEGAR, first iteration:
Empty precision

(c) Analysis with CEGAR, second iteration:
Refined precision

Figure 4.1: Symbolic execution analysis of a program with and without CEGAR

is infeasible in the analysis with refined precision. Both runs themselves need far
lesser abstract states than analysis without CEGAR, as only necessary information is
tracked.
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5 Implementation of used CPAs in
CPAchecker

After defining the theoretical background of our work, deviations of the implemen-
tation from the theory and optimizations are documented next.

5.1 Basic implementation

We implemented our algorithm in the framework for configurable program verifi-
cation CPACHECKER[BK11]. CPACHECKER is a command-line tool that is able to
handle C programs without recursive function calls or multi-threading. It parses
a C program, creates a CFA representing the program, and executes the CPA or
CEGAR algorithm on it. The CPAs and, in the case of using CEGAR, the refinement
procedure to use have to be defined in a configuration file that can be specified
on the command line using the parameter -config <FILE>. The specification to
check must be defined as a temporal logic formula and is represented by an own
CPA. This CPA represents the isTargetState function of the CPA algorithm.

A wide array of CPA implementations already exists, which we can utilize. The
CPA interface equals the theoretical definition, but is extended with an initial state
and initial precision, which are used as initial parameters of the CPA algorithm.
The interface of the transfer relation is extended to include strengthening for the
designated CPA, as almost always a composite CPA is used. Instead of defining
one strengthen operator for each combination of two states, as done in theory ,the
strengthen method gets all states of the current composite state, so that it can choose
which to use for strengthening its own state.

One implementation for the composite CPA exists, called CompositeCPA. It allows
arbitrary composition of CPAs by using their transfer relations, strengthen operators,
the merge-agree operator mergeagree, a stop operator that only returns true if all
subordinate stop operators return true, and by delegating the precision adjustment
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to each individual CPA’s precision adjustment operator not only with the precision
to adjust to, but also all abstract states of the composite state, not only the one of the
CPA delegated to. We used this CPA to create our symbolic execution CPA.

The way the precision adjustment of CompositeCPA works, it is possible to
implement a precision adjustment function directly for a CPA whose precision uses
location-specific tracking, like ΠCS

. As such we implemented the two auxiliary
precision functions precCS

and precA as the precision adjustment of the symbolic
value analysis CPA and constraints CPA. By just specifying the wanted CPAs as
components of the composite CPA in a configuration file we composed the symbolic
execution CPA. We use the existing location CPA without any modifications. It was
already implemented in CPACHECKER.

Both the symbolic value analysis CPA, a direct extension of the existing value
analysis CPA, and the constraints CPA, a completely new CPA, were mostly used
as they were implemented in our work for [Lem15]. The constraints CPA transfer
relation’s complete syntax is in the strengthening by the symbolic value analysis
CPA to forgo the need for constraints made of program variables which are then
instantly replaced with constraints made of symbolic values. This way, a constraints
state always only contains constraints over explicit and symbolic values. This means
that all constraints are of γ+.

SAT checks over the constraints of a constraints state are performed by creating
a conjunction of boolean formulas, each of which represents one constraint of the
state, with symbolic identifiers being transformed to variables in the formulas. This
conjunction is then given to a SMT solver.

To be able to handle conditions like ”each constraint that originates from program
variable x” (for example as used when using the set ΠCS

of precisions for the
constraints CPA, see Section 3.2.6 and 4.3.1), we also store for each symbolic value
that is assigned to an variable the variable in the symbolic value. This way it is
always possible to transform a constraint of γ+ back to its original representation.

5.2 Existing options/optimizations

To use symbolic values in the value analysis CPA, the configuration option

cpa.value.symbolic.useSymbolicValues = true
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has to be set. Since structures and arrays in C may have a lot of entries, which might
not even be important for the analysis, it can prove useful not to track them at all, if
their assignments are non-deterministic. This increases the probability of coverage
of a state, for example

1 someStruct a;
2 int b = 1;
3 if (__nondet_int()) {
4 a = __VERIFIER_nondet_pointer();
5 } else {
6 a = __VERIFIER_nondet_pointer();
7 }
8 if (b < 1) {
9 ERROR:

10 return -1;
11 }

results in two different abstract states when the control flow meets and b < 1 is
checked twice, if non-deterministic structure assignments are tracked. If they are
not tracked, analysis will terminate for one abstract state when the control flow
meets and unnecessary computation is avoided. The options cpa.value.sym-
bolic.handleArrays as well as cpa.value.symbolic.handleStructs can
be used to disable the tracking of non-deterministic assignments to structs and
arrays. This will only disable the tracking of non-deterministic assignments of the
type struct or arrays, i.e. assignments to members of structs and array elements are
always tracked, despite the value of those two options. When analyzing

1 int[] b = new int[5];
2 b[0] = __VERIFIER_nondet_int();

with the symbolic execution CPA, b is always tracked. Arrays of unknown length
are never tracked, though.

Multiple optimizations are applied to the constraints CPA implementation in
CPACHECKER. First, we use the SMT solver to create a model (a mapping of
variables to concrete values) that satisfies the conjunction F of all constraints of a
state. This model is used to compute all definite assignments, i.e. the variables for
which only one valid assignment exists.

For each variable assignment s = n of the model, we check whether n is the
only assignment for variable s that satisfies F by checking whether F ∧ s 6= n is
unsatisfiable. If it is, s = n is necessary for the formula to be true and we can store it
as a definite assignment. (Alg. 10)
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Algorithm 10 GetDefiniteAssignments(F, M)

Input: A boolean formula F and a model M = SI → Z that satisfies F
Output: A map D ⊆ M of definite assignments

for each (s, n) ∈ M do
if F ∧ s 6= n is unsatisfiable then

D := D ∪ (s, n)
return D

In addition, we only store constraints that contain at least one symbolic identifier.
If a constraint does not contain a symbolic identifier, we call it trivial. Its representing
boolean formula then does not contain any variables and it can be checked whether
it is satisfiable or not independently of all other constraints, as it can’t influence any
symbolic identifier’s possible concrete values. If the constraint is unsatisfiable, the
path using this assumption is infeasible and no valid transfer to a new state exists.
Otherwise, the old state is used without adding the trivial constraint. In our basic
implementation, if a constraint that already is in the current abstract state becomes
trivial because all symbolic identifiers occurring in it have definite assignments,
the constraint was removed, too, while the definite assignments were preserved.
This was done for the same reason as not adding trivial constraints in the first
place, but resulted in more complex code, as the definite assignments had to be
considered every time a constraints state was examined. For simplicity, this feature
was removed from our current implementation. CEGAR automatically results in
a constraints state that only contains constraints still necessary, so that such trivial
constraints are removed automatically by not being tracked.

Last, we do not create boolean formulas for each constraint every time we want to
perform a SAT check, but store them and only create formulas for constraints for
which none exist yet. This way we have to synchronize the set of constraints with an
additional set of formulas, but save a lot of redundant formula creations.

We perform strengthening of the value analysis CPA by using constraints states.
If an abstract assignment of a symbolic identifier with a definite assignment to a
program variable exists in the value analysis state, the symbolic identifier is replaced
by the definite assignment’s value. This way we reduce the number of existing
symbolic identifiers to the necessary minimum and create constraints with fewer
symbolic identifiers.

56



5.3 New options/optimizations

We extended strengthening of the value analysis CPA by the constraints CPA to
simplify symbolic expressions, as long as they are independent. If none of the
symbolic identifiers occurring in a symbolic expression are part of any constraint
of the constraints state and no other program variable’s assignment, its value can
be any number, independently of all other variable assignments. In conclusion, any
such expression can be replaced with a single symbolic identifier without losing any
information. Such independence can be checked easily by traversing through all
constraints’ operands. By replacing potentially complex expressions by a simple
single symbolic identifier, the occurrence of complex formulas that have to be solved
in SAT checks are reduced to single variables.

By using configuration option cpa.constraints.mergeType = SEP or JOIN,
either mergesep, as used in [Lem15], or the new merge operator merge as defined in
Section 4.1 can be used in the constraints CPA.

For choosing the less-or-equal operator to use with the constraints CPA, the
property cpa.constraints.lessOrEqualType with possible values SUBSET,
ALIASED_SUBSET and IMPLICATION exists. Each less-or-equal operator behaves
as described in Section 4.2. Keep in mind that ALIASED_SUBSET can result in
wrong behaviour.
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6 Implementation of CEGAR

For applying CEGAR to the symbolic execution CPA, the CEGAR algorithm imple-
mentation already present in CPACHECKER is used. To use it, the configuration
option analysis.algorithm.CEGAR = true has to be set. In addition, the re-
finement procedure has to be set with property cegar.refiner. Its value has to
be the name of a class containing a method

1 public static Refiner create(ConfigurableProgramAnalysis)

which is called before starting the CEGAR algorithm to get the refinement pro-
cedure. The class name has to be given with its package description starting
at org.sosy_lab.cpachecker. If the class to use were org.sosy_lab.cpa-
checker.cpa.value.refiner.ValueAnalysisRefiner, the configuration op-
tion cegar.refiner = cpa.value.refiner.ValueAnalysisRefinerwould
have to be set.

In CPACHECKER, refinement for multiple CPA’s precisions is already imple-
mented. Since our precision refinement for the symbolic execution CPA based on
abstract variable assignments (Section 4.3.1) is very similar to the refinement of the
value analysis CPA, we refactored it to be able to reuse most code.

6.1 Refactoring of ValueAnalysis CEGAR into

Generic Form

The refinement procedures for value analysis CPA and symbolic execution CPA
differ in the following ways, in theory:

1. Feasibility check isFeasible for error paths. The feasibility check of the
value analysis refinement uses the value analysis CPA with full precision, the
check of the symbolic execution refinement uses the symbolic execution CPA
with full precision.
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2. Set of precisions. Symbolic execution CPA’s precision is a pair of the symbolic
value analysis CPA’s precision, which is the same as the value analysis CPA’s
one, and the constraints CPA’s precision. This changes the expected return
type of the extractPrecision function and the refine algorithm. Since the
CEGAR implementation in CPACHECKER expects the refinement procedure
to also update the precision in the CPAs, a different extractPrecision
function and a different precision update procedure are needed.

3. Interpolation algorithm with strongest-post operator and structure of the pro-
duced interpolant. Symbolic execution uses an interpolation algorithm with
another behaviour and a different structure of the returned interpolant. This
has to be considered in the extractPrecision, also.

Keeping these points in mind, we first take a look at the old structure of the value
analysis CPA’s refinement implementation.

6.1.1 Structure of value analysis CPA refinement

Figure 6.1 shows the structure of the default refinement procedure for the value
analysis CPA. The class ValueAnalysisRefiner is acting as interface for the
refinement procedure. A deviation from the CEGAR algorithm (Alg. 2) is that the
refinement procedure does not get the error path extracted from the reached set,
but the reached set itself. The refinement procedure is responsible for extracting
the error path, checking whether it is feasible, updating the precision if it is not and
resetting the reached set and waitlist. (Lines 9 – 15 in Alg. 2).

Independent of the way the reached set and waitlist are reset, the precision is
updated by getting the existing precisions of all locations removed from the reached
set and joining them with the newly extracted precision.

A deviation from the refine algorithm (Alg. 4) is that the interpolants for all
program locations on the error path are created by the ValueAnalysisPath-

Interpolator in one go, stored as a ValueAnalysisInterpolationTree. It
basically represents Lines 3 – 5 of the refine algorithm, while ValueAnalysis-

EdgeInterpolator is used for concrete interpolation. The interpolation algorithm
(Alg. 3) gets a prefix and a suffix as parameters, with the prefix being combined from
the interpolant computed for the last location and the current location’s operation.
It then applies the strongest-post operator to the complete prefix with an initial
abstract variable assignment to get the abstract variable assignment for the current
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ValueAnalysisRefiner

+ create(ConfigurableProgramAnalysis cpa)
+ performRefinement(ReachedSet reached)
- obtainInterpolants(List<ARGPath> targetPaths)
- refineUsingInterpolants(ARGReachedSet reached, 
ValueAnalysisInterpolationTree interpolants)

ValueAnalysisPathInterpolator

+ performInterpolation(ARGPath errorPath, 
ValueAnalysisInterpolant initialInterpolant)

ValueAnalysisEdgeInterpolator

+ deriveInterpolant(ARGPath errorPath,
CFAEdge currentOperation, int 
currentPositionInPath, 
ValueAnalysisInterpolant currentInterpolant)

ValueAnalysisPrefixProvider

+ extractInfeasiblePrefixes(ARGPath 
errorPath)

ValueAnalysisFeasibilityChecker

+ isFeasible(ARGPath path)
+ isFeasible(ARGPath path, ValueAnalysisState 
initialState)

calls for each location
on the program path

implements

ValueAnalysisTransferRelation

+ getAbstractSuccessorForEdge(
ValueAnalysisState initialState, 
Precision alwaysFullPrecision,
CFAEdge currentOperation)

ValueAnalysisInterpolant

+ getMemoryLocations()
+ createValueAnalysisState()

ValueAnalysisInterpolationTree

+ allInterpolants

gets interpolants for
precision refinement

creates

creates

<<Interface>>

Refiner

+ performRefinement(
ReachedSet reached)

<<Interface>>

PrefixProvider

+ extractInfeasiblePrefixes(ARGPath 
errorPath)

implements

PrefixSelector

+ selectSlicedPrefix(PrefixPreference 
preference, List<InfeasiblePrefix> 
allInfeasiblePrefixes)

selects prefix computes prefixes

checks that prefix
 is infeasible

Used in place of strongest-post operator for 
a constraints sequence/program path

Extracts error path from reached set, checks if it is 
feasible, gets interpolants for every location on the 
error path at once from the path interpolator and 
extracts a precision for each location from them.
Lines 9 - 15 of CEGAR algorithm,  Lines 1, 2 + 6 of 
refine algorithm

Used in place of strongest-post 
operator for a single operation

Figure 6.1: Structure of value analysis CPA refinement before refactoring
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location. In the implementation, ValueAnalysisEdgeInterpolator receives
the interpolant and the current operation in form of a CFA edge, separately. It is
possible to recreate a ValueAnalysisState from the interpolant class Value-
AnalysisInterpolant, so the strongest-post operator only has to be applied
to the current operation with the reconstructed state as initial one. This way, no
redundant computations happen.
ValueAnalysisEdgeInterpolator uses the ValueAnalysisTransferRe-

lation with full precision as strongest-post operator SP for single operations, as
it represents the same semantics. The ValueAnalysisState also used in the ab-
stract domain of the value analysis CPA is used to represent abstract variable assign-
ments. A program variable is represented as a MemoryLocation. The class Value-
AnalysisFeasibilityChecker is used for the feasibility check isFeasible

(Line 10. Alg. 2). Since it applies the ValueAnalysisTransferRelation also
representing SP sequentially to a program path to check whether it is feasible, it is
also used as the sequential application of the strongest-post operator on a program
path by the ValueAnalysisEdgeInterpolator. It is not necessary to transform
program paths to constraints sequences, as the transfer relation can work on their
edges directly.

The interface PrefixProvider, its implementation ValueAnalysisPrefix-

Provider and the class PrefixSelector are used for the selection of an infeasible
path prefix of the error path. Interpolation is then applied to this prefix only instead
of the whole path, to have better control of the interpolants produced and the
interpolation process itself. This concept was introduced in [BLW15b] and will be
used by us without modification. The algorithm for determining infeasible prefixes
also uses the strongest-post operator. In the implementation, ValueAnalysis-
PrefixProvider uses the ValueAnalysisTransferRelation for this, as all
others do. In addition, the infeasibility of a chosen prefix is checked again by using
the ValueAnalysisFeasibilityChecker since it is possible to be feasible due
to imprecision when structs or arrays occur.

6.1.2 Introduction of interfaces

Except for the two classes ValueAnalysisRefiner and ValueAnalysisPrefix-
Provider, none of these classes are accessed through an interface. So first, we cre-
ated interfaces with type parameters that represent all components required for re-
finement in the domain of abstract variable assignments, based on the existing imple-
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<<Interface>>

Refiner

+ performRefinement(
ReachedSet reached)

<<Interface>>

FeasibilityChecker

+ isFeasible(ARGPath path)
+ isFeasible(ARGPath path, 
S initialState) 

S extends AbstractState <<Interface>>

StrongestPostOperator

+ getStrongestPost(S state, 
Precision precision, 
CFAEdge operation) : S

S extends ForgetfulState

<<Interface>>

ForgetfulState

+ forget(MemoryLocation loc) : T
+ remember(MemoryLocation 
loc, T forgottenInfo)
+ getTrackedMemoryLocations()

T

<<Interface>>

PathInterpolator

+ performInterpolation(ARGPath 
errorPath, I initialInterpolant)

I extends Interpolant<?>
<<Interface>>

EdgeInterpolator

+ deriveInterpolant(ARGPath errorPath, 
CFAEdge operation, int currentPositionInPath,
I currentInterpolant)

S extends ForgetfulState<T>,
T,

I extends Interpolant<S>

<<Interface>>

Interpolant

+ getMemoryLocations()
+ reconstructState() : S

S extends AbstractState <<Interface>>

InterpolantManager

+ createInitialInterpolant() : I
+ createInterpolant(S state) : I

S extends AbstractState,
I extends Interpolant<S>

<<Interface>>

AbstractState

extends

Figure 6.2: Interfaces used in refinement

mentation of the value analysis refinement. These interfaces are displayed in Figure
6.2 next to the Refiner interface. FeasibilityChecker, PathInterpolator,
EdgeInterpolator, Interpolant are based on their counterpart in value analy-
sis refinement. The interface StrongestPostOperator provides the functionality
of the strongest-post operator in the refinement algorithms. Its previous counterpart
in value analysis refinement is the ValueAnalysisTransferRelation that was
used without an interface. InterpolantManager is an interface providing a pre-
viously not needed functionality: To be able to use an interface for interpolants, this
interface is introduced to assume creating them at one point only, through injecting
an interpolant manager in other classes of refinement. ForgetfulState is the
interface for states used and created by the StrongestPostOperator and used
by the EdgeInterpolator. It provides means for checking whether an element of
the state is needed during interpolation and re-adding it, if it is.

Its type parameter T describes the type forgotten information is stored in. The
method ForgetfulState.forget(MemoryLocation) returns the forgotten in-
formation as type T and it is used to remember the forgotten information, if neces-
sary. Another type parameter we use is S, which represents the ForgetfulState
implementation used. Interpolant and FeasibilityChecker don’t need
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the additional functionality this interface provides, so we just use its super-type
AbstractState for these. The third and last type parameter, I, describes the con-
crete Interpolant implementation used. The use of a type parameter describing
a concrete implementation instead of just using Interpolant<S> everywhere
allows implementing classes to use methods specific to certain implementations.

6.1.3 Creation of generic refinement classes based on
refactoring of value analysis refinement

After introducing above interfaces, we create new generic refinement classes
implementing these interfaces for the domain of abstract variable assignments
by using and refactoring most of the code of the existing value analysis refine-
ment. The resulting structure can be seen in the UML diagram of Figure 6.3.
All aggregation relationships represent dependency injection through the con-
structor of the classes. All parts of the refinement procedure are easily inter-
changeable. GenericRefiner is an abstract class. By implementing the method
refineUsingInterpolants(ARGReachedSet, InterpolationTree) that
is expected to use an interpolation tree to update the precision and reset the reached
and waitlist sets represented by the type ARGReachedSet, subtypes can represent
a complete refinement procedure. It is possible to reuse all of the shown classes.
One only has to implement an Interpolant, a ForgetfulState, an Interpo-

lantManager managing this interpolant type and supporting the state type, and
a StrongestPostOperator using the state type. These types then have to be
injected either through the constructor of the Generic* classes, or by choosing the
correct type parameter.

6.2 Refinement of Symbolic Value Analysis +

Constraints CPA

Refinement of the symbolic value analysis CPA and constraints CPA is strongly based
on these generic implementations. Besides Interpolant, ForgetfulState,
InterpolantManager and StrongestPostOperator, we only create an own
implementation of EdgeInterpolator. For all other components, we inherit the
behaviour of the generic implementations. Figure 6.4 shows the structure of this
refinement.
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Refiner

GenericRefiner

+ performRefinement(ReachedSet 
reached)
# obtainInterpolants(List<ARGPath> 
errorPaths)
# refineUsingInterpolants(ARGReachedSet 
reached, InterpolationTree<S, I> 
interpolants)

S extends ForgetfulState<?>
I extends Interpolant<S>

implements

PathInterpolator

InterpolantManager

GenericPathInterpolator

+ performInterpolation(ARGPath errorPath, 
I initialInterpolant)

S extends ForgetfulState<?>
I extends Interpolant<S>

implements

EdgeInterpolator

calls for each location
on the program path

PathExtractor

+ getTargetStates(
ARGReachedSet reached)
+ getTargetPaths(
Collection<ARGState> targets)

GenericPrefixProvider

- S emptyState

+ extractInfeasiblePrefixes(ARGPath 
path)
+ extractInfeasiblePrefixes(ARGPath 
path, S initialState)

S extends ForgetfulState<?>

PrefixProvider
implements

computes prefixes

GenericEdgeInterpolator

- S emptyState

+ deriveInterpolant(ARGPath 
errorPath, CFAEdge operation, 
int currentPositionInPath, I 
currentInterpolant) : I

S extends ForgetfulState<T>,
T,

I extends Interpolant<S>

implements

uses for
creating Interpolant

PrefixSelector

+ selectSlicedPrefix(PrefixPreference 
preference, List<InfeasiblePrefix> 
allInfeasiblePrefixes)

FeasibilityChecker

GenericFeasibilityChecker

- S emptyState

+ isFeasible(ARGPath path)
+ isFeasible(ARGPath path,
S initialState) 

S extends ForgetfulState<?>

Interpolant

StrongestPostOperator

InterpolationTree

+ allInterpolants

S extends AbstractState
I extends Interpolant<S>

gets interpolants for
precision refinement

computes

selects prefix

implements

creates

Figure 6.3: Structure of generic refinement procedure for abstract variable assign-
ments

SymbolicInterpolant implements Interpolant. It stores information about
abstract variable assignments and constraints, so it can be used for interpolating over
both these types. ForgettingCompositeState implements ForgetfulState.
It is the composition of ValueAnalysisState and ConstraintsState and pro-
vides methods for forgetting and remembering both their elements separately. This
is necessary for interpolation, described below. SymbolicInterpolantManager
is an InterpolantManager able to create SymbolicInterpolants. Value-

TransferBasedStrongestPostOperator is the implementation of the compos-
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SymbolicValueAnalysisRefiner

# refineUsingInterpolants(ARGReachedSet reached, 
InterpolationTree<ForgettingCompositeState, SymbolicInterpolant> 
interpolants)

GenericRefiner

+ performRefinement(ReachedSet 
reached)
# refineUsingInterpolants(ARGReachedSet 
reached, InterpolationTree<S, I> 
interpolants)

S extends ForgetfulState<?>
I extends Interpolant<S>

<<bind>>
<S -> ForgettingCompositeState, I -> SymbolicInterpolant>

GenericPathInterpolator

+ performInterpolation(ARGPath errorPath, 
I initialInterpolant)

S extends ForgetfulState<?>
I extends Interpolant<S>

<<bind>>
<S -> ForgettingCompositeState, 

I -> SymbolicInterpolant>

SymbolicPathInterpolator

SymbolicValueAnalysisFeasibilityChecker

GenericFeasibilityChecker

- S emptyState

+ isFeasible(ARGPath path)
+ isFeasible(ARGPath path,
S initialState) 

S extends ForgetfulState<?>

<<bind>>
<S -> ForgettingCompositeState>

EdgeInterpolator
ElementTestingSymbolicEdgeInterpolator

+ deriveInterpolant(ARGPath errorPath, CFAEdge 
operation, int currentPositionInPath, 
SymbolicInterpolant currentInterpolant)

<<bind>>
<S -> ForgettingCompositeState,
T -> ValueAnalysisInformation,

I -> SymbolicInterpolant>

StrongestPostOperator

ValueTransferBasedStrongestPostOperator

+ getStrongestPost(ForgettingCompositeState state,
Precision precision, CFAEdge operation)

<<bind>>
<S -> ForgettingCompositeState>

InterpolantManager

SymbolicInterpolantManager

+ createInitialInterpolant() : 
SymbolicInterpolant
+ createInterpolant(ForgettingCompositeState 
state) : SymbolicInterpolant

<<bind>>
<S -> ForgettingCompositeState,

I -> SymbolicInterpolant>

Interpolant

SymbolicInterpolant

+ getMemoryLocations()
+ reconstructState() : 
ForgettingCompositeState

computes
creates

<<bind>>
<S -> ForgettingCompositeState>

ForgetfulState

ForgettingCompositeState

- ValueAnalysisState
- ConstraintsState

+ forget(MemoryLocation loc) : 
ValueAnalysisInformation
+ remember(MemoryLocation loc, 
ValueAnalysisInformation forgottenInfo)
+ getTrackedMemoryLocations()
+ forget(Constraint constraint)
+ remember(Constraint constraint)
+ getTrackedConstraints()

<<bind>>
<T -> ValueAnalysisInformation>

+ ValueAnalysisTransferRelation
+ ConstraintsTransferRelation

Only first three methods are accessible 
through interface

Figure 6.4: Structure of refinement procedure for symbolic execution

ite strongest-post operator using the value analysis transfer relation and constraints
transfer relation, described in Section 4.3.1.
SymbolicEdgeInterpolator implements EdgeInterpolator. We can’t use

the functionality of GenericEdgeInterpolator since, depending on the confi-
guration, we have to interpolate testing both constraints and/or variable assign-
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Feasibility check with 
value analysis 

semantics

Feasibility check with 
symbolic execution 

semantics

Refinement with value 
analysis semantics

UNSAFE

Feasible

Feasible

Infeasible

Reached set with 
found target state Refinement with 

symbolic execution 
semantics

Infeasible

Figure 6.5: Symbolic execution refinement procedure. Before using constraints, try
to prove infeasibility with value analysis semantics only

ments for their necessity. The generic edge interpolator only tests program variables
(MemoryLocations), though.

6.2.1 Performing value analysis refinement first

The strongest-post operator SPS of symbolic execution refinement performs a SAT
check at every assume operation, just like the symbolic execution CPA’s transfer rela-
tion. To minimize these expensive computations, we implement an additional refine-
ment procedure that uses the semantics of value analysis’s strongest-post operator
SP only, if possible. To do this, we can’t just use value analysis refinement because of
the wrong interpolant type of Γ and the different set of precisions. If value analysis
refinement was to update the precision by taking the current precisions of the loca-
tions whose states were removed from the reached set after successful interpolation
and combining them with the newly computed precision, it would only consider
the precision of the value analysis CPA and discard the existing precision of the
constraints CPA. So instead, we build a new refinement procedure with a strongest-
post operator representing the semantics of SP (see Section 3.3.2), generic refinement
classes for interpolation and feasibility check using this strongest-post operator and
ForgettingCompositeState, as well as SymbolicValueAnalysisRefiner,
which considers the precisions of both value analysis CPA and constraints CPA.

When refining, we first call this procedure. If it is able to prove the error path as
infeasible, we use its refined precision. If it is not, we use our refinement procedure
for symbolic execution to get a new precision. This way we only use SAT checks in

66



refinement and only increase the precision of the expensive constraints CPA if this is
really necessary for computing an error path as infeasible.

6.2.2 Extract precision from predicate refinement

For using the refinement procedure extracting a precision from the predicate pre-
cision created by predicate CPA’s refinement, predicate CPA’s refinement is just
executed and all program variables are extracted from the predicates of the resulting
precision for each location. These program variables are then used for the preci-
sion of the value analysis CPA, while the locations are used as precision for the
constraints CPA, since it is not possible to derive an original assume statement from
the predicates created by predicate CPA’s refinement. Since the predicate CPA is
more powerful than the symbolic execution CPA, it is possible that a refined preci-
sion is returned that is not sufficient for the symbolic execution CPA to prove the
infeasibility of the error path. Because of this it is not always possible to use this
alternative.
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7 Evaluation

7.1 Evaluation Setup

We performed each run of our benchmarks on a dedicated, unloaded server with an
Intel Xeon E5-2650 v2 with 2.60 GHz and 32 CPU cores, using the Linux operating
system Ubuntu 14.04 for the x86_64 architecture. The resource limits for each
run were 15.00 GB (13.97 GiB) of memory (RAM), a Java heap limit of 10.49 GB
(10000 MiB = 9.767 GiB), a maximum use of two CPU cores, a CPU time limit of
900 seconds (15 minutes), after which CPACHECKER is supposed to shut down, and
a hard time limit after which the run is killed of 1200 seconds (20 minutes). We chose
a relatively big difference between the time limit in CPACHECKER and the hard time
limit to give the analysis enough time to shut down in case of a long taking SAT
check during analysis. As SAT checks are delegated to an SMT solver, CPACHECKER

is unable to shut down during a check.
We took a subset of the benchmark repository1 of the SV-COMP 2015 verification

tasks for our benchmarks. A detailed explanation of all verification tasks present
there can be found at [Bey15a]. We used:

1. BitVectors. Requires treatment of bit-operations, which allows us to check the
need for and performance of a bitvector-based theory for SMT solving.

2. Floats. Requires handling of floats, which allows us to check the need for and
performance of a float-based theory for SMT solving. An alternative is to just
use rationals as approximations, whose use increases performance of SMT
solving in comparison to floats.

3. ControlFlowInteger, ECA, Loops, ProductLines and Simple. All five of these
sets are designed for testing the control flow and integer variable handling of
analyses. Path explosion should occur here a lot.

1 https://svn.sosy-lab.org/software/sv-benchmarks/tags/svcomp15
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4. DeviceDrivers. This set of tasks consists of problems that require analysis
of pointer aliases and function pointers. Since the value analysis CPA can’t
handle pointers, we expect the symbolic execution CPA to perform poorly, also.
This set uses a simple memory model and the 64-bit architecture, the only task
category we use that does so.

5. HeapManipulation. This set of tasks also consists of problems that require
analysis of pointer aliases and function pointers, as well as data structures on
the heap. In contrast to the set DeviceDrivers, this set uses a precise memory
model and a 32-bit architecture.

6. Sequentialized. Different tasks derived from SystemC programs. SystemC
provides means to simulate concurrent processes. Such programs were trans-
formed to pure C programs so they can be analyzed by CPACHECKER.

A simple memory model denotes that variables can only be modified using direct
assignments or by using a pointer which was obtained by using & on the corre-
sponding variable. A precise memory model denotes that all memory cells can be
written to, even by dereferencing uninitialized pointers. We told CPACHECKER

whether to assume a 32-bit or 64-bit architecture with the command-line parameters
-32 (actually the default) and -64.

The external method __VERIFIER_nondet_X() is used to introduce non-deter-
ministic values of type X in a program. Although CPACHECKER is able to handle
recursive function calls using block-abstraction memoization (BAM) [Fri15], we
do not use this feature, but skip such calls to keep our analysis focused on the
performance of the symbolic execution CPA and its comparisons. To skip recursive
function calls, we use the command-line parameter -skipRecursion.

All verification tasks are batch executed using a benchmark script that performs all
runs with above specifications and which returns for each run one of the following
results:

• TRUE, if the program is safe, i.e. the specification holds

• FALSE, if the program is potentially unsafe, i.e. the analysis found a specifica-
tion violation and can’t prove that the specification holds due to this

• UNKNOWN, if the result is unknown, due to an error, a crash, or exhausted
resources (e.g. time or memory)
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For each such result, the script assigns a number of points depending on the received
and the expected result, and presents the sum of these points as a general indicator
for the performance of the used program/analyses. The points assigned are:

Points Result

0 UNKNOWN
+1 FALSE, correct
-6 FALSE, incorrect (false alarm)

+2 TRUE, correct
-12 TRUE, incorrect (unsound analysis)

This point scale rewards correct results, but punishes wrong ones stronger, especially
unsoundness, the worst property a verifier can have. The script rewards correctly
found bugs with less points then proving that a specification holds, since the latter
is more complicated. In addition, the script does not check whether the error found
by the analysis is an actual specification violation or just a lucky coincidence due to
a too high level of abstraction, when a correct FALSE is returned. That means that
simple analyses like the value analysis CPA, which don’t track much information,
can get points for finding a potential bug that not really is one in case another real
bug exists. Keeping these points in mind, the resulting score for an analysis can give
a fair general overview of its performance.

All benchmarks were executed using the code of revision 17223 of the branch
symbolic-cegar in the CPACHECKER repository2. All benchmark results can be
found on the supplementary web page at http://leostrakosch.github.io/
symbolicValueAnalysis-enhanced/.

7.2 Evaluation of CEGAR

7.2.1 Comparison to symbolic execution CPA without CEGAR

Evaluation shows the great boost CEGAR provides to the symbolic execution CPA.
Table 7.1 shows the results of the symbolic execution CPA without CEGAR using
the subset less-or-equal operator and mergesep (SymEx w/o CEGAR), in comparison
to the symbolic execution CPA using CEGAR with refinement based on CEGAR
for explicit-state model checking (SymEx w/ CEGAR, Sec. 4.3.1). Program errors

2 https://svn.sosy-lab.org/software/cpachecker/branches/symbolic-cegar
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SymEx w/o CEGAR SymEx w/ CEGAR Overall
correct results 761 (18.60%) 2078 (50.78%) 4092

FALSE, correct 598 (50.63%) 376 (31.83%) 1181
TRUE, correct 163 (5.599%) 1702 (58.47%) 2911

unique FALSE, correct 323 101
unique TRUE, correct 84 1623

FALSE, incorrect 44 83
unique FALSE, incorrect 4 43

TRUE, incorrect 0 1
program errors 2 2
resource errors 3285 1928

Table 7.1: Results of benchmark runs of the symbolic execution CPA without CEGAR
and with CEGAR

are errors in the execution of CPACHECKER, in this case a parsing error of a file for
both analysis and an exception due to a failure of the SMT solver in the analysis
without CEGAR and one due to a division by zero in the analysis with CEGAR.
The increase in correctly handled tasks without a safety violation (in the table row
”correct negatives”) by a factor of more than 10 and the decrease in timeouts by more
than 40% are the most notable improvements by using CEGAR. On the contrary, the
number of found safety violations decreases by 222 tasks, since the lazy approach of
CEGAR has a problem with programs consisting of a lot of assumptions leading to
an error in dependence of many variables.

Figure 7.1d shows a CFA representing one such program. The highlighted nodes
are error locations. Although only the last one of them is really reachable as all
program variables are initialized with the concrete value 2 at the beginning of
the program, the CEGAR algorithm visits one after the other, always refining the
precision to track only one additional variable and then restarting from the beginning
of the program, since all variable assignments happen there. The first three iterations
of this procedure are shown in Figures 7.1a – 7.1c. This lazy approach performs
many computations obviously unnecessary and as such has a significant worse
performance than an eager approach using full precision. Using full precision, it is
possible to prove all error paths but the last infeasible in one run, since the value
analysis state already equals {a → 2, b → 2, ..., z → 2} after processing the first
CFA edge (Fig. 7.1e). Analogous, programs like this requiring the tracking of all
constraints exist and programs with such characteristics, but without a reachable
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∅

∅

∅

a := 2, b := 2, ..., z := 2

[a == 1]

(a) First iteration, tracking
no variables

∅

{a→ 2}

{a→ 2}

{a→ 2}

a := 2, ..., z := 2

[!(a == 1)]

[b == 1]

(b) Second iteration, track-
ing variable a

∅

{a→ 2, b→ 2}

{a→ 2, b→ 2}

{a→ 2, b→ 2}

{a→ 2, b→ 2}

a := 2, ..., z := 2

[!(a == 1)]

[!(b == 1)]

[c == 1]

(c) Third iteration, tracking
variables a and b

0

1

2 3

4 5

6

7

98

a := 2, b := 2, ... z := 2

[!(a == 1)] [a == 1]

[!(b == 1)] [b == 1]

[c == 1]

[z == 2][!(z == 2)]

(d) CFA

∅

{a→ 2, b→ 2, ..., z→ 2}

{a→ 2, b→ 2, ..., z→ 2}

{a→ 2, b→ 2, ..., z→ 2}

{a→ 2, b→ 2, ..., z→ 2}

{a→ 2, b→ 2, ..., z→ 2}

a := 2, ..., z := 2

[!(a == 1)]

[!(b == 1)]

z == 2

(e) Last iteration tracking all program vari-
ables. Also equals the run of eager analy-
sis

Figure 7.1: A CFA representing a program CEGAR performs worse for than eager
analysis and the first three and last one iteration of analysis using CEGAR.
The last iteration also equals the eager analysis
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(a) Time in seconds to find an error
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(b) Time in seconds to prove a program safe

Figure 7.2: Runtime performance of symbolic execution with and without CEGAR
in comparison

target location. Tasks of the latter category constitute almost all of the 84 unique
correct TRUE results of symbolic execution without CEGAR.

Most of the programs with these characteristics are of the task sets of ProductLines
and ECA. To recap, of the 598 tasks symbolic execution without CEGAR can correctly
find errors in, more than half (323 tasks) can’t be analyzed correctly by symbolic
execution with CEGAR due to many infeasible error paths and the resulting amount
of refinements. On the other hand, symbolic execution with CEGAR is able to prove
for 101 new tasks that an error exists in them. This shows that the efficiency of
symbolic execution with and without CEGAR strongly depends on the task on
hand, especially when the program is not error-free. Fig. 7.2a illustrates that for
many programs, either symbolic execution with or without CEGAR is able to find
a (possibly non-existent) error within 900 seconds, but not both. For proving the
safety of a program, analysis with CEGAR performs significantly better, being able
to correctly analyze 1623 tasks more than analysis without CEGAR, but its laziness
results in bad performance for some programs, too (Fig. 7.2b).

For most tasks symbolic execution with CEGAR is able to compute a result but
symbolic execution without CEGAR is not, only few or zero refinements are neces-
sary (Fig. 7.3). Comparison with the random distribution of performed refinements
in tasks that resulted in a timeout when using CEGAR (Fig. 7.4) confirms the problem
CEGAR has with many possible error paths.
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Figure 7.3: Amount of tasks analysis with CEGAR can compute a result for while
analysis without CEGAR can’t, and the number of refinements necessary
for them
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Figure 7.4: Amount of refinements (up to 100) that were performed for a specific
amount of tasks that resulted in a timeout

Nevertheless, thanks to its significant better performance in proving the safety
of programs, CEGAR was able to push the symbolic execution CPA’s score from
660 points to 3271 points by increasing the amount of successfully verified error-free
tasks by more than 1500.
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Values only Values first Constraints first Overall
correct results 2080 2079 2078 4092

FALSE, correct 378 376 376 2911
TRUE, correct 1702 1703 1702 1181

unique FALSE, correct 2 0 0
unique TRUE, correct 0 0 0

FALSE, incorrect 83 83 83
unique FALSE, incorrect 0 0 0

TRUE, incorrect 1 1 1
unique TRUE, incorrect 0 0 0

program errors 3 3 2
resource errors 1925 1926 1928

Table 7.2: Results of benchmark runs of the symbolic execution CPA with CEGAR
using three different techniques for interpolation computation

7.2.2 Interpolation techniques

We compare three different techniques for computing interpolants of the symbolic
execution CPA already mentioned in Section 4.3.1:

a) Only removing unnecessary values and using all constraints that resulted from
the previous interpolant and the strongest-post operator at the current edge
(values only),

b) removing unnecessary values first and then constraints (values first), and

c) removing unnecessary constraints first and then values (constraints first).

Table 7.2 shows that almost no difference exists in the effectiveness of all three
techniques. General time performance also differs in no significant way, as the
scatter plots in Figure 7.5 show. Using the values only interpolation technique yields
two more correctly found errors over all benchmark tasks. Both tasks are close to the
time limit with 863.4 and 887.5 seconds. The successful analysis of these two tasks is
a result of the faster ”values only” interpolant computation. Since the strongest-post
operator of symbolic execution refinement uses expensive SAT checks to check the
satisfiability of current constraints, the two refinement procedures ”values first” and
”constraints first” take longer for a single refinement, as they call the strongest-post
operator more often - for every abstract variable assignment and every constraint
once, respectively. The ”values only” computation only calls the strongest-post
operator once for every value, in contrast. Similarly, analyses using ”values only”
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Figure 7.5: Runtime performance of different interpolation techniques over all bench-
mark tasks

and ”values first” are able to prove one more task safe than ”constraints first”. This
one is very close to the time limit (867.7 seconds using ”values only”, 836.6 seconds
using ”values first”), too.

Analysis with interpolation using ”values first” or ”constraints first” is also able
to prove one task safe ”values only” can’t. Here, the computation times of 656.0
and 642.0 seconds are farther away from the time limit. Although refinement takes
longer than with ”values only”, the coarser precision of the constraints CPA speeds
up termination of the analysis after all information necessary for proving all error
paths is tracked.

For further evaluation we will use the ”constraints first” technique, as it is the
closest to our specification and does not pose any disadvantages in comparison to
the other two techniques.

7.2.3 Different sets of precision

Table 7.3 shows the performance of the symbolic execution CPA with CEGAR using
the default constraints-based precision in comparison to the location-based precision.
As it is already the case with the ”value only” interpolation technique, using the
location-based precision provides a small boost in the amount of correctly found
property violations in exchange for a small decrease in tasks correctly proven safe.
This is due to less needed refinements to reach a necessary precision to either find a
feasible error path (Fig. 7.6a) or prove a program safe (Fig. 7.6b), as more constraints
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Constraint Location Overall
correct results 2078 2083 4092

FALSE, correct 376 384 2911
TRUE, correct 1702 1699 1181

unique FALSE, correct 1 3
unique TRUE, correct 6 9

FALSE, incorrect 83 83
unique FALSE, incorrect 0 0

TRUE, incorrect 1 1
unique TRUE, incorrect 0 0

program errors 2 2
resource errors 1928 1923

Table 7.3: Results of benchmark runs of the symbolic execution CPA with CEGAR
using constraints-based and location-based precision for constraints CPA

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10  20  30  40  50  60  70  80  90  100

#
 R

e
fi
n
e
m

e
n
ts

 u
si

n
g
 l
o
ca

ti
o
n
 p

re
ci

si
o
n

# Refinements using constraints precision

(a) For finding an error

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10  20  30  40  50  60  70  80  90  100

#
 R

e
fi
n
e
m

e
n
ts

 u
si

n
g
 l
o
ca

ti
o
n
 p

re
ci

si
o
n

# Refinements using constraints precision

(b) For proving a program safe

Figure 7.6: Number of needed refinements for finding errors and proving a program
safe

are tracked potentially. To prove a program safe, only few variables and constraints
have to be tracked, most of the time, though. Because of this, the higher precision
and the resulting bigger state space is often hindering when proving the safety of a
program.
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Subset Implication Overall
correct results 2078 2078 4092

FALSE, correct 376 376 2911
TRUE, correct 1702 1702 1181

unique FALSE, correct 1 1
unique TRUE, correct 0 0

FALSE, incorrect 83 83
unique FALSE, incorrect 0 0

TRUE, incorrect 1 1
unique TRUE, incorrect 0 0

program errors 2 2
resource errors 1928 1928

Table 7.4: Results of benchmarks runs of the symbolic execution CPA with CE-
GAR using the subset and the implication less-or-equal operator with
the constraints-based precision for the constraints CPA

SL IL Overall
correct results 2083 2079 4092

FALSE, correct 384 384 2911
TRUE, correct 1699 1695 1181

unique FALSE, correct 1 1
unique TRUE, correct 4 0

FALSE, incorrect 83 83
unique FALSE, incorrect 0 0

TRUE, incorrect 1 1
unique TRUE, incorrect 0 0

program errors 2 3
resource errors 1923 1926

Table 7.5: Results of benchmark runs of the symbolic execution CPA with CEGAR
using subset (SL) and implication (IL) less-or-equal operator with the
location-based precision for constraints CPA

7.2.4 Less-or-equal operators

The implication less-or-equal operator never performs better than the subset less-
or-equal operator when using the constraints-based precision for the constraints
CPA and worse than the subset less-or-equal operator when using the location-
based precision. Tables 7.4 and 7.5 show the results for benchmarks using these two
different less-or-equal operators. The reason for this is the fixedness of constraints:
The possibility that a state using a subset of or the same symbolic identifiers than
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Figure 7.7: Number of times stopped with subset and implication less-or-equal
operator

another state consists of constraints that are implied by the other state without being
a subset of its constraints, is very low. Figure 7.7 illustrates that this is the case very
seldom. As such, usage of the subset less-or-equal operator is encouraged due to its
higher simplicity and no reliance on third-party SMT solvers.

7.2.5 Sliced prefix selection

The use of sliced prefix selection [BLW15b] [BLW15a] (Sec. 3.3.2) is able to boost
the performance of the symbolic execution CPA with CEGAR significantly. Ta-
ble 7.6 shows the benchmark results of the following selected sliced prefix selection
preferences:

• Random sliced prefix selection, used as reference selection preference. item
Selection of the shortest prefix, length short.

• Selection of the prefix based on a score computed from the variable types, easy
types like boolean and integer being preferred. (domain good, DG)

• Selection of the prefix based on a score computed from the variable types
equal to ”DG”, but mixed with a score based on the size of the interpolants,
preferring smaller ones. (domain good, narrow, DGN)

• Selection of the prefix containing the fewest assignments, AmF.
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Pref.Selection FALSE, corr. TRUE, corr. FALSE, incorr. TRUE, incorr. Score
Random 488 1806 88 1 3560

Length short 454 1738 93 1 3366
DG short 476 2000 94 1 3906
DG long 466 1949 93 1 3800

DGN short 482 1988 93 1 3888
AmF short 459 1688 82 1 3331
AmF long 407 1691 84 1 3279
AtF short 475 1624 93 1 3159
AtF long 412 1672 82 1 3258

AtM short 522 1843 93 1 3638
AtM long 391 1827 92 1 3487

PS short 447 1812 94 1 3501
PS long 516 1810 88 1 3602

Table 7.6: Benchmark results for different sliced prefix selection types, best and worst
results highlighted

• Selection of the prefix containing the fewest assumptions, AtF.

• Selection of the prefix containing the most assumptions, AtM.

• Selection of the prefix closest to the initial location of the error path. (pivot
shallow, PS)

For all preferences but the random one a second preference exists if multiple prefixes
are equal in concern to the preference: short for choosing the shortest prefix with
the best score and long for choosing the longest prefix with the best score. More
information about the individual prefix preferences can be found in [BLW15a].

It is clearly visible that performance of analysis strongly depends on the type of
interpolants used for refinement, with symbolic execution being able to prove the
safety of 366 more tasks when using the sliced prefix selection preference domain
good, short in contrast to assumptions fewest, short.

Using preferences aiming at increasing precision fast like assumptions most, short
or pivot shallow, long allows analysis to find more errors thanks to its faster-growing
precision and fewer needed refinements, just as expected. Preference assumptions
most, short increases the precision of the constraints CPA as fast as possible by always
incrementing the amount of constraints tracked as much as possible by choosing
sliced prefixes relying on the most assumptions for proving infeasibility of the prefix.
Preference pivot shallow, long, chooses the prefixes closest to the initial location of the
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var := 2

[var == 2] [!(var == 2)]

a := 2, b := 2, c := 2

[!(a == 1)] [a == 1]

[!(b == 1)] [b == 1]

[c == 1][!(c == 1)

Figure 7.8: CFA representing a program that creates problems when using the wrong
sliced prefix selection preference

error path so that new precisions are propagated to the most abstract states possible.
It takes the longest prefixes, in addition, so that precision grows fast. Increasing
precision fast and continuing analysis after refinement higher in the abstract reacha-
bility graph avoids unnecessary refinements for error paths that are infeasible for
the same reasons. An example CFA for this benefit can be seen in Fig. 7.8. While it
is similar to the CFA in Fig. 7.1d, expensive refinement procedures can be avoided
by choosing to track program variable var. If the prefix preference always chooses
sliced prefixes close to the target location, three refinement procedures are necessary
at the end of which program variables a, b and c are tracked. If the prefix preference
chooses the sliced prefix using program variable var, analysis already terminates
after one refinement.

In contrast to these, assumptions fewest, short has the slowest growing precision,
increasing precision of the constraints CPA only as little as possible by choosing
the fewest assumptions possible and precision of the symbolic value analysis CPA
only as much as needed to keep constraints CPA’s precision low by choosing short
prefixes. The slow growth of precision is also the cause domain good, short only
performs mediocre in relation to the other analysis in finding errors. Thanks to
choosing variables whose types are easily processible by both the value analysis
CPA and the constraints CPA, it boosts proving the safety of programs immensely
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(a) DG short vs. no sliced prefix selection
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(b) DG short vs. AtF short

Figure 7.9: Comparison of runtime performance of analysis using domain good, short
prefix preference with analysis without sliced prefix selection and with
preference assumptions fewest, short

by improving runtime performance. Figure 7.9 shows two scatter plots comparing
the claimed CPU-time of the symbolic execution CPA with CEGAR using the domain
good, short preference in comparison to no sliced prefix selection and the relatively
bad performing assumptions fewest, short preference. Only tasks are shown for which
both analyses terminated and for which the same results were computed. It is clearly
visible that analysis is faster for the significant amount of tasks when preferring
precision refinements using easy-to-handle variables.

For the domain-good preference, a more precise alternative exists. It performed
worse than the default for all variations, though.

It must be added that the benchmarks for sliced prefix preferences were run with
configuration option cpa.value.optimizeBooleanVariables=true, which
causes a bug for few tasks in the symbolic execution CPA. When using domain good,
short, one task was affected by this error, which exceeds the time limit with the option
turned off. For assumptions fewest, short and pivot shallow, long, no task was affected.
For assumptions most, short, 5 tasks were affected. It still is the best preference for
finding errors and the fourth-best for proving the safety of programs. Unfortunately
there was no time to repeat all benchmarks with this option turned off due to their
long runtime.
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No delegation Delegation Overall
correct results 2078 2081 4092

FALSE, correct 376 423 2911
TRUE, correct 1702 1658 1181

unique FALSE, correct 64 20
unique TRUE, correct 86 89

FALSE, incorrect 83 84
unique FALSE, incorrect 2 2

TRUE, incorrect 1 1
unique TRUE, incorrect 0 0

program errors 2 3
resource errors 1928 1924

Table 7.7: Results of benchmark runs of the symbolic execution CPA with CEGAR
using no delegation (the default) and using delegation to concrete value
analysis only refinement, both using no sliced prefix selection

7.2.6 Delegation to concrete value analysis refinement

Without sliced prefix selection Table 7.7 shows the difference between analysis
using CEGAR without and with delegation to refinement using concrete values only
and no sliced prefix selection. While sometimes analysis always using symbolic
refinement (using no delegation) performs better and sometimes analysis performing
concrete value analysis whenever possible performs better, 137 of the 184 differences
appears in the ECA task set, where the kind of refinement is very important.

Although both techniques differ slightly in the tasks they can solve, delegation
provides a significant boost to speed for tasks they can solve both (which are almost
all of the tasks they can solve, after all). Figure 7.10a shows the CPU-time both anal-
ysis with CEGAR using no delegation and analysis with CEGAR using delegation
claim for tasks they both terminate for with the same result (no matter whether it is
correct or incorrect). While there are some tasks analysis with delegation can solve
faster using symbolic refinement all the time, it is clearly visible that for the majority
of tasks, analysis using delegation performs significantly better. This is attributed to
the faster refinement procedure that goes without expensive SAT checks, in contrast
to symbolic refinement. Figure 7.10b illustrates this difference in speed.

3 A new bug was discovered during this benchmark, affecting 10 tasks. Unfortunately, the bug could
not be resolved in the scope of this work.
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(a) CPU-time for complete analysis
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(b) CPU-time for refinement procedure

Figure 7.10: Performance of analysis using CEGAR without delegation and with
delegation for tasks both techniques terminate for with the same result

No deleg. + DG, short Deleg. + DG, short Overall
correct results 2476 2417 4092

FALSE, correct 476 462 2911
TRUE, correct 2000 1955 1181

unique FALSE, correct 24 10
unique TRUE, correct 52 7

FALSE, incorrect 94 86
unique FALSE, incorrect 7 0

TRUE, incorrect 1 1
unique TRUE, incorrect 0 0

program errors 2 123

resource errors 1519 1924

Table 7.8: Results of benchmark runs of the symbolic execution CPA with CEGAR
using no delegation (the default) and using delegation to value analysis
refinement, both using no sliced prefix selection

With sliced prefix selection Sliced prefix selection improves performance of
analysis using delegation in the same way it improves analysis without delegation
(Table 7.8). Interestingly, the performance increase by the delegation disappears by
the preferred use of easy-to-handle variables. Figure 7.11 illustrates this change. Of
the 2487 tasks that are solved with the same result by the two analyses, 551 tasks
are more than 10% faster using no delegation, while only 77 tasks are more than
10% faster using delegation. As a conclusion, not delegating to the value analysis
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Figure 7.11: CPU-time claimed by analysis using domain good, short with and without
delegation, for tasks the same result was computed for

Own refinement Predicate refinement Overall
correct results 2476 2209 4092

FALSE, correct 476 384 2911
TRUE, correct 2000 1825 1181

unique FALSE, correct 133 41
unique TRUE, correct 187 12

FALSE, incorrect 93 12
unique FALSE, incorrect 7 5

TRUE, incorrect 1 0
unique TRUE, incorrect 0 0

program errors 2 363
resource errors 1519 1508

Table 7.9: Results of benchmark runs of the symbolic execution CPA with CEGAR
using our own refinement procedure and using the refinement procedure
deriving precisions from predicate analysis’s refinement.

refinement yields better results both in effectiveness and performance when using
sliced prefix selection, which is encouraged.

7.2.7 Utilization of predicate refinement

Evaluation shows that the predicate CPA often creates predicate precisions that can’t
be used to derive precisions for the symbolic execution CPA. In some cases, however,
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Figure 7.12: CPU-time claimed by analysis using symbolic execution with precisions
created by symbolic execution refinement using sliced prefix selection
and preference domain good, short and with precisions derived from
predicate CPA’s refinement

precisions are created that are more reliable and result in analysis terminating when
our own refinement can’t. Performance-wise, our own refinement is faster, either
(Fig. 7.12). It might be useful to extend this approach to see if performance changes,
but evaluation at the current point does not show much advantages compared to
our dedicated refinement procedure.

7.3 Comparison to other CPAs

7.3.1 Value analysis CPA

Comparison to the value analysis CPA shows the strengths and weaknesses of
symbolic execution, persisting even when using CEGAR: Due to its higher precision,
its computation is more reliable in comparison to the more abstract value analysis,
finding 200 less non-existent errors. But die to its higher precision, it also exceeds
the time limit 535 times more often.

Of the 24 tasks symbolic execution computes correctly while value analysis does
not, 13 are due to its precise handling of bitvectors and floats. 11 tasks are due to the
handling of non-deterministic values. For all 24 of them, value analysis computes
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Value analysis Symbolic execution Overall
correct results 2814 2476 4092

FALSE, correct 798 476 2911
TRUE, correct 2016 2000 1181

unique FALSE, correct 322 0
unique TRUE, correct 40 24

FALSE, incorrect 294 94
unique FALSE, incorrect 201 0

TRUE, incorrect 0 1
unique TRUE, incorrect 0 1

program errors 1 3
resource errors 983 1518

Table 7.10: Results of benchmarks of the value analysis CPA and the symbolic execu-
tion CPA, both using CEGAR with sliced prefix selection and the domain
good, short preference

an incorrect result. The other 177 tasks analyzed incorrectly by the value analysis,
symbolic execution exceeds the time limit.

Figure 7.13a displays the advantage in speed the value analysis CPA offers in
comparison to the symbolic execution CPA. This difference was expected due to the
higher precision of the symbolic execution CPA and expensive SAT checks in transfer
relation and refinement. The overall score of symbolic execution is 3906 points, of
value analysis 3066 points due to the higher amount of incorrect results.

7.3.2 Predicate CPA

For comparison to predicate analysis, we used the predicate CPA using bitvector
and float theories with its default configuration, using adjustable-block encoding
[BKW10]. The sophisticated and evolved predicate CPA is able to outperform sym-
bolic execution in both finding errors and proving programs safe. It also computes
less incorrect results. Nevertheless, symbolic execution using CEGAR is almost on
par with predicate analysis for proving programs safe with only 57 tasks difference.
The symbolic execution CPA is able to find errors for 118 programs the predicate CPA
can’t and prove the safety of programs for 144 programs the predicate CPA can’t.
Performance-wise, they differ greatly depending on the task, but with none of them
being distinctively better than the other (Fig. 7.13b). In conclusion, the predicate
CPA reaches a score of 4572 points in comparison to the symbolic execution CPA’s
3906 points.
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Figure 7.13: Comparison of CPU-time for value analysis CPA and predicate CPA
with symbolic execution CPA for tasks each pair computes the same
result for

Predicate analysis Symbolic execution Overall
correct results 2677 2476 4092

FALSE, correct 620 476 2911
TRUE, correct 2057 2000 1181

unique FALSE, correct 262 118
unique TRUE, correct 201 144

FALSE, incorrect 21 94
unique FALSE, incorrect 9 81

TRUE, incorrect 3 1
unique TRUE, incorrect 3 1

program errors 20 3
resource errors 1317 1518

Table 7.11: Results of benchmarks of the predicate CPA and the symbolic execution
CPA, both using CEGAR with sliced prefix selection and the domain good,
short preference
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This shows symbolic execution’s potential for software verification, ranked be-
tween the value analysis CPA and the predicate CPA in both effectiveness, precision,
and performance.

7.3.3 Comparison to TRACER

We tried to compare our symbolic execution approach using CEGAR to TRACER
[JMNS12], a tool for software verification using eager symbolic execution with
interpolation. Unfortunately, TRACER can’t handle preprocessed files as they consist
in the SV-COMP task sets, by default. Further investment in making these two tools
comparable was not in the scope of this work. Of the 12 tasks evaluated in [JMNS12],
all but one can be solved by the symbolic execution CPA correctly. TRACER was
able to analyze 5 correctly when using strongest-post conditions for interpolation
and all of them when using weakest-pre conditions. Since no information about
the evaluation environment is given, it is not reliable to compare the runtime of the
analyses.
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8 Future work

Multiple improvements can be made to the symbolic execution CPA: To supplement
symbolic execution with or without CEGAR, adding the handling of unbounded
loops should be one of the biggest concerns. Multiple approaches were already
mentioned in Section 2.

We haven’t evaluated the use of symbolic execution with a simpler SMT theory
like integer values and rationals instead of bitvectors and floats, yet. This should
yield a big performance boost for SAT checks without creating any disadvantages in
most programs, as only few rely on precise bitvector and float arithmetic in regards
to their specification.

For improving symbolic executions competency in finding errors, two major
approaches exist: Firstly, symbolic execution without CEGAR could be developed
further by simplifying constraints states in different ways, reordering symbolic
expressions by a fixed scheme, if possible, partially evaluating symbolic expressions
as far as possible, and deleting constraints covered by others (e.g. {s1 > 0, s1 > 10}
could be simplified to {s1 > 10}). This way, termination checks would be able to
reflect coverage of concrete states more precisely.

Secondly, symbolic execution using CEGAR could be improved further. We al-
ready showed the great benefits good selection preferences can produce in our
evaluation. New sliced prefix selection preferences aimed at symbolic execution,
specifically, could be developed. Not all existing selection preferences were evalu-
ated in this work, either. In addition, functionality of symbolic execution could be
altered to converge towards predicate abstraction. Instead of tracking constraints
as they are derived from assumptions and performing the rather unsophisticated
interpolation of just deleting constraints and testing whether they are needed for
contradicting the suffix, interpolation could be performed by a SMT solver, creating
more abstract interpolants. Constraints could then be combined from these inter-
polants’ predicates, just like predicate abstraction does. In contrast to the latter,
symbolic execution would do this for assumptions, only. This way, more abstract
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but uniform constraints states would be created, resulting in a higher hit rate for
termination checks.

A third possibility for increasing the performance of CEGAR would be to intro-
duce adjustable block-encoding [BKW10] to the constraints CPA, only performing
abstraction at loop-headers, for example. This way, usage of a merge operator other
than mergesep would be possible inside of blocks for the constraints CPA.

Symbolic execution’s performance in general could be increased by applying the
idea of concolic testing to symbolic execution in the context of software verification.
When handling an assume edge in the constraints CPA, an assignment of symbolic
identifiers to concrete values satisfying the current constraints could be stored in
the constraints state and used for further checks. Only if the assignments do not
fulfill a new constraint, a new SAT check is performed, computing a new satisfying
assignment additionally, if one exists. This should hold potential to speeding up the
handling of assume edges in the constraints CPA.

Search heuristics could also be used to guide analysis to target locations faster.
Some heuristics already exist in CPACHECKER, for example different traversal
strategies and the possibility to handle more abstract abstract states of the value
analysis CPA, first. These heuristics could be evaluated and new could be added,
taking inspiration from heuristics proposed in [BS08] and [CDE08].

A characteristic important for test generation and general usability is the correct
creation and output of counterexamples. This is not supported by the symbolic
execution CPA’s refinement procedure, yet. A peculiarity of counterexample cre-
ation with symbolic execution is denoting and handling symbolic identifiers in the
counterexample. For each symbolic identifier, a concrete value satisfying the coun-
terexample could be computed and delivered as part or along of the counterexample.
Alternatively, for each symbolic identifier the range of satisfying values could be
computed, also more costly.
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9 Conclusion

We successfully designed and implemented a refinement procedure to use symbolic
execution with CEGAR in the context of configurable software verification. To our
knowledge, we were the first to apply CEGAR to symbolic execution. In addition, we
applied CEGAR not to one single domain, but to two strongly intertwined domains
at once, by combining the symbolic value analysis CPA and the constraints CPA to
represent the semantics of symbolic execution. As a second and to our knowledge
novel approach we utilized the refinement procedure of another domain, namely
predicate analysis, to derive a precision for our symbolic execution domain. Both
approaches to refinement yielded comparable results. We evaluated two different
less-or-equal operators and two different sets of precisions for the constraints CPA
and illustrated their slight differences.

Additionally, we refactored value analysis CPA implementation’s refinement
procedure to be more generic. The now generic refinement procedure allows the
implementation of new refinement procedures with low effort, in contrast to the
previous need for a full implementation. This also allowed us to apply advanced
features like sliced prefix selection to our new refinement procedure without any
additional changes.

Evaluation shows the competitive performance of symbolic execution, being more
reliable than value analysis and almost as effective as predicate analysis. Since
it is possible to explicitly distinguish between concrete and symbolic (i.e. non-
deterministic) values, symbolic execution might prove useful for test generation,
too. Symbolic execution in the context of configurable software verification and
especially in combination with CEGAR shows potential for software verification
that should be build on to be able to verify even more programs.
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