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Abstract

CPAchecker is a tool for software verification. It is able to pro-
vide a counterexample-report. The report generator can be used
to compile an interactive analysis report of a CPAchecker run, that
means it shows the lines of code that lead to the error (errorpath)
and related graphs, as well as source-code, log, statistics, and con-
figuration properties. The existing counterexample-report has sev-
eral problems: it has no detailed documentation, the design is a
little outdated, and some features do not work well. This thesis is
about the development of a renewed counterexample-report with
new features that allow seeing all value-assignments of the anal-
ysed program with one click, or search through the errorpath and
the value-assignments. This should give the user more possibilities
to interact with the pictured data and by that enable him to better
and quicker understand CPAchecker counterexamples.



Contents

1. Introduction 7
1.1. Goal and Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. Existing Solution 9
2.1. Range of Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2. Data from CPAchecker . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3. Known Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3. Design 17
3.1. Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2. Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4. Implementation 21
4.1. Range of Functionality (New Features and Solved Problems) . . . . . 21
4.2. How the Report implements Architecture and Framework . . . . . . 26

4.2.1. View with Data-Binding . . . . . . . . . . . . . . . . . . . . . . 26
4.2.2. Logic in Controllers . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3. Problems that remain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5. Evaluation 32
5.1. Before Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1.1. Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1.3. Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2. After Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.1. Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.2. Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.3. Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3. Comparison of old and new counterexample-report . . . . . . . . . . 42

3



6. Conclusion 46
6.1. Critical Review of Decisions . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2. Outlook/Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A. Data from CPAchecker 48

B. First Evaluation (Survey) 50

C. Second Evaluation (Survey) 54

D. Documentation of Source-Code 56
D.1. Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
D.2. Further Explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4



List of Figures

2.1. Old Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2. Errorpath-Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3. Errorpath and Active Tab . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4. The Label of CFA-Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5. The CFA-Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6. The ARG-tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7. The Zoom-Slider for CFA and ARG . . . . . . . . . . . . . . . . . . . . 15

4.1. New Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2. Value-Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3. Marking of Errorpath-Position . . . . . . . . . . . . . . . . . . . . . . 23
4.4. Search-Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5. CFA-Function-Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.6. The Zoom-Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.7. Help-Button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.8. Help-Texts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.9. View Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.10. Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1. First Evaluation: Categorization of Participants . . . . . . . . . . . . . 34
5.2. New Features - Weighting . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3. New Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4. Used Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.5. Old Help-Texts vs. New Help-Texts . . . . . . . . . . . . . . . . . . . 39
5.6. Old Search Functionality vs. New Search Functionality . . . . . . . . 39
5.7. Old Errorpath vs. New Errorpath . . . . . . . . . . . . . . . . . . . . . 40
5.8. Old Marking vs. New Marking . . . . . . . . . . . . . . . . . . . . . . 41
5.9. Rating of Counterexample-Report . . . . . . . . . . . . . . . . . . . . 43
5.10. Rating of Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5



5.11. Rating of Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.12. Rating of User Experience . . . . . . . . . . . . . . . . . . . . . . . . . 44

List of Tables

3.1. Framework-comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6



1. Introduction

1.1. Goal and Approach

The first goal of this thesis was to implement the given range of functionality with
a more modern design, with a chosen architecture and framework, and well docu-
mented. It should be easy to create and to use the report – the fewer steps it takes to
generate it, the better. Ideally the report should only be one file at the end so it could
be copied around. One important step towards this goal was to generate most parts
of the report within the normal CPAchecker run and only outsource the creation
of the CFA- and ARG-graphs. These graphs are generated with the programme
“graphviz” and this could slow down the process of the whole CPAchecker analy-
sis significantly (as “graphviz” takes a long time to generate a big graph what often
applies especially to the ARG-graph).
The other goal was to extend the counterexample-report with new features. My
approach here was to perform a study amongst the users, to find out which fea-
tures would enhance the report best (Annex B, First Evaluation (Survey), page 50),
to implement those features and examine with a second survey (Annex C, Second
Evaluation (Survey), page 54) if users could handle the new features well and if any
problems occurred. In fact the second survey identified several problems that were
solved in a last implementation phase.

1.2. Related Work

As related work the presentation of the error trace of the “Institute for System Pro-
gramming of the Russian Academy of Sciences - Verification Center of the Operat-
ing System Linux” can be stated1. They list problems found in Linux. The compa-
rability is good, because they often use CPAchecker as verifier, too. They show two

1 http://linuxtesting.org/results/bug?id=11
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windows side by side: the error trace (called “errorpath” in the counterexample-
report) and the source code (possibly in different files). They give a lot of oppor-
tunities to manipulate the depiction of the error trace (like line-number on/off,
function-bodies on/off, and many more). Below the two windows is space for a
comment and some additional information about the bug like the verifier that was
used, timestamp, and if it is fixed or not.
They do not provide graphs (CFA/ARG) which would make understanding source-
code and error trace a lot easier, but the configurability of the depiction of the error
trace could be an interesting feature – not only for the error trace, but also for the
other parts of the report.
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2. Existing Solution

2.1. Range of Functionality

In the following section we will cover all functionalities of the old counterexample-
report (Fig. 2.1). Information about that can be found in the official documentation
at the CPAchecker website1. We will take that information as basis, enhanced by
personal observations and if necessary tips to mistakes in the documentation.

Figure 2.1.: The startscreen of the old counterexample-report.

The description of the functionalities will be divided in the different parts of the
counterexample-report. On the left side we have the errorpath and on the right
side we have several tabs, containing the CFA- and ARG-graphs, the source-code,
log, statistics, and configuration properties.

1 https://github.com/sosy-lab/cpachecker/blob/trunk/doc/BuildReport.txt
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• Left Panel: Errorpath (if a bug is found) (Fig. 2.2a)

The indentation reflects the height of the call stack.
Every line of the errorpath consists of a number at the left, and some code at
the right. The number represents a node of the CFA (it is actually its unique
node-number) and the code represents the label of the edge that leaves this
node (Fig. 2.2b). By clicking the node/edge we can jump to the location in
CFA/ARG/source (depending on the active tab) (Fig. 2.3a, Fig. 2.3b).
With the buttons “Start”,“Prev”, and “Next” (or by clicking nodes/edges) we
can walk along the errorpath. (Fig. 2.2c). The current position within the er-
rorpath is marked with a red frame around the line. This mark goes forward
in the errorpath and the active tab. In the source-tab the mark would be a red
background of the line, in CFA/ARG there is no visual mark, the appropriate
edge/node is just scrolled to the vertical centre of the view.
Function start, function return, and unlabeled edges are not displayed. This
feature causes a multiple stop of the mark (red frame) at these positions.
That means the mark does not jump to the next/previous line when clicking
“Next”/“Prev” for as much clicks as are not displayed. In CFA/ARG/source
the mark goes forward with every click though (as these edges/nodes are
displayed there).

(a) The errorpath-section (b) Nodes and edges (c) The navigation-buttons

Figure 2.2.: Elements of the errorpath
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(a) Errorpath and ARG (b) Errorpath and source

Figure 2.3.: Errorpath: jump to associated location in active the tab

• Right Panel: CFA Tab

The CFA has been cut into multiple images (one image per function). The dis-
played function can be changed by using the dropdown-menu at the top (Fig.
2.5b).
Almost every node is labeled with two numbers. The first number “N***” is
the node-number, each is unique within all CFAs. This is the number that is
displayed in the errorpath (left panel) as well and to which is referred to in
the ARG (“@N***”). The second number “***” gives orientation within one
CFA, the flow begins with the highest and ends with “0” (Fig. 2.4a).
Linear sequences of “normal” edges (statement-edges, declaration-edges, and
blank edges) are displayed as a table in one big node. The left column con-
tains the node number and the right column contains the label of the edge that
is leaving this node (Fig. 2.4b). The node numbers in these multi-nodes are
the “N***”-numbers even if they do not have an “N” in front of the number.
In case there are too many nodes/edges to fit in one table-node, a node saying
“Long linear chain of edges between nodes *** and ***” occurs.
Because the CFA is spread out over multiple images, function call nodes and

edges have been introduced. The node has a special form and indicates that
the control flow at this point is continued in another CFA-graph.
The route of the errorpath in the CFAs is highlighted in red (Fig. 2.5a). With
an open CFA-tab we can jump from edge to edge in the red-highlighted error-
path by clicking on the relating lines in the errorpath in the left panel. It will
vertically center the related edge and automatically change the shown CFA if
necessary.
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(a) A normal
CFA-node (b) A CFA-multistatement-node

Figure 2.4.: The label of CFA-nodes

Click an edge (or its label) to jump to the location in the source-code (Fig.
2.5c). The view jumps to the source-tab even if there is not an equivalent line
in the source-code. The mark (red background) stays at the last marked po-
sition then. When jumping to a function head, the line of code before this
function is marked.

(a) The errorpath is highlighted in red
(b) Switch the dis-

played CFA
(c) Click on edge to

jump to source-tab

Figure 2.5.: The CFA-tab

• Right Panel: ARG Tab (Fig. 2.6)

The route of the errorpath within the ARG is highlighted in red (Fig. 2.6a).
By clicking an edge we can jump to the associated location in the source-code
(Fig. 2.6d). By clicking a node we can jump to the associated location in
the CFA (Fig. 2.6c). At this point we have an error in the documentation of
CPAchecker (It says “Click an edge to jump to the location in the CFA.”2).

2 https://github.com/sosy-lab/cpachecker/blob/trunk/doc/BuildReport.txt
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The nodes in the ARG are labeled at least with two numbers and the name
of the function that the program is in at this point. The first number “***” is
unique within the ARG, the second “@N***” refers to the node-number of the
belonging CFA-node (Fig. 2.6b).

(a) The errorpath is high-
lighted in red

(b) The label of an
ARG-node

(c) Click on node to jump to
CFA-tab

(d) Click on edge to jump to
source-tab

Figure 2.6.: The ARG-tab

• Right Panel: Source Tab

It displays the source-code that was analysed with CPAchecker. If there are
several source-files, we can select one in the dropdow-menu at the top.

• Right Panel: Log Tab

It displays the output of CPAchecker.

• Right Panel: Configuration Tab

It shows the configuration-settings that were made before running CPAchecker
and building the report.

• Right Panel: Statistics Tab

It shows some statistics that CPAchecker has generated.
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2.2. Data from CPAchecker

One of the first steps in this project was to analyse the data that is used for the
counterexample-report, where the files are generated in the flow of CPAchecker,
where they are stored and what their content means exactly. The files that the
counterexample-report needs are basically .json, .dot and .txt. We have .txt files
that contain statistics, log and configuration properties. We have a .dot file for ev-
ery graph (CFA/ARG) that later occurs in the counterexample-report. The .dot files
are used to generate .svg files (with the programme “graphviz”). These .svg files
can be used directly for showing the graphs in the counterexample-report. The
.json files contain all necessary information about the errorpath and some addi-
tional information about the graphs, for example which nodes are combined in a
multistatement-node. The analysis of these files (how can you extract which in-
formation) is not really relevant to follow this thesis, but the interested reader will
find the work I did in the attachment (Annex A, Data from CPAchecker, page 48),
as there is no detailed documentation for this topic available at the moment.

2.3. Known Problems

In this section we will cover problems and bugs that are known about the old
counterexample-report. Again, there is information about that in the official docu-
mentation3 and again we will take that as a basis and have it enhanced by my own
observations.

• Browser-Problems

The counterexample-report is in HTML format and therefore can be displayed
in a browser. It works best in Firefox, because other browsers seem to have
issues accessing local resources (CFA-/ARG-graphs) via Javascript. In case
the file is hosted on a server, Google Chrome/Chromium should also work,
except that CFA- and ARG-graph do not scroll to the correct element when
navigating through the errorpath.

• Left Panel: Errorpath

When we navigate through the errorpath with the buttons “Start”, “Prev”,
and “Next”, the view does not scroll with the marked element (red frame).

3 https://github.com/sosy-lab/cpachecker/blob/trunk/doc/BuildReport.txt
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For example if we have a long errorpath, the view is scrolled to the bottom,
and then we click “Start”, the mark jumps to the first element, but the view
does not scroll to the top, so we cannot see it.
Another problem when we navigate through the errorpath is, that on the right
only the active tab gets updated. That means if we change the tab and want
to scroll to the associated element or mark it (red background in source-tab),
we have to click the line in the errorpath again.

• Right Panel: Graphs (CFA/ARG)

The CFA- and ARG-tab use iframes to load the .svg images and the red er-
rorpath is highlighted dynamically with Javascript. This happens 0.5 seconds
after the .svg was loaded. In case the report would be requested from a server,
this would possibly not apply anymore and the errorpath would not be high-
lighted.
The slider for zooming a graph out (Fig. 2.7) cannot be moved by click&drag
like the presentation indicates. We have to click on the arrows to the left and
right, or click at a point in the slidebar left/right from the slider to scroll the
graph.

Figure 2.7.: The Zoom-Slider for CFA and ARG

• Right Panel: CFA

Jumping to the source-tab by clicking edges does not always work correct.
Some edges do not jump to a location in the source-code (even if the tab
gets changed), the mark (red background) just stays at its last position and
edges that leave a multistatement-node (Fig. 2.4b) jump to a wrong loca-
tion in the source-code. This problem probably goes back to the data the
counterexample-report gets from CPAchecker (Annex A, Data from CPAchecker,
page 48).
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• Right Panel: ARG

The ARG often has an enormous size. If that is the case, it could take awhile
until it is loaded when switching to the ARG-tab. It is also possible, that we
do not see anything in the view at first and that we have to scroll to the right
to find the beginning of the ARG (if nodes/edges below reach out far to the
left).
Sometimes, a few edges that are part of the errorpath stay black (they should
be highlighted in red), but reloading the page seems to fix that.
Not all edges of the ARG are clickable (this error seems to only affect the black
edges that do not belong to the errorpath).
The programme “graphviz” that is used for generating the .svg files does not
seem to like to create nodes with a very long label (for exapmple the node in
main(), that contains the global declarations). Instead it only writes the node
number.
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3. Design

3.1. Architecture

The first decision I made was choosing an architecture. As MVC is a very common
architecture, I started my search for a suitable one from that point. MVC would be
appropriate as we have data in the background (model) that should somehow be
presented (view) and users can change the presentation of the data and should be
able to interact with it (controller) up to a certain point (navigate through it, jump
from one representation of the data to another, examine it).
Another interesting architecture is MVVM (Model-View-ViewModel). It is a vari-
ant of the classic MVC. It should give the possibility to programme logic and user
interface completely indepentent from each other. There is no controller that is re-
sponsible for every action that is taken. We have a view, that shows the data from
the model. The viewmodel sort of “translates” from one layer to the other and con-
tains the logic, like functions, that have to be executed (just like the controller in
the MVC), but the viewmodel does not control everything. The view is bind to the
model (via the viewmodel) and gets updated when the model changes and vice
versa.
The conclusion at this point is, that both architectures fit our needs. They both al-
low to implement logic and user interface independently. In the next subsection we
will have a look at frameworks that follow MVC or MVVM and with the decision
for a framework we will decide on an architecture.

3.2. Framework

The next step was to choose a framework, so that the new implementation would
be well organised and structured.
I did some research on the most spread frameworks and did a short comparison
between Ember (MVC), Backbone (MVC), AngularJS (MVC+MVVM), and Knock-
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out (MVVM). For that purpose we have some main characteristics listed (Tab. 3.1),
based on statements from Stefan Wintermeyer (Ember1) and Golo Roden (Knock-
out2, Backbone3, AngularJS4) – both experienced in the field of web development.
The characteristics in the table were mentioned in those articles. In italics we see
why they are an advantage or disadvantage for this project.
Based on the results you can observe in the table (3.1), I had a closer look on An-

gularJS. I was not able to find any strong disadvantages. On the contrary it has
some concepts that seemed very promising for our purpose and so I decided to use
AngularJS for this project. What follows is a closer look at this framework.

AngularJS and Bootstrap Like we can see in the table, AngularJS is maintained
by Google and this hopefully indicates detailed documentation (a look at the offi-
cial website5 confirms that). When we have a look at the trend of Google-searches6

we can see, that since a few years AngularJS leaves the other frameworks far be-
hind (assuming that Google would not manipulate its statistics on their particular
interests). This further indicates a well established developer community with lots
of helpful forum entries.

AngularJS is a Javascript framework that can be simply added to a HTML-file via
the <script> tag. A usual AngularJS application consists of an HTML-file (view)
and one or more controllers (summarised in a module) that implement the logic
and manages the data (model).
AngularJS extends the HTML-syntax, so we can use new elements like “direc-
tives” and “expressions” to realise its main concept: the two-way-data-binding.
Two-way-data-binding means, that view and model are connected bidirectional
– changes in the view are immediately reflected in the model and the other way
round.

1 http://www.heise.de/developer/artikel/Ember-js-1-1-im-Einsatz-2053975.
html

2 http://www.heise.de/developer/artikel/Model-View-ViewModel-mit-
Knockout-js-1928690.html

3 http://www.heise.de/developer/artikel/Model-View-Controller-mit-
Backbone-js-1938069.html

4 http://www.heise.de/developer/artikel/Webanwendungen-mit-AngularJS-
1955101.html

5 https://angularjs.org/
6 https://www.google.com/trends/explore?hl=en-US#q=ember.js%2C%
20angularjs%2C%20backbone.js%2C%20knockout.js&date=today%2012-m&cmpt=q&
tz=Etc%2FGMT%2B8
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Framework Pros Cons
Ember Very strict conventions Very strict conventions

You have a fixed structure you can
hold on to

You can only do what the develop-
ers of Ember planned you to do
High initial hurdle
This work was limited to a rela-
tively small time-frame
Many versions
Older sources for help cannot be
used
Compatibility of code expires
quickly

Backbone Good maintainability Much infrastructure for small
projects
This project is very small
You cannot manage different
views
We have several views
No concept for actualization of
view
At least the mark has to change

AngularJS Getting in is very easy
This work was limited to a rela-
tively small time-frame
Code is automatically clearly
structures
This was one of the main reasons a
new report was necessary
Maintained by Google
We usually can expect good docu-
mentation

Knockout Steep learning curve No possibility to change or
reload views

This project was limited to a rela-
tively small time-frame

We have many different views and
want to keep the possibility to load
the graphs later

Table 3.1.: Framework-comparison

“Directives” allow us to attach a special behaviour to an HTML-element. For ex-
ample the “ng-click” directive adds a mouse-click-event-listener to the element it
is attached to. With “ng-click=‚doSomething()‘” we could call a function “doSome-
thing()” in the related controller. We do not have to add a specific listener in our
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javascript code.
“Expressions” can directly display data in the view. With curly braces we could
display name and whenever the variable “name” (defined in the related controller)
changes, the view updates automatically and immediately.
To include AngularJS in an application we just have to attach “ng-app=‚module‘” to
the outermost html element that should include AngularJS (for example the body-
element). “module” is the module that contains all controllers. Different controllers
(with logic and data) from the module can then be attached to several parts of the
application that they should control and supply with data. The two-way-data-
binding seems a good concept for our purpose (data can change in realtime, one
action triggers an reaction in another window at once).

Through AngularJS I came across Bootstrap. Bootstrap is a Javascript framework
as well and it provides a a large CSS stylesheet. It is used more for designing
purposes and as it could be used in combination with AngularJS and the cloud-
interface of CPAchecker uses it as well, I decided to add it to this project.
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4. Implementation

4.1. Range of Functionality (New Features and

Solved Problems)

In the following section we will cover the functionalities of the new counterexample-
report (Fig. 4.1). I will only point out what has changed in comparison to the old
counterexample-report – I will show new features and indicate solved problems.

Figure 4.1.: The start screen of the new counterexample-report.

Like in the chapter “2, Existing Solution” (page 9), the description of the function-
alities will be divided in the different parts of the counterexample-report. For pur-
poses of consistency I decided to maintain the structure of the old counterexample-
report with the errorpath in the left panel and the different tabs in the right panel.
So we have the errorpath and the search functionality on the left side. On the right
side we have the tabs, containing the CFA- and ARG-graphs, and the source-code.
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Additionally, we have two help buttons, one on each side of the counterexample-
report. The presentation of log, statistics, and configuration properties has not
changed and therefore will not be treated here.

• Left Panel: Errorpath (if a bug is found)

One line of the errorpath consists of a button "-V-" and some code that repre-
sents the label of an edge (CFA/ARG) that is a “step” in the errorpath.
By clicking the “-V-” button we can see all relevant variables at that point of
the programme and their values (Fig.4.2).

Figure 4.2.: Value-Assignments

With the buttons “Start”, “Prev”, and “Next” or by clicking the edge-label we
can navigate through the errorpath (like in the old counterexample-report).
The difference is that now the current position in the errorpath is marked
with a purple frame around the line. The associated location in the active tab
(CFA/ARG/source) is scrolled into view and the same purple colour is used
to mark this location in the active tab and the inactive tabs as well (Fig. 4.3).
It is only the purple mark that gets updated in the inactive tabs (if you want
the view to scroll to the right location after you change the tab you have to
click on the errorpath-edge again), but I consider this a feature - an inactive
tab that changes its focus while the user is “away” might be confusing.
Clicking the button “Start” automatically scrolls to the top of the errorpath,
so that the marked line will be in the view.
Another feature has to do with the hiding of function start, function return,

and unlabeled edges. I maintained hiding these elements, but the “Next” and
“Prev”-Button does not “rest” at these positions anymore. Like I explained in
“Existing Solution”(page 9), navigating with these buttons stopped at those
positions for as many clicks as edges were left out. I see this behaviour as pos-
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(a) Errorpath and ARG (b) Errorpath and source

Figure 4.3.: The current location gets marked in the errorpath and the active tab.

sibly confusing and that is why I did not adopt it in the new counterexample-
report.

• Left Panel: Search Functionality

The search functionality’s range is limited to the left panel (edge-label of er-
rorpath, value-assignments). Matches within the edge-labels of the errorpath
are marked with a blue-highlighted line (Fig. 4.4a) and matches within the
value-assignments are marked with a green-highlighted line (Fig. 4.4b). A
line where a match within edge-label and value-assignments occurred will be
highlighted with a colour gradient of blue and green (Fig. 4.4c).
There are some special features when searching within value-assignments:
First, we can search for the name and also the value of a variable. Second, it
only searches for occurences where the variable was initialized or where the
variable changed its value (because in every line after initialization or change,
the variable will occur with the same value as before).
The search functionality can be modified to only show “exact matches”. For
example when we search for the variable “tmp”, the variable “tmp7” will oc-
cur in the matches as well, except we have set “exact matches”.

• Right Panel: CFA

The graphs are directly included into the HTML as <svg>-elements, that
means they are all loaded from the beginning. The red marking of the error-
path is implemented as a property of the edge-elements, so it is highlighted
from the beginning as well (the old counterexample-report had problems with
that).
Clicking edges leaving the introduced multistatement nodes (Fig. 2.4b) now
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(a) Matches in edge-
descriptions

(b) Matches in value-
assignments

(c) Matches in edge-
descriptions and value-
assignments

Figure 4.4.

jumps to the correct location in the source-code (the old Counterexample-
Report had problems with that).
Clicking a function-node (they were implemented because the CFA is spread
out over multiple images) jumps to the CFA of that function (Fig. 4.5).

Nodes/Edges that are marked (by clicking on edge-label in errorpath or

Figure 4.5.: A function-node

equivalent node in ARG) are scrolled to the centre of the view and highlighted
in purple.
A doubleclick at an edge jumps to the associated location in the source-tab.
The graph can be zoomed in and out by adding a value or pushing arrows (the
zoom-slider of the old counterexample-report did not work smoothly)(Fig.
4.6).

Figure 4.6.: The zoom-functionality
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• Right Panel: ARG

The graphs are included as <svg>-elements (see CFA).
Marked nodes (by clicking the edge-label in errorpath) are scrolled to the cen-
tre and highlighted in purple.
By doubleclicking a node we can jump to the associated location in the CFA-
tab and by doubleclicking an edge we can jump to the associated location in
the source-tab.

• Right Panel: Source

The current location (from the errorpath) is marked in purple and scrolled to
the vertical centre of the view.

• Help-Texts

There are two help-buttons (Fig. 4.7), one for the left panel (errorpath, value-
assignments, and search-functionality) (Fig. 4.8a) and one for the right panel
(CFA and ARG) (Fig. 4.8b).

Figure 4.7.: The help-button

(a) The help-text for the left panel (b) The help-text for the right panel

Figure 4.8.
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4.2. How the Report implements Architecture and

Framework

The counterexample-report can be roughly divided into the view (HTML) and the
logic and data behind (Javascript). This distribution only gets violated, because
static files like statistics or configuration properties and the <svg>-elements of the
CFA- and ARG-graphs are directly inserted into the HTML template.
The view of the report can be easily divided into several parts and each of these
parts has its own controller (Javascript). The controllers provide data for their part
of the view and functions to deal with different events. The controllers can com-
municate with each other via “broadcast”-messages. Each controller has its own
“scope”, that means its own memory and they all share the memory “rootScope”.
After the page is loaded, a function (outside the AngularJS logic) is called that
equips the CFA- and ARG-elements with special ids (so they can easily be accessed
later) and that highlights the errorpath in the CFA (red colour).

4.2.1. View with Data-Binding

In Fig. 4.9 we have an overview of the hierarchy of those main parts of the HTML
that have a controller attached. The hierarchy is only valid for the view, not the
controllers. That means every inner view element can be reached by the controller
of the outer element, but the outer controllers do not have access to the variables or
methods of the controllers of the inner elements. Every Controller has its own inde-
pendent scope and the controllers only share the root-scope. The data that is stored
in those scopes is not inserted into the view by the controllers manually. Through
directives and expressions (explained in “3.2 AngularJS and Bootstrap”, page 18)
the data is bind to the view and vice versa.
“<body>” is the HTML-element that contains all other elements of the view and
it is attached to “ReportController”. This controller provides the current date, the
CPAchecker-logo and the content for the help-texts. This data is stored in the scope
of the controller and where it should be inserted in the view it is accessed by date
for example.
“Left Panel (Errorpath)” covers the errorpath, its navigation-buttons (“Start”, “Prev”,
“Next”), the search functionality, and the value-assignments. It is attached to the
“ErrorpathController”. The data for the value-assignments and the edge-labels of
the errorpath is bind here.
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The “Search-Functionality” has its own controller “SearchController”. The number
of matches is bind to the view here (it gets automatically updated every time the
number of matches changes due to a new search).
The “Value-Assignments” are attached to the “ValueAssignmentsController”. All
value-assignments for each line of the errorpath are bind to the view after being
preprocessed in the errorpath-controller.
The “CFA-Tab” is attached to the “CFAController”. The graph itself is inserted
directly in the HTML template, but the names of the single CFAs in the dropdown-
menu are bind to the view. The “Zoom”-functionality of the CFA-tab has its own
controller “ZoomController”. The current value of the zoom is bind to the con-
troller with the directive “ng-model=‚zoomFactorCFA‘”. This is a directive that
binds an input (zoom scale) in the view to a variable (“zoomFactorCFA”) in the
controller.
The “ARG-Tab” is attached to the “ARGController”. Again, the graph itself is in-
serted directly in the HTML. The “Zoom”-functionality is attached to the same
“ZoomController” as the one in the CFA-tab and the current value is bind to the
controller with “ng-model=‚zoomFactorARG‘”. The “Source-Tab” is attached to
the “SourceController”. The source-file is also directly inserted into the HTML tem-
plate, but like in the CFA-tab, the names of the available source-files are bind to the
dropdown-menu.

Figure 4.9.: The hierarchy of view elements that are attached to a controller
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4.2.2. Logic in Controllers

In Fig. 4.10 we can see all controllers with their scope’s variables (first segment),
their listeners to broadcast-events (→ “$on(event)”, second segment), and their
scope’s methods (third segment). For internal processes or calculations the con-
trollers use additional variables that are not bind to their scope and therefore not
accessible for the view. The broadcast-events that are sent by the controllers for
communication purposes are sent over the root-scope. That means every other
controller could receive them, but only those controllers that are interested in the
event implement a listener to it. Now we will have a closer look at the controllers
and the functionality they provide to the application.
The report-controller (bind to the HTML-<body>-element) manages general tasks.
It is responsible for changing tabs (with the method “setTab()”) responding to a
click-event from the view on one of the tabs or responding to a broadcast-event
from the CFA- or the ARG-controller. It listens to the event “ChangeTab” that is
sent by those controllers and that provides also the tab that should be switched
to. The listener to “FirstTimeErrorpathElementIsSelected” – sent by the errorpath-
controller – is called the first time an element in the errorpath is selected. It in-
vokes the function “setMarginForGraphs()” that allows CFA- and ARG-elements
to be scrolled to the centre (when marked). The other methods (“setWidth()”, “set-
MouseUp”, “setMouseDown”) allow to change the size of the left panel (errorpath)
and right panel (CFA-tab, ARG-tab, etc.) by clicking&draggin the line between
them.
The errorpath-controller (left panel) preprocesses the errorpath-data that is stored
in the root-scope (because different controllers need to access it). This is the data we
get from the “ErrorPath.json”-file. The variable contains an array of objects, one ob-
ject for each line of the errorpath with all information about it that we need (look “A,
Data from CPAchecker”, page 48). It further handles click-events on the navigation-
buttons “Start”, “Prev”, and “Next” and click-events on lines of the errorpath by
broadcasting the line that has been clicked. The method “setLine()” marks the
selected line (purple frame) in the errorpath and in case it was the first time an
element has been selected, broadcasts the “FirstTimeErrorpathElementIsSelected”-
event.
The search-controller handles search queries by browsing through the errorpath-
data (stored in root-scope).
The value-assignments-controller changes the presentation of the “-V-” button if
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its value-assignments window is shown (the presentation of the value-assignments
themselves is handled by data-binding and does not need a controller).
The CFA-controller handles the click-events on CFA-edges by broadcasting the
"clickedCFAEdge" message with information about which source-line is associated
to the clicked edge (because a click on an edge jumps to the source-tab) and by
broadcasting “ChangeTab”. With “setCFAFunction” and “cfaFunctionIsSet”, CFA-
controller manages which CFA is shown in the view. CFA-controller has several lis-
teners implemented: “clickedErrorpathButton” and “clickedErrorpathElement” in-
voke the method “markCFAEdge()” (providing the number of the edge that should
be marked). The listener “clickedARGEdge” invokes “markCFANode” (providing
the number of the node that should be marked). Both methods (“markCFAEdge”,
“markCFANode”) then call “scrollToCFAElement” to scroll the marked element to
the centre of the view.
The ARG-controller handles click-events on ARG-nodes and -edges by broad-
casting the events “clickedARGNode” or “clickedARGEdge” as well as the event
“ChangeTab” (providing the number of the CFA-tab in case of a clicked node or
the number of the source-tab in case of a clicked edge). ARG-controller listens to
the events “clickedErrorpathButton”, and “clickedErrorpathElement”. In case one
of those events is received, it calls “markARGNode” (providing the number of the
node that should be marked) and this method then calls “scrollToCFAElement” that
scroll to the marked Element.
The source-controller handles the source-file that is shown in the source-tab with
the methods “setSourceFile()” and “sourceFileIsSet()”. It stores the number of the
currently selected source-file in the variable “selectedSourceFile”. The Source-
Controller listens to the events “clickedARGEdge”, “clickedCFAEdge”, “clicked-
ErrorpathButton”, and “clickedErrorpathElement”. It reacts to those events by call-
ing the method “markSource()” that marks the source line whose number has been
transmitted with the event.
Finally, the zoom-controller is responsible for the zoom functionality of the CFA-
and ARG-graphs. It listens to input of the view and to the broadcasting-event
“clearCFAZoom”. This event is sent if the displayed CFA changes. The whole CFA-
tab only has one zoom-controller, so the zoom is reset every time the displayed CFA
changes.
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Figure 4.10.: The controllers and their communication

4.3. Problems that remain

• General: One of the purposes of this work was to get one file as counterexample-
report. At the moment we have an HTML and a Javascript file. It should be
possible to include the Javascript file with <script> into the HTML file with-
out further ado, but it seems like the fact that it includes AngularJS causes
problems here (it only works when the file is run out of the IDE WebStorm).
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• Graphs: The graphs are still built with “graphviz”, so problems caused by
this programme remain (for example that it takes a long time to generate the
.svg files from the .dot files for big graphs)

• Errorpath: When navigating through the errorpath with the buttons “Next”
and “Prev”, the view of the errorpath does not scroll. So it can happen, that
the marked errorpath-line is outside the visible view.

• Value-Assignments: The displayed value-assignments are preprocessed by
splitting a string at the “==”-sign. While implementing I was in the belief,
that this is the only way value-assignments occur. In fact there are other cases
where signs like "<=" or the like occur. In that case the preprocessing would
not work anymore.

• Marked Elements: When changing the tab or the displayed CFA, the view
does not scroll to the marked element. For example when I navigate through
the errorpath (with active CFA-tab) and the next line of the errorpath is dis-
played in a different CFA than the one that is shown, the CFA changes au-
tomatically and the correct edge is marked, but it does not get centred. Or
when I click an edge in the ARG, the source-tab automatically appears and
the correct line in the source-code is marked, but it does not scroll into view.
This is a problem that occured with AngularJS. When clicking the node in the
ARG, a javascript-function is invoked. This function initiates all actions that
should be done (for example the marking and the centering of the target ele-
ment). For changing the tab, we only change a variable in the javascript code
and AngularJS does the rest (two-way-data binding) – and that is the prob-
lem. The tab in the view gets changed after all the javascript functions were
executed and the centering of an (at that point still) invisible element does not
work. Possible solutions could be setting a timer for the function that is cen-
tering the marked element or somehow invoking the centering-function after
the target tab is shown.
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5. Evaluation

The main purpose of this work was to make the Counterexample-Report more us-
able, to improve the reachability of the given features, and to add new features
that would help the users to work with the Counterexample-Report. To reach this
goal, a survey among the current users was held. I did two evaluations: One with
the old counterexample-report (before the implementation of the new features) and
with the new report (after the implementation of the new features). In this chapter
we will see how both surveys were structured, we will have a look at the main re-
sults and analyse them. The full range of the (anonymisaed) responses – protocols
and all the completed questionnaires – is attached to this work1 – so everyone will
have the opportunity to draw further or different conclusions.

5.1. Before Implementation

Before implementing the new features for the new counterexample-report there
was an evaluation of what the users wished for (B First Evaluation (Survey), page
50).

5.1.1. Concept

I used a “form” from Google, that is a data type that you can use for creating a
survey. The finished document can be distributed over a link and the responses are
automatically collected in a “table” from Google (similar to excel). In this case, the
survey was distributed through the CPAchecker mailing-list. The first few ques-
tions were meant for categorizing the participants. They asked about the frequency
of using the counterexample-report and for how long the participants were work-
ing with it. I wanted to find out how familiar the participants were with the topic.
The second bunch of questions was about rating the existing solution, the existing

1 Electronically attached: 1Evaluation_AllResponses, 2Evaluation_AllProtocols (directory)
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counterexample-report regarding usability, design and user experience. This infor-
mation should be used to compare the results with those from the second evalua-
tion. The third and most extensive part asked about critics the participants had and
what they would suggest as improvement or possible features they could think of. I
also provided several suggestions for possible features that the participants should
rate from 1 (in no case) to 5 (absolutely) (B First Evaluation (Survey), page 50).

5.1.2. Results

In the following subsection we will discuss the results of the first evaluation.
The survey had 11 participants. On the one hand that is difficult, because it was
planned as a quantitative study so we could decide for new features on a broad user
base. On the other hand it was not that bad, because even if the study was meant to
be quantitative it was qualitative as well. We have to consider that all participants
were known as working with CPAchecker for at least a while and so their opinion
can be counted as more valuable than the opinion of people who would not have
been familiar with CPAchecker or even the field of software verification.

As mentioned earlier, the first three questions were meant to provide an oppor-
tunity to categorize the responses. They asked about how long and how frequently
the counterexample-report was used by the participant (Fig. 5.1a, Fig. 5.1b). It
turned out, that three of the participants have never used the counterexample-
report before. One person knew it only since a few weeks, but the other seven
participants knew it for months or even years. About the frequency we can say that
most participants use it rarely, once a month or once a year. One person uses it once
a week and of course the three people that have not seen it before never use it. All
participants said that they only use it when they cannot find the error manually or
they just said “I use it rare/never”. No participant answered that he/she would
use it at all times CPAchecker shows an error.
I used the information about the frequency for weighting the results regarding the
desired new features (Fig. 5.2).

The results of the second part - Interaction - will be discussed later (5.3 Compar-
ison of old and new counterexample-report, page 42) in direct comparison to the
equivalent results of the second evaluation.

The last part - Features of the Counterexample-Report - asked the participants
about criticism of the counterexample-report, their assessment of 12 proposed new
features, and their own ideas for new features. I collected the results of the partic-
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(a) How frequently participants used the
counterexample-report

(b) For how long people have used the
counterexample-report

Figure 5.1.: Categorization of Participants

Figure 5.2: I used the information about how
frequently participants use the
Counterexample-Report for the weight-
ing of the responses about the desired
new features.

ipants” criticism and own ideas2, but as they had no common denominator (never
more than two participants had similar answers), I did not include them in the
search for new features. Instead, I based it on the rating of the proposed features. I
calculated a weighted average rating for each of them.

One question of this part asked about which parts of the counterexample-report
the participants used (5.4). The intention behind this specific question was to find
out if elements were redundant and to get a feeling for what parts are most impor-
tant. Since the survey only had 11 participants I did not want to jump to conclu-
sions whether parts of the counterexample-report were redundant or not, but from
the result we can see, that the “static” files (statistics, log, configuration) are usually
not used and that was at least a confirmation for not working on those parts of the
counterexample-report. I did not remove them, but I did not put effort in trying to
improve them either.

2 Electronically attached: Evaluation_1_qualitative.pdf
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Figure 5.3.: The weighted average rating for the proposed new features - the ones
with more than 4 points should get implemented

Figure 5.4.: Every participant should name the parts of CPAchecker that he/she
uses. The weighting follows the same pattern as that from the new
features.

5.1.3. Analysis

In the following subsection we will analyse the results of the first evaluation.
The first questions about how long and how frequently participants use the CR
turned out to be problematic. After the evaluation I heard from several people,
who started the survey and then stopped after seeing these questions, because they
(as not regularly or not at all using the counterexample-report) thought the study
did not affect them or they were not its target group. In fact I just wanted to have
that information for categorizing, but would have been interested in the opinion of
people who never used the counterexample-report before as well.
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I used the information about the frequency of the usage of the counterexample-
report for weighting the results about desired new features. The idea behind that
was, that people who use the report more often could indicate features that would
help to improve the report best. If we use something very often, we get a better
idea of what features would support our work and what current behaviour might
be obstructive to it. To be sure, that the weighted result was stable and did not
only occur because of the weighting, I also calculated the average points for each
proposed feature without weighting and even with reverse weighting. The result
with no weighting was the same as with weighting, of course with different average
points for each feature, but the same four features had more than 4 points. Even the
results with reverse weighting was nearly the same (again with different average
points). Only the feature “Errorpath: search function” did not reach more than
4 points, but it still was the fourth best rated feature. With that stability test we
can say, that even if my assumption (that the most frequent user know best what
features would improve the counterexample-report), we have selected the four best
features to complement the existing counterexample-report.

I made suggestions for new features. This could have inhibited the creativity of
the participants when it came to their own recommendations and criticism. Poten-
tially they were dragged in one direction and after already evaluating 10 features
they did not want or could not think of more features or suggestions in a different
direction. At the end I only took the highest rated features of those I had sug-
gested, because there were not enough matches between the participants within
their “free” recommendations or criticism. But like I said before - it is possible that
this lack of matches can be put down to the fact that I provided suggestions in the
beginning.
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5.2. After Implementation

After implementing the new counterexample-report with its new features another
survey should evaluate the usefulness of the result and its advantages in compari-
son to the old counterexample-report.

5.2.1. Concept

It was a combination of a survey similar to the first evaluation and some tasks that
the participants should perform. Unlike the first evaluation this one was held as
an interview. I created one concept that I followed with every participant of the
study. At the beginning were again two questions to categorize the participants:
If they were familiar with CPAchecker respectively the old counterexample-report.
The next section covered the tasks and for those who were unfamiliar with the
old counterexample-report I asked for a short comparison of the old and the new
counterexample-report without telling which was old and which was new. After
performing the tasks the participants should rate usability, design and user experi-
ence after the same scheme as in the first evaluation. At any time of the interview
the participants were requested to think aloud. The three main purposes of the
second evaluation were:

• Evaluating if the new counterexample-report was better rated than the old
one.

• Looking out for spots where user struggle that I did not consider.

• See if user understand difficult spots the same way I did.

5.2.2. Result

In the following subsection we will discuss the results of the second evaluation.
It had 11 participants and each interview lasted from half an hour up to one and a
half hours. This is how the study was planned - it should be more qualitative than
quantitative.

Apart from two people every participant has been working with CPAchecker at
least a few times and had seen the old counterexample-report before. Therefore,
the first task – comparing both counterexample-reports at first glance was not per-
formed in most interviews.
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The tasks and their order can be seen in “evaluation2 Second Evaluation (Sur-
vey)”, page 54. I want to point out the first task. It asked the participants to de-
scribe their first impression and “click around”, explore the application as far as
they want to. Especially those participants who knew the old counterexample-
report better, they partially explored every functionality that should be tested in
the following tasks. In this case I let them go ahead and took notes about every dif-
ficulty they had and every comment they made (they were urgently requested to
think aloud). In this case the other tasks were still finished afterwards, but it natu-
rally was very smooth (every task they accidentally performed before was marked).
The anonymised protocols of every survey can be found in the annex3. Here we will
just have a look at those results that led to a change of the implementation, because
they were common and fit well into the concept of the new counterexample-report
(based on my experience developing it).

• Help-Texts: The format was changed (participants criticized that the head-
ings were not highlighted and the format did not look nice) and so were some
formulations that were responsible for misunderstandings or were not under-
stood at all (especially the part about the search functionality)(Fig. 5.5).

• I added explanations about the node shapes in the CFA and the colours of
some nodes in the ARG to the help texts (A few participants asked about
that)(Fig. 5.5).

• Search Functionality: The section with the matches is now hidden until
the first search is done (with the intensive background-colours they were a
real eye-catcher, but people did not immediately know what they were re-
ferring to). The words “description” and “variables” are replaced by “edge-
description” and “value-assignments” (they were criticized because the users
did not understand their meaning). The search can now be initiated with the
“return” key (every participant tried this, but it could only be initiated by
pressing the search-button) (Fig. 5.6).

3 Electronically attached: 1Evaluation_AllResults, 2Evaluation_Protocols (directory)
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(a) The old help text for the left panel (b) The new help text for the left panel

(c) The old help text for the right panel (d) The new help text for the right panel

Figure 5.5.

(a) The old search functionality
(b) The new search functionality (before the

first search)

Figure 5.6.

• Value-Assignements: The value-assignments (called “variables”) could be
seen by clicking on the node-number in front of the line. Almost no partic-
ipant found this out (they thought you only could click the whole line - that
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would jump to CFA/ARG/source). Furthermore, no participant used this
node-number, on the contrary some participants erroneously considered that
a line number. That is why I decided to remove the node-number and place a
“-V-” that is formed like a button instead, hoping it would invite users to click
on it (Fig. 5.7).

(a) The old Errorpath (b) The new Errorpath

Figure 5.7.

• Marking: The marking in CFA/ARG/source was done by highlighting the
selected element in orange and scrolling it to the upper left corner. Several
participants criticized it should be scrolled to the centre of the view. The or-
ange colour was criticized too: many participants did not recognize it (proba-
bly the contrast from the red errorpath was not big enough) and some nodes
in the ARG are highlighted in the same colour per se. That is why I changed
the marking colour to purple. Purple is not used in any other context and is
easy to distinguish from the red errorpath and the colour that are used for
node-highlighting in the ARG. I also changed the marking in the errorpath
from red to purple, so all markings (errorpath, CFA, ARG, source) have the
same colour now (Fig. 5.8).

• Graphs: It is possible to jump from the CFA to the source-tab and from the
ARG to the CFA- or source-tab. During the evaluation many participants
jumped from one to the other tab by accident and were confused and an-
noyed that they had to manually switch the tabs back.
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(a) The old marking in errorpath and CFA (b) The new marking in errorpath and CFA

Figure 5.8.

The first evaluation showed that one of the desired features was to see the
value-assignments by hovering over ARG-nodes with the mouse. I did not
implement this at first, because I could not find a way to show all instantiated
variables in a window without scrolling (but the window would disappear
when the mouse is moved from the node into the window to scroll).
These two facts lead to implementing the jump through a double-click: users
would not easily do this by accident and the normal click is free for showing
the variables in the ARG (not yet implemented).

The last section about the participants’ rating of usability, design and user ex-
perience will be discussed below – in direct comparison to the results of the first
evaluation.

5.2.3. Analysis

In the following subsection we will analyse the results of the second evaluation.
That means we will critically review what could have influenced them. The fact
that the evaluation had the form of an interview contains some risks, that are even
higher because I - the person who implemented the new counterexample-report -
was the interviewer. Naturally I have a subjective opinion towards the work and
I could have influenced the participants unconsciously. Furthermore, many partic-
ipants were people I knew before and everybody was aware that we were talking
about my work. These facts could have inhibited the participants in criticising it,
because they would not want to hurt my feelings.
There is also a positive fact about the survey being held as an interview. In that
way I could observe the participants in detail and note things they maybe would
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not have mentioned themselves. Especially for the tasks, the fact that I was the in-
terviewer has a positive effect too, as I know how I planned things to work out and
I could notice if something was not working the way it was planned.
In summary I would say that the fact that the survey was an interview, held by my-
self was more positive for the task section, because I could observe the participants
and more negative for the section where I asked the participants to rate Usability,
Design, and User Experience, because they possibly tried to be nice.

This possibly effects the results even more when we consider that this part is
used for comparing the old and the new counterexample-report. The old one was
rated anonymously and the users knew they rated a work, that was not done by
the person holding the survey.
Another fact to consider is that the participants of the first study were not the same
as the participants from the second study, even if some people participated in both
studies. That can be seen as an advantage or disadvantage, but it definitely implies
the possibility for wrong conclusions.

5.3. Comparison of old and new

counterexample-report

In this section we will now compare the results of both evaluations regarding us-
ability, design and user experience (Fig. 5.9).

The following diagrams show the results that were achieved in the first and sec-
ond evaluation (Fig. 5.10, Fig. 5.11, Fig. 5.12). The average rating of the second
report is calculated in three different ways. One time we simply take the average
rating of all participants (A), one time we take the average rating only of those par-
ticipants who knew CPAchecker before (K), and one time we take the average rat-
ing of the participants that did not know CPAchecker before (U). This is important
for comparability reasons, because the people that rated the old counterexample-
report were all familiar with CPAchecker and we can see in the diagrammes, that
the rating of people who did not know CPAchecker before is always about 1 point
below the average of all participants’ rating. We can already see, that the rating
for the new counterexample-report is better if we only count the people who knew
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Figure 5.9.

CPAchecker and even if we count all participants of the second evaluation it is at
least as good as the old counterexample-report.

Figure 5.10.: Rating of usability (K = participants who knew CPAchecker, A = all
participants, U = participants who did not know)

To see if the result is significantly in a statistical meaning I calculated the p-value.
It should show how high the probability is, that this (or a better result) occurs ran-
domly. Each category was rated from 1 point (bad) to 5 points (good). Excluding
one person from the first evaluation that did not rate “design” and the two partic-
ipants from the second evaluation that have never worked with CPAchecker and
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Figure 5.11.: Rating of design (K = participants who knew CPAchecker, A = all par-
ticipants, U = participants who did not know)

Figure 5.12.: Rating of user experience (K = participants who knew CPAchecker, A
= all participants, U = participants who did not know)

had no experience in software verification at all, there were 9 participants from each
evaluation left. Because of that we can just sum up all ratings for each category, for
old and new report.

old Usability 32 Design 27 User Experience 25
new Usability 35 Design 42.5 User Experience 36.5
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The sum of the ratings for the old report is subtracted from the sum of the ratings
for the new report, so we get the difference between the two ratings.
Usability Design UserExperience
+ 3 + 15,5 + 11,5

The possible range is [-36,36] with 145 possible values (0.5-steps). With that infor-
mation we can calculate the probability, that the actually occurred values (or better
ones) would occur randomly - the p-value: (Amount of possible values that are as
good or better) / (Amount of possible values) = p-value
Usability Design User Experience
67 / 145 = 46,20 % 42 / 145 = 28,97 % 50 / 145 = 34,48 %

These results are not below the significance level of 5%. They tell us how big the
probability for a result is, that is at least as good as this, when only coincidence
would be decisive. For example: to get a result that is 15,5 or better randomly, the
probability is 28,97%.
It gets more interesting when we combine the 3 categories to the more general state-
ment “The new report is better than the old one” in terms of “It gets higher rated in
each of the categories”. To get this, or a better result in all the categories randomly
the probability is 46,20% * 28,97% * 34,48% = 4,6%, which is (with a significance
level of 5%) scientifically significant.
However, when we take a step back at the closer look on both evaluations we see a
lot of factors that could have influenced our results and as the main feature of this
work was to build the new report on a stable architecture and add new features,
that is a satisfactory result.
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6. Conclusion

At the end of this project we now have a new counterexample-report that pro-
vides the same functionality as the old one and more. It is better integrated in
CPAchecker, we get a usable report just by running CPAchecker (CFA- and ARG-
graphs can be inserted by running an extra Python script). It has a more modern
design, it solves some issues that were known about the old report and provides
new features that give users more possibilities to work with the data.

6.1. Critical Review of Decisions

With AngularJS I selected a mixture of MVC- and MVVM-Model. Both models pre-
scribe at least a division into view and data. I use an HTML and a Javascript tem-
plate with key words, where the data should be inserted. Static files like statistics
or configurations are inserted into the HTML template. This violates the principle
of division into view and data, but several different approaches did not work out
(I tried to write the data into the javascript template where the data should be after
the MVVM-Model, but the "-signs that occurred in the files caused problems; I tried
to integrate these files as <object>, but this conflicts with the goal to have one file at
the end; I tried to load these files as extra templates through AngularJS, but again
this conflicts with the goal to have one file at the end). I made a compromise and
tried to put as little data as possible into the HTML file.

Now to AngularJS itself: I can say that this framework was probably the best
choice, but for the usage we do have with the counterexample-report, we cannot
use the full power of AngularJS. In the report we do not change the data, but only
make changes in the representation of the data. As far as I see, this is not what
AngularJS was made for and I often violated one of the principles of AngularJS,
not to directly access or change the DOM.
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6.2. Outlook/Future Work

During my work there came several ideas to mind. These ideas will be listed here
as a motivation for further work:
First it attracted attention that there were 2 DOTBuilder-classes within CPAchecker.
It appears that this is not necessary, the DOTBuilder2 does nearly the same and in
my opinion it would be a good idea to fuse the classes to one.
Second, it is a known problem that for very big graphs the graphviz-program does
not work or takes too long to bear. In the first evaluation some participants men-
tioned that they would like to work with the counterexample-report when they
have big ARG-graphs, with small graphs they do not need the report. So this would
be another point that deserves some attraction. The approach that I think of would
be to write a special program that creates the .svg for the counterexample-report so
we do not need “graphviz” anymore.
The second evaluation showed that many users would like to have a back- function-
ality, so they could jump back to their last position or their last open tab. We could
analyze how such a functionality should be realized within the counterexample-
report (should it just be for tab-changes or for every state of the report, for example
every step when navigating through the errorpath) and then add this functionality
to the back-button of the browser or introduce a shortcut. As a last proposal I would
like to mention an introducing tutorial. Users could have the option to be guided
through all the functionalities of the counterexample-report in a video-like tutorial.
Like I mentioned before I had two participants in the second evaluation that never
used the counterexample-report or even CPAchecker before. They had really big
problems even to understand what data was shown to them, let alone understand
what they could do with the data. Such a tutorial could be a possibility to smooth
the way of understanding counterexamples for people who have not touched the
topic of software verification before.
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A. Data from CPAchecker

JSON-Data CPAchecker provides different .json files with information about the
errorpath, its connections to CFA/ARG/source, and information about the CFA-
graphs.
There are the following files: “cfaino.json”, “fcalledges.json”, “combinednodes.json”,
and “ErrorPath.*.json” (* stands for a number: as we can have more than one error-
path, there is one json-file for each errorpath).
“Errorpath.*.json” contains an array filled with objects. Each object stands for an
edge in the CFA/ARG and has the following keys:

val CPAchecker tracks certain variables, when one or more of the vari-
ables are instantiated or change their value it is noted here

desc the line of code that is executed at this point (label of the edge in CFA
and ARG)

source the source-node of the edge (“desc”) in the CFA

file the sourcefile where the line of code (“desc”) appears (one errorpath
can cover more than one sourcefile)

target the target-node of the edge (“desc”) in the CFA

line the related line in the sourcefile

argelem the source-node of the edge (“desc”) in the ARG

“combinednodes.json” contains all nodes that are taken together in one node (be-
cause they only contain “normal” edges (see “2 Existing Solution”, page 9). It con-
tains an object and every key is a node-number that is in such a multistatement-
node and its value is the first node of this multistatement-node. “fcallEdges.json”
contains all nodes that come directly before or after a function-node. It is an object,
too: its keys are the nodes before a function-node and the value is an array with
the number of the function-node at index 0 and the number of the node after the
function-node at index 1. “cfainfo.json” - as the name says contains information
about the CFA-graphs. It consists of an object with two keys: “edges” and “nodes”.
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Their values are objects themselves with the node- or edge-number as keys. The
values of the edge-numbers are objects with the following keys:

source the number of the source-node

file the name of the source-file (can be more than just one)

stmt the content of the line of code

target the number of the target-node

line the line where you find this text in the sourcefile

type the type of the edge, for example “Blank Edge” or “Multiple Edge”

The values of the node-numbers are objects with these two keys:
no the number of the node (pointless as this is the key of the parent object)

func the function where this node appears

At the moment ARGStatistics.java is writing the .json data in the output directory.
As they only are required for the report, this would be unnecessary if they would
be written directly into the counterexample-template.

Sourcefile The source-file and its path are defined by the user when he/she per-
forms an analysis with the CPAchecker.

Log, Statitics and Configuration-Properties These files are written into the out-
put directory by CPAchecker with fixed names (that could be changed through
user-configuration).

Graphs They are generated by the programme “graphviz” out of the .dot files
that are generated in DOTBuilder2.java. The CFA-nodes have globally unique
nodenumbers (which can appear multiple times within one errorpath). The ARG-
nodes have nodenumbers that are unique within the ARG-graph (as the ARG-
graph shows the errorpath, the CFA-node-numbers eventually wouldn’t be unique).

49



B. First Evaluation (Survey)

Usage of the counterexample-report

1. On which occasions do you use the counterexample-report?

� Everytime CPAchecker shows an error

� When I cannot find the error “manually”

� Rare/Never

2. How often do you use the counterexample-report?

◦ Once a day

◦ Once a week

◦ Once a month

◦ Once a year

◦ Never

◦ ___________________

3. Since how long do you use the counterexample-report?

◦ Since a few days

◦ Since a few weeks

◦ Since a few months

◦ Since a few years

◦ Since more than 5 years

◦ ___________________
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Interaction

1. How would you rate the user-friendliness/usability of the report?
1 2 3 4 5

I have to look up/try out the
available options everytime.

◦ ◦ ◦ ◦ ◦ I know/see immediately which
options/functions are available.

2. How would you rate the design of the report?
1 2 3 4 5

Not at all attractive. ◦ ◦ ◦ ◦ ◦ Very attractive.

3. How would you rate the user-experience of the report?
1 2 3 4 5

I don not like working with the
report.

◦ ◦ ◦ ◦ ◦ I really enjoy working with the
report.

Features of the Counterexample-Report I would like to know which of the fea-
tures/files in the report you use right now and which features you would like to
have in addition: I made some proposals that you can evaluate and at the end there
is space for your own ideas/proposals.

1. Which of the existing features do you use at the moment?
How exactly do you use the Counterexample-Report?

� Configuration(-Tab)

� Statistics(-Tab)

� Log(-Tab)

� Source(-Tab)

� ARG(-Tab)

� CFA(-Tab)

� Errorpath (on the left)

� Click on elements in ARG→ jump to CFA/source

� Click on elements in CFA→ jump to source

� Click on elements in errorpath→ jump to source/CFA/ARG

� ___________________
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2. Are there features that do not work right or is there something about the re-
port that is bothering you?

3. Possible Feature
Errorpath: moving the highlighting with arrow keys (not only with buttons “prev”,
“next”, “start”)

1 2 3 4 5
In no case. ◦ ◦ ◦ ◦ ◦ Absolutely.

4. Possible Feature
CFA: highlighting single nodes/edges with click on line in errorpath (not highlighting
the whole path)

1 2 3 4 5
In no case. ◦ ◦ ◦ ◦ ◦ Absolutely.

5. Possible Feature
CFA: click on nodes→ jump to related line in errorpath

1 2 3 4 5
In no case. ◦ ◦ ◦ ◦ ◦ Absolutely.

6. Possible Feature
CFA: Click on a function-node→ jump to CFA of this function

1 2 3 4 5
In no case. ◦ ◦ ◦ ◦ ◦ Absolutely.

7. Possible Feature
CFA: take “long linear chain” to pieces

1 2 3 4 5
In no case. ◦ ◦ ◦ ◦ ◦ Absolutely.

8. Possible Feature
CFA: one big CFA for the whole source-file (CFAs for several functions appear as
nodes)

1 2 3 4 5
In no case. ◦ ◦ ◦ ◦ ◦ Absolutely.

9. Possible Feature
Errorpath: search function (when I want to search for appearance of a special variable
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for example)
1 2 3 4 5

In no case. ◦ ◦ ◦ ◦ ◦ Absolutely.

10. Possible Feature
Errorpath: Showing current status of all tracked variables when hovering over a line

1 2 3 4 5
In no case. ◦ ◦ ◦ ◦ ◦ Absolutely.

11. Possible Feature
CFA: showing current status of all tracked variables when hovering over a node

1 2 3 4 5
In no case. ◦ ◦ ◦ ◦ ◦ Absolutely.

12. Possible Feature
ARG: showing current status of all tracked variables when hovering over a node

1 2 3 4 5
In no case. ◦ ◦ ◦ ◦ ◦ Absolutely.

13. Possible Feature
Extra tab (besides statistics, log, ...) for showing the change of the tracked variables
and where this change takes place

1 2 3 4 5
In no case. ◦ ◦ ◦ ◦ ◦ Absolutely.

14. Possible Feature
Help-Buttons for each Element/Tab of the report - for first usage (can be switched off)

1 2 3 4 5
In no case. ◦ ◦ ◦ ◦ ◦ Absolutely.

15. Are there other features you would like to have?
Please mark: "5 - Urgent", "4 - Would be desirable", "3 - Would be a nice feature"
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C. Second Evaluation (Survey)

1. Sind Sie mit CPAchecker vertraut?

2. Sind Sie mit dem (alten) Counterexample-Report vertraut?

3. TASKS

4. Wie würden Sie die Nutzerfreundlichkeit/Usability bewerten?
1 2 3 4 5

Ich muss ständig ausprobieren,
welche Funktionen wo sind. Die
Benutzung ist unintuitiv.

◦ ◦ ◦ ◦ ◦ Ich sehe sofort welche Optionen
es gibt. Die Benutzung ist intu-
itiv. Es erfordert keinen großen
Aufwand um die Funktionalität
zu verstehen.

5. Wie würden Sie das Design bewerten?
1 2 3 4 5

Gar nicht ansprechend. ◦ ◦ ◦ ◦ ◦ Sehr ansprechend.

6. Wie würden Sie die User-Experience bewerten?
1 2 3 4 5

Die Arbeit mit dem Report ist
sehr unangenehm.

◦ ◦ ◦ ◦ ◦ Die Arbeit mit dem Report macht
mir Spaß.

TASKS

1. Vergleichsbewertung (nur für die User, die den alten Report nicht kennen)

a) Womit würden Sie lieber arbeiten? Warum?

b) Wie würden Sie das jeweilige Design bewerten?
Gar nicht ansprechend. 1 2 3 4 5 Sehr ansprechend.

neu ◦ ◦ ◦ ◦ ◦
alt ◦ ◦ ◦ ◦ ◦

2. Tasks
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a) Erster Eindruck/Rumprobieren Was versuchen Nutzer als Erstes? Was
sticht positiv/negativ ins Auge?

b) Was ist ein CFA? Findet der Teilnehmer den (richtigen) Hilfe-Button?

c) Verfolgen Sie den Fehlerpfad (errorpath) im CFA. Versteht der Teilnehmer,
dass der Fehlerpfad rot markiert ist? Nutzt er das neue Feature „Klick auf Funk-
tionsknoten→ Sprung in CFA der Funktion“?

d) Finden Sie eine Kante des CFA (die 2.Kante im CFA von „read()“) in dem
Source-Tab. Nutzt der Teilnehmer den Klick auf die Kante?

e) Stellen Sie den CFA von „gl_read()“ so dar, dass man den gesamten
Graph sehen kann. Kommt der Teilnehmer mit der Zoom-Funktionalität
zurecht?

f) Finden Sie eine Stelle im Errorpath (Kante aus 455) im Source-, CFA- und
ARG-Tab. Versteht der Teilnehmer, dass er nach einem Tab-Wechsel nochmal
klicken muss um zur richtigen Stelle zu springen?

g) Welche Variablen sind an dieser Stelle instanziiert? Findet der Teilnehmer
die Anzeige der Variablen? Versteht er den zugehörigen Hilfstext?

h) Wie oft wurde die Variable „__cil_tmp7“ verändert? Und an welchen
Stellen? Kommt der Teilnehmer mit der Suchfunktion zurecht? Versteht er den
zugehörigen Hilfstext?

i) Finden Sie den Knoten 54@549 aus dem ARG im CFA-Tab. Klickt der
Teilnehmer den Knoten?
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D. Documentation of Source-Code

D.1. Manual

To generate the counterexample-report without graphs (CFA/ARG), just run
CPAchecker. In the directory “Counterexample_Report” one “report_withoutGraphs
_*.html” for each errorpath (with * is the number of the errorpath, starting at “0”)
is generated. If the analysis did not find an error (and therefore no errorpath exists)
one file “report_withoutGraphs.html” will be generated.
We will also get one “app_*.js” for each errorpath (respectively “app.js” if there
is no errorpath) in the directory “Counterexample_Report/app”. By running the
Python script “generate-report-with-graphs.py” (in the directory “Counterexam-
ple_Report”), one “report_*.html” is generated for each “report_withoutGraphs_*.html
(respectively a “report.html” for “report_withoutGraphs.html”) in the same direc-
tory. The libraries that are used are received from the internet. We need Google’s
“prettify.js” and “prettify.css” for the syntax highlighting of the errorpath and
the source-code, “angular.min.js”, “bootstrap.min.js” and “bootstrap.min.css”, and
Bootstrap requires “jquery.min.js”.

D.2. Further Explanations

CPAchecker The class “GenerateReportWithoutGraphs.java” (src/org/sosy_lab/
cpachecker/core/counterexample) writes all the necessary data directly into the
HTML- and Javascript-template.
The process is getting invoked within the class "MainCPAStatistics.java" (src/org/-
sosy_lab/cpachecker/core) in the function “printStatistics(PrintStream out, Result
result, ReachedSet reached)”. It has to import “org/sosy_lab/cpachecker/core/
counterexample/GenerateReportWithoutGraphs” and the Option “newCounterex-
ampleReport” has to be set “true”.
The counterexample-report templates provide key words (commented out) and it
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expects CPAchecker to insert the data with the correct HTML/Javascript syntax.
The name of the Javascript file, the source file, the log file, the statistics file, and
configuration file are inserted directly into the HTML-file. The source file has to be
inserted as table, the other files are written line by line as single elements.
All other relevant data is written into the Javascript template as object or array.
The inserting of all these files is realized as follows: The template is read in line by
line and not cached, but immediately written into the output file. It interrupts as
soon as a line contains a key word (like “SOURCEFILE”), then reads the according
file (which is also not cached, but written in the output file immediately).

Python The CFA and ARG graphs are included via a Python script "generate-
report-with-graphs.py". At first, the script generates .svg files from the .dot files.
The .svg file are then inserted into each “report_withoutGraphs_*.html”. As .svg
files they already have the correct syntax for a <svg>-element in HTML, but the
script also has to insert the ng-click directives that are needed for the clickability of
the graph-edges and -nodes.

57



Eidesstattliche Erklärung

Hiermit versichere ich, dass ich diese Bachelorarbeit selbstständig und ohne Benut-
zung anderer als der angegebenen Quellen und Hilfsmittel angefertigt habe und
alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, als solche
gekennzeichnet sind, sowie dass ich die Bachelorarbeit in gleicher oder ähnlicher
Form noch keiner anderen Prüfungsbehörde vorgelegt habe.

Passau, den 6. Januar 2016

Magdalena Murr


	Introduction
	Goal and Approach
	Related Work

	Existing Solution
	Range of Functionality
	Data from CPAchecker
	Known Problems

	Design
	Architecture
	Framework

	Implementation
	Range of Functionality (New Features and Solved Problems)
	How the Report implements Architecture and Framework
	View with Data-Binding
	Logic in Controllers

	Problems that remain

	Evaluation
	Before Implementation
	Concept
	Results
	Analysis

	After Implementation
	Concept
	Result
	Analysis

	Comparison of old and new counterexample-report

	Conclusion
	Critical Review of Decisions
	Outlook/Future Work

	Data from CPAchecker
	First Evaluation (Survey)
	Second Evaluation (Survey)
	Documentation of Source-Code
	Manual
	Further Explanations


