
1

Bachelor’s Thesis

in Computer Science

Configurable Pointer-Alias Analysis for

CPAchecker

Stefan Weinzierl

Supervisor:

Prof. Dr. Dirk Beyer

October 31, 2016

2

Eidesstaatliche Erklärung

Hiermit erkläre ich an Eides Statt, dass ich die vorliegende Arbeit selbstständig und nur unter

Zuhilfenahme der ausgewiesenen Hilfsmittel angefertigt habe. Sämtliche Stellen der Arbeit, die

im Wortlaut oder dem Sinn nach anderen gedruckten oder im Internet verfügbaren Werken

entnommen sind, habe ich durch genaue Quellenangaben kenntlich gemacht.

Passau, den 31. Oktober 2016

 Stefan Weinzierl

3

Table of Contents

1. Introduction ... 5

1.1. Motivation .. 5

1.2. Outline of this Thesis .. 6

2. Pointer ... 6

2.1. Pointer Operations ... 7

2.2. Types of Pointers .. 8

2.3. Function Pointers ... 9

2.4. Arrays ... 10

2.5. Dynamic Memory Allocation .. 10

2.6. Pointer to Pointer ... 10

2.7. Conclusion .. 11

3. Pointer-Alias Analysis ... 12

3.1. Definition of Pointer-Alias Analysis .. 12

3.2. Modeling Pointer Relations .. 12

3.3. Different Approaches of Pointer-Alias Analysis ... 14

3.3.1. May vs. Must ... 14

3.3.2. Intra-procedural vs. Inter-procedural ... 14

3.3.3. Flow-sensitive vs. Flow-insensitive ... 14

3.3.4. Context-sensitive vs. Context-insensitive ... 15

3.3.5. Other Configurations .. 16

3.3.6. Conclusion ... 17

3.4. Outlining the Pointer-Alias Algorithms for CPAchecker... 18

4

3.4.1. Andersen’s Pointer Analysis .. 18

3.4.2. Steensgaard’s Pointer Analysis ... 20

4. Automated Software Verification in Respect of Configurable Program Analysis and

CPAchecker ... 24

4.1. Program Analysis and Model Checking .. 24

4.1. Control Flow Automaton .. 25

4.2. Configurable Program Analysis .. 25

4.3. CPAchecker ... 27

4.3.1. Architecture regarding CPA .. 27

4.3.2. CPA Algorithm ... 29

4.3.3. Evaluation ... 30

4.3.4. Explicit-Value Analysis .. 31

5. Applying Configurable Pointer-Alias Analysis in CPAchecker ... 32

5.1. PointerCPA ... 32

5.2. Implementing Andersen’s and Steensgaard’s analysis .. 33

5.2.1. Extracting Pointer-Relevant Information ... 33

5.2.2. Points-To Map .. 33

5.3. Steensgaard’s and Andersen’s Analyses in CPAchecker .. 35

5.4. Configurable Pointer-Alias Analysis for Explicit Value Analysis 37

5.5. Conclusion .. 39

6. Future Work .. 41

7. Bibliography .. 42

5

1. Introduction

There are many program languages that support the use of pointers. In the context of software

verification, pointers are extremely finicky to analyze because addresses in memory can be

referenced and manipulated arbitrarily. Additionally, many existing analyses require valuable

information about pointers in order to stay accurate. At the same time, however, efficiency also

needs to be considered to be applicable for large programs. This thesis provides an

implementation of configurable pointer-alias analysis for the software verification framework

CPAchecker that allows user-dependent application of pointer analysis. Furthermore, the

presented implementation is integrated in CPAchecker’s explicit-value analysis which is one of its

main analyses that benefits from this approach.

1.1. Motivation

In order to highlight the motivation behind this thesis, consider the following exert of a C

program. In this thesis, every code sample resolves code in C.

CPAchecker’s value analysis tracks integer values for each variable and is

used as an auxiliary-analysis to determine whether the given input file (code sample 1) satisfies

its specification. In line 3 the integer variable i is assigned to the value 0. Since the value analysis

int main() { //1

 int i, *ptr; //2

 i = 0; //3

 ptr = &i; //4

 *ptr = incr(i); //5

 if (i == 1) { //6

 return(0); //7

 } //8

ERROR: return(-1); //9

} //10

int incr(int j) { //11

 j = j + 1; //12

 return(j); //13

} //14

Code Sample 1

6

does not consider pointers, line 4 and 5 are ignored. Eventually, the condition in line 6’s if-block

will mistakenly be evaluated as false, as the analysis still only holds value 0 for i. Ultimately,

the analysis will end up at the error location, thinking that the given input program in code sample

1 violates the specification. However, when pointers are considered, the analysis then would be

able to see that in line 5, the value of i is incremented to 1, due to pointer dereferencing. This

time around, the condition in line 6 will be true and, consequently, recognize that the

specification is met. When an analysis lacks alias information like the one in code sample 1 (*p

and i are aliasing the same memory location) it becomes that more imprecise. On the other

hand, alias information must be computed efficiently to be applicable for large programs. This

problem motivates not only the inclusion for pointer-alias analysis in CPAchecker’s explicit-value

analysis, but also emphasizes on the importance of providing different approaches that analyze

pointers both accurately and efficiently.

1.2. Outline of this Thesis

To clarify some of the frequently used terms in the later chapters and, to demonstrate what has

to be considered when analyzing pointers, we start off by briefly discussing pointers in C. Building

up on that, we define and contrast the various different categories of pointer-alias analysis. Then,

we provide an overlook of two pointer analyses that serve as the configurations for the later

implementation. It is also important to establish familiarity with the environment of CPAchecker.

To support that, a short glance at the field of automated software verification is provided, while

emphasizing on the components of a configurable program analysis (CPA). Then, CPAs and

CPAchecker are introduced, described and evaluated. Finally, the new configurable pointer-alias

analysis is introduced and formally described. In conclusion, we discuss the future work to

support, extend and enhance this approach in CPAchecker.

2. Pointer

Pointers in C are very powerful. They allow to reference addresses in memory and therefore,

make a program more efficient. There are many applications that pointers establish which

increases the necessity of analyzing them. This chapter introduces common pointer operations

7

which many pointer-alias analyses are based on and provides a general overview of pointers in C

based on the C standard [CS05].

2.1. Pointer Operations

Whenever an object or a variable has to be referenced by its memory address pointers are used.

A pointer is a variable that either holds the value NULL or a memory address. That address in

memory may be the one of another variable, object of reference type (such as structs and unions)

or may even be independently allocated during the execution of a program. Since pointers also

have types, we additionally use the asterisks symbol (‘*’) in order to highlight a pointer type1.

Suppose the following three lines of code:

In line 1, the integer variable i and an integer pointer p are declared. When line 1 is executed,

the compiler will allocate memory addresses for both variables. In line 3 the address of variable

i is taken and assigned to the pointer p using the ampersand (‘&’) which is often referred to as

the “address-of”-operator. We now say “p points to i“ as an equivalent statement for “the value

of p is the address of i“. Figure 2 will finally result in the following naive representation of the

memory2:

Variable Memory address Value

i 1000 0

p 1004 0000

The operation in line 3 as a whole is called referencing because the value of p now refers to the

address of i. Referencing also describes an alias relationship, as in code sample 2 for example,

the address ‘1000’ can be accessed with i or *p respectively. When a pointer refers to an

1 See https://www.tutorialspoint.com/cprogramming/c_pointers.htm
2 We use cursive numbers to distinguish memory addresses from numeric values.

int i, *p; //1

i = 0; //2

p = &i; //3

Code Sample 2

8

address, it is possible to use that address for further operations. Consider for example code

sample 3 as subsequent lines of code sample 2:

The asterisks symbol on the right-hand side in line 4 dereferences the pointer p, meaning it

returns the value the referenced pointer is pointing to, namely i. We speak of dereference-read,

since - in the case of line 4 - the dereferenced pointer is taken and assigned to another variable.

Therefore, line 4 can be rewritten as ‘int j = i;’ which would result in the same outcome.

In contrast to that, line 5 introduces dereference-write because we explicitly change the value of

the memory address that the pointer is pointing to. Again, we could replace ‘*p’ with ‘i’ and

would get the same result. Note here that dereference-read and dereference-write could both

happen in the same line. In general, we talk about dereferencing, whenever we would like to get

the value of a pointer. Dereferencing is the second pointer operation of three. The last one, being

aliasing, takes place when a pointer is referenced with another pointer.

Again, take code sample 4 as subsequent line of code samples 2 and 3. Here in line 6, a new

declared pointer variable q is referenced not with an explicit memory address but with a pointer.

The way this is handled is that it copies the address p is pointing to and assigns it as value to the

new pointer q. Thus, q and p now both point to the same memory address being the one of i.

Therefore, q and p are aliases that point to the memory address ‘1000’.

2.2. Types of Pointers

The type of a pointer is very important because it indicates how to treat its value. Take code

samples 2-4 for example. As pointer p is dereferenced in line 4, its type is the only indicator for

int j = *p; //4

*p = 1; //5

Code Sample 3

int *q = p; //6

Code Sample 4

9

letting the compiler know how to interpret its presented memory address, when the pointer is

dereferenced. In this case, since the type of p is int* the memory address that p is pointing to

is treated as int. The types a pointer can have range from primitive types like the ones of char

and int to more complex ones like arrays or user defined types such as structs and

unions, to even a type-less variant using void. We speak of “pointer to int3”, whenever we

mean “int*”. Additionally, it is allowed in C to cast pointers to a different type. That way, we

just alter the interpretation of the memory address of a pointer, e.g. let p be a pointer to int,

who points to an arbitrary integer variable4. Then, we cast p to be a pointer to char. The value

of the integer variable that p points to, now is interpreted as a char. Pointer casts should be

used with care, since altering the interpretation of a memory address can potentially end up to

unwanted results.

2.3. Function Pointers

C even allows pointer to functions. Instead of pointing to the address of an object or variable,

function pointers contain the address to a function which represents executable code5. Function

pointers inherent their type from the function they are pointing to. For example, for a function

like int add(int a, int b) a function pointer to int is required. The syntax of function

pointers also requires to indicate the function’s parameters. In the example of add, we would

declare a corresponding function pointer like this: int (* fn_ptr) (int, int). Pointer

operations like referencing and aliasing apply in the expected way. However, when a function

pointer is dereferenced one is able to invoke the function that particular pointer is pointing to. If

fn_ptr happens to point to the function add, for given integer variables i and j, a function

call trough pointer would look like this: (*fn_ptr)(i, j); Here we are dereferencing the

function pointer to get its value, being the address of function add. Function pointers allow great

flexibility on what functions to use but it might not be as transparent anymore as explicitly

invoking a function.

3 int is interchangeable with any other type a pointer can have.
4 See http://ecomputernotes.com/what-is-c/function-a-pointer/type-casting-of-pointers
5 See http://www.cprogramming.com/tutorial/function-pointers.html

10

2.4. Arrays

Suppose an array is declared in C: int array[]; Internally, arrays are represented as pointers

that point to the address of the first member6. Thus, the identifier array can be used just like

any other pointer variable, as all pointer operations apply.

2.5. Dynamic Memory Allocation

As mentioned in chapter 4.1, it is possible in C to dynamically allocate memory for pointers. This

is helpful when an exact size needs to be allocated in runtime7. Take the following code sample

for example:

The function call malloc allocates the requested size of memory and returns a pointer to void

that points to the first byte. Line 1 of code sample 5 will allocate enough memory for an integer

variable and return this memory address as void pointer. Since, we cast this type from void*

to int* the memory address pointer p is pointing to will be interpreted as integer. Every

dynamically allocated space in memory has to be freed independently (line 2), using the function

free.

2.6. Pointer to Pointer

We can even declare a pointer that points to a pointer and so on8. Consider code sample 6:

6 See http://www.peacesoftware.de/ckurs12.html
7 See http://www.programiz.com/c-programming/c-dynamic-memory-allocation
8 See https://www.tutorialspoint.com/cprogramming/c_pointer_to_pointer.htm

int *p = (int*) malloc(sizeof(int)); //1

free(p); //2

Code Sample 5

11

+

In line 4, pointer s points to r , r points to q and q points to i. This concludes in the following

figure:

The labeled arrows illustrate how many times the deference operator (‘*’) must be used to get

from one pointer to the desired address, e.g. ***s refers to the memory address of i (1000),

whereas *s refers to the address of r (1008).

2.7. Conclusion

Pointers in C have a wide range of application which makes them a powerful tool for

programming. As powerful as they are however, as dangerous can they be in the context of

software verification. Being able to tell what a pointer points to and which memory addresses it

aliases becomes very important when trying to analyze the source code of a program, as

dereferencing pointer may alter the entire memory in a worst-case scenario. This motivates the

field of pointer-alias analysis, covered in the next chapter.

int i, *q, **r, ***s; //1

q = &i; //2

r = &q; //3

s = &r; //4

Code Sample 6

s

Figure 1 Pointer to Pointer

Address:

1012

r q i

Address:

1008

Address:

1004

Address:

1000

* * *

12

3. Pointer-Alias Analysis

Pointer-alias analysis was introduced for the purpose of tracking and analyzing pointer variables

as well as strengthening existing analyses with pointer information. Research found a lot of

different approaches, all of them are somewhere on the precision/efficiency scale and thus, have

their own application. Every approach in pointer-alias analysis can be classified in several

different categories. This chapter introduces the field of pointer-alias analysis while contrasting

the different classifications.

3.1. Definition of Pointer-Alias Analysis

Unfortunately, literature is ambiguous about defining pointer analysis. Sometimes, it is

distinguished between alias analysis and points-to analysis. Alias analysis is devoted to finding

pointer aliases for equal memory locations, whereas points-to analysis determines the possible

runtime values of a pointer [A94]. In this thesis, we use the term pointer-alias analysis to describe

the task of statically collecting information about pointers. That includes determining runtime

values but also inferring alias relationships. To clarify that, suppose the following code sample:

When p is referenced with i in line 2, we say that p points to i. This information is considered

by a pointer-alias analysis. In line 3, we then infer from the previous line that *p aliases i. So,

while basically performing the task of a points-to analysis9 we consider the inferred aliases, too.

3.2. Modeling Pointer Relations

The first step that needs to be addressed when analyzing pointers is modeling their points-to

relationships. After all, the applied pointer analysis is desired to be used as auxiliary analysis for

other software verification approaches. Therefore, a representation is desired that approximates

9 Most points-to analyses consider aliasing but we would like to highlight this fact.

int i, *p; //1

p = &i; //2

*p = 1; //3

Code Sample 7

13

runtime values of pointers but also can be used to extract alias information from it. Literature

differs between three representation classes:

1) Points-to sets [A94] represent the points to information of every pointer [𝑝 → {𝑖}]. A

different representation of the points-to sets used in this thesis is 𝑝𝑡𝑠(𝑝) = {𝑖}. This is used

to get alias information.

2) Alias pairs [A94] describe a set of tuples (∗ 𝑝 , 𝑖) containing aliases that represent the same

location in memory.

3) Equivalence sets10 are sets of aliased memory locations (∗ 𝑝, 𝑖).

The following code sample will be used to distinguish the three modelling methods from above:

The result of each approach is:

1) Points-to sets: [𝑝 → {𝑖}], [𝑓𝑛_𝑝𝑡𝑟 → {𝑖𝑑}], [𝑞 → {𝑗}]

2) Alias pairs : (∗ 𝑝, 𝑖), (∗ 𝑟, 𝑖), (∗ 𝑝,∗ 𝑟), (∗ 𝑞, 𝑗)

3) Equivalence sets: {∗ 𝑝,∗ 𝑟, 𝑖}, {∗ 𝑞, 𝑗}

For larger programs, alias pairs explode rather quickly storage-wise [A94]. Points-to sets have

proven to be not only more economical, but also provide alias information that can be inferred

from them. Thus, we use points-to sets to describe pointer relations for the different categories

covered in the next chapter.

10 See http://www.seas.harvard.edu/courses/cs252/2011sp/slides/Lec06-PointerAnalysis.pdf slide 11

int i, j, *p, *q, (*fn_ptr)(int); //1

int id(int i) {return(i);} //2

fn_ptr = &id; //3

p = &i; //4

q = &j; //5

Code Sample 8

http://www.seas.harvard.edu/courses/cs252/2011sp/slides/Lec06-PointerAnalysis.pdf

14

3.3. Different Approaches of Pointer-Alias Analysis

The values of pointers may change a lot during the execution of a program. Thus, the analysis

tends to get expensive rather quickly which is impeding its scalability. Most pointer analyses

tolerate imprecision in order to support the application for larger programs. That imprecision is

often expressed as some form of insensitivity. This chapter will contrast the various categories in

which pointer-alias analyses are classified.

3.3.1. May vs. Must

The certainty of a pointer-alias analysis is distinguished between may and must analyses which

are sometimes referred to as existential and universal analyses [A94]. Both analyses compute a

set of abstract locations for every pointer. If there exists at least one program path where a given

points-to relation is valid, then the may-analysis will consider it. In contrast, must-analysis

requires the given points-to relation to be valid on all program paths. Therefore, may-analysis

produces an over-approximation of points-to relations while must-analysis produces an under-

approximation.

3.3.2. Intra-procedural vs. Inter-procedural

Another important aspect of pointer analysis is the way of handling function calls. Intra-

procedural analysis makes worst-call assumptions about function calls. Therefore, it considers

that function calls may alter the state of all variables visible to the procedures11. In contrast, inter-

procedural is way less conservative in the sense that all function calls are evaluated. That includes

checking the function body to see what the computed result is. These approaches are in a way

connected with context-(in)sensitivity, discussed in chapter 3.3.4.

3.3.3. Flow-sensitive vs. Flow-insensitive

One way of expressing imprecision in pointer-alias analysis is flow-insensitivity, meaning that the

analysis does not take control flow into account. More specifically a flow-insensitive approach

assumes that statements of a program can be executed in any order [A94]. Most notably

11 See http://dragonbook.stanford.edu/lecture-notes/Columbia-COMS-W4117/07-10-16.html

15

however, is that flow-sensitivity in contrast, computes a points-to relation for every program

point, whereas the insensitive approach approximates the set a pointer can point to for the entire

program. For demonstration purposes consider the following code sample:

A flow-insensitive pointer-alias analysis does not consider that line 2 is executed before line 3.

Therefore, it inaccurately merges both possibilities in the computed points-to set [𝑝 → {𝑖, 𝑗}].

The points-set considering flow-sensitivity is empty for line 1. For lines 2 and 3, it is [𝑝 → {𝑖}] and

[𝑝 → {𝑗}], respectively. So, considering the control flow, the analysis approximates at each

program point what a pointer points to.

Traditionally, flow-sensitive analyses are very slow which hinders their scalability12. Furthermore,

the effectiveness of flow-sensitive information turns out to be not as impactful in C [A94], making

the more expensive approach less appealing.

3.3.4. Context-sensitive vs. Context-insensitive

This distinction considers calling context of a function. While intra- and inter-procedural

approaches analyze how the function is evaluated (worst-call assumption or actual evaluation),

context-sensitivity describes how these results are being treated for each calling context. As

intra-procedural is very inaccurate, this chapter will only outline the behavior of calling contexts

based on an inter-procedural analysis.

Being context-insensitive in pointer analysis means that function-calls are propagated from one

call to another [WL04]. Suppose two pointers to interger q, p are given for the following code

sample.

12Research found a way for flow-sensitive pointer-alias analysis to be applicable for millions of lines of code. See:
https://www.cs.ucsb.edu/~benh/research/papers/hardekopf11flow.pdf

int i, j, *p; //1

p = &i; //2

p = &j; //3

 Code Sample 9

https://www.cs.ucsb.edu/~benh/research/papers/hardekopf11flow.pdf

16

A context-sensitive pointer analysis returns a computed result for every call site. Thus, the

function call in line 2 returns value &i and in line 3, it returns &j. For every other call of the

function id (or any other given function), a context-sensitive pointer analysis will return the

appropriate result. The counterpart, being a context-insensitive pointer analysis, returns one

result applicable for every call site. Every time id is being called, the result will be merged with

the previous one, possibly creating ambiguous values for the return variable r in id. Applied on

the code sample above, context-insensitive pointer analysis will mistakenly conclude that

id(&i); may also return value &j. Therefore, the analysis suffers from the unrealizable path

problem which describes program paths that cannot occur in a real execution of the input

program [W97]. That imprecision is critical factor for speeding up the context-insensitive

approach. On the other hand, filtering out unrealizable paths is what makes context sensitivity

more precise but also less efficient.

3.3.5. Other Configurations

There are some minor considerations of (in-)sensitivity that can be considered for analyzing

pointers. C especially offers a lot of smaller configurations because of the numerous possibilities

to create and deal with pointers (see chapter 2).

One problem that can be considered in pointer analysis, is how to deal with structures and

unions. In C, structures and unions are user-defined, making them a sophisticated tool for

independent applications. One way of dealing with pointers to structs and unions is to unify them

by type. Suppose a struct type is defined as follows: struct Person { int age; } p1,

p2; Now we define a pointer to the struct-type Person via: Person *ptr1 = &p1; With

the insensitivity defined above, we are not able to track individual variables. Therefore, the

resulting points-to set would inaccurately be [𝑝𝑡𝑟1 → {𝑃𝑒𝑟𝑠𝑜𝑛}]. Suppose a second pointer

int i, j; //1

p = id(&i); //2

q = id(&j); //3

int* id(int* r) {

 return (r);

}

Code Sample 10

17

ptr2 to Person is declared and assigned to the address of p2. Again, the declared pointer

analysis would not be able to tell the difference between ptr1 and ptr2, as second points-to

set [𝑝𝑡𝑟2 → {𝑃𝑒𝑟𝑠𝑜𝑛}] is equal to the first one. Hereof, we exploit the fact that struct (and

union) variables of the same type may flow together, whereas a different struct-types cannot

flow together [A94]. When analyzing programs that contain excessive use of struct and union

variables, this may not be desired. It would be more accurate to track pointers to their actual

struct-variables instead of unifying them by type. Thus, the more precise approach would

compute the points to sets [𝑝𝑡𝑟1 → {𝑝1}] and [𝑝𝑡𝑟2 → {𝑝2}].

Another aspect of how to configure pointer analysis is field-sensitivity. Field-sensitivity describes

the functionality of keeping track of every field member of reference type [A13]. Again, using

structures as example, consider the following code sample:

The pointer dereferences happening in line 4 and 5, access field members p and q of st,

respectively. Using field-sensitivity, a pointer analysis would differentiate between its field

members, creating the corresponding points-to sets [𝑆 𝑠𝑡. 𝑝 → {𝑖}] and [𝑆 𝑠𝑡. 𝑞 → {𝑗}]. In

contrast, a field-insensitive pointer analysis will result in the points to set [𝑆 𝑠𝑡 → {𝑖, 𝑗}],

inaccurately implying that p may point to j or q may point to i.

3.3.6. Conclusion

There are many possibilities of designing pointer-alias analyses. Emphasizing on correct results

for example, a flow- and context-sensitive approach would be advisable. However, these

sensitivities are very inefficient separately, let alone combined. In order to support the

int i, j; //1

struct S {int *p; int *q;} st; //2

S *ptr = &st; //3

ptr->p = &i; //4

ptr->q = &j; //5

Code Sample 11

18

application for larger programs and therefore, be more of practical use, it is required to tolerate

imprecision. This motivates the further investigation of the two flow-insensitive approaches

introduced in the next chapter.

3.4. Outlining the Pointer-Alias Algorithms for CPAchecker

In the last chapter, we introduced several categories that are used to classify pointer-alias

analyses. As in any other analyses in software verification, there is the obvious trade-off between

precision and efficiency. When examining the field of flow-insensitive pointer-alias analyses,

there are two fundamental approaches that are frequently mentioned in literature.

Steensgaard’s pointer analysis is notorious for being very fast, supporting virtually unlimited

scalability. Andersen’s approach is much more accurate while sacrificing efficiency. Since these

two approaches form a perfect foundation for a configurable pointer analysis, as they cover both

extreme points, accuracy and efficiency, we chose to implement them in CPAchecker. This

chapter provides a generic outline of the algorithm’s functionality. Later in chapter 5, we will

describe their formal implementation in CPAchecker.

3.4.1. Andersen’s Pointer Analysis

Andersen’s pointer analysis is a flow- and context-insensitive, inter-procedural may-pointer-alias

analysis based on subset constraints. The analysis is basically structured in two phases:

Generating a constraint system of a given input program and solving it afterwards. Pointer

information will be represented as points-to sets (see chapter 3.2) which are inferred from the

constraint system. The constraint rules are classified by pointer operations (see chapter 2.1) and

defined as follows13:

1) Referencing: 𝑝 = &𝑖; ⟹ 𝑖 ∈ 𝑝𝑡𝑠(𝑝)

2) Dereferencing-read: 𝑝 = ∗ 𝑞; ⟹ ∀𝑥 ∈ 𝑝𝑡𝑠(𝑞): 𝑝𝑡𝑠(𝑥) ⊆ 𝑝𝑡𝑠(𝑝)

3) Dereferencing-write: ∗ 𝑝 = 𝑞; ⟹ ∀𝑥 ∈ 𝑝𝑡𝑠(𝑝): 𝑝𝑡𝑠(𝑞) ⊆ 𝑝𝑡𝑠(𝑥)

4) Aliasing: 𝑝 = 𝑞; ⟹ 𝑝𝑡𝑠(𝑞) ⊆ 𝑝𝑡𝑠(𝑝)

13See http://www.seas.harvard.edu/courses/cs252/2011sp/slides/Lec06-PointerAnalysis.pdf slide 15

http://www.seas.harvard.edu/courses/cs252/2011sp/slides/Lec06-PointerAnalysis.pdf

19

The first rule states that whenever a pointer is referenced using the &-operator, a base-constraint

is generated. Therefore, we know that the points-to set of 𝑝 contains at least the address of

variable 𝑖. Since the analysis is flow-insensitive, this approximation will hold for all program

points. The second and third rule express a complex constraint and indicate that a pointer is

dereferenced. In case of dereference-read (rule 2), the left-hand side becomes a superset of all

points-to sets that the dereferenced pointer is pointing to. On the other hand, dereference-write

(rule 3) implies that the all points-to sets of the dereferenced pointer on the left-hand side

become a superset of the right-hand side’s points-to set. The last rule considers aliasing and

generates a base constraint. The points-to set of the pointer on the left becomes a superset of

the points-to set of the pointer on the right.

The following code sample exemplifies how the constraint system is constructed:

We infer from the constraints on the right the following points-to sets:

𝑖 ∈ 𝑝𝑡𝑠(𝑝) ⟹ [𝑝 → {𝑖}]

 𝑝 ∈ 𝑝𝑡𝑠(𝑟) ⟹ [𝑟 → {𝑝}]

𝑞 ∈ 𝑝𝑡𝑠(𝑠) ⟹ [𝑠 → {𝑞}]

∀𝑥 ∈ 𝑝𝑡𝑠(𝑠): 𝑝𝑡𝑠(𝑝) ⊆ 𝑝𝑡𝑠(𝑥) ⟹ 𝑝𝑡𝑠(𝑝) ⊆ 𝑝𝑡𝑠(𝑞) ⟹ [𝑞 → {𝑖}]

 ∀𝑥 ∈ 𝑝𝑡𝑠(𝑟): 𝑝𝑡𝑠(𝑥) ⊆ 𝑝𝑡𝑠(𝑠) ⟹ 𝑝𝑡𝑠(𝑝) ⊆ 𝑝𝑡𝑠(𝑠) ⟹ [𝑠 → {𝑞, 𝑖}]

𝑝𝑡𝑠(𝑟) ⊆ 𝑝𝑡𝑠(𝑡) ⟹ [𝑡 → {𝑝}]

int *i, *p, *q, **r, **s, **t;//1

p = &i; //2

r = &p; //3

s = &q; //4

*s = p; //5

s = *r; //6

t = r; //7

𝑖 ∈ 𝑝𝑡𝑠(𝑝)

𝑝 ∈ 𝑝𝑡𝑠(𝑟)

𝑞 ∈ 𝑝𝑡𝑠(𝑠)

∀𝑥 ∈ 𝑝𝑡𝑠(𝑠): 𝑝𝑡𝑠(𝑝) ⊆ 𝑝𝑡𝑠(𝑥)

∀𝑥 ∈ 𝑝𝑡𝑠(𝑟): 𝑝𝑡𝑠(𝑥) ⊆ 𝑝𝑡𝑠(𝑠)

𝑝𝑡𝑠(𝑟) ⊆ 𝑝𝑡𝑠(𝑡)

Code Sample 12

20

Consequently, the resulting points-to sets of Andersen’s analysis are computed from the

generated constraints and defined as follows:

[𝑝 → {𝑖}], [𝑟 → {𝑝}] , [𝑞 → {𝑖}], [𝑠 → {𝑞, 𝑖}], [𝑡 → {𝑝}]

The actual values of each pointer in line 7 are denoted as:

[𝑝 → {𝑖}], [𝑟 → {𝑝}], [𝑠 → {𝑖}], [𝑞 → {𝑖}], [𝑡 → {𝑝}]

Comparing Andersen’s results with the actual values of the pointers of code sample 12, we

conclude that Andersen is pretty accurate, only computing the additional approximation that

pointer s may also point to q. However, the more aliasing or dereferencing there is in the input

program, the less precise the results will get due to the corresponding constraints which

continuously propagate the according subsets. Furthermore, we evaluate the efficiency of the

algorithm. There are 𝑂(𝑛) constraints that can be generated (given the size input program 𝑛). In

a worst-case scenario, each pointer variable points to every other variable of the program. For

an aliasing constraint that means that there are 𝑂(𝑛) base constraints propagated from one

pointer to another, resulting in a runtime of 𝑂(𝑛2). However, we have not considered

dereferencing yet. In case of dereference-read, the dereferenced pointer (right-hand side)

potentially propagates 𝑂(𝑛) subset constraints to every element (in worst case 𝑂(𝑛)) that the

referenced pointer (left-hand side) is pointing to. Therefore, the algorithm runs in 𝑂(𝑛3) in the

worst-case14 [A13]. Later in chapter 5, we implement Andersen’s pointer analysis through

creating and maintaining an auxiliary-graph that solves the generated constraints.

3.4.2. Steensgaard’s Pointer Analysis

Because Andersen’s implementation is still, despite being flow- and context-insensitive,

considered to be too slow for larger programs, as its runtime is cubic in the worst-case, this

chapter presents an even faster approach to pointer analysis, originally proposed by Bjarne

14 Further research (Manu Sridharan, Stephen J. Fink, “The Complexity of Andersen’s Analysis in Practice”, Watson
Research Center, 2009) of Andersen’s approach evaluated, that the algorithm, in practice, runs in 𝑂(𝑛2) time, if the
program has only restricted amount of dereferences and operates on a sparse flow graph.

21

Steensgaard. His algorithm is classified as flow- and context-insensitive, inter-procedural may-

pointer analysis that is based on equality constraints.

Similar to Andersen’s pointer analysis, the algorithm’s foundation is generating and solving

constraints. However, as oppose towards Andersen’s approach, the constraint system in

Steensgaard’s pointer analysis is unification based. Meaning, that in case of aliasing, pointer

information flows bidirectional. That way, the analysis gains imprecision while at the same time

speeding up the analysis in contrast to Andersens’. Steensgaard’s analysis runs almost in linear

time [S95]. In fact, it runs in 𝑂(𝑛𝛼(𝑛, 𝑛)) time, where 𝑛 is the size of the input program and

𝛼(𝑛, 𝑛) is the reverse Ackermann’s function (that for large 𝑛, is close to being constantly 1). That

creates the problem of representing the result in linear space. Since worst case assumption about

a pointer is, that it points to every other variable in the program, for n pointers it will occupy

𝑂(𝑛2) space. This is solved by restricting variables to have constant space. That space is

expressed as abstract locations. Every variable, including pointers, identify an abstract location

at the beginning of the analysis. Each abstract location that contains a pointer is restricted to

point to maximum one other abstract location. When a pointer may point to two different

memory locations during the execution of the algorithm, then these abstract locations will be

joined. If other abstract locations happen to point to one of the joined abstract locations, then

they will be updated to point to the new joined abstract location. Furthermore, when joining two

abstract locations that contain pointers and thus also point to their respective abstract location,

then their abstract locations have to be joined, too. This procedure must be repeated until the

condition holds again. We define the following constraint rules:

1) Referencing: 𝑝 = &𝑖; ⟹ 𝑗𝑜𝑖𝑛(∗ 𝑝, 𝑖)

2) Dereferencing-read: 𝑝 = ∗ 𝑞; ⟹ 𝑗𝑜𝑖𝑛(∗ 𝑝,∗∗ 𝑞)

3) Dereferencing-write: ∗ 𝑝 = 𝑞; ⟹ 𝑗𝑜𝑖𝑛(∗∗ 𝑝,∗ 𝑞)

4) Aliasing: 𝑝 = 𝑞; ⟹ 𝑗𝑜𝑖𝑛(∗ 𝑝,∗ 𝑞)

The method 𝑗𝑜𝑖𝑛(𝑝1, 𝑝2) for abstract locations 𝑝1 and 𝑝2 is defined as follows:

22

Thus, only two distinct abstract locations are joined. Furthermore, the respective abstract

locations that the two joined locations p1 and p2 may point to, are also joined. The recursive

call indicates that this is repeated until there are no locations left to join. The method unify

takes care of the actual unification of two abstract locations and handles the dependencies that

need to be updated.

The first rule states that referencing pointer 𝑝 with address 𝑖 joins the two abstract locations ∗ 𝑝

and 𝑖. Suppose pointer 𝑝 already points to an abstract location containing 𝑗. This means, that

after 𝑗𝑜𝑖𝑛(∗ 𝑝, 𝑖), the abstract location pointer 𝑝 is pointing to, now contains 𝑖, too. Furthermore,

every pointer that pointed to an abstract location containing either 𝑖 or 𝑗, now points to the new

abstract location containing (at least) both. Joining abstract locations and updating other ones

that may point to one of them is the main source of the analysis’s imprecision. At the same time,

it is the reason for its fast performance. The second and third rules follow the same structure but

consider the respective dereferences. Suppose again code sample 12 (from chapter 3.4.1) as an

example. The following constraints are generated and transformed into points-to sets, for a more

descriptive representation:

𝑗𝑜𝑖𝑛(∗ 𝑝, 𝑖) ⟹ [𝑝 → 𝑖]

𝑗𝑜𝑖𝑛(∗ 𝑟, 𝑝) ⟹ [𝑟 → 𝑝]

𝑗𝑜𝑖𝑛(∗ 𝑠, 𝑞) ⟹ [𝑠 → 𝑞]

𝑗𝑜𝑖𝑛(∗∗ 𝑠,∗ 𝑝) ⟹ [𝑞 → 𝑖]

𝑗𝑜𝑖𝑛(∗ 𝑠,∗∗ 𝑟) ⟹ [𝑠 → 𝑞, 𝑖]

𝑗𝑜𝑖𝑛(∗ 𝑡,∗ 𝑟) ⟹ [𝑡 → 𝑝]

join(p1, p2)

 if (p1 == p2)

 return

 p1next = *p1;

 p2next = *p2;

 unify(p1, p2)

 join(p1next, p2next)

 Figure 2 taken from [A13]

23

Though above representations of the points-to sets are correct for their respective situations,

there is one aspect to look out for. When 𝑗𝑜𝑖𝑛(∗ 𝑠,∗∗ 𝑟) is called, the abstract locations

represented by 𝑖 and 𝑞 have to be joined because the abstract location 𝑠 can only point to one

other abstract location. The method unify then propagates the new joined location to every

abstract location that pointed to either 𝑖 or 𝑞. Thus, the resulting points-to sets of Steensgaard’s

analysis are: [𝑝 → {𝑞, 𝑖}], [𝑟 → {𝑝}], [𝑠 → {𝑞, 𝑖}], [𝑞, 𝑖 → {𝑞, 𝑖}], [𝑡 → {𝑝}]. Compared to the

actual values ([𝑝 → {𝑖}], [𝑟 → {𝑝}], [𝑠 → {𝑖}], [𝑞 → {𝑖}], [𝑡 → {𝑝}]) it is discernible that, even for

a small program like the one in code sample 12, the analysis’s precision is very poor. But the

virtual unlimited scalability, due to almost linear runtime, is undeniably beneficial for many

applications.

𝑗𝑜𝑖𝑛(∗ 𝑝, 𝑖) ⟹ [𝑝 → {𝑖}]

𝑗𝑜𝑖𝑛(∗ 𝑟, 𝑝) ⟹ [𝑟 → {𝑝}]

𝑗𝑜𝑖𝑛(∗ 𝑠, 𝑞) ⟹ [𝑠 → {𝑞}]

𝑗𝑜𝑖𝑛(∗∗ 𝑠, 𝑝) ⟹ [𝑞 → {𝑖}]

𝑗𝑜𝑖𝑛(∗ 𝑠,∗∗ 𝑟) ⟹ [𝑠 → {𝑞, 𝑖}]

𝑗𝑜𝑖𝑛(∗ 𝑡,∗ 𝑟) ⟹ [𝑡 → {𝑝}]

24

4. Automated Software Verification in Respect of Configurable Program

Analysis and CPAchecker

To find application for the previously introduced algorithms, it is important to clarify the

background and formalities of CPAchecker. Software verification is a broad topic that is devoted

to checking if software satisfies a given specification [C88]. Since modern society relies a lot on

correctly working software, it is of no surprise that software verification is a heavily researched

field in computer science. For readability’s sake, we will narrow this topic down to automated

software verification. Generally, there are two main categories of automated software

verification. Dynamic verification deals with analyzing a program’s behavior by executing its code

in an exhaustive and failure-provoking fashion. Static approaches deal with the task of checking

if the given requirements for a program are met without utilizing the execution of its code. In

respect of configurable program analysis which is introduced later, this chapter only introduces

two static approaches, namely program analysis and model checking, each of which serve as the

foundation of many automated software verification tools.

4.1. Program Analysis and Model Checking

Program analysis is a method of statically collecting information about a given input program in

order to highlight its behavior. Program analyses are concerned with efficiency and effectiveness

[BHT07]. Therefore, most program analyzers are path-insensitive, meaning program states with

equal execution paths are merged. This imprecision is tolerated for the sake of speeding up the

analysis. Typical applications of program analyses are bug-finding and compiler optimization.

(CITIT)

 “Model checking is an automated technique that, given a finite-state model of a system and a

formal property, systematically checks whether this property holds for (a given state in) that

model” [BK08]. For that, model checking requires two important components: the desired model

to check and the given specification. Typically, the system model is represented as finite state

graph or the inferred reachability tree. Using exhaustive exploration of the system model, each

reached system state will be examined whether the given property specification is satisfied or

25

not. Model checkers, while clearly emphasizing on correctness, are very expensive in practice

and thus, focus more on smaller programs [BHT07].

Since model checking and program analysis both express static software verification approaches

and due to further examination of the relation between the two, a possibility was found to

express them both in a single formal setting. This setting was introduced as configurable program

analysis (CPA). The goal of combining them is to benefit both components: model checking would

benefit from merging some states and thus, be applicable for larger programs while program

analyses would improve their accuracy by merging less states [BHT07]. Before defining a

configurable program analysis in detail, we describe a control flow automaton as it is the main

data structure used by CPAs.

4.1. Control Flow Automaton

A control-flow automaton (CFA) is a possible way of representing a program. A CFA [BHT07]

defines a graph which consists of 𝐿 nodes modelling the program counter (𝑝𝑐), an initial node

𝑝𝑐0 representing the entry point of a program and a set of edges 𝐺 ⊆ 𝐿 × 𝑂𝑝𝑠 × 𝐿 defining the

control flow from one node to another. A concrete state assigns to each variable from 𝑋 ∪ {𝑝𝑐}

a value. Each edge 𝑔 ∈ 𝐺 defines a (labeled) transfer relation
𝑔
→ ⊆ 𝐶 × {𝑔} × 𝐶 , whereas 𝐶 is the

set of all concrete strates. We obtain the complete transfer relation → by unifying all edges: → =

 ⋃
𝑔
→𝑔∈𝐺 . We call a concrete state 𝑐𝑛 reachable from region 𝑟, if there exists a sequence of

concrete states 〈𝑐0, 𝑐1, … , 𝑐𝑛〉 with 𝑐0 ∈ 𝑟 and for all 1 ≤ 𝑖 ≤ 𝑛, holds 𝑐𝑖−1 → 𝑐𝑖. Reachability of

concrete state 𝑐𝑛 from 𝑟 is denoted by 𝑐𝑛 ∈ 𝑅𝑒𝑎𝑐ℎ(𝑟).

4.2. Configurable Program Analysis

A configurable program analysis15 𝔻 = (𝐷, ⇝, merge, stop) [BHT07] is defined through four

components which will be introduced separately.

15 Continuing research of that field even introduced an enhanced configurable program analysis that allows dynamic
precision adjustment (CPA+). However, the core of CPA still preserves and may be more convenient for describing
the concept of CPA.
For more information, read: http://www.sosy-lab.org/~dbeyer/Publications/2008-
ASE.Program_Analysis_with_Dynamic_Precision_Adjustment.pdf

http://www.sosy-lab.org/~dbeyer/Publications/2008-ASE.Program_Analysis_with_Dynamic_Precision_Adjustment.pdf
http://www.sosy-lab.org/~dbeyer/Publications/2008-ASE.Program_Analysis_with_Dynamic_Precision_Adjustment.pdf

26

1) The abstract domain 𝐷 = (𝐶, ℰ, ⟦∙⟧) contains a set of concrete states 𝐶, a semi-lattice ℰ and

a concretization function ⟦∙⟧. The semi-lattice ℰ = (𝐸, ⊤, ⊥, ⊑,⊔) consists of five components:

a set of (possibly infinite) elements 𝐸 which represent the abstract states of the domain, a

top element ⊤ ϵ 𝐸, a bottom element ⊥ ∈ 𝐸, a preorder ⊑ ⊆ 𝐸 × 𝐸 and a total function ⊔∶

𝐸 × 𝐸 → 𝐸, representing the join operator of the semi-lattice. Finally, the concretization

function ⟦∙⟧ ∶ 𝐸 → 2𝐶 assigns each abstract state to its corresponding set of concrete states.

For soundness, the abstract domain has to meet the following requirements:

a) ⟦⊤⟧ = 𝐶 and ⟦⊥⟧ = ∅

b) ∀𝑒, 𝑒′ ∈ 𝐸 ∶ ⟦𝑒⟧ ∪ ⟦𝑒′⟧ ⊆ ⟦𝑒 ⊔ 𝑒′⟧ (the join operator is precise or it over-approximates)

2) The transfer relation ⇝ ⊆ 𝐸 × 𝐺 × 𝐸 assigns for a given CFA edge 𝑔 ∈ 𝐺 all possible

subsequent abstract states 𝑒′to every abstract state 𝑒 ∈ 𝐸. We write 𝑒 ⇝
𝑔

𝑒′ if (𝑒, 𝑔, 𝑒′) ∈ ⇝,

and 𝑒 ⇝ 𝑒′ if there is a CFA edge 𝑔 with 𝑒 ⇝
𝑔

𝑒′. For soundness, the transfer relation is bound

to fulfill the following requirements:

a) ∀𝑒 ∈ 𝐸 ∶ ∃𝑒′ ∈ 𝐸 ∶ 𝑒 ⇝ 𝑒′ (totality of transfer relation)

b) ∀𝑒 ∈ 𝐸, 𝑔 ∈ 𝐺 ∶ ⋃ {𝑐′| 𝑐
𝑔
→ 𝑐′}𝑐∈⟦𝑒⟧ ⊆ ⋃ ⟦𝑒′⟧

𝑒⇝
𝑔

𝑒′
 (over-approximation of operations)

3) The merge operator merge ∶ 𝐸 × 𝐸 → 𝐸 merges two abstract states and their information.

The requirement for soundness is:

a) ∀𝑒, 𝑒′: 𝑒′ ⊑ merge(𝑒, 𝑒′).

That way, the result of merge can only be equally or more abstract than the second

parameter. We infer two aspects: the result of merge can only be between 𝑒′ and ⊤ and

secondly, merge is not commutative. The two merge-operators covered in this thesis are:

merge𝑠𝑒𝑝(𝑒, 𝑒′) = 𝑒′ and merge𝑗𝑜𝑖𝑛(𝑒, 𝑒′) = 𝑒 ⊔ 𝑒′. Note that merge differs from the

lattice’s join operator ⊔ but can be based on it, as seen in the latter example merge𝑗𝑜𝑖𝑛.

4) The termination check stop ∶ 𝐸 × 2𝐸 → 𝔹 checks if the abstract state (first parameter) is

covered by the set of abstract states (second parameter). We require for soundness:

a) ∀𝑒 ∈ 𝐸, 𝑅 ⊆ 𝐸 ∶ stop(𝑒, 𝑅) = 𝑡𝑟𝑢𝑒 ⟹ ⟦𝑒⟧ ⊆ ⋃ ⟦𝑒′⟧𝑒′∈𝑅

Therefore, the termination check is able to search for an element that subsumes the first

parameter 𝑒.

27

4.3. CPAchecker

CPAchecker is an open source software verification tool based on the concept of configurable

program analysis (see chapter 3.2). Therefore, CPAchecker is neither model checker nor program

analyzer, it is a combination of both. The framework is written in Java and focuses on the

verification of C programs. CPAchecker was used to e.g. successfully spot bugs in Linux kernel16

and is most famous for its flexible environment. Furthermore, CPAchecker is a regular competitor

in the competition on software verification17, winning several awards18. This chapter provides an

internal look at the verifier’s underlying architecture, the functionality of its main algorithm as

well as an evaluation of the platform. Finally, we propose how configurable pointer-alias analysis

can be used to benefit one of the main analyses in CPAchecker.

4.3.1. Architecture regarding CPA

Since the goal of CPAchecker is to combine various approaches of model checking and program

analysis, it is required to provide a formulism for such. Thus, the composite pattern was

integrated, allowing to use multiple CPAs for the main algorithm.

16 See http://cpachecker.sosy-lab.org/achieve.php
17 See http://sv-comp.sosy-lab.org/2017/
18 See http://cpachecker.sosy-lab.org/achieve.php

Figure 3 Structure of CPA in CPAchecker (taken from [BK11])

http://cpachecker.sosy-lab.org/achieve.php
http://cpachecker.sosy-lab.org/achieve.php

28

Figure 1 demonstrates the internal structure for configurable program analyses in CPAchecker.

The eponymous CPA (see chapter 4.2) defines an abstract data structure that may consist of a

composite CPA (when the usage of more than one CPA is desired) or of a leaf CPA (used for

representing a single CPA). A composite CPA simply expresses the combination of other existing

CPAs. There are two requirements for integrating a new CPA [BK11]. First, the CPA desired to be

added has to be registered in the global properties file and second, the new CPA must implement

the CPA interface alongside with all required methods.

A composite CPA 𝐶 = (𝔻1, 𝔻2 ⇝×, merge×, stop×) consists of a finite number of CPAs as well as

the composite transfer relation ⇝×, composite merge operator merge× and composite

termination check stop×. For simplicity reasons, we only use two CPAs (𝔻1, 𝔻2) but theoretically,

the following applies to any finite number of CPAs. Additionally, two new operators ↓ and ≼ are

introduced [BHT07]:

1) The strengthening operator ↓∶ 𝐸1×𝐸2 → 𝐸1 strengthens abstract states from the lattice set

𝐸1with information from lattice elements of 𝐸2. The requirement ↓ (𝑒, 𝑒′) ⊑ 𝑒 must hold.

2) The comparison operator ≼⊆ 𝐸1×𝐸2is used to compare elements from different lattices.

The three composites ⇝×, merge× and stop× as well as the strengthening operator ↓ and the

comparison operator ≼ are expressions over the components 𝔻1 and 𝔻2

(⇝𝑖, merge𝑖 , stop𝑖, ⟦⋅⟧𝑖 , 𝐸𝑖, ⊤𝑖, ⊥𝑖, ⊑𝑖 ,⊔𝑖).

For the sake of completeness, we state how a composite CPA 𝐶 = (𝔻1, 𝔻2, ⇝×, merge×, stop×)

is constructed to a configurable program analysis 𝔻× = (𝐷×, ⇝×, merge×, stop×), using the

following rules [BHT07]:

1) The product domain 𝐷× is simply defined as the direct product of each domain from the CPAs.

𝐷× = 𝐷1 × 𝐷2 = (𝐶, ℰ×, ⟦⋅⟧×). The product lattice is constructed accordingly ℰ× = ℰ1 ×

ℰ2 = (𝐸1 × 𝐸2, (⊤1, ⊤2), (⊥1, ⊥2), ⊑×,⊔×) with (𝑒1, 𝑒2) ⊑× (𝑒1′, 𝑒2′) iff 𝑒1 ⊑1 𝑒1′ and

𝑒2 ⊑2 𝑒2′ and (𝑒1, 𝑒2) ⊔× (𝑒1
′ , 𝑒2

′) = (𝑒1 ⊔1 𝑒1
′ , 𝑒2 ⊔2 𝑒2′).

29

2) Finally, the product concretization function ⟦⋅⟧× is constructed such that ⟦(𝑑1, 𝑑2)⟧× =

 ⟦𝑑2⟧× ⋂ ⟦𝑑2⟧× holds.

4.3.2. CPA Algorithm

The main CPA algorithm (see below) operates on a source code file written in C and aims to

perform a reachability analysis. For this, the algorithm computes for a given CPA and an initial

abstract state, a set of reachable concrete state that is over-approximated [BHT07]. This

algorithm can be configured by including different software verification approaches expressed as

CPAs. Hereof, all four components of a CPA are relevant for the algorithms precision and

performance.

Before the analysis starts, the input file is transformed into a syntax tree and further into control-

flow automata. The set of CFA and a CPA which is likely to be a composite CPA are the main

components for the algorithm (see figure 5). Based on its CPA and an additional initial abstract

state 𝑒0, a set of reachable abstract states are computed. For this, two sets of abstract states are

maintained: reached, representing all reachable abstract states and waitlist containing the

abstract states that have not been processed yet. The transfer relation of the CPA computes for

the current abstract state 𝑒 its successors. The algorithm considers each successor 𝑒′ of 𝑒 and

combines it with an existing abstract state from reached, using the merge operator. If the

merging added new information to the abstract state, the old abstract state will be replaced in

reached. In case that the new abstract state is not covered by reached, it will be added to both

reached and waitlist [BHT07].

30

The CPA Algorithm 𝐶𝑃𝐴(𝔻, 𝑒0) Taken from [BHT07]

4.3.3. Evaluation

There are many model checkers and program analyzers to choose from19. The aspects that lets

CPAchecker stand out the most is its flexible environment and the possibility to experiment with

several combinations of different verification approaches, leading to new and unexpected

results. Furthermore, CPAchecker contributes a lot to the reliability and integration of new

introduced verification components. Since the field of software verification is heavily researched,

there is an overwhelmingly amount of new ideas that need to be considered and evaluated

[BK11]. Claims that a new approach outperforms current state-of-the art algorithms lack a lot of

reliability because most underlying frameworks use different tools and auxiliary-analyses, making

it virtually impossible to compare them to others. For the same reasons, it is hard for third parties

to comprehend the full conceptional understanding behind these approaches. Formulizing these

ideas as well-structured and sound CPAs in CPAchecker, establishes a common ground with many

19 For example, the competitor list of 5th International Competition on Software Verification (SV-COMP’16).

31

other existing analyses which makes it convenient to integrate and compare new approaches to

each other and thus, enhance intelligibility and transparency of such.

4.3.4. Explicit-Value Analysis

CPAchecker has many different analyses. One of them is explicit-value analysis, that aims to track

integer values for a specified set variables of a given input program. This task requires a

composite CPA consisting of a CPA responsible for tracking program locations and another one

for explicit values [BL13]. However, the explicit-value analysis does not support pointers which is

a major weak spot since pointers are able to change values of variables completely. Therefore,

we propose an approach to strengthen the explicit-value analysis with pointer information

derived from a new implemented configurable pointer-alias analysis through the strengthening

operator ↓ in the following chapter.

32

5. Applying Configurable Pointer-Alias Analysis in CPAchecker

This chapter introduces a new CPA called PointerCPA which can be configurated to use either

Andersen’s (chapter 3.4.1) or Steensgaard’s (chapter 3.4.2) pointer analysis. Furthermore, we

present how the new CPA is considered by the explicit-value analysis of CPAchecker. The

following implementation is specified in CPAchecker revision 23465.

5.1. PointerCPA

We use the specification of a CPA from chapter 4.2 to define the components of the new

PointerCPA 𝔻𝑝 = (𝐷𝑝, ⇝𝑝, merge𝑝 , stop𝑆𝐸𝑃) as follows:

1) The abstract pointer domain 𝐷𝑝 = (𝐶𝑝, ℰ𝑝, ⟦∙⟧𝑝) consists of a set of concrete pointer states

𝐶𝑝, the semi lattice ℰ𝑝 = (𝐸𝑝, ⊤𝑝, ⊥𝑝, ⊑𝑝,⊔𝑝) and a concretization ⟦∙⟧𝑝 ∶ 𝐸𝑝, → 2𝐶𝑝. The

abstract states 𝐸𝑝 maintain a points-to map (see chapter 6.2.1) that maps to each set of

pointers20 a set of memory locations that it may point to. Pointers may also point to an

unknown location. The unknown location represents for example a designated initializer for

an array, as they are not supported. In this case, a pointer is mapped to point to every possible

variable, denoted by ⊤, considering worst-case behavior. When a pointer points to nothing,

it is represented by ⊥. Depending on which configuration is used, the set of abstract states

are further segmented in Andersen-states 𝐸𝐴 or Steensgaard-states 𝐸𝑆 which produce the

pointer information based on their respective algorithms. The top element ⊤𝑝 of lattice ℰ𝑝

maps all pointer variables to ⊤, the bottom element ⊥𝑝 maps all pointers to ⊥. The preorder

⊑𝑝= 𝐸𝑝 × 𝐸𝑝 compares two abstract pointer states. More specifically, it checks if the first

parameter contains all the pointer information of the second parameter. The join operator

⊔𝑝: 𝐸𝑝 × 𝐸𝑝 → 𝐸𝑝 joins the pointer information of two abstract pointer states. Finally,

⟦∙⟧𝑝: 𝐸𝑝 → 2𝐶𝑝 assigns to each abstract pointer state the set of concrete pointer states that

it represents.

2) The transfer relation ⇝𝑝 ⊆ 𝐸𝑝× 𝐺 × 𝐸𝑝 extracts pointer-relevant information from the given

CFA edge and passes it further so that pointer information can be approximated and

20 In Andersen’s analysis, this set contains only one pointer as explained later.

33

expressed as new abstract state 𝑒′. If additional pointer information was added, then: ∃𝑔 ∈

𝐺: 𝑒 ⇝𝑝

𝑔
𝑒′.

3) The merge operator can be configured to be either merge𝑠𝑒𝑝(𝑒, 𝑒′) = 𝑒′ or

merge𝑗𝑜𝑖𝑛(𝑒, 𝑒′) = 𝑒 ⊔𝑝 𝑒′. The latter case is based on the semi lattice’s join operator ⊔𝑝

and therefore, joins two abstract states and their pointer information. In the context of

pointer-alias analysis merge𝑗𝑜𝑖𝑛 expresses flow-insensitivity.

4) The termination check is defined as stop𝑠𝑒𝑝(𝑒, 𝑅) = (∃𝑒′ ∈ 𝑅: 𝑒 ⊑𝑝 𝑒′), whereas 𝑅 is a set

of abstract pointer states. It is based on the preorder ⊑𝑝 given by the lattice.

5.2. Implementing Andersen’s and Steensgaard’s analysis

This chapter describes formally how both algorithms are implemented in CPAchecker using the

new defined PointerCPA.

5.2.1. Extracting Pointer-Relevant Information

Both algorithms obtain pointer-relevant information from the pointer transfer relation ⇝𝑝. Each

CFA edge is checked if it contains a pointer operation. To clarify, the implementation does not

support external function calls, such as dynamic memory allocations using malloc. Furthermore,

in some special cases such as designated initializers of arrays, worst-case assumptions are made

(array points to ⊤). However, referencing variables or objects, as well as all cases of dereferencing

and aliasing are supported. The extracted pointer information is then transformed into sets of

locations and evaluated (whether, for example it is a ⊤ or ⊥ element), before it is passed to the

abstract domain states (either Andersen-state or Steensgaard-state) where it is registered in a

points-to map.

5.2.2. Points-To Map

For the implementation of both pointer-alias analyses, we chose a more convenient way to

handle the generated constraints. Therefore, we dynamically create and maintain a points-to

map that keeps track of the constraints established by the respective rules. Each key of the map

represents a set of locations containing pointers and each value is a set of locations representing

what the pointers are pointing to. The points-to map is interpreted as directed graph; each node

34

represents a set of memory locations and its edges indicate a points-to relationship from source

(key) to target (value). With this approach, it is not only possible to track approximated runtime

values of pointers as key-value pairs, but also extract alias information for other analyses. The

latter is achieved by evaluating an according CFA edge in the transfer relation ⇝𝑝 which spots

pointer dereferencing and returns the values (set of locations) to the corresponding key. Both

implementations use the points-to graph with different conditions, thus their formal

implementations are introduced separately.

If the PointerCPA is configurated to use Andersen-states (specified as option “Andersen”) as

abstract states, the algorithm will produce an Andersen-style points-to graph to resolve the

constraints. Since the points-to graph records sets of locations that point to other sets of

locations, we force the condition that every source of an edge (keys) must only represent one

pointer variable. This ensures, that no nodes are merged. From the constraint rules of chapter

3.4.1, we infer the following conditions for the points-to graph:

1) Referencing: 𝑝 = &𝑖; ∶ Add the memory location of 𝑖 to the values (set of locations) of key

𝑝. Or to put it in perspective as graph: Create an edge from node 𝑝 to node 𝑖.

2) Dereference-read: 𝑝 = ∗ 𝑞; ∶ Add the set of locations that ∗ 𝑞 represents to the values of key

𝑝. In the context of the graph: Add an edge from 𝑝 to each location that the location set ∗ 𝑞

represents.

3) Dereference-write: ∗ 𝑝 = 𝑞; ∶ Add for each location set that the location set ∗ 𝑝 represents,

the location set of 𝑞 to the respective values. In the graph, add an edge from each node that

𝑝 points-to, to the nodes that 𝑞 points to.

4) Aliasing: 𝑝 = 𝑞; ∶ Add the location set of 𝑞 to the value of key 𝑝. Or in the graph, add an edge

from node 𝑝 to every node that 𝑞 points to.

The functionality will be exemplified in chapter 5.3

When the configuration is set to use Steensgaard-states (specified as option Steensgaard) for the

PointerCPA, the algorithm computes the according Steensgaard-style points-to graph. In

35

Steensgaard’s pointer analysis, we force that every source node can only have a single target

node. Furthermore, every key that contains more than one variable and therefore, is a joined

location set of pointers, has to appear as a value, too, because joining indicates that at least one

key would point to both values. The constraint rules are applied as follows:

1) Referencing: 𝑝 = &𝑖; ∶ 𝑗𝑜𝑖𝑛 locations ∗ 𝑝 and 𝑖. In the graph, if 𝑝 points already to something

(suppose node 𝑗), then 𝑗𝑜𝑖𝑛 nodes 𝑖 and 𝑗.

2) Dereference-read: 𝑝 = ∗ 𝑞; ∶ 𝑗𝑜𝑖𝑛 locations 𝑝 and ∗ 𝑞. In the graph, 𝑗𝑜𝑖𝑛 the node that ∗ 𝑞 is

pointing to with the one that 𝑝 points to.

3) Dereference-write: ∗ 𝑝 = 𝑞; ∶ 𝑗𝑜𝑖𝑛 locations ∗ 𝑝 and 𝑞. In the graph, 𝑗𝑜𝑖𝑛 the node that ∗ 𝑝

points to with the one that 𝑞 points to.

4) Aliasing: 𝑝 = 𝑞; ∶ 𝑗𝑜𝑖𝑛 locations 𝑝 and 𝑞. In the graph, 𝑗𝑜𝑖𝑛 the respective nodes.

In the rules above, 𝑗𝑜𝑖𝑛 also considers to update the dependencies.

5.3. Steensgaard’s and Andersen’s Analyses in CPAchecker

We now outline how the specified PointerCPA operates for the following program, written in C:

int main() {

 int i, j, *p, *q, **r, **s; //1

 p = &i; //2

 q = &j; //3

 r = &p; //4

 s = &q; //5

 *r = q; //6

 *s = *r; //7

 r = s; //8

 return (0); //9

}

Code Sample 13

36

The pointer transfer relation extracts for each edge of the CFA, pointer information. E.g., for line

2, ⇝𝑝 will transform both sides of the assignment to the appropriate format that the points-to

map will accept. Depending on what abstract states are used, the algorithms will now dynamically

create and maintain a points-to map that expresses the points-to relationships as graph. The

edges are labeled with the lines of code sample 13 to illustrate how the constraints are translated

to the graph:

For every pointer-referencing in Andersen’s algorithm, an edge is created from the pointer to its

referenced memory location (see edged labeled as 2, 3, 4 and 5). The remaining aliasing

operations (dereferencing is a form of aliasing in this case) copy the edge from the right-hand

side to the left (see edges labeled as 6, 7 and 8) and therefore, become supersets of the

respective pointers.

In the result of Steensgaard’s analysis, it is harder to spot what each edge contributes to the

graph. After the referencing edges (2-5) are processed, the points-to graph of Steensgaard and

Andersen are the same. Line 6 introduces aliasing between the locations p and q because *r

aliases p. Both pointers already point to distinct abstract locations i and j, respectively.

Therefore, the abstract locations have to be merged to one that contains both, represented by

the node (i,j). The points-to relationships of p and q must then be updated to new joined node.

Line 7 introduces no new pointer information because p and q already point to the same abstract

i

p

j

q

s r

i,j

q,p

s r

2 3

4 5 8

2,3,6,7

4,6,8 5,6,8

Figure 4 Steensgaard’s points-to graph Figure 5 Andersen’s points-to graph

6
7

37

locations (node (i,j)). Finally, line 8 aliases pointers s and r. As both pointers point to different

abstract locations p and q, the nodes are joined to (q,p). The resulting node points to the

unification of each source node’s points to set. However, both points-to set are already the same.

This concludes the operation for Steensgaard’s analysis.

5.4. Configurable Pointer-Alias Analysis for Explicit Value Analysis

To integrate the implementation of the new configurable pointer-alias analysis in the existing

explicit-value analysis, a composite CPA is required that uses all necessary CPAs from the value

analysis and the new PointerCPA. With the given strengthen operator of the resulting composite

CPA, we are able to provide the computed pointer information from the PointerCPA. In the

implementation, we consider the following cases:

1) If the left-hand side of an assignment is a dereferenced pointer that aliases tracked variables

and if the types are compatible, we update for each such variable its value with the right-

hand side’s one.

2) If the right-hand side of an assignment is a dereferenced pointer that aliases exactly one

tracked variable with explicit-value and the type is compatible to the left-hand side’s type,

then we update the value of the left-hand side with the new value.

3) If the right-hand side of an assignment is a dereferenced pointer that alias more than one

memory location, then the assignment is ambiguous and the value of the left-hand side is

forgotten.

Cases 1) and 2) as well as cases 1) and 3) may happen in the same line. To demonstrate the

functionality, consider the following code sample:

38

The values tracked by the value analysis result as follows:

i = 0; j = 1; k = 42;

For above results, no pointers are considered. Now suppose, that the operating composite CPA

of the value analysis also consists of the introduced PointerCPA. Through the strengthening

operator ↓∶ 𝐸1× 𝐸2 → 𝐸1, we now strengthen the abstract states of the value analysis 𝐸1, with

the abstract states from our Pointer CPA 𝐸2. Since code sample 14 is a small program, we choose

Andersen’s analysis in order to be more precise, as the additional efficiency of Steensgaard is not

of much use here.

With the first rule defined above, we infer in line 6 for example, that *p is aliased with i.

Therefore, the value of i is changed to 2. In line 7, rules 1) and 2) apply. From the pointer-alias

analysis we know, that *q is aliased with j; hence we change the value of j to 2, too. In line 10,

int main() {

int i, j , *p, *q; //1

i = 0; //2

j = 1; //3

p = &i; //4

q = &j; //5

*p = 2; //6

*q = *p; //7

int k = 42; //8

q = &k; //9

i = *q; //10

*p = k; //11

*q = id(k); //12

return(0); //13

}

int id(int r) {

return(r);

}

Code Sample 14

39

Andersen’s analysis returns that *q is ambiguous for the memory addresses of i and j. Thus,

there is no definite assignment to make. The value of i is forgotten (rule 3). Line 11 maps the

variable i to the value of k. Line 12 will map both aliases of *q, namely i and j, to the value of

id(k) (42). In conclusion, with the help of alias information from PointerCPA, the following

mapping of values is produced:

i = 42; j = 42; k = 42;

That is equal to the values an actual execution of the program would have produced. However,

we have to point out that this program is not a very common one. Not only is there no use for it

(it should serve as demonstration how the applied PointerCPA works in the context of the value

analysis), but when executing the program in code sample 14, lines 10 and 11 would both assign

value 42 to variable i. Therefore, skipping line 11 the strengthen would produce the result

j = 42; k =42;

while the value of variable i is forgotten.

5.5. Conclusion

With the new PointerCPA, it is finally possible to consider pointers when using the explicit-value

analysis. Both approaches of pointer-alias analysis design the algorithm to be either precise or

efficient. To proof that Steensgaard’s analysis is in fact faster than Andersen’s, or in return, that

Andersen’s analysis is more accurate than Steensgaard’s we would have to refer to several

benchmarks results that compare both approaches while highlighting the differences.

Furthermore, to underline the significant impact of the new implementation, we should compare

the benchmark results with a version of CPAchecker that does not support configurable pointer-

alias analysis. Unfortunately, this is not covered in this thesis. As a small consolation, we

introduce and compare the results of a test task, specified in the framework as

“high_degree_of_indirection_true_unreach-label.c”. The code of this test task is seen in the

following code sample:

40

The name of the test-program indicates that in a normal execution of the program, the error label

is never reached and therefore, this program should be evaluated as true. Using CPAchecker’s

value analysis for this, as integer variables are required to be tracked, the test will eventually be

false. However, using the same specification with additional configurable pointer-alias analysis,

both Steensgaard’s and Andersen’s algorithm evaluate the given program as true. That is just one

example of when the PointerCPA can be used to enhance other analyses.

void test(int x) {

if (!x) {

ERROR: goto ERROR;

}

void main() {

int x, y, *p1, **p2, ***p3, *q1, **q2, ***q3;

p1 = &x;

p2 = &p1;

p3 = &p2;

q3 = p3;

q2 = *q3;

q1 = *q2;

y = *q1;

test(x == y);

}

Code Sample 15

41

6. Future Work

With the new PointerCPA one is able to configure pointer-alias analysis relatively precise and very

efficiently. But the flexible environment of CPAchecker allows even more inclusions of different-

designed pointer-alias analyses, as the ones discussed in chapter 3.3 demonstrate. For example,

emphasizing more on precision, approaches that regard flow- and context-sensitivity can be

included to get more accurate results. This addresses the problem discussed at the end of chapter

5.4. Additionally, several other smaller configurations can be included, like the support of

external function calls and designated initializers of reference typed objects that may find

application in some cases and thus, can be individually turned off and on. Furthermore, the

integration of the new PointerCPA can be extended in CPAchecker. The predicate abstraction is

a good example for such. In addition, to evaluate the new results, we have to perform reliable

benchmark tests to see if the theoretical trade-offs can be found in practical results.

42

7. Bibliography

[A13] Jonathan Aldrich, “Lecture Notes: Pointer Analysis”, 15-819O: Program Analysis,

2013

[A94] Lars Ole Andesen, “Program Analysis and Specialization for the C Programming

Language”, Copenhagen, pages 111-152, 1994

[BHT07] Dirk Beyer, Thomas A. Henzinger, Grégory Théoduloz, “Configurable Software

Verification: Concretizing the Convergence of Model Checking and Program

Analysis”, LNCS 4590, pages 504-518, Springer-Verlag, CAV 2007

[BK08] Christel Baier, Joost-Pieter Katoen, “Principles of Model Checking”, The MIT Press,

2008, page 30

[BK11] Dirk Beyer, M.Erkan Keremoglu, “CPAchecker: A Tool for Configurable Software

Verification“, LNCS 6806, pages 184-190, Springer-Verlag, CAV 2011

[BL13] Dirk Beyer, Stefan Löwe, “Explicit-State Software Model Checking Based on CEGAR

and Interpolation“, LNCS 7793, pages 146-162, FASE 2013

[C88] James S. Collofello, “Introduction to Software Verification and Validation”, SEI

Curriculum Module SEI-CM-13-1.1, Arizona State University, 1988

[CS05] Committee Draft, “ISO/IEC 9899:2011”, The C-Standard, 2011

[S95] Bjarne Steensgaard, “Points-to Analysis in Almost Linear Time”, Association for

Computing Machinery, 1995

 [W97] Robert Paul Wilson, “Efficient, Context-Sensitive Pointer Analysis For C Programs”,

Dissertation, Stanford University, 1997

[WL04] John Whaley, Monica S. Lam, “Cloning-Based Context-Sensitive Pointer Alias

Analysis Using Binary Decision Diagrams”, PLDI’04, Washington, 2004

