
Measuring, Visualizing, and
Optimizing the Energy Consumption

of Computer Clusters

Bachelor’s thesis

Faculty of Computer Science and Mathematics
at the University of Passau

Nils Steinger
2017-06-16

supervised by
Prof. Dr. Dirk Beyer

Contents

1. Introduction and Outline 5

2. Measurement Technologies 7
2.1. Intel Running Average Power Limit (RAPL) 7
2.2. Rack Power Distribution Unit APC AP8681 9
2.3. Single-phase Energy Meter Eltako WSZ12DE-32A 10
2.4. Electronic Electricity Meter EMH ED300L 13
2.5. Alternatives . 15

3. Data Storage and Visualization 17
3.1. General Architectural Structure . 17
3.2. Available Technologies . 19

3.2.1. MRTG . 20
3.2.2. RRDtool . 20
3.2.3. routers2.cgi . 21
3.2.4. Munin . 21
3.2.5. collectd . 23
3.2.6. Graphite . 23
3.2.7. Grafana . 26
3.2.8. Telegraf, InfluxDB, Chronograf and Kapacitor (TICK) 27

3.3. Selected Toolchain for our Use Case . 28

4. Reducing the Energy Consumption of a Software-Verification Computer
Cluster 30
4.1. The VerifierCloud Software-Verification Task-Queueing Framework 31
4.2. Implementing Automatic Worker Power Control 34

4.2.1. Keeping Track of Available Worker Resources 34
4.2.2. Using Wake-on-LAN to Power up Worker Nodes on Demand . . . 36
4.2.3. Automatic Power-down of Idle Workers 39
4.2.4. Considerations for Choosing Idle-Timeout Values 40

4.3. Resulting Savings on Energy Consumption 42

5. Caveats and Possible Future Extensions 46

6. Conclusion 49

A. Software Developed in the Context of this Thesis 51
A.1. Intel RAPL Implementations . 51

A.1.1. SNMP Agent Interface . 51
A.1.2. Collectd Integration . 51

A.2. Reading Measurements from Single-phase Energy Meters 52
A.2.1. Data Collection Daemon . 52
A.2.2. Command-line Interface . 52

2

A.2.3. Websocket-based Interface . 53
A.2.4. SNMP Agent Interface . 53

A.3. SML Electricity Meter Interface . 53
A.3.1. Command-line Interface . 54
A.3.2. Collectd Integration . 54

A.4. VerifierCloud Automatic Power Control 54

Glossary 57

3

Abstract

Evaluating the effectiveness and efficiency of computer programs, for example software-
verification tools, generally requires large amounts of computational resources, to an
extent that is most economically provided by setting up computer clusters consisting of
several individual nodes. These individual computer nodes often consume large amounts
of electrical energy, both during useful operation and while in idle state.

This thesis will examine and compare available technologies for measuring this energy
consumption, collecting the measurement data on a central system for later use, and
generating visual representations of the measurements to provide users with an insight
into the current energy consumption, as well as assist in planning possible improvements.

One such improvement — automatically powering down unused nodes, and starting
them on demand — will be implemented as an extension to the VerifierCloud task-
queueing framework. The potential benefits of this improvement will then be evaluated
using data from the measurement instrumentation set up in the context of this thesis.

1. Introduction and Outline

The Chair for Software Systems at the University of Passau 1 focuses its research on
methods for formal software verification, using methods such as software model checking
and static analysis. 2 One of the main research aspects is to improve the performance
of these software verification tools, both in terms of result accuracy and of resource
consumption (usage of CPU time, memory consumption, etc.).

The necessary software infrastructure for running automated benchmarks on a com-
puter cluster and collecting performance data is already in place. However, until now one
major factor — impacting both cost of operation and environmental impact — has been
neglected: the energy consumption of the computer cluster while performing verification
runs and also during idle times when no verification runs are executed.

With an energy consumption of more than 31 000 kWh per year (equating to a cost
of more than 5 900e at current prices) from our two main computer clusters alone, this
area warrants analysis, as well as exploration of possible improvements to reduce the
energy consumed on a daily basis. On a global scale, the issue is even more pronounced:
as of 2012, 4.6% of the worldwide annual energy consumption of TWh were caused by
information and communication technology, 29% of which were due to data centers [13].
This thesis aims to provide an overview of the steps required to analyze the energy con-
sumption of computer clusters, and to help research institutions optimize their computer
infrastructure. This will help save on the cost of operation, as well as reduce negative
consequences for the global environment, considering 66.7% of global electrical energy
production are still derived from fossil fuels [16].

As the first step, chapter 2 documents the instrumentation that has been set up to
measure the energy consumption of the most heavily used parts of the chair’s computer
cluster, both in idle state and during software-verification runs. These methods should
be applicable with little change to any environment where the energy consumption of a
small to medium number of computers is of interest to the researcher.

Once the various options for data acquisition have been explored, a number of readily
available software packages for storing and visualizing that data is listed and compared
in chapter 3 and a suitable selection is made to accommodate our use case.

Finally, chapter 4 presents the implementation of a system for automatically powering
off and starting “worker” nodes depending on current resource demand, as well as tests
and calculations of the potential savings on energy consumption that can be achieved
using this new feature. The power-off and power-on mechanisms have been integrated

1As of August 2016, Prof. Dirk Beyer has moved to LMU Munich as head of the Chair for Software
and Computational Systems.

2Software and Computational Systems Lab – Research, https://www.sosy-lab.org/research.
php

5

https://www.sosy-lab.org/research.php
https://www.sosy-lab.org/research.php

into the VerifierCloud, the existing task-queueing solution developed at and used by
our chair, whose characteristics will be outlined in section 4.1.

Systems Overview

While the VerifierCloud utilizes a diverse set of computers in our usage scenario, the
development and testing in this thesis will focus on the two sets of machines that proved
most suitable for being equipped with measurement instrumentation:

• Computer cluster “cayman”

– 8 nodes (tower form factor)

– CPU model: Intel Core i7-4770 @ 3.40 GHz

– 32 GB RAM per node

– Power consumption measured via single-phase energy meters
(Eltako WSZ12DE-32A; see section 2.3)

• Computer cluster “zeus”

– 24 nodes (rack-mounted as six sets of four blade servers)

– CPU model: Intel Xeon E5-2650 v2 @ 2.60 GHz

– 128 GB RAM per node

– Power consumption measured via rack power distribution unit
(APC AP8681; see section 2.2)

These two clusters are operated directly by the Chair for Software Systems and are
dedicated to the purpose of testing software-verification tools. This allows us to auto-
matically power them off without impacting users or other parts of our infrastructure
and to perform work on their electricity-supply circuitry to add the parts of our mea-
surement instrumentation that require dedicated hardware modifications, as detailed in
chapter 2.

6

2. Measurement Technologies

The decision to measure energy consumption in addition to purely software-based perfor-
mance data was made after the initial setup of the cayman and zeus computer clusters,
so the measuring equipment had to be retrofitted to match the existing cluster hardware.

Several different approaches proved viable for this, which will be described and com-
pared in this chapter.

Naming of Physical Quantities

A note on the physical quantities referred to in this chapter: for our use case, two units
are of particular interest:

• electric power consumption, which is a changing, momentary value ([V · A] =
[W]), and

• electric energy consumption, which is the integral of power over time ([W · s] =
[J])

These two terms are often used interchangeably in colloquial language, and even in
some scientific sources [12]. This thesis makes an effort to avoid this inaccuracy, and as
such, “power” will refer to momentary power consumption, while “energy” will refer to
an accumulated usage value over a period of time. Independently, however, the terms
“consumption” and “usage” will be treated as synonyms.

Note also that the measurement technologies described in this chapter will usually
only yield measurements of one of the two quantities. Since the time interval between
measurements is known, these can, however, easily be converted to the other quantity
by means of differentiation, or integration, respectively.

2.1. Intel Running Average Power Limit (RAPL)

Since the release of their 32 nm processor microarchitecture (codenamed “Sandy Bridge”)
in 2011, Intel CPUs marketed under the “Core” and “Xeon” brands include an interface to
an internal energy-consumption counter named Running Average Power Limit (RAPL). 1

This feature also provides control features in addition to mere reporting, but since our
use case is to measure the CPU’s energy consumption without artificially slowing it
down, reading the counters will suffice.

1Running Average Power Limit – RAPL, 01.org Intel Open Source, https://01.org/blogs/2014/
running-average-power-limit-%E2%80%93-rapl

7

https://01.org/blogs/2014/running-average-power-limit-%E2%80%93-rapl
https://01.org/blogs/2014/running-average-power-limit-%E2%80%93-rapl

Integrated directly into the CPU, RAPL has several advantages: it does not require
any additional hardware or modifications to the system, which makes it cheaper and
easier to set up than the other measurement methods described in this chapter. It also
provides measurement values at a resolution unparalleled by any of the other methods
(usually on the order of tens of millijoules [5]). Note, however, that the counter value is
only updated roughly every millisecond [12].

On the downside, Intel does not guarantee any specific accuracy for the measured
values — in fact, the feature is not even guaranteed to be present in future releases of
the “Core” and “Xeon” CPU series at all (hence the use of “model-specific registers” as
described below). There have, however, been several empirical studies comparing RAPL
measurement results to data obtained from external meters, whose results give reason
to assume that RAPL yields accurate results [12, 3].

The energy consumption is reported separately for different parts of the CPU and its
associated systems, termed “domains” in this context: 1

• for the entire CPU socket (package domain),

• in sum for all CPU cores (core, also called pp0, i.e. “power plane 0”),

• for additional features like integrated graphics, if present (uncore, also called pp1,
i.e. “power plane 1”), and

• for memory that is local to the CPU package (dram).

However, not all domains are supported on all CPU models, so it is important to check
which ones are available before trying to obtain measurements from them.

Access to the RAPL counters is implemented via the CPU’s model-specific registers
(MSRs) and thus requires specialized software, both for accessing the MSRs, and for
parsing their values.

The first reference implementation of this was Intel’s own Intel Power Gadget 2, re-
leased in different versions for Windows, Mac, and Linux. While simplistic, the Linux
implementation provided a sufficient basis for our own RAPL-based measurement utility.
It relies on the msr Linux kernel module to access the MSRs, then performs the neces-
sary calculations (such as multiplying the counter value by the counter’s model-specific
energy unit) internally.

RAPL functionality can also be accessed from within the Linux kernel itself: there is a
read-only implementation 3 (introduced in 2011 and since renamed to intel_rapl_perf)
that can be used with the perf profiler tool 4, as well as the newer intel_rapl kernel
module that allows applications to both query and control the CPU’s energy consump-
tion without requiring direct access to CPU registers, simply by reading from and writing

2Intel Power Gadget, https://software.intel.com/en-us/articles/intel-power-gadget-20
3introduce intel_rapl driver, https://lwn.net/Articles/444887/
4Tutorial – Perf Wiki, section “Introduction”, https://perf.wiki.kernel.org/index.php/

Tutorial#Introduction

8

https://software.intel.com/en-us/articles/intel-power-gadget-20
https://lwn.net/Articles/444887/
https://perf.wiki.kernel.org/index.php/Tutorial#Introduction
https://perf.wiki.kernel.org/index.php/Tutorial#Introduction

to files under the virtual filesystem path /sys/class/powercap/intel-rapl/ 5. Our im-
plementation, however, still uses the direct MSR interface demonstrated by Intel Power
Gadget, rather than these version-dependent kernel interfaces.

After some manual testing to ensure RAPL support on our hardware, we modified
the Intel Power Gadget source code to include proper error handling, and added an
interface to an SNMP daemon. Originally, the Power Gadget would silently ignore any
errors reported by its RAPL query functions, potentially leading to incorrect values in
its output. This was, however, easily fixed, and the resulting code can be found in
appendix A. The program was also modified to conform to the output format required
by the Net-SNMP SNMP agent’s pass_persist interface, making it possible to retrieve
energy measurements via SNMP (see section 3.2.1 for details on the use of SNMP).

With this software in place, both of our main computer clusters were now equipped
with an integrated (and thus cheap and comparatively simple) means of remotely query-
ing and collecting energy measurements.

Keep in mind, however, that RAPL only measures the energy consumption of the
CPU. Other electric loads, such as disk drives and cooling systems, are not included in
this figure. To achieve a complete view of the computer system’s energy consumption, we
will require additional measurement instrumentation, as described in the next sections.

2.2. Rack Power Distribution Unit APC AP8681

When the zeus computer cluster was commissioned, the planned setup also included a
switched rack power distribution unit (PDU), offering several technical benefits to the
final rack-mounted computer cluster.

The model AP8681 chosen for our setup is operated from a three-phase electric supply
and provides 24 power outlets, eight supplied from each input phase. Each outlet can
be switched on and off individually by the PDU’s control circuit, either automatically
or on user request via a web-based interface. This allows for automated features such
as staggered power-on (switching on a large computer cluster one-by-one with delays in
between, to avoid overloading the electric circuit with the collective inrush current of
the entire cluster).

More importantly for our use case here, the PDU continually measures the power
consumed through each outlet. This is used internally as a possible means of failure
detection, i.e. alerting an operator when an appliance suddenly draws significantly more
or significantly less power than it normally does. Additionally, the measurements can
be queried via SNMP, and thus collected by external monitoring systems such as those
described in chapter 3.

This makes the AP8681 a convenient tool to monitor the energy consumption of a
rack-mounted computer cluster. There are, however, some limitations that need to
be taken into account: Most important for our use case are the limits of the PDU’s
measurement range and accuracy: APC specifies a measurement accuracy of ±3% for

5introduce intel_rapl driver, https://lwn.net/Articles/444887/

9

https://lwn.net/Articles/444887/

their AP8XXX-series PDUs 6, but only when the measured current exceeds 0.5A. Below
this threshold, measurement accuracy is explicitly undefined, and values below 0.3A are
even discarded and reported as zero instead. At the PDU’s rated nominal input voltage
of 230V, this corresponds to a power consumption of up to 69W that will be reported
as 0W, and of up to 115W that is not guaranteed to be measured accurately. To give an
example of where this can be a hindrance, the power consumption of our cayman nodes
in idle state can be as low as 19W each. Using only the PDU’s integrated measurement
capabilities, we would therefore in some cases be unable to tell if a certain PDU outlet
has a node connected to it at all. Because of this, care must be taken when using one of
these PDUs for measuring purposes, to ensure the results will be reliable and accurate.

Another drawback of using this type of advanced PDU is their high price — the model
AP8681 used in our setup is currently quoted at over 2 080e by APC, with models for
lighter electric loads ranging between approximately 1 400e and 1 600e 7 — compared
to the other devices presented in this chapter.

The PDUs may also require special tooling to install, since they are purpose-built to be
mounted in a rack, and (at least in the case of AP8XXX-series PDUs) use the IEC 60309
industrial power plug types [20], rather than the IEC 60083 domestic types [19] more
commonly found on commodity computer hardware.

For these reasons, we explore other options for measurement hardware in the following
sections.

2.3. Single-phase Energy Meter Eltako
WSZ12DE-32A

We examined one possible device for individual-outlet metering in section 2.2, but con-
cluded that it had some significant disadvantages in terms of accuracy and cost. We
therefore searched for an alternative that would ideally improve upon both points.

One such option are DIN-rail single-phase energy meters that are designed to be
mounted inside a fuse box and measure the instantaneous power and accumulated en-
ergy consumption of the load or loads connected to a single electrical phase. Some
models are equipped with an electrical output contact that emits signal pulses at a fre-
quency proportional to the power consumption currently detected by the meter, making
it possible to automatically collect their measurement data by counting those pulses.

For our setup, we settled for the Eltako model WSZ12DE-32A meter, because it was
readily available, comparatively cheap (between 35e and 40e at the time of writing),
and provides a higher measurement resolution than its competitors (as explained in

6APC Technical FAQs: How accurate is the current monitor on an APC Rack PDU (AP7XXX or
AP8XXX)?, http://www.apc.com/us/en/faqs/FA156074/

7Rack-PDU mit Strommessfunktion für jeden Ausgang (Metered-by-outlet Rack Power Distribution
Units), http://www.apc.com/shop/de/de/categories/_/N-ooil4d

10

http://www.apc.com/us/en/faqs/FA156074/
http://www.apc.com/shop/de/de/categories/_/N-ooil4d

further detail below). 8

This type of DIN-rail energy meter commonly features a built-in digital display that
shows the accumulated energy usage over the lifetime of the meter. For our purpose
of automatically collecting measurements from the meter, we do, however, require an
additional output called an S0 interface 9.
The S0 interface specification [9] describes a two-wire electrical interface where one

device (in this case the energy meter) transmits binary pulses by modulating the current
allowed to flow on the interface circuit — a signaling scheme called a “current loop”: A
binary one is signaled by passing current (a minimum of 10mA for Class A long-distance
transmission, or 2mA for Class B short-distance transmission) on the circuit. A binary
zero is represented by a smaller current (“live zero” or “elevated zero”, with at most
2mA for Class A, and at most 0.15mA for Class B), rather than no current at all, so
the receiving device can detect whether the circuit is intact.

This current-loop signaling has the advantage of being robust against electromagnetic
interference and voltage drop on the connecting cable, and can also detect physical
connection failures, such as broken cables. It does, however, require particular attention
to the correct polarity of the signal voltage, as well as the voltage and current used.
Setup mistakes, as well as faults in either of the connected devices, can lead to damage
or destruction of the devices.

To simplify the hardware interface, measurement and automation devices commonly
use potential-free “floating” contacts — essentially a simple electronic on/off switch —
as an alternative to current loops. Our Eltako energy meters belong to this group, which
greatly simplified the hardware setup required to interface with them. The lack of a “live
zero” state technically eliminates the cable-fault detection found in current-loop setups,
but since we will be measuring the power usage of a near-continuously running computer
system, a faulty cable would quickly become obvious from the sudden drop in measured
power consumption.

The model WSZ12DE-32A signals its measurements in near-realtime by closing the
potential-free contact 2 000 times per kWh (corresponding to one electric pulse every
0.5Wh or 1.8 kJ on average) whereas similar devices from other manufacturers are often
limited to 1 000pulses per kWh. These pulses can then be captured by an external
device, yielding data on both the current power consumption (from the current interval
between pulses), and the overall energy consumption (from the total number of pulses).

The manufacturer specifies the meters’ accuracy as ±1% 10, which is significantly more
accurate than the AP8681 rack PDU from section 2.2. The minimum measured current 11

8TheWSZ12DE-32A is sold as a meter “without approval”, i.e. it lacks the official calibration required
to be permitted for billing purposes (also called a “revenue-class meter”). This has no impact on the
specified accuracy, however, so meters “without approval” are still suitable for academic measuring
applications.

9Not to be confused with the “S interface” or “S0 bus” used in ISDN environments.
10Single-phase Energy Meters WSZ12DE-32A without approval, https://www.eltako.com/

fileadmin/downloads/en/_datasheets/Datasheet_WSZ12DE-32A.pdf
11Incorrectly labeled as “inrush current” on the manufacturer’s English datasheet, but correctly

termed “Anlaufstrom” (start-up current) in the German version.

11

https://www.eltako.com/fileadmin/downloads/en/_datasheets/Datasheet_WSZ12DE-32A.pdf
https://www.eltako.com/fileadmin/downloads/en/_datasheets/Datasheet_WSZ12DE-32A.pdf

Figure 2.1.: Schematic of the tree-like configuration of our Eltako energy meters (sec-
tion 2.3), shown here as the standard power meter symbol W . As usual in
an electric schematic diagram, L and N denote the live and neutral conduc-
tors of a single-phase electric mains supply, and the resistor symbols on the
right symbolize a generic electric load (in our case, the cayman computer
nodes whose power consumption is being measured).

(similar to the sub-0.3A cut-off on the AP8681) is given as 20mA, corresponding to as
little as 4.6W at nominal mains voltage. This makes the WSZ12DE-32A a much better
fit for our low-power cayman nodes than the AP8681.
Our setup for monitoring the energy consumption of these eight cayman nodes con-

sisted of elven identical Eltako energy meters, cascaded in a tree configuration (shown
in figure 2.1) to be able to verify the measurement results across multiple meters. The
necessary wiring and equipment installation was kindly performed by building-services
staff of the University of Passau.

Once the mains-voltage part of the setup had been completed, we proceeded to connect
the meters to a Raspberry Pi single-board computer (SBC) to process their signal output.
The meters’ output contacts were connected to the SBC’s ground rail on one side, and
individual GPIO pins on the other side, utilizing the GPIOs’ internal pull-up resistors
to ensure a well-defined input voltage level in the open contact state.

On the software side, the Raspberry Pi ran the default Raspbian Linux distribution,
along with a custom Python script to detect and count the incoming pulses from the
energy meters. The script would configure the relevant GPIO pins to generate an inter-

12

rupt and invoke a method whenever they detected a change in voltage (i.e. a pulse from
the energy meter), and this method would then increment an internal counter for the
appropriate meter. For the sake of simplicity and interoperability, these counters were
stored as individual plain-text files on the local filesystem. Those files could then be
used concurrently by other programs to provide different interfaces to access the data.
Two front ends developed by us are of particular interest:

First, there is a web-based user interface that obtains real-time data from a websocket
server on the SBC and uses it to display an estimate of the current power consumption
reported by each of the eleven meters, both numerically and as a bar graph. The estima-
tion is done based on the interval between signal pulses from each meter: for example,
since one pulse signifies 0.5Wh, one pulse every five seconds would represent a current
power consumption of 0.5Wh

5 s = 0.1Wh
s = 360W. If the next pulse does not arrive within

5 s, however, the power consumption has to be lower than the aforementioned value,
and the web front end starts decreasing the power figure accordingly. All calculations
are performed in JavaScript within the user’s web browser to ensure timely updates to
the data display. This real-time interface has proved to be useful to quickly check the
current load status of the computer cluster, but does not satisfy the requirement for
long-term data collection.

For the latter, there is a separate script that again interfaces with a Net-SNMP agent
— running on the SBC in this case — and exposes the current counter values via SNMP
for consumption by the data acquisition tools described in chapter 3. Note that these
are the raw counter values, so the conversion from multiples of 0.5Wh to the required
unit needs to be performed by the client querying the data. This approach was selected
to avoid any inaccuracies introduced by the conversion, and also has the advantage of
making the same script usable for any energy meter, including meters with a different
measurement resolution.

Both tools can be found in the software list in appendix A.

2.4. Electronic Electricity Meter EMH ED300L

The WSZ12DE-32A energy meters described in section 2.3 proved to be well-suited for
our use case, providing us with comparatively cheap (especially compared to the rack
PDU from section 2.2) and accurate measurement instrumentation. However, external
assistance was required to have them installed and connected professionally, so we de-
cided to also investigate another possibility to facilitate replicating our setup elsewhere:
recently, many German electric companies 12 have started to deploy so-called “smart elec-
tricity meters”, particularly for their residential customers. These electronic electricity
meters feature some useful interfaces not present in their (usually analog) predecessor
models. Their increasing deployment by electric companies also makes it likely that a

12A cursory web search yields several electric companies providing ED300L usage instructions for
their customers — Energieagentur Göttingen, E-Werk Mittelbaden, infra fürth, KWH Netz (Haag i.
OB), Netzgesellschaft Forst (Lausitz), Stadtwerke Augsburg, Stadtwerke Gießen, Stadtwerke Landau a.
d. Isar, and Stadtwerke Wiesbaden, to name just a few.

13

comparable meter is already present in the hardware infrastructure or can be installed
more easily than the multi-device solution from section 2.3.

A meter model that is widely used is the electronic household electricity meter ED300L
manufactured by EMH metering. Like most household electricity meters, its measure-
ment accuracy given as an EN 50470-3 class index, ranging from A to C. 13 In our case,
the ED300L is specified to comply with class A, corresponding to an accuracy of ±2.0%
when operated within its rated electric current range [10].

As a fully electronic meter, it uses a digital display as its main user interface for the
basic functionality of measuring the total energy consumption over the lifetime of the
unit, as well as its additional consumption counters. These include a set of counters
that covers historic time periods (past 1, 7, 30, and 365 days), and multiple independent
counters selectable via an external electric contact. The selectable counters are intended
primarily for scenarios with different electricity tariffs (e.g. depending on the time of
day) that can then be metered separately by switching to a different counter (e.g. using
an electronic timer connected to the counter selector contact).

The ED300L also features an interface similar to the S0 interface described in sec-
tion 2.3, in this case implemented as an infrared LED on the meter’s front panel. Depend-
ing on the exact device model, the LED emits either 5 000 or 10 000 light pulses per kWh,
potentially exceeding the resolution of the Eltako WSZ12DE-32A’s S0 interface by an
order of magnitude. However, the manufacturer recommends that this light pulse output
should only be used for testing purposes, and does not provide an accuracy specification
for it.

Instead, the primary machine-to-machine interfaces (referred to as “INFO interface”
by EMH) is another infrared LED that is used to relay more detailed information from
the meter. The INFO interface periodically emits data packets using a unidirectional
serial protocol similar to that commonly used on RS-232 serial interfaces. These packets
contain a variety of information about the meter and its measurements, encoded as
Smart Message Language (SML) “files”.

SML is a generic “communication protocol for applications in the field of data acquisi-
tion and device parameterization” [24] commonly used to transmit measurements from
electricity meters [7], but also capable of encoding other data, such as measurements of
gas, heat, or water usage, as well as information about the state of the meter itself. 14

To unambiguously identify the meaning and unit of these data points, SML uses the
Object Identification System (OBIS), a standard that defines a hierarchical numbering
scheme to categorize data points based on the medium that is being measured (elec-
tricity, gas, heat, etc.), the physical quantity (current, power, energy, etc.), as well as
any sub-categories required by the metering application (such as the multi-tariff counter
feature of the ED300L) [8].

13Classes A, B, and C correspond to nominal accuracies of ±2.0%, ±1.0%, and ±0.5% respec-
tively [10].

14EDI@Energy OBIS-Kennzahlen-System, Bundesverband der Energie- und Wasserwirtschaft e. V.,
https://www.bundesnetzagentur.de/DE/Service-Funktionen/Beschlusskammern/
Beschlusskammer6/BK6_31_GPKE_und_GeLiGas/Mitteilung_Nr_40/Anlagen/
OBIS-Kennzahlensystem%202.2b.pdf

14

https://www.bundesnetzagentur.de/DE/Service-Funktionen/Beschlusskammern/Beschlusskammer6/BK6_31_GPKE_und_GeLiGas/Mitteilung_Nr_40/Anlagen/OBIS-Kennzahlensystem%202.2b.pdf
https://www.bundesnetzagentur.de/DE/Service-Funktionen/Beschlusskammern/Beschlusskammer6/BK6_31_GPKE_und_GeLiGas/Mitteilung_Nr_40/Anlagen/OBIS-Kennzahlensystem%202.2b.pdf
https://www.bundesnetzagentur.de/DE/Service-Funktionen/Beschlusskammern/Beschlusskammer6/BK6_31_GPKE_und_GeLiGas/Mitteilung_Nr_40/Anlagen/OBIS-Kennzahlensystem%202.2b.pdf

Multiple implementations of the SML protocol already exist, such as one in C 15 and
an independent one in Java 16. Of these two, jSML already includes functionality to
interface with an electricity meter via a hardware serial port, so it was chosen as a basis
for our SML software.

Interfacing with the ED300L’s INFO interface also requires hardware instrumentation
to receive the optical signals emitted by the meter. The circuitry required for this is
relatively simple 17 and the developer of the “IR TTL read head” also sells pre-assembled
devices for approximately 20e. For convenience and to ensure reliable operation, we
decided to use this well-established device as our hardware-interface solution.

To facilitate testing and debugging of the SML interface, one of jSML’s reference pro-
grams was modified to convert SML data to a human-readable format. After successfully
testing our electricity meter in combination with the optical receiver circuit, both were
installed alongside the existing measurement instrumentation and the optical receiver
was connected to the single-board computer already monitoring the output from the
single-phase energy meters described in section 2.3. To be able to continuously receive
and collect measurement data from the meter, the SML interface program was then
extended to implement collectd’s plugin interface, as described in appendix A.
However, the ED300L meter did not see extensive usage in our particular setup, due to

some disadvantages compared to the other measuring devices that were already present:
for one, this model of energy meter only provides a measurement accuracy of 2.0%,
compared to the 1.0% offered by the Eltako single-phase meters (though it does exceed
the 3% accuracy claimed by our rack PDU). But more importantly for our use case,
the ED300L can only report the total power and energy consumption of all devices
connected to its three-phase electric supply. Especially when using different cluster
nodes for different tasks, this does not provide the fine-grained measurement results
offered by its competing technologies.

Ultimately, this type of meter can therefore only be considered a possible supplement
for an existing setup, or a compromise when more extensive solutions cannot be installed.
If possible, using individual meters such as the ones examined in section 2.3 provides
significant benefits in terms of measurement accuracy and granularity.

2.5. Alternatives

In some situations, installing fixed measurement equipment might not be a viable option,
for example because the professional installation of mains-voltage equipment would be
too costly. For those cases, it is useful to have a “plug and play” alternative to the
fuse-box-mounted meters from section 2.3 and section 2.4 that is also more compact and
less costly than the rack PDU from section 2.2.

15libsml: Implementation in C of the Smart Message Language (SML) protocol, https://github.
com/dailab/libsml

16jSML Overview – openmuc.org, https://www.openmuc.org/sml/
17IR-Schreib-Lesekopf, TTL-Interface, http://wiki.volkszaehler.org/hardware/controllers/

ir-schreib-lesekopf-ttl-ausgang

15

https://github.com/dailab/libsml
https://github.com/dailab/libsml
https://www.openmuc.org/sml/
http://wiki.volkszaehler.org/hardware/controllers/ir-schreib-lesekopf-ttl-ausgang
http://wiki.volkszaehler.org/hardware/controllers/ir-schreib-lesekopf-ttl-ausgang

Unlike the aforementioned solutions, this kind of device is more likely to be found in
the consumer market, since the idea of measuring energy consumption is also gaining
traction among private individuals. These consumer-grade power meters are, however,
often designed to only provide a direct human interface — usually an electronic display
on the device, or a proprietary service hosted by the device manufacturer. Devices
with publicly available specifications for their machine-to-machine interfaces are sparse,
making it difficult to find one that can be used to collect measurement data points and
store them over an extended time period.

While this category of devices was not part of the research focus of this thesis, the
author is using multiple AVM FRITZ!DECT 200 “smart plugs” 18 in his home setup.
They are pre-programmed to connect to a router from AVM’s FRITZ!Box series via the
DECT radio standard commonly used for cordless telephone handsets. The router then
collects data samples from all connected plugs and displays them via its default web
interface. Additionally, AVM publishes a regularly maintained specification of a custom
HTTP-based protocol 19 that can be used to retrieve these data samples programmati-
cally.

A cursory search also yields open-source software implementations for the EDIMAX
Smart Plug family of devices. 2021 However, these are based on analysis and reverse-
engineering of EDIMAX’s proprietary network protocol, 22 so there are no guarantees
regarding their reliability and continued support.

Both these meter models have an advantage in their compact “wall plug” form factor,
which makes it possible to install them with minimal effort. Unfortunately, like many
other devices intended for consumer use, their interfaces do not follow any of the widely
used standards described in the previous sections (such as SML, SNMP, or the S0 in-
terface). Additionally, both require manufacturer-specific hardware (an AVM router) or
software (EDIMAX’s Internet service and smartphone app) to function in their default
setup.

In conclusion, the meters listed earlier in this chapter, being explicitly targeted at
industrial and enterprise use, proved to be a more accurate and more reliable way to
measure the total power consumption of our computer cluster, compared to consumer-
grade hardware that lacks stable and well-defined interfaces, or integrated measurement
features that only provide a partial view of a computer’s power consumption.

18The term “smart plug” is often used to describe devices with a compact form factor that plug
directly into a wall socket and can be controlled via a web interface or smartphone app (hence “smart”)
provided by the manufacturer.

19AVM Home Automation HTTP Interface, https://avm.de/fileadmin/user_upload/Global/
Service/Schnittstellen/AHA-HTTP-Interface.pdf

20ediplug-py: Simple Python class to access a “EDIMAX Smart Plug Switch SP-1101W”, https:
//github.com/wendlers/ediplug-py

21ediplug: Python interface to Edimax Smartplug, https://github.com/bablokb/ediplug
22Deobfuscating the Edimax SP-2101W cloud protocol, Guntram Blohm, http://blog.guntram.

de/?p=37

16

https://avm.de/fileadmin/user_upload/Global/Service/Schnittstellen/AHA-HTTP-Interface.pdf
https://avm.de/fileadmin/user_upload/Global/Service/Schnittstellen/AHA-HTTP-Interface.pdf
https://github.com/wendlers/ediplug-py
https://github.com/wendlers/ediplug-py
https://github.com/bablokb/ediplug
http://blog.guntram.de/?p=37
http://blog.guntram.de/?p=37

3. Data Storage and Visualization

To make use of the large number of data points acquired in chapter 2, they need to be
stored in a scalable and easily accessible way. Additionally, it is desirable to provide a
human-readable, i.e. preferably graphical, representation.

This kind of performance-data collection and visualization is a very common problem
for administrators of computer clusters of any size, so numerous solutions already exist.
Some of these tools (MRTG, routers2, collectd, and Grafana) were already in use at
our institution when the energy-measurement systems were set up. In this chapter, we
will examine their individual advantages and disadvantages, as well as those of some
other commonly used performance-data visualization tools.

Ultimately, our measurement system was configured to use collectd to transmit data
to a central Graphite instance, mainly for the very flexible data post-processing options
provided by the combination of Graphite with Grafana. A more detailed rationale for
this decision is laid out in section 3.3.

3.1. General Architectural Structure

Acquiring, storing, and visualizing time-series data involves several distinct steps, shown
as a generalized abstraction in in figure 3.1.
In order, data points need to be:

• generated by some (physical or virtual) process

• acquired in a machine-readable format (preferably in an automated fashion)

• transferred from the acquisition program to the storage program (locally or over
a network)

• (optionally) aggregated or otherwise adapted to fit a certain storage format

• stored persistently

• retrieved from storage, while selecting only the data points required at the time

• (optionally) post-processed (e.g. combined or transformed)

• rendered into a visual representation for human use

17

Figure 3.1.: General structure of the data processing chain of a monitoring system, as
described in section 3.1

The tools listed in section 3.2 each perform different parts of this processing chain.
As a general synopsis, an overview of their respective features is provided in table 3.1.

Note that in many cases, these functions are delegated to external libraries or pro-
grams. To provide a complete overview, they are marked as “supported” (X), and their
specific implementation is explained in the appropriate textual description.

Development of Monitoring Paradigms

It is important to note that the approach to implementing a full monitoring stack has
changed over time. For the purpose of this overview, we will divide them into three
“generations”:

Originally, both the systems being monitored and the computers doing the monitor-
ing were few in numbers and rarely changed, as computer hardware of any scale was
expensive to purchase and virtualization technology was still in its infancy. 1 This made
it the most sensible choice to configure a single central instance to gather data by polling
a fixed set of nodes — see for example MRTG (section 3.2.1) and Munin (section 3.2.4).
This approach remained suitable for years, but eventually large-scale systems with a

greater number of individual nodes became more common. Especially in cases where
these nodes were inhomogeneous, i.e. yielded different kinds of data, pre-configuring

1Consider as an example VMware, which was only founded in 1998, and released its first virtual-
ization solution in 1999.

18

ge
ne
rat
e

ac
qu
ire

tra
ns
fer

ag
gre
ga
te

sto
re

ret
rie
ve

po
st-
pr
oc
ess

vis
ua
liz
e

MRTG – – X X X – – –
RRDtool – – – X X X X X

routers2.cgi – – – – – X X X
Munin – X X X X X – X
collectd – X X – – – – –

Graphite X – X X X X X X
Grafana – – – – – X X X
Telegraf – X X – – – – –

InfluxDB – – X X X X X –
Chronograf – – – – – X X X
Kapacitor – – – – – X X –

Table 3.1.: Data processing steps performed by the tools described in section 3.2

all their intended data outputs centrally could be quite cumbersome. To solve this new
challenge, new tools like Graphite (section 3.2.6) were created, that would automatically
store all data they receive, without requiring each individual time series to be known
and configured in advance. However, this second generation of tools still assumes that
data samples will arrive at regular intervals and that samples of the same time series
will keep arriving for an extended period of time after they are initially discovered.

While not an issue in our particular use case, assuming time series to be long-lived
can create another set of limitations, which when disregarded can cause issues such as
excessive resource consumption — consider a tool that preallocates a relatively large
amount of storage for each time series being used in an environment where time series
are often short-lived and new ones appear frequently. For this type of scenario, a new
approach to time-series data storage was introduced, which will be exemplified by the
TICK monitoring stack in section 3.2.8.
Ultimately, each of the three general scenarios above still exists today, and it is up

to the system administrator to choose a suitable tool for their use case. The following
section will provide some information to be used in this decision process.

3.2. Available Technologies

Automated performance monitoring has been a topic of interest to system administrators
ever since the inception of computer networks; after all, it is important to know what
one’s hardware is doing to be able to detect and fix anomalies, as well as plan expansions
when resource utilization is approaching the hardware’s physical limits.

The software available for this purpose has evolved greatly over time, both in terms
of their approach to configuring data sources (as detailed in section 3.1) and in terms

19

of usability features and visual appearance: from MRTG, first released in 1995 2, simply
generating static PNG graphs, to Grafana, a feature-rich Javascript-based web panel
released as recently as January 2014 3.
Additional features often come at the expense of increased complexity, resource usage,

or both, so this section will give an overview of the strengths and drawbacks of some of
the more established and well-known performance monitoring and visualization tools.

3.2.1. MRTG

The conceptually oldest tool used in our setup is the Multi Router Traffic Grapher
(MRTG), developed primarily by Tobi Oetiker and first released in 1995.

As the name suggests, it was originally written to visualize network traffic across one
or multiple routers, as a graph of network throughput over time. This is also reflected in
the data storage format (further described below) that stores pairs of measured values
— usually incoming and outgoing traffic figures — in the same logfile.

To acquire the real-time throughput data, MRTG uses the standardized Simple Network
Management Protocol (SNMP) implemented by many enterprise networking devices.
Since SNMP exposes not only network throughput data, but can also provide arbitrary
other data (if supported by the device), MRTG can also monitor “things such as System
Load, Login Sessions, Modem availability and more” 4.
MRTG stores its acquired data points in a plain-text file format (called a “logfile” by the

developer). To prevent the file from growing indefinitely, data points are automatically
aggregated over certain fixed timespans, with decreasing resolution as the data ages (e.g.
5-minute aggregates of the most recent data, down to 24-hour aggregates for data from
two years ago), and dropped from the database after about two years. This means the
logfile will have a nearly constant size, varying only by a few bytes as the numeric values
within it change. For reference, the default configuration produces a logfile of 2 536 lines
and about 48KiB for each pair of measured values.

3.2.2. RRDtool

While easy to create and parse, the plain-text format from section 3.2.1 limits how data
can be consolidated (since the logfiles only store means and maxima) and according to
its developer can also have an impact on performance.

To address this, Oetiker eventually created a more versatile storage format that he
simply named Round Robin Database (RRD). Oetiker’s RRDtool combines functions
for data acquisition (interpolating data points when the timestamps of the acquired
data don’t match the fixed schedule of the RRD), consolidation (allowing to choose
between calculating the data’s mean, minimum, maximum, or simply storing the most
recent value for a given time slot), and even generating static PNG graphs from the

2MRTG Download, http://oss.oetiker.ch/mrtg/pub/old/
3Grafana 2.0, the future, and raintank, http://staging.grafana.org/blog/2015/01/12/

grafana-2.0-the-future-and-raintank/
4What is MRTG ? [sic], http://oss.oetiker.ch/mrtg/doc/mrtg.en.html

20

http://oss.oetiker.ch/mrtg/pub/old/
http://staging.grafana.org/blog/2015/01/12/grafana-2.0-the-future-and-raintank/
http://staging.grafana.org/blog/2015/01/12/grafana-2.0-the-future-and-raintank/
http://oss.oetiker.ch/mrtg/doc/mrtg.en.html

data. 5 Again for reference, an RRD for a pair of values created with the default config
(two-year data retention) generates a binary file about 93KiB in size.
MRTG natively supports using RRDtool to store and graph its data. When configured to

use it, however, it disables its internal graph and index file generation, instead requiring
an external tool for this purpose. This separation of concerns actually vastly improves
MRTG’s performance (Oetiker himself claims an 80% reduction in runtime per invocation),
since the human-readable output no longer has to be pre-written every time new data
is acquired and can instead be generated on demand only when it is actually of interest
to the user. 6

3.2.3. routers2.cgi

The MRTG developer recommends three scripts that each implement this on-demand
visualization: 14all.cgi (“one for all”), mrtg-rrd (which is meant to be a successor of
14all.cgi), and routers2.cgi. 6All three use the Common Gateway Interface (CGI)
to interface with a web server and dynamically generate web pages.

Of these three alternatives, routers2.cgi 7 is the most versatile, offering features
that neither 14all.cgi nor mrtg-rrd provide, such as grouping graphs into a custom
hierarchy, and changing their rendering size and time scale from the web interface. It
is also the most actively maintained (with the most recent release being from 2014,
compared to 2003 for both other scripts), and was therefore chosen as the MRTG front
end on our infrastructure.

As mentioned in section 3.2.1, routers2.cgi is not limited to displaying network
traffic, and was in fact mainly used by us for measurements such as CPU load and
some of our energy consumption data (see sections 2.1 and 2.3). It was, however, later
supplemented and eventually replaced by Grafana, for reasons that will be explained in
section 3.3.

3.2.4. Munin

First released in 2003, Munin bears many similarities to its predecessors, but at the same
time distinguishes itself through a new approach at gathering data.

Like MRTG, Munin runs on a central monitoring server, which then collects data from
multiple nodes by connecting to them at regular intervals. Its data visualization also
looks very similar to that of MRTG by default, as it uses RRDtool to generate its graphs.

The underlying architecture for data acquisition is, however, vastly different: where
MRTG uses the standardized SNMP to connect to its monitored systems, Munin developed
a custom plain-text communication protocol. 8 This protocol intends to make it easier
to extend Munin with additional data sources (“plugins”), as plugin developers no longer

5About RRDtool, http://oss.oetiker.ch/rrdtool
6How to use RRDtool with MRTG, http://oss.oetiker.ch/mrtg/doc/mrtg-rrd.en.html
7routers2.cgi, http://www.steveshipway.org/software/rrd/f_routers.html
8Writing a munin plugin, http://guide.munin-monitoring.org/en/latest/plugin/writing.

html

21

http://oss.oetiker.ch/rrdtool
http://oss.oetiker.ch/mrtg/doc/mrtg-rrd.en.html
http://www.steveshipway.org/software/rrd/f_routers.html
http://guide.munin-monitoring.org/en/latest/plugin/writing.html
http://guide.munin-monitoring.org/en/latest/plugin/writing.html

have to obtain OIDs to represent the data reported by their plugins (as would be the case
with SNMP). While this makes it easier to write plugin, it means the user no longer has
the convenience of relying on a preconfigured SNMP service on their monitored devices
and instead has to manually install and configure a Munin “node” on each of them. It
does, however, have the advantage of providing greater freedom to configure what data
is collected and how it is combined into graphs, as Munin eliminates the restriction to
(incoming, outgoing) tuples enforced by MRTG.
Its easy extensibility has lead to a wealth of user-contributed Munin plugins becoming

available, some of which are shipped with the main Munin release. Munin has also
introduced the concept of “autoconf” plugins that try to automatically determine all
parameters required for their operation (e.g. the location of the system load average file,
or the credentials required to monitor an SQL database daemon), and either activate
themselves automatically or notify the user what caused their auto-configuration to fail.
This system brings Munin very close to being a “plug and play” solution that the user
merely needs to install and point at a set of nodes to start collecting useful data.
Munin plugins can freely define the name they are displayed under, as well as the

labels, graph type (e.g. lines, stacked, etc) and RRD data-source type (see section 3.2.2)
of their measurement value or values. The plugin interface is also programming-language
independent, as the Munin node simply runs each plugin as an executable and parses
the text emitted on its stdout stream. That same textual data and metadata format is
also used in the network communication between the master and each node. 9

From there, the process of acquiring data is again simple polling: the Munin master
regularly contacts each node sequentially, asks for a list of available plugins, and fetches
the configuration and current values for each of them. 10

As mentioned above, Munin uses RRDtool as its data-storage back end, with a separate
RRD file for each plugin on each node. To generate graphs from the raw data, Munin
needs to parse each of them, which can put a significant strain on the resources of the
monitoring server, especially with Munin’s default configuration of querying its nodes
every five minutes and regenerating all graphs afterwards. Like with MRTG, there is the
option to instead use a CGI script interfaced with a web server to generate the graphs
on demand, thus avoiding unnecessary load on the system. Conveniently, Munin already
ships the necessary CGI scripts in its default distribution. In addition, the CGI approach
enables advanced features such as viewing data from arbitrary time periods, instead of
just the past day, week, month, or year.

Overall, Munin’s data acquisition and visualization features exceed those of the moni-
toring systems listed thus far, but it still lacks a way to combine and compare data from
multiple time series. This shortcoming will be addressed by the set of tools described in
the following sections.

9Data exchange between master and node, http://guide.munin-monitoring.org/en/latest/
master/network-protocol.html

10The Munin Protocols, http://guide.munin-monitoring.org/en/latest/architecture/
protocol.html

22

http://guide.munin-monitoring.org/en/latest/master/network-protocol.html
http://guide.munin-monitoring.org/en/latest/master/network-protocol.html
http://guide.munin-monitoring.org/en/latest/architecture/protocol.html
http://guide.munin-monitoring.org/en/latest/architecture/protocol.html

3.2.5. collectd

A different approach to the kind of versatile plugin-based monitoring introduced by
Munin in section 3.2.4 is taken by the “system statistics collection daemon” collectd:
rather than relying on a simplistic text-based plugin interface, it strives to implement
as much of its functionality as possible in natively compiled libraries loaded by a single
C program. This avoids the overhead of having to spawn new processes for every single
query to every single plugin (as is the case with Munin). Collectd is therefore arguably
more efficient in collecting measurements and goes as far as shipping with a default
measurement interval of ten seconds.
Collectd also takes the modularisation approach one step further: not only the acqui-

sition of data is split into individual plugins; the same is done for forwarding or storing
it, and even for logging of collectd’s own events. This expands the possibilities beyond
merely storing values in an RRD and generating static graph images from there. The
output options implemented by so-called “write plugins” shipped with collectd include
CSV files, RRDtool (section 3.2.2), Graphite (section 3.2.6), and numerous others.
This plugin-centric architecture goes hand in hand with an important distinction of

collectd: many of the write plugins can store data locally, on the same system where
it is collected, so it is not always necessary to have a remote “master” system poll it.
Instead, collectd instances will usually be configured to write data of their own accord
– either to a local file, or to a remote service over the network.

By default, collectd will try to use RRD files as its storage back end, since the
format is widely used and requires very little configuration (essentially just a path where
the files should be written). The files can then converted to a visual representation
using third-party tools like the router2.cgi script described in section 3.2.3 (collectd
explicitly considers it out-of-scope to include a visualization solution). This does however
reintroduce the relative inflexibility that is common to all monitoring solutions described
so far: data is averaged over a number of fixed time periods and left to later be rendered
into a static graph.

Unlike the previously explored tools however, collectd provides other, more flexible,
options. Specifically, when collectd was first considered for our chair’s monitoring
needs in 2014, a very common solution was a stack of collectd, Graphite, and Grafana,
which we will examine in more detail below.

3.2.6. Graphite

Graphite may be considered a member of the second generation of monitoring tools
described in section 3.1, as it automatically accepts and stores new measurement time
series without prior explicit configuration for them. It, however, does not perform any
measurements by itself; instead it expects to be “fed” via one or multiple of its network-
based ingestion protocols.

Internally, Graphite is split into three independent components: 11

11Graphite – The Architecture in a nutshell, http://graphite.readthedocs.io/en/latest/
overview.html#the-architecture-in-a-nutshell

23

http://graphite.readthedocs.io/en/latest/overview.html#the-architecture-in-a-nutshell
http://graphite.readthedocs.io/en/latest/overview.html#the-architecture-in-a-nutshell

• a network daemon (carbon) that receives time-series data and manages access to
the database,

• a library for working with databases using the purpose-built whisper file format,
and

• a web-based application (Graphite-web) for rendering and viewing the data on-
demand.

Carbon Network Protocol

Graphite’s network interface supports multiple protocols for feeding in data: for one,
there is an application-specific plain-text format; its existence justified by the simplicity
of its use. This is the protocol used by collectd’s Graphite plugin.

To reduce overhead (such as having to specify the full names of data points repeatedly,
and encoding numeric data as sequences of ASCII characters), carbon adds support for
“pickling”, Python’s standard library for “serializing and de-serializing a Python object
structure” 12, i.e. converting a high-level data-representation object into a byte stream,
and back again. This allows more efficient encoding of data, albeit at the expense of
requiring an implementation of Python’s pickling process. While third-party imple-
mentations exist for some languages 13, their continued interoperability with the native
Python implementation is usually not be guaranteed.

A different option was introduced when Graphite’s version 0.9.6 added support for the
standardized Advanced Message Queuing Protocol (AMQP) 14: As a “wire-level” proto-
col specification, AMQP ensures interoperability between any software implementing the
standard, similar to HTTP’s role for exchanging hypertext on the Internet. However,
AMQP competes with other protocols such as the ISO-standardized Message Queue
Telemetry Transport (MQTT), and — especially for the use case of transmitting mea-
surements for monitoring purposes — various application-specific protocols like those
mentioned previously. AMQP is supported by collectd (via an included plugin) as
both a data source and data sink, and thus provides an additional option for connecting
collectd to Graphite as its data storage.

Whisper Storage Format

Data storage in Graphite is in some ways similar to the storage solutions explored
previously: it is limited to numeric values, structures time series into a hierarchy of
directories and files on the filesystem, and automatically aggregates data based on a
fixed configuration to maintain a constant size for each time-series storage file.

12pickle – Python object serialization, https://docs.python.org/3/library/pickle.html
13Pyrolite: Java and .NET interface to Python’s pickle and Pyro protocols, https://github.com/

irmen/Pyrolite
14Graphite 0.9.6 release notes, http://graphite.readthedocs.io/en/latest/releases/0_9_6.

html

24

https://docs.python.org/3/library/pickle.html
https://github.com/irmen/Pyrolite
https://github.com/irmen/Pyrolite
http://graphite.readthedocs.io/en/latest/releases/0_9_6.html
http://graphite.readthedocs.io/en/latest/releases/0_9_6.html

Conceptually similar to RRDtool, the whisper storage format has some design goals
that required the creation of a different format when Graphite was first written in 2006.
Most importantly, RRDtool had no native support for caching and aggregating write
operations at that time: every incoming data point had to be written to the database
immediately and individually. On large deployments, this would impose extreme re-
quirements on the performance of the underlying storage on the central monitoring node.
Whisper intends to mitigate this by caching data points in memory and only writing
them to disk at (larger) fixed intervals, thus reducing the number of write operations
required. This makes the format more suitable for traditional rotary magnetic storage
(hard disks), where frequently repositioning the head (to execute large numbers of write
operations of individual files) takes a non-negligible amount of time and thus decreases
disk throughput and performance. Even for solid-state drives, this can result in a per-
formance improvement, as their number of input/output operations is still limited by
the implementation of the hardware message bus.
RRDtool has since gained a similar facility in the form of the rrdcached daemon 15

that also accumulates a certain number or timespan of data before writing it to disk.
Unlike carbon (the persistent daemon that wraps all access to Graphite’s database),
rrdcached does not provide a way to access the contents of the cache; data has to be
flushed to the storage file to become accessible for graphing and other kinds of post-
processing.
Graphite is strongly geared towards using its default whisper database as a storage

backend. There are plans to develop a new back end named Ceres that will support
distributing the database across multiple servers and will replace whisper’s fixed-size
format with something more flexible, but at the time of writing, Ceres is marked as being
“not actively developped [sic] at the moment”. 16 Graphite theoretically also supports
using alternate databases, including for example InfluxDB and OpenTSDB, but at this
point the official documentation only mentions them in passing, without giving details
on how to integrate them with Graphite. 17

Graphite-web Interface

One particularly noteworthy set of features lies within Graphite’s web interface. In
addition to merely plotting graphs using unmodified values from its data files (like all
previously mentioned tools), Graphite-web supports “functions”.
Functions allow the user to process and combine time-series data retrospectively. They

can change the way graphs are drawn (e.g. stacked, or with multiple y-axes), and can also
perform complex transformations and calculations on the data, from simply summing
up multiple series to calculating integrals and derivatives, to performing forecasts on

15incidentally written by Florian Forster, the primary developer of collectd, and added to RRDtool’s
version 1.4 in 2008 — see “2008-09-14 09:49” in the RRDtool change history at https://oss.oetiker.
ch/rrdtool/pub/CHANGES

16The Ceres Database, http://graphite.readthedocs.io/en/latest/ceres.html
17Tools That Work With Graphite: Storage Backend Alternates, http://graphite.readthedocs.

io/en/latest/tools.html#storage-backend-alternates

25

https://oss.oetiker.ch/rrdtool/pub/CHANGES
https://oss.oetiker.ch/rrdtool/pub/CHANGES
http://graphite.readthedocs.io/en/latest/ceres.html
http://graphite.readthedocs.io/en/latest/tools.html#storage-backend-alternates
http://graphite.readthedocs.io/en/latest/tools.html#storage-backend-alternates

their development. 18

All this functionality is exposed in the Graphite Browser web application which
provides a tree structure of available time series and menu options to configure the
graph rendering options and apply functions, and displays the finished graph as a PNG
image. The Graphite Browser effectively only serves as a user interface to an API that
accepts queries (names of time series, optionally combined with function invocations)
and returns either a PNG image or JSON data in response.

Unfortunately, while powerful, the Graphite Browser user interface lacks convenience
when composing graphs: measurements can only be accessed via a tree structure grouped
by their source, which makes it cumbersome to execute common tasks like selecting the
same measurement from multiple different nodes for comparison: the measurements are
leafs at different positions in the tree, thus forcing the user to click through multiple
layers of the tree. In addition, the usefulness of the generated graphs is limited be-
cause they can only be rendered as static PNG images, which do not allow the user to
accurately read measurement values from the graph.

3.2.7. Grafana

Grafana can provide a solution to the lack of convenience features described in sec-
tion 3.2.6: Instead of being a simplistic viewing tool included with a monitoring solution,
Grafana’s single purpose is to provide a user-friendly (and visually appealing) front end
to a number of data-storage back ends.
Graphite is one of those supported back ends, integrated via the JSON output format

offered by Graphite-web. Since Graphite’s advanced post-processing functions are part
of the underlying query API, Grafana can make use of them as well, and even enables
the user to chain functions and combine time series using a graphical representation of
the available post-processing steps.

The processed data can then be displayed using the Flot JavaScript plotting library,
which adds useful features such as hovering over points in the graph to display the exact
value at that point, or showing a common time marker on multiple plots on the same
page when one of them is hovered over. 19

Grafana also supports user-editable “dashboards” that combine multiple graphs on a
single web page, potentially complemented with numerical representations of histograms
of any available time series. Features like these make Grafana a particularly user-friendly
tool to explore data that has already been recorded, without having to decide in advance
how the data should be plotted.

Its support for several different data-storage back ends, even multiple at the same
time, also means that it can be used to combine data from monitoring systems that
might otherwise not be compatible with each other. This can be useful when migrating
to a different monitoring solution, such as the comparatively new TICK stack described
in the next section.

18Graphite: Functions, http://graphite.readthedocs.io/en/latest/functions.html
19Flot: Attractive JavaScript plotting for jQuery, http://www.flotcharts.org/

26

http://graphite.readthedocs.io/en/latest/functions.html
http://www.flotcharts.org/

3.2.8. Telegraf, InfluxDB, Chronograf and Kapacitor (TICK)

When beginning work on the measurement systems in this thesis, our chair was already
in the process of setting up the tool stack of collectd, Graphite, and Grafana to
eventually replace the older and less flexible combination of MRTG and routers2.cgi
(see section 3.3), so it was prudent to use the existing infrastructure in this case. While
working on this thesis, however, another monitoring tool stack with yet another different
approach to storing measurement data increasingly gained popularity, so it warrants a
look at its design goals and the implications they have on operating and using it.

The toolchain we will be looking at is known under the acronym TICK, named for its
components Telegraf, InfluxDB, Chronograf and Kapacitor. Developed by the com-
mercial organisation InfluxData (originally named Errplane), it is intended to provide a
“complete platform for metrics and events” 20. Its components span all parts of the data
collection (Telegraf), storage (InfluxDB), processing (Kapacitor), and visualization
(Chronograf) chain.
Telegraf bears much similarity to collectd in that it delegates all functionality

implementation to plugins, both for collecting data (either from direct measurements or
from other networked services) and for passing it on to other services for processing and
storage. It supports a number of input formats, including those used by the de-facto
industry standard service-monitoring tool Nagios 21, and also the network data formats
of collectd and Graphite.
The paradigm change that makes TICK worth mentioning above the large number of

similar tools lies in InfluxDB’s way of storing time-series data: the tools we examined
so far always operated under the assumption that time series would keep receiving data
points for extended periods of time, so it made sense to use fixed-size storage formats
that preallocate space and aggregate data to lower resolution over time. For observing
indicators of system performance, this is usually sufficient, as fine-grained time resolution
becomes less important for time periods that lie further in the past.
InfluxDB changes this design parameter, instead aiming at time series that are not

guaranteed to be long-lived. It therefore removes the mandatory aggregation of data,
instead storing all data points individually, with a timestamp attached to each one. This
makes it far more space-efficient for “sparse” time series, i.e. ones that only receive data
points sporadically. Since data is now no longer guaranteed to be uniform, InfluxDB
also replaces the linear numeric query methods of the previously mentioned databases
with a query language more closely resembling SQL. Beyond this major characteristic
however, InfluxDB closely resembles what we already know from previous tools: it
supports multiple ingestion protocols (both custom ones and third-party protocols like
those of collectd and Graphite), caches data in memory to optimize read/write access
to the underlying file storage, and supports “retention policies” to govern how long data
is stored and hence how large the database is allowed to grow.

20InfluxData (InfluxDB) – Open Source Time Series Database for Monitoring Metrics and Events,
https://www.influxdata.com/

21claimed to be used by “9000+ customers” by its developer Nagios Enterprises (https://www.
nagios.com/), and also forked into several open-source projects, such as Icinga, Shinken, and Naemon

27

https://www.influxdata.com/
https://www.nagios.com/
https://www.nagios.com/

In the TICK tool stack, data post-processing is actually available in two places: InfluxDB
itself offers “continuous queries” that “run automatically and periodically on realtime
data and store query results in a specified measurement [time series]” 22. On the other
hand, Kapacitor is purpose-built to receive data streams or query data from InfluxDB
and apply arbitrarily complex transformations and even user-defined functions. 23 Both
provide the options of writing the processed data back into InfluxDB so it does not have
to be processed repeatedly, and Kapacitor can also trigger alerts or arbitrary handlers
based on the conditions applied to the data, opening it up to additional use cases, such
as alerting or load-balancing.
Finally, Chronograf integrates with the features of the other tools in the stack, par-

ticularly the post-processing and alerting options of Kapacitor, in addition to providing
JavaScript-based graphs and dashboards similar to those offered by Grafana.
Overall, InfluxDB and its related tools are a versatile monitoring solution and exem-

plify the ongoing development of new monitoring paradigms, as outlined in section 3.1,
but its improvements over existing tools did not warrant the effort of setting up a new
toolchain in our particular use case. Instead, our requirements were already satisfied by
a combination of some of the tools described earlier in this chapter, the setup of which
will be detailed in section 3.3.

3.3. Selected Toolchain for our Use Case

The previous section offered an insight into the different options for storing and visualiz-
ing time-series data, and particularly the assumptions they made about the environment
they would be used in. This information now needs to be applied to the use cases in our
environment.
As described in chapter 1, our chair operates a number of clustered computer systems

for the purpose of software verification. In addition to these single-purpose machines,
there are several individual machines used as workstations by members of staff.
Originally, a solution was required to monitor the performance and usage intensity of

our software-verification cluster, and it was an obvious step to also include performance
data from the workstations in the same monitoring system. Our system administrators
at the time had already successfully used MRTG and router2.cgi on other systems, and
the standardized SNMP interface made it easy to include custom data sources, such as
the VerifierCloud software-verification environment.
While the data ingestion options were sufficient, the visualization was unfortunately

inflexible. If a user required a graph comparing verification-task throughput to CPU
load, for example, the administrator would have to set up logging to a custom RRD file,
which would also start out empty, with no feasible way to import the existing data. At
the time, time-series storage tools with flexible post-processing options were not yet as
ubiquitous as they are at the time of writing this thesis, so small-scale testing quickly

22InfluxDB Documentation: Continuous Queries, https://docs.influxdata.com/influxdb/v1.
2/query_language/continuous_queries/

23Kapacitor Version 1.3 Documentation, https://docs.influxdata.com/kapacitor/v1.3/

28

https://docs.influxdata.com/influxdb/v1.2/query_language/continuous_queries/
https://docs.influxdata.com/influxdb/v1.2/query_language/continuous_queries/
https://docs.influxdata.com/kapacitor/v1.3/

converged on the combination of collectd, Graphite, and Grafana, that had already
seen use and documentation by a number of system administrators on Internet forums
and blogs.

As an added advantage, collectdmade it possible to configure the acquisition of mea-
surements once and deploy the configuration to all nodes (both the verification cluster
and the workstations) via the pre-existing automated software-deployment system at our
institution, without requiring explicit per-node configuration on the central monitoring
server.

Most measurements that were previously collected by MRTG via SNMP were already
supported by collectd’s default plugins, and the custom integrations could easily be
adapted to interface with Graphite via its plain-text protocol, or in some cases rewrit-
ten as native collectd plugins for an added performance increase (see the matching
technology descriptions in chapter 2 for the approaches taken for each of the energy-
measurement sources in particular).

One question that warrants further explanation is why we did not choose the TICK
stack (or parts of it) over Graphite and Grafana, considering its advantages in terms
of storage format and post-processing options. First and foremost, the components of
TICK lacked renown at the time our monitoring system was restructured: collectd
and Graphite were already established and mature (being ten 24 and eight years old
in 2014), and Grafana — while newly created — outpaced its pendant Chronograph
in terms of development speed. Even now, with TICK maturing, its main feature of
flexible data storage does not pose an advantage on our infrastructure, as our pool of
machines and their set of measurements does not usually change. Customizable alerting
for anomalies is a helpful addition, but on our infrastructure has at this point already
been implemented using the Bosun alerting system 25 (the specifics of which however
expand beyond the scope of this overview of storage and visualization solutions).
Overall, Graphite and Grafana together have been able to satisfy all our requirements

and have been intuitive to work with. Only Graphite required some modifications to its
configuration so it would keep a larger cache of data before flushing it to disk: otherwise,
it was prone to overloading the system with write requests to the disk. Since Graphite
allows access to its in-memory cache, this modification had no noticeable impact on
the access latency for existing time series; it did however cause new time series to only
appear after a certain delay (the time until they were flushed to disk for the first time)
when they were initially populated with data (e.g. when new nodes or new monitoring
features were added).
When the choice of monitoring solution was finalized and the software had been tested

to be operating reliably, the measurement solutions from chapter 2 were updated to
deliver their output to Graphite, and work on using their data for optimizations could
begin.

24considering the source files from collectd’s v1.0 release on https://collectd.org/files/
25Bosun, https://bosun.org/

29

https://collectd.org/files/
https://bosun.org/

4. Reducing the Energy
Consumption of a
Software-Verification Computer
Cluster

The Chair for Software Systems focuses its research on developing and improving meth-
ods for formal software verification. The algorithms used for this often require large
amounts of computer memory and CPU resources [1] and need to be run repeatedly,
often in quick succession, to test the effects of implementation changes on their runtime
and accuracy.

This makes it crucial to have extensive computational resources readily available, the
most cost-effective solution to which is setting up a dedicated computer cluster to run
these software verification tasks. Tasks can then be assigned to nodes within the cluster
by a task queueing system, as will be described in section 4.1.

However, these resources are not used continuously, since the influx of new tasks
depends on the activity of human users (which tends to be governed by factors such as
the time of day, weekends or holidays, and project schedules). When all items in the
task queue have been processed, the cluster sits idle, not running any useful calculations,
but still consuming electric power. It is an obvious step to evaluate the possibility of
powering down the cluster or some of its individual nodes when there is no current use
for them, thus reducing power and overall energy consumption.

Automating the process of powering down idle systems, as well as powering them up
when they were needed again, constituted an integral part of this thesis. Section 4.2
details the process of designing and implementing an “auto-shutdown” feature within
our existing VerifierCloud task-queueing framework.
Chapters 2 and 3 described our work on setting up an infrastructure for measuring,

storing, and visualizing the power consumption of our computer clusters, originally with
the goal of comparing the energy consumption of different software-verification algo-
rithms. Conveniently, this infrastructure is also well suited to analyze the potential
energy savings achievable by dynamically powering cluster nodes up and down based
on current resource demands. Section 4.3 will examine these potential savings in more
detail.

30

4.1. The VerifierCloud Software-Verification
Task-Queueing Framework

The introduction to chapter 4 already hinted at the infrastructural challenges associ-
ated with testing software-verification tools: forming an accurate picture of a tool’s
performance and accuracy requires a large number of individual tests that each require
a significant amount of computational resources. The most efficient and economical way
to provide these resources is usually to set up a cluster of individual nodes, as the number
of CPU cores and the amount of memory on a single node are restricted by limitations
of the available hardware platforms.

This does mean, however, that resources are no longer available on a single device
and are instead split across multiple nodes, each of which is running an independent
operating system kernel. Programs therefore cannot rely solely on multi-threaded local
execution (i.e. running separate threads of the same program on the multiple CPU cores
of the local device) to fully utilize the capabilities of the cluster. Instead, the intended
work load has to be split into “tasks” that are then executed on each node individually.
While possible, performing this work-load distribution manually would be inefficient and
time-consuming, so an automated solution should be found instead.

Requirements for a Task-Distribution Solution

A suitable automated task-distribution solution has to account for specific requirements
imposed by the intended application of testing software-verification tools: in general,
software-verification tools analyze a given program to prove or disprove whether it con-
forms to a given specification. This means that they require both the source code of
the program under test, as well as a representation of the specification, to operate.
Additionally, their results need to be collected and made available to the user.

The distribution of the computer clusters in our use case also creates challenges for
the task-distribution process: the Chair for Software Systems collaborates with teams
at other institutions, some of which contribute computer resources to the overall clus-
ter system. The geographic diversity and accompanying high network latency of these
locations rules out some means of transfering the input and output files (such as the
commonly used Network File System (NFS), which is known to perform poorly in high-
latency scenarios 1).

After considering all of these application-specific requirements, it was decided to im-
plement a custom software solution, the VerifierCloud, in 2011.

System Architecture of the VerifierCloud

The VerifierCloud serves multiple purposes: in addition to distributing tasks to nodes
of the cluster, it also serves as a queueing system when all nodes are currently busy pro-

1File Sharing on the WAN: A Matter of Latency, EE Times, http://www.eetimes.com/document.
asp?doc_id=1272058

31

http://www.eetimes.com/document.asp?doc_id=1272058
http://www.eetimes.com/document.asp?doc_id=1272058

:Client :Master zeus01:Worker

initialize()

authenticate(admin)

addWorker(zeus01)

connectSSH()

workerInformation

executeRunCollection(testRC)

assignRun(testRC[0])

run results

run collection results

removeWorker(zeus01)

WorkerStopCommand

SSH connection closed

Figure 4.1.: Communication sequence of basic VerifierCloud operations (described in
section 4.1)

cessing their assigned tasks. The queueing functionality offers some additional features
(such as requirements and limitations) that will be described later in this section.

All network communication is conducted via a central instance, the master, that
accepts run collections (a set of runs that each contain a task and its required input
files) and commands from clients, starts worker instances on a given set of nodes, and
assigns runs to each of them. Some parts of the implementation depend on functionality
provided only by the Linux operating system kernel (such as the cgroups interface), so
the master and worker are only intended to run on Linux-based systems.

Figure 4.1 shows a typical communication sequence where a user operates an instance
of the VerifierCloud interactively:
As the core component of the system, the master has to be started first. Once it has
finished initializing, the user can use one of the various client implementations (described

32

in more detail below) to connect to the master and instruct it to start a worker on a
node with a given hostname. The master then attempts to establish an SSH session to
the given node and launch a worker instance on it. If the SSH connection and worker
launch succeed, the worker performs its own initialization sequence and then connects
to the master through a port-forwarding tunnel established over the SSH connection.
Upon receiving a connection from the worker, the master adds it to an internal pool of
available workers, thereby making it available for task execution.

Regardless of the number of available workers, the client can submit a run collection,
or even multiple run collections successively. Whenever a new run collection is submitted
or a worker becomes available (either after connecting or after finishing execution of a
run), the master performs a scheduling algorithm that determines if any runs from the
pending run collections can be assigned to a worker for execution. When all runs of a
run collection have been processed, the master notifies the client that submitted the run
collection and delivers the output produced by the runs it contained.

Beyond this basic example, the VerifierCloud has several additional features that
increase its usefulness for software-verification applications: its implementation is de-
signed to be as modular as possible, using a well-defined set of serialized Java objects
for all network communication between its components (master, workers, and clients).
This makes it possible to have multiple separate client implementations, each target-
ing a specific use case. These include an interactive command-line interface to access
the VerifierCloud’s internal state (e.g. to manually start or stop worker instances), a
command-line tool that can automatically perform verification-tool benchmarks on the
cluster, and also a web-based client that provides external collaborators with access to
the cluster [18].

Since workers and clients only communicate directly with the master, any special
network configuration (such as for cluster nodes at remote locations that need to be
connected via network tunnels) only needs to be done once, on the node running the
master. The master will then use network port forwarding over SSH connections to
ensure that the workers it starts can connect back to the master without further config-
uration.

The software also provides features for selecting what nodes runs from a given run
collection will be assigned to, and what amount of resources each run may occupy. The
first is achieved via requirements that can optionally restrict a run collection to nodes
with a certain CPU model, number of available cores, and amount of available memory
(RAM). When a run is assigned to a worker, it will use the full amount of available
memory and CPU cores by default, but this can optionally be regulated by specifying a
set of limitations for memory and CPU usage. The worker will then execute the run in
an isolated cgroups hierarchy that ensures that it cannot exceed the given limitations
— a necessary prerequisite for reliable and reproducible benchmarks [2] and also a useful
mechanism for enforcing resource restrictions in competitions like the Competition on
Software Verification (SV-COMP) [1]. The implementation of requirements will become
relevant when discussing the implementation of on-demand power-up for worker nodes
in section 4.2.

33

4.2. Implementing Automatic Worker Power Control

Automatic power control involves the two distinct functionalities of powering nodes down
when they are unused and powering them up when they are needed again. This requires
the addition of several features to the master: first, the master has to be made aware
of nodes that have been powered down intentionally, so it can consider them for use as
workers. Second, the master requires a method of powering on nodes remotely. For this,
we utilize the Wake-on-LAN (WoL) standard, as described in section 4.2.2. When all
requirement for powering up nodes are in place, the master can then begin powering
down worker nodes. In our case, detailed in section 4.2.3, nodes will be powered down
when they are used exclusively by the VerifierCloud and have been idle for a set
length of time. However, choosing a sensible value for this idle timeout requires some
considerations that will be explained in section 4.2.4.

4.2.1. Keeping Track of Available Worker Resources

As mentioned in section 4.1, runs are assigned to workers by an algorithm (referred
to as the scheduler in the context of the VerifierCloud) that is triggered whenever a
new run collection is submitted or a worker becomes available. This scheduler examines
the requirements associated with each queued run collection, compares it to the unused
resources on all available worker nodes, and assigns an appropriate number of runs to
a worker when it finds a match. If no suitable workers are available, the run collection
simply stays queued and is re-examined the next time the scheduler is triggered.

For its suitability check, the scheduler uses two kinds of information about each worker:
a map of attributes (“worker information”), such as the worker’s CPU model and current
amount of unused system memory, and a “worker state” attribute that represents the
worker’s current condition (e.g. whether it has not yet finished initializing or its node is
currently in use and cannot be used by the cluster).

Of the worker states shown in figure 4.2, only workers that are AVAILABLE are con-
sidered in the suitability check. Workers that have not finished their initialization, are
faulty or in the process of terminating, or whose node is currently running processes
started by a local user (i.e. is USER_OCCUPIED) are excluded.

The original implementation was written without controlled power-down in mind,
instead assuming that all nodes would be running continuously and that only the worker
instances on them could be terminated and restarted on demand. This meant that
the master would simply discard any information it had about a worker whenever the
connection to the worker was lost, and would re-add the worker from scratch when the
connection was re-established.

With automatic power-down and especially automatic power-up in mind, however, this
behavior poses a problem: since the master discards the worker’s information (including,
for example, its CPU model) as soon as the worker disconnects, it has no way of checking
whether the powered-down worker would be suitable for a given run collection. It is
therefore essential to modify the master to retain the worker information of any workers
that were intentionally powered down.

34

Figure 4.2.: Transitions between the worker states used by the VerifierCloud master
to track which workers are “AVAILABLE” for task execution.
Thick solid edges denote actions explicitly initiated by the user, while thin
solid edges denote state transitions triggered automatically when a certain
condition is fulfilled. Dotted edges are used for transitions that depend both
on a certain user-defined configuration and a condition being matched. The
latter is currently the case for the automatic power-down (based on idle
time) and power-up (based on resource demand) of workers, as described in
section 4.2.

35

As far as retaining worker information is concerned, it would not strictly be necessary
to distinguish between intentional power-downs (initiated by the master) and unin-
tentional connection losses (e.g. network connectivity issues, power outages, or system
shutdowns initiated by a user outside the VerifierCloud controls). We do, however, re-
quire a way to distinguish between these two cases when it comes to checking for suitable
workers, as we cannot expect an unintentionally disconnected node to be available at
our command (contrary to a node who has performed an intentional, orderly shutdown
via the worker that was running on it).

One important step towards automatic power control is therefore to introduce new
worker states to mark workers that are currently executing an intentional shutdown
(POWERING_OFF) and ones that have disconnected after an intentional shutdown and are
therefore assumed to be powered down, but available on demand (POWERED_OFF). These
new states are already included in figure 4.2 and will be further explained in section 4.2.3.

4.2.2. Using Wake-on-LAN to Power up Worker Nodes on
Demand

The modification described in the previous section allows the VerifierCloud master to
consider all cluster nodes when searching for suitable workers, including ones that have
been shut down to conserve energy. To complete the power control process, we now
require a means to automatically power up nodes when the master determines that they
are required to execute runs.

Operational Principles of Wake-on-LAN

A standardized and commonly supported method for this is the Wake-on-LAN (WoL)
feature: WoL-capable devices that have their WoL feature enabled listen for a so-called
“magic packet” on their network interfaces, containing a specific data payload based on
the device’s MAC address. When this magic packet is received, the device initiates its
normal power-up sequence.

WoL uses MAC addresses (rather than IP addresses) so the magic packets can be
processed directly by the network interface card without requiring a TCP/IP protocol
stack. This means, however, that the magic packet cannot be sent as a unicast packet
addressed to the IP address of the powered-down device, as the network interface has
no knowledge of IP addresses and therefore will not send the ARP response necessary to
receive a unicast packet. Instead, magic packets are usually sent as broadcast packets
to all devices on the local network segment. The intended recipient device will detect
the magic packet and initiate a power-up, while all other devices will simply discard
the packet. While it is technically possible to send broadcast packets over a routed
network like the Internet, the necessary configuration is not universally deployed, so
broadcast-dependent features like WoL are usually limited to use within the same local
network. In our case, this precludes the use of the automatic power control feature on
the nodes hosted remotely by other institutions, but since those nodes are outside our
administrative domain, the were not included in our measurement setup anyway.

36

Aside from the technical requirements at the network level, the master also needs to
know a node’s MAC address to be able to send a magic packet with the correct contents
to “wake” that node. This information can be obtained automatically by any software
running on the node, such as our worker instances, so it can simply be included in the
map of attributes (CPU model, etc.) that is already collected from each worker dur-
ing the worker start-up process. Care must be taken when collecting a node’s MAC
addresses since it can have multiple physical network interfaces, each with a different
MAC addresses. As it would require extensive parsing of the node’s network configu-
ration to determine which interfaces are reachable from the master, the approach with
the least programmatic overhead is to simply list the MAC addresses of all available
network interfaces and later send magic packets for all of them. At approximately 100B
per magic packet, the additional network traffic caused by this will usually be negligible
compared to the traffic produced by normal VerifierCloud operation.

Obtaining the MAC address automatically has the advantage of keeping configuration
overhead low, but it means that the master does not have enough information to remotely
power up a node until it has successfully started a worker instance on it. The cluster
operator therefore has to make sure that nodes are powered up before they will be
initially recogized and used by the VerifierCloud. On our setup, the VerifierCloud
master usually runs continuously for several weeks at a time and cluster nodes are very
likely to be powered up when the master is restarted, so our use case did not justify the
additional complexity of adding MAC addresses to the configuration file format. If the
need ever arose, this option could easily be added in the same way as the idle timeout
value introduced in section 4.2.3.

Initiating a Node’s Power-up Sequence from the Master

With all required information present in each worker’s attribute map, the master can
now generate magic packets to trigger a node’s power-up sequence via WoL.

As mentioned in section 4.2.2, the only requirement for the magic packet is that it must
contain a specific payload. The type of packet, as well as any header data prepended
to this magic payload, are of no consequence to WoL functionality, so the user is free
to choose the specific protocol used for the packet. A common approach is to send a
UDP packet to port 9, which has been assigned by the IANA to be used for the Discard
Protocol, i.e. to discard all incoming packets at operating-system level [21]. Network
cards check for WoL-relevant packet contents before packets reach the operating system,
so the Discard Protocol provides a convenient target port for WoL packets.

This approach was also chosen for the VerifierCloud, using an open-source imple-
mentation by Matt Black 2. For debugging purposes, a new type of VerifierCloud
command packet was added, to make the master send a WoL packet by issuing a com-
mand on the VerifierCloud command-line client.
During manual testing, nodes would sometimes not react when sent a magic packet,

likely either due to limitations of the network interface card, or due to congestion and

2Wake On Lan: Android wake on lan application, https://github.com/mafrosis/Wake-On-Lan

37

https://github.com/mafrosis/Wake-On-Lan

packet loss on the network. While the exact cause is unknown, the stateless and unreli-
able nature of UDP makes it prudent to re-send WoL packets in any case.

When a node is added to the list of potential workers on the master, the master
automatically tries to connect to the node via SSH and launch a worker instance on it.
Since this connection attempt might fail due to temporary reasons (network problems,
the master is programed to regularly re-attempt a connection to any worker that is not
currently connected. At the time of writing, the default interval for this feature is set
to 2min, regulated by a list of upcoming attempt times maintained by the master.

This timer also provides a convenient way to send magic packets repeatedly (to mit-
igate the reliability problems hinted at above), while minimizing the additional code
complexity and resourse usage: the master can simply send a WoL packet before each
connection attempt: if the node is already powered on, the packet will simply be ignored
and the worker start will proceed normally; if on the other hand the node is currently
powered down, the packet will trigger a power-up and the node will likely be available
for connections by the time the next attempt is made. Unfortunately, this causes a delay
between triggering a power-up sequence and the node actually becoming available for
VerifierCloud use. This matter requires extensive deliberation and will therefore be
elaborated separately in section 4.2.4.

Automating Node Power-up from the VerifierCloud Run Scheduler

To make use of the power-up functionality described above, the master now needs to be
modified to account for powered-down nodes when selecting nodes suitable for executing
a given run collection.

Previously, the run scheduler would only consider workers in the AVAILABLE state (refer
to figure 4.1). With the new automatic power-control feature, the scheduler will still
perform one worker suitability check using only AVAILABLE workers, to avoid powering
up any nodes unnecessarily. If that check yields workers that can satisfy the requirements
of the current run collections, its run are scheduled and no further action is done. If,
however, the requirements cannot be satisfied by the currently AVAILABLE workers, the
scheduler extends its search to also include POWERED_OFF workers, i.e. ones that were
running on a node that has since been powered down. If this extended search yields
a positive result, the master then proceeds to trigger power-ups of all nodes that have
been determined to be suitable, but are currently powered down.

One consequence of this is that such a condition will cause the power-up of all nodes
matching the requirements, regardless of the number of runs in the run collection. The-
oretically, this may mean powering up more nodes than there are tasks in the run col-
lection, leaving some nodes unused (and thus powered up to no purpose). However, our
specialized use case of testing software-verification tools means that run collections will
usually be of such large sizes (on the order of 102 to 104 runs each) that all powered-up
nodes will be used. While there are possible improvements that could be made to this
approach, they are associated with additional challenges, as outlined in chapter 5.

38

4.2.3. Automatic Power-down of Idle Workers

While it was possible to implement the node power-up functionality using a widely used
remote-control standard, no such standard exists for the purpose of initiating system
shutdowns. We therefore need to target platform-specific solutions for the second part
of our automation. VerifierCloud workers already require the cgroups interface that
is specific to the Linux operating system, so this will not create any new limitations in
terms of operating-system compatibility.

On Unix-based operating systems, such as Linux, powering down or rebooting the
system was historically performed by executing the shutdown command with parame-
ters selecting the intended action (power off, reboot, etc) and the time when the process
should be triggered. However, the exact command-line parameters have changed over
time and can have different meaning on different Linux-based operating systems (“Linux
distributions”) today. Many major distributions 3 have therefore added a poweroff com-
mand that invokes shutdown with the appropriate parameters to power off the system
in a safe way (i.e. giving programs a time window to terminate cleanly and write all
changed data to persistent storage).

To simply deployment, the VerifierCloud worker will directly execute this univer-
sally available command to initiate a power off. While it would have been possible to
delegate the actual implementation to an external script provided by the system admin-
istrator, the poweroff command is universally available and already triggers all standard
mechanisms to ensure a clean shutdown of the system. Introducing an additional layer of
abstraction would therefore add complexitity without providing any obvious additional
benefit to flexibility.

There is, however, one indirection that has to be made, since initiating a system power-
off requires super-user privileges: rather than run the entire worker process with elevated
privileges (which could pose a security risk in case of certain programming errors),
privileges can be granted selectively by using the well-established 4 sudo command 5.
This requires the system administrator to add the necessary permission grant to the
sudo configuration on each worker node, but since sudo supports multiple configuration
files and even centralized (e.g. LDAP-based) configuration, this change can be easily
automated.

Once this configuration is in place, the worker process can initiate a power-off by
executing the command line sudo poweroff whenever it is instructed to do so by the
master. The master in turn keeps track of the current state of a worker (according
to the transitions shown in figure 4.2) to be able to distinguish between an intentional
shutdown (initiated by the master) and an unexpected disconnection (caused by a local
user switching off the node, a network issue, power outage, or other unforeseen circum-
stances). As previously mentioned, the POWERING_OFF and POWERED_OFF states have
been newly introduced with the implementation of automatic power-off functionality.

To decide when to trigger a node power-off, the VerifierCloud needs to keep track

3Including Arch Linux, CentOS, Debian, RedHat Enterprise Linux, and Ubuntu
4A Brief History of Sudo, https://www.sudo.ws/sudo/history.html
5Sudo in a Nutshell, https://www.sudo.ws/intro.html

39

https://www.sudo.ws/sudo/history.html
https://www.sudo.ws/intro.html

of how long each worker has been idle, and issue the power-off command when a certain
configured idle timeout is exceeded. The accounting for this is ideally implemented
within the master instance, since the master also needs to update its list of worker
states when a worker is being powered off intentionally (as explained in section 4.2.1).

As noted in section 4.2.2, the master already maintains a list of upcoming event times
(internally referred to as a schedule) that indicate when the next connection attempt to
each unconnected worker should be made. This approach has shown to be reliable, and
is therefore also used for the new power-off feature: whenever a worker becomes idle (by
finishing processing a run when there are no further runs that can be assigned to it), the
master calculates the time when the worker should be powered off — assuming it stays
idle — and inserts it into a separate schedule. The schedule is then regularly checked
for events that have come due in the same way that is already used for the connection
attempt schedule.

The timeout after which an idle worker is instructed to power itself off is freely config-
urable for each worker when it is added to the master’s list of available workers. However,
choosing a sensible value for this timeout is a non-trivial task and will therefore be dis-
cussed in more detail in section 4.2.4.

4.2.4. Considerations for Choosing Idle-Timeout Values

To make use of the automatic power control feature, the administrator of the VerifierCloud
master has to configure the amount of time a worker is allowed to be idle before it is
instructed to power itself off.

An intuitive approach might be to set this “idle timeout” as short as possible, to
reduce the amount of energy wasted by idle worker nodes. However, letting a worker
idle is not the only waste of energy that can occur: When a worker is instructed to
power off its node, the node’s operating system has to ensure that all processes are
terminated cleanly before proceeding to power off the system. Likewise, after a node
has been issued a power-on signal, it takes time for it to load the operating system and
all required programs and services, before it becomes available for network connections
and thus usable by the VerifierCloud.
No verification runs can be executed during these shutdown and boot periods. For

the user, this manifests as a delay in run execution. Also, whenever a node is powered
on without perform useful work, the energy it consumes can be considered wasted. This
is exacerbated by the fact that shutting down and booting an operating system requires
more system resources than are used in the system’s idle state, and thus also increases
the power consumption of the system.

These considerations show a scenario with two conflicting optimization routes: on the
one hand, a short idle timeout would reduce the energy wasted on idling nodes. On
the other hand, a longer idle timeout would avoid needlessly expending the additional
energy required to shut down and boot a node. To strike a balance between the two
ends of the spectrum, the characteristics of the individual group of nodes need to be
analyzed.

While the shut-down and boot-up times of different computer systems will be vastly

40

different, we can use our main computer cluster zeus as an example. Through empirical
testing, we were able to determine the average duration of a power-off sequence to
be 28 s, while powering on a zeus node took 59 s on average. Unfortunately, these
tests were performed after a number of changes in the organizational structure of our
institution, following the move of Prof. Beyer from the University of Passau to the
Ludwig Maximilian University of Munich. As part of these changes, administration of
the cluster and the associated monitoring systems was transferred, resulting in the loss of
the power-consumption measurement data from the relevant time period. It is possible,
however, to estimate the cluster’s power consumption during shut-down and boot-up
sequences from its average and peak consumption, operating under the assumption that
both shut-down and boot will require additional power compared to the system’s idle
state.

At an average power consumption of approximately 2.5 kW for the entire cluster during
idle periods and approximately 4.9 kW while in use, we can calculate the amount of
idle time that results in the same energy consumption as a power-down and power-up
sequence (plus any amount of time in the powered-off state, since no energy is consumed
during that time) as follows:

tidle · Pidle = (tshutdown + tboot) · Puse

Inserting the measured values from before (Pidle = 2.5 kW, Puse = 4.9 kW, tshutdown =
28 s, tboot = 59 s) yields

tidle · 2.5 kW = (28 s+ 59 s) · 4.9 kW

tidle =
(28 s+ 59 s) · 4.9 kW

2.5 kW
= 170 s

We can now use this value as a lower bound for the duration a cycle of power-off, off
state and power-on would have to last to be efficient in terms of energy consumption:
only for durations longer than this would powering off the system yield any energy
savings.

Note, however, that tidle also includes the 59 s required to power on the node when
the master receives a run collection that requires it. We require the time between
the beginning of a power-off sequence and the beginning of the subsequent on-demand
power-on, so we we need to subtract tboot:

tunused = tcycle − tboot

= 170 s− 59 s
= 111 s

For our use case, this means that the power control automation would have to predict
when a worker node was likely to remain unused for at least tunused = 142 s before it
would be sensible to power it off. Unfortunately, the irregular nature of run-collection

41

Figure 4.3.: Average daily power consumption of the zeus computer cluster from
2016-01-01 to 2016-12-31

submissions makes it very difficult to reliably predict the time of the next submission.
Theoretically, it would be possible to analyze historic data on the execution time of run
collections to determine the likelihood of another run collection being submitted as a
function of the time passed since the last submission. However, examining the historic
power consumption data of the zeus cluster (shown in figure 4.3) reveals no obvious
pattern in the cluster usage frequency and intensity. This can likely be attributed to the
human factor already mentioned in the introduction to chapter 4, namely the varying
influence on work hours exerted by holiday and project schedules.

In conclusion, optimizing the idle-timeout setting in our use case would require ex-
tensive data analysis at a level that would exceed the scope of this thesis. Instead, an
administrator may choose a conservative timeout value based on the estimate above,
and adjust it manually based on his or her observations and the users’ expectations with
regard to run execution delays.

For future reference, chapter 5 will list some possible approaches to this kind of data
analysis, to be explored in future work on the subject.

4.3. Resulting Savings on Energy Consumption

In addition to the theoretical considerations described in the previous section, the fin-
ished power control functionality was tested in a multi-node environment separate from
the main cluster. The decision to use a separate testing environment was made to avoid
any negative impacts on normal operations. While preferable for operational reasons,
this does limit the scope of the test results, especially due to the fact that no nodes with
external energy-measurement instrumentation were available for the test. Nonetheless,

42

0

20

40

60

80

100

cayman1 cayman2 cayman3 cayman5 cayman6 cayman7 cayman8
Node name

P
ow

er
 c

on
su

m
pt

io
n

[W
]

Figure 4.4.: Distribution of momentary power consumption of the cayman computer
cluster, recorded from 2016-12-25 to 2017-03-23.
cayman4 suffered a malfunction during the measurement period and has
been excluded from this figure.

the test was sufficient to demonstrate the full functionality of the new feature and yielded
valuable insights into the factors that need to be considered when configuring it (such
as the effectiveness threshold described in section 4.2.4).

To estimate the potential savings on energy consumption that could be achieved on
our cluster infrastructure, we can instead utilize the power consumption data that has
been collected by our monitoring systems. Of particular interest for this purpose is the
distribution of the discrete power-consumption values: figures 4.4 and 4.5 show a clear
clustering of measurements in the lower power-consumption segment, indicating that the
nodes spent a significant portion of their operational time in an idle state, thus yielding
low power-consumption measurements.

43

2500

3000

3500

4000

4500

5000

5500

zeus
Cluster name

P
ow

er
 c

on
su

m
pt

io
n

[W
]

Figure 4.5.: Distribution of the average daily power-consumption values shown in fig-
ure 4.3

The effect is particularly pronounced in the data concerning the cayman cluster. This
is in part due to the different use cases for the zeus and cayman clusters, with zeus
being primarily used for large software-verification run collections, while cayman is often
excluded from these and used for continuous-integration software builds instead (which
are only triggered upon changes to the code base, can be completed relatively quickly,
and therefore usually do not extend into times of day with little user activity).

Another factor influencing the difference between the two diagrams stems from the
means of data acquisition and aggregation: The nodes of the cayman cluster are each
connected to a single-phase energy meter and monitored by a custom monitoring daemon
that retains individual data points for an extended period of time. The zeus cluster on
the other hand is monitored by a rack PDU that accumulates the power consumption
of multiple nodes due to the layout of its electrical distribution. The resulting data

44

has also been pre-aggregated to daily averages by Graphite, so the gap between idle
power consumption and consumption under load is less pronounced than it would be in
higher-resolution data.

Using these daily data samples obtained from Graphite’s database (also shown graph-
ically in figure 4.3, we can extract several useful data points: first and foremost, the zeus
cluster consumed a total of 31 000 kWh in 2016 alone. Even at the discounted electricity
price offered to our institution, this corresponds to 5 800e for a cluster of 24 nodes over
the course of one year. For comparison, the 8-node cayman cluster with its average
power consumption of approximately 51W will consume less than 450 kWh per year,
bringing it to a mere 1.4% of zeus ’s consumption.
Considering its large yearly energy consumption and significant amount of idle time,

optimizing the energy consumption of the zeus cluster by employing the automatic
power-control functionality could yield significant savings on operational cost. To esti-
mate this number, we need to determine the range of power consumption that corre-
sponds to the system’s idle state (as represented by the large cluster around 2 800 kWh in
figure 4.5). Even with conservative estimation, assuming zeus ’s maximum power usage
in idle to be 2.8 kWh, its idle state accounts for 13% (3 900 kWh) of its yearly energy
consumption, corresponding to 740e spent on powering an unused system. If we refer
to the very pronounced clustering of cayman’s power consumption values as an example
and assume an idle power usage of 3.25 kWh on zeus, the amount of wasted energy —
and thus potential savings — is as high as 27% (8 300 kWh) or 1 600e per year.
These figures can be taken to indicate that automatic power control, as demonstrated

in this thesis, can indeed lead to significant savings on energy consumption, which ben-
efits both the operator (through reduced cost of operation) and the global environment
(through reducing the emission of harmful pollutants from electricity production).

45

5. Caveats and Possible Future
Extensions

In summary, the technologies examined in this thesis already provide extensive means of
energy measurement, visualization, and optimization. There are, however, some limita-
tions that need to be stressed. Wherever possible, this section will provide suggestions to
mitigate them in scenarios where they might pose a significant drawback to the system
operator.

Measurement Technologies

In the area of measurement equipment, close attention must be paid to the accuracy of
the measurement results that can be obtained from a meter. This includes the accuracy
figure itself — ranging from 1% to 3% for the devices examined in this thesis, and even
including RAPL technology with no guaranteed accuracy at all — but also extends to
the conditions that are required for the accuracy specification to hold: many devices,
such as the rack PDU described in section 2.2 or the single-phase meters described
in section 2.3, require a certain minimum load to measure accurately and might even
discard measurements below that threshold. The operator must also take note of what
parts of the system’s energy consumption are actually measured to avoid incomplete
results: while useful through its simplicity, measurements obtained from Intel RAPL
do not represent the full impact of a computer on overall energy consumption and, by
extension, cost of operation and environmental consequences.

Unfortunately, more flexible and accurate measurement equipment often tends to have
more complex installation requirements, such as the setup detailed in section 2.3 that
consists of eleven individual devices and required a separate fuse box to be installed by
a professional electrical technician.

While it is possible to sidestep this complexity issue by using consumer-grade hard-
ware, those devices often do not offer the standardized interfaces required for reliable
data collection.

Setting up energy measurement instrumentation will therefore usually be a trade-off
between the three competing factors of cost, complexity, and flexibility.

Data Storage and Visualization Solutions

When it comes to storing and visualizing the acquired measurement data, the user is
presented with a large number of alternative tools and solutions, each with different
advantages, but also different drawbacks. Due to the large amount of data they are

46

required to process on a regular basis, monitoring solutions tend to consume significant
amounts of computational resources, including CPU usage and disk throughput. The
operator must therefore make sure to either use a sufficiently powerful — and perhaps
dedicated — system to host these services, or to manually configure them to optimize
their resource usage in the particular use case at hand.

Even then, it is difficult to find a single monitoring solution that serves all possible
use cases: while Graphite was sufficient for everyday monitoring purposes, section 4.3
showed that its automatic aggregation of data points could pose a problem when trying
to make decisions based on long-term

In general, one cannot reliably predict the ways in which measurement data might be
used in future projects, so it is advisable to store that data at as high a resolution as
possible, while accounting for opposing factors such as disk space usage by the time-series
database.

Reducing the Energy Consumption of Computer Clusters

While there was no opportunity to test the VerifierCloud’s new power-control feature
in full-scale productive use, we can already identify some areas that could be targeted
for further improvement:

As detailed in section 4.2.4, it is very difficult to choose a idle-timeout value for the
power-control feature that maximizes energy savings without hindering the VerifierCloud’s
speed and effectiveness.

To find such a value, the operator would need to record the sizes of all submitted
run collections, as well as their times of submission, and analyze that data to reveal
any pattern in run-collection submission times that could be factored into an optimum
timeout value. In particularly complex cases, it might even be necessary to replace the
static timeout value with a function that determines the timeout value based on other
factors, such as the time of day, current project schedules, or historic cluster utilization
data. This could pose potential research opportunities for other fields of computer
science, such as context recognition and machine learning.

Potential for optimization possibly also exists within the worker power-on process:
currently, the master always starts all worker nodes that have been determined to be
suitable for a given run collection. In the context of software verification, this is usually
appropriate, since verification run collections tends to consist of hundreds, if not thou-
sands, of individual runs, thus providing a sufficient work load for clusters of nearly any
size.

If the VerifierCloud was selected to be used for other tasks, however, the power-on
mechanism should be extended to account for the number of runs within a run collection,
to avoid starting more workers than there are runs.

However, starting worker nodes selectively introduces a new issue that would need to
be addressed: while it is likely that workers that have been powered off intentionally
will be able to be powered on again, this is by no means guaranteed. If the master were
to only ever send power-on signals to the first few workers in its worker list, it might get
stuck in a scenario where it targets only workers that happen to have suffered a fault

47

and will not power on. To account for this, the master would have to keep track of the
power-on attempts for each worker, and eventually exclude them from the worker list if
they were determined to have become unreliable.

The general worker start procedure also poses another limitation in its current imple-
mentation: the master attempts to start worker instances at a fixed interval (defaulting
to 2min unless overridden by the operator). These connection attempts happen in quick
succession of the transmission of Wake-on-LAN signals, so the worker node will usually
still be in the process of powering on during the first connection attempts. After that,
the next connection attempt only happens after a full two minutes have passed, even
when the node only requires a much shorter time to boot up (compare the empirical
value of 59 s from section 4.2.4). This results in an unnecessary idle period that increases
both the waiting time incurred by users, as well as the energy consumption of the cluster.

One possible approach to mitigating this could be a “back-off” feature that starts with
short intervals between connection attempts and continually increases them after each
failed connection attempt. This would prevent excessive load on the network from too
many connection attempts, while still reducing the delay between powering on a node
and starting a worker instance on it.

With these optimizations, the automatic power-control feature could arguably result
in better energy efficiency than it provides in its current form.

It has to be noted, however, that automatic power-control cannot be applied to all
kinds of computer clusters. Many data centers mainly operate servers that are required to
be online and running continuously, since they are directly accessed by end-users, rather
than managed from an integrated task-queuing framework like the VerifierCloud.

These computer systems contribute a significant portion to the world’s overall elec-
trical energy consumption, calculated to be as high as 4.6% in 2012 and rising by 4.4%
each year [13].

Since they cannot simply be powered off when idle, other means of reducing their en-
ergy consumption need to be explored. An obvious area of improvement is the efficiency
of their cooling systems: for the past years, cooling has consistently accounted for about
60% of data centers’ total energy consumption. This distribution can be attributed to
the use of localized cooling solutions over centralized ones, as is still common in many
devices: localized cooling increases overhead due to the use of multiple small cooling de-
vices and additionally tends to encourage designs that do not pay attention to optimized
air or coolant flow through the system. While out of scope for this particular thesis,
investigating optimized cooling techniques could provide valuable insights into further
potential energy savings.

Irrespective of such hardware-based optimizations, however, the software-based ap-
proach presented in section 4.2 can already contribute significant savings on energy
consumption and operators should evaluate whether it can be applied to their use case.

48

6. Conclusion

This thesis has aimed to provide the reader with insights into the primary challenges
associated with measuring the energy consumption of computer clusters and utilizing
that data to plan, apply and validate optimizations.

The energy consumption of computer infrastructure has become an increasing focus
of research due to its extensive effects: constituting 4.6% of worldwide electricity con-
sumption as of 2012 and rising by 4.4% each year [13], information and communication
technology is a significant contributor to the negative environmental effects of the global
production of electrical energy. It is therefore an important goal to minimize this figure
by avoiding any unnecessary consumption of electrical energy. This in turn requires
means of measuring a system’s energy consumption to analyze the possibilities for opti-
mization and later confirm and quantify the results of those optimizations.

For the first step of acquiring measurements, available options range from integrated
solutions such as Intel RAPL (section 2.1) that offer minimal installation complexity, to
single devices with a variety of features (such as the rack PDU from section 2.2 and also
some consumer-grade devices described in section 2.5), to highly customizable instru-
mentation that provides the operator with highly accurate and fine-grained observations
of the individual nodes in a cluster (as implemented using single-phase energy meters
in section 2.3). These options have been compared in detail in chapter 2 and have been
successfully employed in the hardware infrastructure at our institution.

Continuing the processing chain, we then evaluated the advantages of several moni-
toring software solutions, spanning multiple different approaches to acquiring, storing,
and processing data. A focus was put on well-established solutions such as MRTG (sec-
tion 3.2.1), Munin (section 3.2.4), and Graphite (section 3.2.6) that are based on fixed-
size database formats, such a RRD and carbon, to store time-series data from a large
number of sources. The scope was also extended to the more recent development of tool
stacks like TICK that substitute fixed database sizes with other database formats, al-
lowing for unrestricted data resolution. Ultimately, both approaches still have use cases
today and operators can freely choose the tools that best suit their needs, referring to
the information in chapter 3 as a guideline.

Most of the listed monitoring solutions provide means of extending them with custom
data sources. This functionality was used to integrate them with our energy measure-
ment instrumentation and the resulting software has been made available in appendix A.

Several of the presented data storage and visualization tools have been used in our
environment, yielding insights into their usability and their behavior under the load of
real-world usage. Based on these insights, a suitable tool stack for our use case has
been chosen and documented in section 3.3. Consisting of multiple tools, our monitor-
ing solution combines the efficiency, extensibility, and wealth of plugins of collectd

49

with the advanced post-processing features offered by Graphite and the powerful and
user-friendly interface of Grafana. It also includes alerting functionality based on the
measurement data using the Bosun alerting tool, making it a very useful tool for re-
searchers and system administrator alike.

Finally, with appropriate energy measuring and monitoring solutions in place, we
proceeded to devise and implement a means of reducing the energy consumption of
our software-verification computer cluster, as documented in chapter 4: the master
and worker implementations of the VerifierCloud task-queueing framework have been
extended to allow worker nodes to be powered off and powered on remotely, either
manually by the user or on demand using an automated feature. This new power-control
feature was programmed to continually monitor the utilization of its worker nodes and
— depending on user configuration — power them off automatically when they are not
in use. When queued run collections require the computational resources of powered-
off nodes, the power-control functionality on the master then proceeds to power them
back on automatically. The feature was successfully tested in an environment similar to
that of the main cluster, making it ready to be deployed and put to use in a real-world
scenario. We also identified that could be used as starting points for potential future
extensions.

Using the data from our measurements, this automatic power-control feature has been
confirmed to provide significant savings on the cluster’s energy consumption, reaching up
to 27% of its total consumption and potentially saving more than 1 600e in operational
costs every year for a single cluster. In addition to saving costs, the energy consumption
optimizations that have been presented also reduce the negative effects that electricity
production still has on the global environment.

Overall, the author is confident that this thesis can serve as a toolkit for researchers
striving to gain a better understanding of their hardware and its energy-consumption
properties, and to find new ways of improving the efficiency of their setup.

Acknowledgments

The author would like to give particular thanks to Ludwig Zistler of the University of
Passau’s technical operations department for his valuable input regarding the Univer-
sity’s power consumption, as well as possible optimizations to cooling technology for
data centers.

50

A. Software Developed in the
Context of this Thesis

The following software has been developed to complement the work described in this
thesis. The relevant source code is available in the digital distribution for this thesis.

Details on the required hardware setup can be found in chapter 2.

A.1. Intel RAPL Implementations

A.1.1. SNMP Agent Interface

power_gadget_snmp is based on Power Gadget, Intel’s reference implementation of an
interface to the RAPL energy measurement functionality of modern Intel “Core” and
“Xeon” CPUs.

It implements the pass_persist interface used by the Net-SNMP SNMP agent to
expose the RAPL measurement values (converted to Joules) via an SNMP subtree rooted
at the OID .1.3.6.1.4.1.47670.5.
Its OIDs follow the format .1.3.6.1.4.1.47670.5.<cpu_number>.<rapl_domain>,
where cpu_number is the one-based CPU number returned by the RAPL interface, and
rapl_domain is either 1, 2, 3, or 4, signifying the package, core, uncore, and dram
RAPL domains, respectively.

Written in C, it can be compiled using the supplied Makefile.
Note that the RAPL interface requires the msr and cpuid kernel modules to be loaded.

A.1.2. Collectd Integration

collectd-plugin-intel_cpu_energy is a native plugin for the collectd “system statis-
tics collection daemon”.

It uses the same reference implementation as power_gadget_snmp to access the RAPL
measurement values, converts them to Joules, then passes them on to collectd for
further processing. Its output follows the recommended collectd plugin structure,
with the following mapping:

• hostname = <hostname provided by collectd>

• plugin = intel_cpu_energy

• plugin_instance = cpu<N> (N ≥ 0)

51

• type = energy

• type_instance = [package | core | uncore | dram]

Therefore, the resulting query path will look similar to zeus01.intel_cpu_energy-cpu0.
energy-package.

Written in C, it can be compiled using the supplied Makefile.
Note that the RAPL interface requires the msr and cpuid kernel modules to be loaded.

A.2. Reading Measurements from Single-phase
Energy Meters

The data acquisition and processing for the single-face energy meters is split into multiple
programs for increased flexibility.

A.2.1. Data Collection Daemon

A central daemon — emeterd — collects and counts pulses from the energy meters and
stores the results in realtime.

Two storage formats are used: first, all events (both pulses and starting or stopping
the daemon) are recorded to raw.log as plain-text lines. Pulses are logged in the format
<date>,<time>,event,[start | stop], while pulses are logged as <date>,<time>,
<input pin number>,0. Additionally, the daemon maintains separate text files — one
for each configured input pin — that contain a monotonically increasing value signifying
the number of pulses received on that pin so far. The values of these counters are
preserved across restarts of the daemon, or indeed the system it runs on.

Refer to pins.txt for the mapping between GPIO pin numbers, meter numbers, and
node names in our setup.

The emeterd.py executable file includes a standardized configuration block to be
parsed by SysV-style init systems, so it can be directly installed as a system service. A
logrotate configuration file to regularly raw.log is also included in the distribution.

A.2.2. Command-line Interface

emeter-live is a command-line utility that reads lines from raw.log (as written by
emeterd), converts the timestamps and recorded pulses within into the most recently
observed power consumption of each connected node, and displays that information both
numerically and as a set of bar graphs.
emeter-live.py expects continous input on its standard input stream, so emeter-live.

sh is provided as a wrapper to automatically supply the required data.

52

A.2.3. Websocket-based Interface

emeter-ws operates in a manner similar to emeter-live in that it parses lines from
raw.log to calculate current power consumption.

In this instance, however, the process is split into two parts: a daemon serves a web
page via HTTP on port 9000 and simultaneously detects and broadcasts any changes to
raw.log to all clients currently connected via the Websocket protocol. These broadcasts
are received by a JavaScript function integrated into the web page, which then calculates
the current power consumption and displays it to the user (again both numerically and
as bar graphs).

Additionally, the JavaScript function regularly checks whether the time passed since
the last pulse on a certain pin is still consistent with the power consumption reported
for that pin. When the time period exceeds the one previously observed (equating to a
lower power consumption than before), it begins extrapolating the current consumption
value based on the time period since the last pulse. As soon as the next pulse is received
on that pin, the estimate is replaced with a newly calculated exact value and normal
operation resumes.

A SysV-compatible service file is provided in emeter-ws.

A.2.4. SNMP Agent Interface

Finally, the distribution contains two Python scripts that implement the Net-SNMP
SNMP agent’s pass and pass_persist interfaces, respectively. As explained in more
detail by the snmpd.conf manual page, the pass_persist interface has the advantage
of being more resource-efficient, since it re-uses the same interface process repeatedly,
instead of launching a process for each individual SNMP query.

Both scripts use an SNMP subtree under the OID .1.3.6.1.4.1.47670.2 to provide
the current contents of the counter files written by emeterd. The OIDs follow the
format .1.3.6.1.4.1.47670.2.<meter_number>, using the meter numbering described
in pins.txt.

A.3. SML Electricity Meter Interface

Both implementations of the SML electricity meter interface are based on the jSML
Java library 1 developed by the department “Intersectoral Energy Systems and Grid
Integration” at the Fraunhofer Institute for Solar Energy Systems in Freiburg.
jSML supports a number of features, including both encoding and decoding SML

message files. The following two programs use its decoding functionality and format the
results according to their intended use case.

1jSML Overview – openmuc.org, https://www.openmuc.org/sml/

53

https://www.openmuc.org/sml/

A.3.1. Command-line Interface

To facilitate debugging the optical interface on SML-capable electricity meters, a jSML
example program was modified to receive SML messages via the serial interface of a
Raspberry Pi single-board computer and format it in a human-readable way.

A.3.2. Collectd Integration

Expanding upon the jSML-based programmodified for human-readable output, collectd-
plugin-sml-electricity-meter integrates with collectd’s Java plugin interface and
submits all relevant SML message contents to collectd for further processing. The
fields in collectd’s data packets are set as follows:

• hostname = <set at compile-time>

• plugin = smlreceiver

• plugin_instance = <SML server ID>

• type = [watts | watt_hours]

• type_instance = <OBIS code>

Refer to section 2.4 and the glossary for details on the use of OBIS codes.

A.4. VerifierCloud Automatic Power Control

The VerifierCloud is a sophisticated system for queueing and distributing tasks —
primarily verification runs — to nodes of a computer cluster.

The automatic power-off and power-on functionality described in this thesis was imple-
mented in a separate feature branch “automatic-shutdown” so it could be tested without
impacting productive use on the main cluster.

All information required for powering worker nodes off and on is collected automat-
ically. However, initiating a power-off sequence requires the worker process to have
elevated privileges on the node it is running on. For this, the node’s sudoers configu-
ration needs to be amended to allow the worker process to execute the command sudo
poweroff non-interactively (i.e. without entering a password).
After privilege escalation has been configured on the node, the user can then use the

VerifierCloud command-line client to manually initiate a power-off of that node, as
well as a subsequent power-on.

To enable the automatic power-off functionality, the worker needs to be started with
a non-empty “shutdown-delay” value, either via the command-line client or from the
master’s WorkerInformation file. The configuration syntax is unchanged and described
in more detail in the official VerifierCloud documentation.

54

Bibliography

[1] D. Beyer. “Software Verification with Validation of Results (Report on SV-COMP
2017)”. In: Proc. TACAS. LNCS 10206. Springer, 2017, pp. 331–349.

[2] D. Beyer, S. Löwe, and P. Wendler. “Benchmarking and Resource Measurement”.
In: Model Checking Software - 22nd International Symposium, SPIN 2015, Stel-
lenbosch, South Africa, August 24-26, 2015, Proceedings. 2015, pp. 160–178.

[3] G. Calandrini, A. Gardel, I. Bravo, P. Revenga, J. L. Lázaro, and F. J. Toledo-
Moreo. “Power Measurement Methods for Energy Efficient Applications”. In: Sen-
sors 13.6 (2013), pp. 7786–7796.

[4] J. Case, M. Fedor, M. Schoffstall, and J. Davin. Simple Network Management
Protocol (SNMP). RFC 1157 (Historic). RFC. Fremont, CA, USA: RFC Editor,
May 1990.

[5] S. Desrochers, C. Paradis, and V. M. Weaver. “A Validation of DRAM RAPL
Power Measurements”. In: Proceedings of the Second International Symposium on
Memory Systems. MEMSYS ’16. Alexandria, VA, USA: ACM, 2016, pp. 455–470.

[6] Digital Enhanced Cordless Telecommunications (DECT); Common Interface (CI);
Part 1: Overview. ETSI EN 300 175-1. European Standard. Sept. 2005.

[7] Electricity metering - Data exchange for meter reading, tariff and load control -
Part 61: Object identification system (OBIS). IEC 62056-61:2002. International
Standard. Feb. 2002.

[8] Electricity metering data exchange - The DLMS/COSEM suite - Part 6-1: Object
Identification System (OBIS). IEC 62056-6-1:2015. International Standard. Nov.
2015.

[9] Electricity metering equipment (a.c.) - Particular requirements - Part 31: Pulse
output devices for electromechanical and electronic meters (two wires only). IEC
62053-31:1998. International Standard. Jan. 1998.

[10] Electricity metering equipment (a.c.). Particular requirements. Static meters for
active energy (class indexes A, B and C). EN 50470-3:2006. European Standard.
Dec. 2006.

[11] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft Standard). RFC.
Obsoleted by RFCs 7230, 7231, 7232, 7233, 7234, 7235, updated by RFCs 2817,
5785, 6266, 6585. Fremont, CA, USA: RFC Editor, June 1999.

55

[12] M. Hähnel, B. Döbel, M. Völp, and H. Härtig. “Measuring energy consumption for
short code paths using RAPL”. In: SIGMETRICS Performance Evaluation Review
40.3 (2012), pp. 13–17.

[13] W. V. Heddeghem, S. Lambert, B. Lannoo, D. Colle, M. Pickavet, and P. De-
meester. “Trends in worldwide ICT electricity consumption from 2007 to 2012”.
In: Computer Communications 50 (2014), pp. 64–76.

[14] Information technology – Procedures for the operation of object identifier regis-
tration authorities: General procedures and top arcs of the international object
identifier tree. ITU-T X.660 (07/2011). ITU-T Recommendation. July 2011.

[15] Information technology – Procedures for the operation of object identifier regis-
tration authorities: General procedures and top arcs of the international object
identifier tree. ISO/IEC 9834-1:2012. International Standard. May 2012.

[16] Key World Energy Statistics 2016. International Energy Agency (IEA), 2016.

[17] Message Queuing Telemetry Transport (MQTT) v3.1.1. ISO/IEC 20922:2016. Stan-
dard. June 2016.

[18] S. Ott. VerifierCloud: Implementierung eines Web-Service zur Software-Verikation.
Bachelor’s thesis. 2014.

[19] Plugs and socket-outlets for domestic and similar general use standardized in mem-
ber countries of IEC. IEC 60083:2015. International Standard. Oct. 2015.

[20] Plugs, socket-outlets and couplers for industrial purposes. IEC 60309:1999. Inter-
national Standard. Feb. 1999.

[21] J. Postel. Discard Protocol. RFC 863 (Internet Standard). RFC. Fremont, CA,
USA: RFC Editor, May 1983.

[22] D. Robinson and K. Coar. The Common Gateway Interface (CGI) Version 1.1.
RFC 3875 (Informational). RFC. Fremont, CA, USA: RFC Editor, Oct. 2004.

[23] J. Sermersheim. Lightweight Directory Access Protocol (LDAP): The Protocol.
RFC 4511 (Proposed Standard). RFC. Fremont, CA, USA: RFC Editor, June
2006.

[24] SML – Smart Message Language. BSI TR-03109-1, Anlage IV, Teil b. Technische
Richtlinie (Technical Guideline). Mar. 2013.

56

Glossary

Address Resolution Protocol

Link-layer network protocol to determine which MAC address a given IP address
is associated with by broadcasting an ARP query and waiting for a response from
the intended destination systems. 57

Advanced Message Queuing Protocol

"An open standard for passing business messages between applications or organi-
zations" 2. Can be used by collectd (described in section 3.2.5) as a transport
protocol for measurement data. 24, 57, see also Message Queue Telemetry Trans-
port

American Standard Code for Information Interchange

Character-encoding standard that uses 7-bit words to encode characters (including
the English alphabet, punctuation, and certain control codes). This set of charac-
ters is still present at the same code points in most character encodings currently
in use on the Internet. 57

AMQP

see Advanced Message Queuing Protocol 24

API

see Application Programming Interface 26

Application Programming Interface

A well-defined set of methods that allow external programs to interact with the
program providing the interface. 57

ARP

see Address Resolution Protocol 36

ASCII

see American Standard Code for Information Interchange 24

2AMQP is the Internet Protocol for Business Messaging, https://www.amqp.org/about/what

57

https://www.amqp.org/about/what

Blade server

Server with a compact form-factor, multiple of which are combined in a blade
enclosure to be mounted in a rack. 6

Central processing unit

The electronic circuitry inside a computer that executes instructions according to
its programming. 58

CGI

see Common Gateway Interface 21, 22

Cgroups

Official abbreviation of "control groups". A feature included in the Linux kernel
since 2008 that provides a unified interface to isolate processes and both monitor
and limit their use of system resources, such as CPU time, disk throughput, or
system memory. 32, 33, 39

Comma-separated values

A file format to store tabular data as plain text, with the data records (columns)
separated by commas and rows separated by line breaks. 58

Common Gateway Interface

"A simple interface for running external programs [. . .] under an information
server", such as a HTTP web server. While not formally standardized, a descrip-
tion of the "current best practice" for its use does exist [22]. 21, 58

CPU

see Central processing unit 5, 7–9, 21, 28, 30, 47, 51, 64

CSV

see Comma-separated values 23

Daemon

A program designed to be run without continuous user input 3, such as a web or
mail server. 9, 44, 52, 53

DECT

see Digital Enhanced Cordless Telecommunications 16

3FreeBSD Basics: Processes and Daemons, https://www.freebsd.org/doc/handbook/
basics-processes.html

58

https://www.freebsd.org/doc/handbook/basics-processes.html
https://www.freebsd.org/doc/handbook/basics-processes.html

Digital Enhanced Cordless Telecommunications

A telecommunications standard designed to "provide cordless communications,
both for voice traffic and for data traffic" [6], primarily for use with cordless
telephone handsets and other domestic equipment. Originally developed by the
European Telecommunications Standards Institute (ETSI), “[DECT] has also been
selected by the ITU as one of the radio interfaces for ‘International Mobile Telecom-
munications 2000’ ” [6]. 58

DIN-rail

Refers to several types of standardized metal rail profiles, used for mounting equip-
ment (such as circuit breakers) inside equipment racks and fuse boxes. The name
derives from the original standardization by the German standardization organi-
zation Deutsches Institut für Normung e.V. (DIN). The type most commonly used
in fuse boxes has a hat-shaped cross section and is therefore also referred to as
"top hat rail" or "Hutschiene" in German. 10, 11

Formal software verification

The process of proving or disproving that a given computer program satisfies a
given specification. 30

General-Purpose Input/Output

A "pin" (electric connection point) on an integrated circuit that can be config-
ured in software to act as either an input or output for electric signals. GPIO
pins often also have additional features associated with them, such as internal
software-configurable pull-up or pull-down resistors, or capabilities to trigger a
software interrupt when a certain state or change of signal level is detected. Ap-
plication Note 11496 by NXP Semiconductors, albeit not related to our hardware
setup, provides a generic overview of the electrical characteristics of GPIO pins
on modern integrated circuits: https://www.nxp.com/documents/application_
note/AN11496.pdf 59

GPIO

see General-Purpose Input/Output 12, 52

HTTP

see Hypertext Transfer Protocol 24, 53, 58

Hypertext Transfer Protocol

Application-level protocol for exchanging hypertext — such as HTML web pages
— and other data over a computer network. HTTP has been in use by the World-
Wide Web global information initiative since 1990 [11]. 59

59

https://www.nxp.com/documents/application_note/AN11496.pdf
https://www.nxp.com/documents/application_note/AN11496.pdf

IANA

see Internet Assigned Numbers Authority 37

IEC

see International Electrotechnical Commission 10

Integrated Services Digital Network

A set of link-layer communication standards used on the public telephone network.
60

International Electrotechnical Commission

The international standards and conformity assessment body for all fields of elec-
trotechnology. 4 60

International Organization for Standardization

International non-governmental organization connecting 163 national standards
bodies. 5 61

Internet Assigned Numbers Authority

Organization coordinating global Internet protocol resources, such as IP addresses
and port numbers. 6 60

Interrupt

A signal sent by a hardware or software component to cause the computer system
to temporarily 7 interrupt normal program flow and execute the matching interrupt
service routine (ISR) as soon as possible. 12, 59, 60

Interrupt service routine

A software routine registered to run when a specific interrupt is triggered. 60, 61

IP (Internet Protocol) address

Numeric identifier assigned to a network device either locally or by a central man-
agement instance and used to specify the destination of network-layer packets (such
as UDP datagrams). 36, 57, 60

ISDN

see Integrated Services Digital Network 11

4About the IEC, http://www.iec.ch/about/
5ISO: About us, https://www.iso.org/about-us.html
6IANA – About us, https://www.iana.org/about
7The system normally continues execution of the interrupted program at the same point after the

ISR has been executed.

60

http://www.iec.ch/about/
https://www.iso.org/about-us.html
https://www.iana.org/about

ISO

see International Organization for Standardization 61

ISR

see Interrupt service routine 60

JavaScript Object Notation

A textual representation of structured data; derived from JavaScript, but actually
language-agnostic and implemented by libraries in many different programming
languages. 61

JSON

see JavaScript Object Notation 26

LDAP

see Lightweight Directory Access Protocol 39, 62

Lightweight Directory Access Protocol

A network protocol that "provides access to distributed directory services" [23].
Commonly used as a standardized interface to connect applications to a central
user database for authentication purposes. 61

Logging

Recording information (such as measurement values or diagnostic messages) and
storing it persistently. The resulting storage file is usually called a "logfile". 23,
28

MAC (Media Access Control) address

Unique numeric identifier of a network interface card, used as the link-layer address
to specify the destination of packets on the network. 36, 37, 57

Magic packet

see Wake-on-LAN

Message Queue Telemetry Transport

An ISO-standardized messaging protocol designed to efficiently transmit sensor
data over a computer network [17]. 24, 62, see also Advanced Message Queuing
Protocol

Model-specific register

Sometimes also called "machine-specific register". A register (internal memory
location) that allows accessing "experimental" features in some Intel CPUs. 8, 62

61

MQTT

see Message Queue Telemetry Transport 24

MRTG

see Multi Router Traffic Grapher 20

MSR

see Model-specific register 8, 9

Multi Router Traffic Grapher

Software for collecting and storing computer performance data. See section 3.2.1.
62

Network File System

Distributed file system that uses UDP to serve files from a central server to clients
over a computer network. 31, 62

NFS

see Network File System 31

Node

One computer in a network, set, or cluster of computers. 5, 10, 12, 18, 30, 31, 52

OBIS

see Object Identification System 14, 54

Object Identification System

Specifies identification codes for “commonly used data items in electricity meter-
ing equipment” [8], including both measurement and configuration values. These
identification codes mark both the data type and meaning of a data item. 14, 62

Object identifier

Standardized system for uniquely identifying objects or concepts via a series of
integers that represent a node in the International Object Identifier Tree [14, 15].
Administration of the tree is structured hierarchically, so organizations that have
been assigned a node in the tree are free to generate OIDs under their branch as
they see fit. OIDs are used in computer protocols such as SNMP and LDAP, but
also outside the computing field in areas such as health services 8. 62, 64

OID

see Object identifier 22, 51, 53, 62
8PHIN Vocabulary Access and Distribution System, Centers for Disease Control and Prevention,

https://www.cdc.gov/phin/tools/PHINvads/index.html

62

https://www.cdc.gov/phin/tools/PHINvads/index.html

PDU

see Power distribution unit 9–11, 13, 15, 44, 46, 49

Phase

In the context of electrical power distribution using alternating current, one of
the energized electrical conductors. Power distribution can either utilize a single
phase (with a voltage potential to a single conductor called "neutral"), or multiple
phases that reach their peak voltages sequentially at different times (and therefore
have a voltage potential both to the neutral conductor, and to each other). 10

Pin

see General-Purpose Input/Output

Plug and play

Describes devices that can be begin operation without requiring explicit configura-
tion input from the user, i.e. by simply "plugging in" the device. While technically
a hardware-specific term, it is also used for software that satisfies the same require-
ment (i.e. does not necessarily need to be configured by the user). 15, 22

PNG

see Portable Network Graphics 20, 26

Portable Network Graphics

A lossless raster graphics format. 63

Power distribution unit

A device with one or more electrical input connectors, and multiple electrical
output connectors. The term is usually used for the more advanced members of
the group (such as the one described in section 2.2), although a domestic power
strip is technically also a power distribution unit. 9, 63

Rack

Usually refers to 19-inch equipment racks, which are commonly used for mounting
servers, or other electronic equipment. 6, 9, 11, 13, 15, 46, 49, 58

RAPL

see Running Average Power Limit 7–9, 46, 49, 51

Recursion

see Recursion

Round Robin Database

A fixed-size textual file format, used by the eponymous RRDtool (see section 3.2.2)
for storing time-series data. 20, 64

63

RRD

see Round Robin Database 20–23, 28, 49

Running Average Power Limit

An integrated capability for measuring and controlling the power consumption of
modern Intel "Core" and "Xeon" CPUs (available since the Sandy Bridge microar-
chitecture generation). See section 2.1. 7, 63

S0 interface

Pronounced "S-zero interface". A two-wire electrical interface for transmitting
measurement and control data. 11, 14, 16

SBC

see Single-board computer 12, 13, 15, 54

Secure Shell

Protocol to establish a secure data connection over an insecure network. Originally
targeted at providing shell access to remote systems, the SSH protocol has been
extended with additional features, such as supporting file transfers and forwarding
of TCP ports over an SSH connection. 65

Simple Network Management Protocol

Standard protocol for communicating "management information" between net-
work devices ("agents") and a controlling device. Used for both monitoring and
controlling device parameters, which are uniquely identified by object identifiers
(OIDs) [4]. 20, 65

Single-board computer

A computer that contains all required components (CPU, memory, etc.) on a
single circuit board. This design has some advantages over the traditional modular
computer construction, particularly in terms of size and cost. 12, 15, 54, 64

Single-phase

10, 12, see phase

Smart Message Language

“A communication protocol for applications in the field of data acquisition and
device parameterization” [24], such as on electronic electricity, gas, heat, or water
meters. 14, 64

SML

see Smart Message Language 14–16, 53, 54

64

SNMP

see Simple Network Management Protocol 9, 13, 16, 20–22, 28, 29, 51, 53, 62

Solid-state drive

A storage device that uses direct electronic means to store data, rather than the
rotating magnetized disks used in traditional hard-disk drives (HDDs). Due to the
absence of moving mechanical parts, SSDs can often exceed the performance of
HDDs in terms of access latency and data throughput. 25, 65

SQL

see Structured Query Language 22, 27

SSD

see Solid-state drive 65

SSH

see Secure Shell 33

Structured Query Language

A domain-specific language for querying and manipulating the contents of a database.
65

Three-phase

15, see phase

UDP

see User Datagram Protocol 37, 38, 60, 62

User Datagram Protocol

Stateless network-layer protocol. Unlike the Transmission Control Protocol (TCP),
UDP has no notion of connections and does not guarantee the order in which
packets arrive at the destination, or indeed that they will arrive at all. 65

Wake-on-LAN

Standardized protocol to remotely trigger a system’s power-on sequence by sending
a "magic packet" with specific contents (as defined by the standard) to the system’s
network interface. 34, 36, 48, 65

WoL

see Wake-on-LAN 34, 36–38, 48

65

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und nur unter Zuhil-
fenahme der ausgewiesenen Quellen und Hilfsmittel angefertigt habe. Sämtliche Stellen
der Arbeit, die im Wortlaut oder dem Sinn nach anderen gedruckten oder im Internet
verfügbaren Werken entnommen sind, habe ich durch genaue Quellenangaben kenntlich
gemacht. Die Arbeit wurde in gleicher oder anderer Form noch keiner anderen Prü-
fungsbehörde vorgelegt.

Nils Steinger, Passau, 2017-06-16

66

	1 Introduction and Outline
	2 Measurement Technologies
	2.1 Intel Running Average Power Limit (RAPL)
	2.2 Rack Power Distribution Unit APC AP8681
	2.3 Single-phase Energy Meter Eltako WSZ12DE-32A
	2.4 Electronic Electricity Meter EMH ED300L
	2.5 Alternatives

	3 Data Storage and Visualization
	3.1 General Architectural Structure
	3.2 Available Technologies
	3.2.1 MRTG
	3.2.2 RRDtool
	3.2.3 routers2.cgi
	3.2.4 Munin
	3.2.5 collectd
	3.2.6 Graphite
	3.2.7 Grafana
	3.2.8 Telegraf, InfluxDB, Chronograf and Kapacitor (TICK)

	3.3 Selected Toolchain for our Use Case

	4 Reducing the Energy Consumption of a Software-Verification Computer Cluster
	4.1 The VerifierCloud Software-Verification Task-Queueing Framework
	4.2 Implementing Automatic Worker Power Control
	4.2.1 Keeping Track of Available Worker Resources
	4.2.2 Using Wake-on-LAN to Power up Worker Nodes on Demand
	4.2.3 Automatic Power-down of Idle Workers
	4.2.4 Considerations for Choosing Idle-Timeout Values

	4.3 Resulting Savings on Energy Consumption

	5 Caveats and Possible Future Extensions
	6 Conclusion
	A Software Developed in the Context of this Thesis
	A.1 Intel RAPL Implementations
	A.1.1 SNMP Agent Interface
	A.1.2 Collectd Integration

	A.2 Reading Measurements from Single-phase Energy Meters
	A.2.1 Data Collection Daemon
	A.2.2 Command-line Interface
	A.2.3 Websocket-based Interface
	A.2.4 SNMP Agent Interface

	A.3 SML Electricity Meter Interface
	A.3.1 Command-line Interface
	A.3.2 Collectd Integration

	A.4 VerifierCloud Automatic Power Control

	Glossary

