
Bachelor Thesis

in Computer Science

Newton Refinement as Alternative to
Craig Interpolation in CPAchecker

Matthias Gerlach

Aufgabensteller: Prof. Dr. Dirk Beyer
Betreuer: Dr. Marie-Christine Jakobs, Dr. Philipp Wendler
Abgabedatum: 19.12.2018

Declaration of Authorship

I hereby declare that the thesis submitted is my own
unaided work. All direct or indirect sources used are
acknowledged as references.
This paper was not previously presented to another
examination board and has not been published.

München, 19.12.2018

. .
Matthias Gerlach

Abstract

Driven by the growing relevance of software in all kinds of areas, Software
Model Checking is an important and active field of research.

One common technique of software model checking is counterexample-
guided abstraction refinement(CEGAR). CEGAR often uses Craig Interpo-
lation to extract state assertions from error traces. Yet Craig Interpolation is
not supported by all solvers and not applicable for all problems.

Therefore, we introduce Newton Refinement as an alternative approach to
extract such state assertions. As a part of this work we implement Newton
Refinement in CPAcheckers predicate analysis and evaluate its impact based on
a broad set of benchmarks. The results show that Newton Refinement presents
an alternative to interpolation. Especially, it allows to verify programs where
interpolation is no option.

Contents

List of Figures 2

List of Tables 3

1 Introduction 4

2 Counterexample-Guided Abstraction Refinement based Pred-
icate Analysis 6

3 Newton Refinement 8
3.1 Path-Formula Abstraction using an Infeasible Core 11
3.2 Quantification of Live Variables 13

4 Implementations in CPAchecker 15
4.1 Implementation of Newton Refinement in CPAchecker 15
4.2 Implementation of a Solver Independent Quantifier Elimination 19
4.3 Implementation of a Fallback to Interpolation for Newton Re-

finement . 20

5 Evaluation 22
5.1 Comparing the Configuration Options of Newton Refinement . . 22
5.2 Evaluation of Newton Refinement regarding Different Solvers . . 26
5.3 Comparing Newton Refinement with Craig Interpolation 28
5.4 Evaluation of Quantifier Elimination 32

6 Conclusion 34

Bibliography 35

1

List of Figures

2.1 CEGAR . 7

3.1 Sourcecode of the example program 9
3.2 Reachability Tree of the example program 9

5.1 Scatter plot Newton Refinement vs. interpolation using Math-
SAT5 . 30

5.2 Scatter plot Newton Refinement vs. interpolation using Z3 with
light quantifier elimination . 30

5.3 Quantile plot for MathSAT5 . 31
5.4 Quantile plot for Z3-light . 31
5.5 Successful quantifier eliminations MathSAT5 32
5.6 Successful quantifier eliminations Z3-light 32

2

List of Tables

3.1 Sequence of Assertions Strongest Postcondition 10
3.2 Sequence of assertions using infeasible-core abstraction 12
3.3 Sequence of assertions using Live Variables 14

5.1 CPAchecker benchmark results for different configurations of
Newton Refinement using Mathsat5 as solver 24

5.2 CPAchecker benchmark results of Newton Refinement (”LBE-
Edge-LV” configuration) for different solvers 27

5.3 CPAchecker benchmark results of Newton Refinement and Craig
Interpolation using MathSAT5 and Z3 for a reduced benchmark
set . 29

3

1. Introduction

Today computers - and with them programs - are everywhere. We use pro-
grams not only for communication, work and entertainment but also in devices
relevant to our security such as cars and airplanes.

The more we depend on programs in our lives, the more important it is
that these programs work as expected. A failing program no longer just means
a crashed computer, but could eventually lead to millions of euros of damage
or even worse serious injuries or death.

Therefore, today more than ever it is necessary to find ways to prove the
correctness of programs. Thus Software Model Checking, the algorithmic anal-
ysis to prove the properties of a program, is an important and active field of
research.[4, 3, 12, 11]

One common technique of software model checkers is Predicate Abstraction[11].
The idea of predicate abstraction is to reduce the size of the model by including
only those assertions in the model which are necessary to prove the programs
correctness. Predicate abstraction is often based on counterexample-guided
refinement (CEGAR)[8]. CEGAR uses infeasible error traces found by a reach-
ability analysis to improve the model. To do so CEGAR needs a method to
extract state assertions from the error trace. These state assertions are used
as predicates in the model. One of the methods to create such state assertions
from an error trace is Newton Refinement[1].

The goal of this thesis is, to implement Newton Refinement into CPAchecker[5]
and evaluate its impact. Newton Refinement, named after the NEWTON tool
is a method to refine a given error trace to a sequence of state assertions. Many
recent tools use Craig Interpolation[9] for the refinement of error paths[2].
Historically Newton Refinement is the predecessor of Craig Interpolation and
was replaced under the assumption that Craig Interpolation creates better
predicates.

In a 2017 paper called ”Craig vs. Newton in Software Model Checking”[10],
the Newton algorithm was revisited and implemented in the Ultimate frame-
work1. The paper suggests, that Newton Refinement achieves results com-

1https://ultimate.informatik.uni-freiburg.de

4

CHAPTER 1. INTRODUCTION

parable to those of Craig Interpolation and recommends further research of
the method. Based on this paper, we implemented Newton Refinement in the
CPAchecker framework and performed a wide range of benchmarks. Another
reason why Newton Refinement is interesting is the relatively small number of
mature SMT solvers that support Interpolation. With Z3 dropping support of
interpolation this is becoming even more an issue 2.

In Sect. 2, we explain the background of CEGAR based predicate analysis.
The next section(Sect. 3) introduces the methods and optimizations used for
Newton Refinement. The implementation into CPAchecker is the topic of
Sect. 4. In Sect. 5 we will perform a number of benchmarks of CPAcheckers
predicate analysis using Newton Refinement. We compare several configura-
tions of Newton Refinement in order to find the best configuration(Sect. 5.1).
The influence of the chosen SMT solver on the results of Newton Refinement
will be analyzed in Sect. 5.2. Finally, in Sect. 5.3 we compare the best New-
ton Refinement configuration with the interpolation-based predicate analysis
of CPAchecker.

2https://github.com/Z3Prover/z3/pull/1646

5

2. Counterexample-Guided
Abstraction Refinement based
Predicate Analysis

One problem of model checking algorithms that create the entire state space is
that the number of states becomes huge or even infinite. In order to overcome
this state explosion, Predicate Analysis[11] overapproximates the state space
with abstract states. Each abstract state covers a number of concrete states
so the overall number of states can be reduced. An abstract state is a tuple
of a location within the program and a set of predicates. The predicates are
logical formulas that constrict the possible values of the program variables.

One common technique to create a predicate abstraction is Counterexample-
Guided Abstraction Refinement (CEGAR)[8]. CEGAR is based on the idea
that if we are able to find information excluding all error paths from the set
of feasible paths the program is safe.

The goal of CEGAR is to create an abstraction that overapproximates the
reachable program states. At the same time, this abstraction has to be concrete
enough to prove the unreachability of all error locations. Based on the error
traces found by a data-flow analysis, CEGAR creates predicates over the set of
program variables. The predicates overapproximate the set of feasible states
at a program location.

The basic approach of CEGAR is to iteratively refine a model based on error
paths found by the data-flow analysis. Starting with a coarse overapproxima-
tion, the abstract model of the program is steadily defined more precisely. The
CEGAR algorithm ends when all error states are excluded from the reachable
program states or a feasible counterexample is found.

CEGAR uses a reachability analysis of the program states creating a represen-
tation of the reachable state space of the program. Mature model checkers such
as CPAchecker create an Abstract Reachability Graph, incorporating methods
such as Adjustable Block Encoding [6] and much more. For sake of simplicity,
we will only consider a simple case where each state is only represented by its

6

CHAPTER 2. COUNTEREXAMPLE-GUIDED ABSTRACTION
REFINEMENT BASED PREDICATE ANALYSIS

Figure 2.1: Steps of Counterexample-Guided Abstraction Refinement

location and the predicates constricting the program variables. These predi-
cates are the result of previous iterations of CEGAR. The set of predicates of
an abstract name is named precision. To present such a state space and the
paths within we will use a reachability tree.

The steps of CEGAR are presented in Fig. 2.1. In the beginning the analysis
is started using an empty precision, creating a reachability tree without any
assertions about the program variables. Once the analysis reached an error
state, the trace to this state is reconstructed from the reachability tree. If the
error trace is feasible, CEGAR will return the trace. This means, that the
error is reachable and the trace shows the existence of a bug. If, however, the
error trace is infeasible, the abstraction is not precise enough to exclude this
trace. The model has to be refined in such a way that this error trace is no
longer reachable.

To refine the abstraction of the program, we first need to find a sequence of
assertions which excludes the trace from the reachability tree. These logi-
cal formulas are the facts required to prove the infeasibility of the path. A
commonly used way to find such a sequence is Craig Interpolation[9], but in
this thesis we will concentrate on an alternative method called Newton Refine-
ment [1], which will be explained in detail in Sect. 3.

The assertions found by either Craig Interpolation or Newton Refinement
are merged with the previous precision to create a new precision, which is
precise enough to cover the infeasible error path from the reachability tree.

The reachability analysis is restarted with the new precision and the previous
steps will be performed repeatedly until either a feasible error path is found
or the abstract model is proven safe. The model is safe when no more states
can be found by the reachability analysis. As all previously found error paths
are infeasible and now excluded by the precision, no error state is reachable.

7

3. Newton Refinement

In this section we will introduce Newton Refinement. Newton Refinement is
an approach to abstract an error trace in order to find a sequence of assertions
proving its infeasibility. The name Newton Refinement originated from the
tool NEWTON[1], where it was first implemented. In the following we will
define the Newton approach similar as described by Dietsch et al.[10].

We will use the example program displayed in Fig. 3.1 to explain the different
notations and methods. The program is safe if the ERROR label is unreachable.
The only relevant variable is x, which is first assigned to x = 0 in line 2. The
variable y is not necessary for the program logic but serves as an example for
the live-variable abstraction explained later on. As one can see the while loop
increments x by one. After the first iteration x = 1 violates the loop condition
x < 1 and the loop will not be executed a second time. The error label can
only be reached if x 6= 1, which is trivially false for x = 1. Thus, the program
is save.

Next to the program you can find the corresponding reachability tree (Fig. 3.2).
The reachability tree consists of a number of states that can be found by a
reachability analysis. Each state is described by a tuple (l, p) where l denotes
the line in the source code and p is a predicate. The predicates presented
in the tree are an example how the final set of predicates could look like.
The edges between the states are labeled with the corresponding assume or
assignment statements. These statements are simplifications of the exemplaric
C-code. The tree also depicts two error traces that could be subject of a
Newton Refinement. One error path is colored in red and the other is colored
in blue. Both end in the error location(line 9: goto ERROR;).

First, we will define some notations and terminology used to describe the
Newton Refinement in a more formal fashion.

A program run can be described by its sequence of statements, we will call
such a sequence trace τ = st1, . . . , stn. If a trace ends in an error state we
call it error trace. In order to simplify the traces we will use only two types of
statements.

8

CHAPTER 3. NEWTON REFINEMENT

1 int main () {
2 int x = 0 ;
3 int y = 1 ;
4

5 while (x < 1) {
6 x = x + 1 ;
7 }
8 i f (x != 1) {
9 goto ERROR;

10 }
11 return 0 ;
12 ERROR:
13 return −1;
14 }

Figure 3.1: Source-
code of the example
program

Figure 3.2: Reachability Tree of the example pro-
gram

1. assume ϕ: An assumption over the set of program variables, where ϕ is
a boolean expression over the set of program variables. An assumption
will not affect the values assigned to the program variables.

2. x := e: An assignment of the program variable x to an expression e over
the set of program variables. The variable x is assigned to a new value.

A possible error trace for the example program can be found in the first column
of 3.1. It represents the red trace in the reachability tree(cf. Fig. 3.2). Both
x := 0 and y := 1 are examples for assignments. The trace forms a case where
x does not fulfill the loop condition x < 1. Therefore it can be abstracted
by assume ¬(x < 1). The second assume assume x 6= 1 states that the if-
statement is fulfilled and the error is reached.

Each statement can be described by a path formula Fi = F (sti), a first-order
formula over the program variables describing the logical implication of a single
statement. As a program variable may be assigned several times in one trace,
it will be substituted by its indexed form using the formula renamei(ϕ). The
index i specifies the location of the statement in the trace.

F (sti) =

{
renamei(ϕ) if sti is assume ψ
xi = renamei(e) if sti is x := e

(3.1)

The function renamei(ϕ) replaces each program variable x in the formula ϕ by
its indexed form xk, where k is the position of the last assignment. For this

9

CHAPTER 3. NEWTON REFINEMENT

Table 3.1: Sequence of Assertions Strongest Postcondition
i sti Fi State assertion ϕi

ϕ0 := true

1 x := 0; x1 = 0
ϕ1 := x1 = 0

2 y := 1; y2 = 1
ϕ2 := x1 = 0 ∧ y2 = 1

3 assume ¬(x < 1); x1 ≥ 1
ϕ3 := x1 = 0 ∧ y2 = 1 ∧ ¬(x1 < 1)

⇒ ϕ3 := false

4 assume x 6= 1; x1 6= 1
ϕ4 := false

purpose we define k = index(x, i), that determines the last location where the
variable x has been modified.

index(x, i) =

0 if i = 0
i if sti is x := e
index(x, i− 1) else

(3.2)

The conjunction of all path formulas of a trace is called trace formula F :

F = F (st1) ∧ F (st2) ∧ . . . ∧ F (stn) (3.3)

Based on the satisfiability of the trace formula we can decide whether a trace
is feasible or not. If the trace formula is unsatisfiable, the trace is infeasible
and a refinement is possible. If the formula F is satisfiable, the trace is a
counterexample proving an error within the program.

Returning to our example, the path formulas are depicted in the second
column of Tab. 3.1. To show the application of renaming, we will explain
it using statement st4(assume x 6= 1). The assume statement contains the
program variable x which has to be replaced by its indexed form. x has last
been modified in st1 , so we substitute (x 6= 1)[x → x1] and obtain the path
formula F4 = x1 6= 1.

The output of Newton Refinement is a sequence of assertions ϕ0, . . . , ϕn for
the trace τ = st1, . . . , stn. The sequence proves the infeasibility of the trace.
Each sequence of assertions has to fulfill following conditions:

ϕ0 = true (3.4)

ϕi+1 = SP(ϕi, sti+1) for i = 0, . . . , n− 1 (3.5)

ϕn = false (3.6)

The first assertion, corresponding to the location prior to the first statement
of the trace, always has to be true as no assertion can be made at this point.

10

CHAPTER 3. NEWTON REFINEMENT

The last assertion is the postcondition of the whole trace and is always false,
otherwise the error trace would be feasible and the refinement would never be
started. All assertions in between the first and last assertion are derived by it-
eratively performing the strongest postcondition operation on each statement.
The precondition we use is the postcondition of the previous statement. The
necessary operations to compute the strongest postcondition are described in
the following paragraph.

We want to create an inductive sequence of assertions, where each assertion is
stronger than the one before. Therefore we iterate over the program trace and
compute the strongest postcondition for each statement using the formula φ
as precondition. φ represents the strongest postcondition of the predecessor.
The first assertion is always true (cf. Eq. 3.4), so the precondition φ of the
first statement is also true .

The strongest postcondition operation can be defined for our two types of
statements as:

SP(φ, x := e) = ∃xj.F (x := e) ∧ φ (3.7)

SP(φ, assume ψ) = φ ∧ F (assume ψ) (3.8)

The strongest postcondition operation is basically a conjunction of the pre-
condition φ and the path formula F (sti) of the statement sti. In the case of
an assignment we are additionally able to quantify the previous assignments
of x. This may be done as all following references will only reference the new
indexed variable. The quantified variable xj references the previous assign-
ment of x. To remove the quantified formula from the assertion we can use
quantifier elimination.

In our example trace the results are presented in the third column of
Tab. 3.1. This trace does not contain any reassignment, so no quantifica-
tion has to be applied. The assertion ϕ3 is already unsatisfiable and can be
substituted with false as it contains the contradiction x1 = 0 ∧ x1 ≥ 1. The
resulting sequence of assertions fulfills all conditions defined before.

3.1 Path-Formula Abstraction using an Infea-

sible Core

Let formula Φ be a unsatisfiable conjunction of a set of formulas {F1, . . . , Fn}.
UC is an Unsatisfiable Core of Φ if UC ⊆ {F1, . . . , Fn} holds and the conjunc-
tion of the subset still is unsatisfiable. An unsatisfiable core has to be neither
minimal nor unique, and the set of all formulas is an unsatisfiable core itself.

11

CHAPTER 3. NEWTON REFINEMENT

Table 3.2: Sequence of assertions using infeasible-core abstraction
i Program Trace sti Path Formula Fin Strongest Postcondition with IC

ϕ0 := true

1 x := 0; x1 = 0
ϕ1 := x1 = 0

2 y := 1; y2 = 1
ϕ2 := x1 = 0

3 assume x < 1; x1 < 1
ϕ3 := x1 = 0

4 x = x+ 1; x4 = x1 + 1
ϕ4 := ∃x1.x1 = 0 ∧ x4 = x1 + 1

⇒ ϕ4 := x4 = 1
5 assume ¬(x < 1); x4 ≥ 1

ϕ5 := x4 = 1
6 assume x 6= 1; x4 6= 1

ϕ6 : x4 = 1 ∧ x 6= 1

⇒ ϕ6 := false

We will use the concept of an unsatisfiable core in the context of state assertions
to obtain the infeasible core. As an unsatisfiable trace formula F (cf. Eq. 3.3)
indicates an infeasible path, we name an unsatisfiable core of the trace formula
Infeasible Core (IC(F)). So when we compute the unsatisfiable core of the
trace formula, we get a subset of path formulas which are required to make
the trace infeasible.

Now we will define the strongest postcondition in a way that uses the infea-
sible core for abstraction. Only path formulas that are part of the infeasible
core will be added to the post condition. All other path formulas are ab-
stracted. An abstracted assignment still changes the value of the program
variable x. Therefore we can quantify the old indexed variable xj.

SPIC(ϕ, x := e) =

{
∃xj.F (x := e) ∧ ϕ if F (x := e) ∈ IC(F)
∃xj.ϕ else

(3.9)

SPIC(ϕ, assume ψ) =

{
ϕ ∧ ψ if F (assume ψ) ∈ IC(F)
ϕ else

(3.10)

In order to show the changed behavior of the strongest postcondition when
using the infeasible-core abstraction, we present a different trace of the example
before. The refinement is performed on the error trace as displayed in the
first column of Tab. 3.2. The trace is highlighted in the reachability tree (cf.
Fig. 3.2) with a blue color. The path formulas of the trace are presented in
the second column and we obtain the set of all path formulas F .

F = {x1 = 0, y2 = 1, x1 < 1, x4 = x1 + 1,¬(x4 < 1), x4 6= 1}

12

CHAPTER 3. NEWTON REFINEMENT

Now we suppose that we obtain the following infeasible core IC(F)

IC(F) = {x1 = 0, x4 = x1 + 1, x4 6= 1}

Based on the infeasible core, we are now able to compute the strongest post-
conditions using the definitions 3.9 and 3.10. The calculated strongest post-
conditions are presented in the third column of Tab. 3.2. One can see that
no longer every path formula, but only those formulas contained within the
infeasible core add to the sequence of assertions. This results in shorter and
less specific assertions, whereas the last assertion is still unsatisfiable.

3.2 Quantification of Live Variables

We call a variable Live Variable at position i of the trace iff it is read in any
following statement stj(where j > i). The concept of live variables is used to
eliminate variables, which are not future live from the strongest postconditions.
They do not add any information necessary for making the trace infeasible and
can be safely quantified.

To discover variables that are not future live in a specific assertion, we use
the following procedure. Starting with the sequence of assertions, all variables
present in the sequence of assertions are mapped to the last path formula they
are part of.

last read(x) = last read(x, n) (3.11)

Where n is the index of the path formula and x is some program variable. We
define a helper function lastpos(x, i) to create a recursive function returning
the index of the last statement where x was used.

last read(x, i) =

0 if i = 0
i if x occurs in Fi

last read(x, i− 1) else
(3.12)

When we apply last read(x) on a program variable we obtain the last position
it was read. We can now divide the program variables into two sets for each
location i. The set of variables which are future live (FLi) and those which
are not (FLi).

For the set of variables not being future live (FL) holds:

∀x ∈ FLi.last read(x) ≤ i (3.13)

13

CHAPTER 3. NEWTON REFINEMENT

Table 3.3: Sequence of assertions using Live Variables
i sti Fi State assertion ϕi FLi FLi

ϕ0 := true

1 x := 0; x1 = 0 {x1, y2} {}
ϕ1 := x1 = 0

2 y := 1; y2 = 1 {x1} {y2}
ϕ2 := ∃y2.x1 = 0 ∧ y2 = 1

⇒ ϕ2 := x1 = 0
3 assume ¬(x < 1); x1 ≥ 1 {x1} {y2}

ϕ3 := x1 = 0 ∧ ¬(x1 < 1)

⇒ ϕ3 := false

4 assume x1 6= 1; x1 6= 1 {} {x1, y2}
ϕ4 := false

And in turn for the set of future live variables (FL) holds:

∀x ∈ FLi.last read(x) > i (3.14)

Variables which are not future live will be existentially quantified and therefore
removed from the state assertion. So we define the future live operation as:

LV(ϕi) = ∃ν0, . . . , νn.ϕi with {ν0, . . . , νn} = FLi (3.15)

Returning to our example, we look at the red trace in Fig. 3.2. We present
the trace in more detail in Tab. 3.3. The statements are presented in the first
column of the figure. The corresponding path formulas are displayed in the
second column. The third column shows the state assertions for each state.
Finally the fourth and fifth column present the sets of future-live variables FLi

and its complement FLi .
As the variable y is assigned in the second statement and never used later

on, it is a perfect example for a variable which is not future live. The last
position of the indexed variable y2 is computed to be last read(y2) = 2 and
therefore y2 is not future live in any position i ≥ 2. So we are able to existen-
tially quantify y2 in ϕ2. The variable x1 is future live in all positions except
for the last. It could be quantified in ϕ4, but as a quantification on false has
no effect it is omitted.

14

4. Implementations in
CPAchecker

The algorithm for Newton Refinement was implemented into CPAchecker [5],
a state of the art software verification tool developed by SosyLab. CPAchecker
combines various program analysis and model checking algorithms in one
framework.

In detail, the Newton Refinement was implemented to extend the function-
ality of the predicate analysis included in CPAchecker. It adds an alternative
to the default error trace refinement based on Craig Interpolation.

Newton Refinement depends on quantifier elimination for creating high-quality
predicates. As Quantifier Elimination is not supported by all SMT-solvers, an
additional module performing a best effort quantifier elimination was devel-
oped. In the following, it will be called PseudoQuantifierElimination.

4.1 Implementation of Newton Refinement in

CPAchecker

The core of the Newton refinement was implemented in the NewtonRefine-

mentManager class. It is build upon the already implemented predicate analy-
sis of CPAchecker and reuses existing components. CPAchecker represents pro-
grams by a control-flow automaton(CFA), a directed graph where the edges(CFAEdge)
represent statements of the program. Each CFAEdge has a corresponding Path-

formula.
CPAcheckers reachability analysis creates an Abstract Reachability Graph

(ARG), a directed graph representing all reachable states. CPAchecker recon-
structs the error trace from the ARG once an error state is found. Afterwards
it uses Newton Refinement to create a sequence of assertions from this error
trace.

One of the core parts of Newton Refinement is the creation of the strongest
postcondition at the error trace locations. In this thesis we developed two

15

CHAPTER 4. IMPLEMENTATIONS IN CPACHECKER

independent methods to compute the strongest postconditions of the trace.
The first method is implemented to be close to the approach described by
Dietsch et. al.[10] and we will call it edge level abstraction. It performs the
abstraction at each CFAEdge of the error trace. The second method called
block-level abstraction uses the Blockformulas provided by the Adjustable-
Block Encoding [6]. Adjustable-block encoding is used to encode a configurable
number of statements in one logical formula. The resulting formulas are called
Blockformulas as they encode a block of edges instead of a single edge. We
name the states where a Block starts or ends abstraction state.

In order to abstract the postconditions, we implemented the infeasible-core and
the live-variable abstraction. Both optimizations were previously introduced
in Sect. 3.1 and Sect. 3.2.

By default, Newton Refinement is deactivated within the CPAchecker pred-
icate analysis. To enable Newton Refinement you have to add the following
option to your configuration file:

cpa . p r ed i c a t e . r e f inement . useNewtonRefinement = true

In the following, we will describe the implementation of the different methods
in more detail and will also describe which configuration options have to be
set to use a specific method.

4.1.1 Implementation of the Edge-Level Abstraction for
Newton Refinement

As mentioned before, the edge-level abstraction is implemented in a way to be
close to the methods described in Newton vs. Craig [10]. It is based on the
path formulas of each edge in the control-flow automaton instead of the block
formulas derived by the optimized reachability analysis.

Each statement in the error trace results in a CFAEdge in the CFA. A
CFAEdge holds information about the type(CFAEdgeType) of the statement it
represents. Based on the type, we map each edge type to one of our statement
types described in chapter 3.

• An CFAEdge will be treated as an assume statement if its CFAEdgeType

is AssumeEdge.

• If the CFAEdgeType is one of {StatementEdge, DeclarationEdge, Func-
tionCallEdge, ReturnStatementEdge, FunctionReturnEdge} it will be
considered an assignment.

In order to have a simple way to access all required information to a position
within the trace, we introduce the helper class PathLocation. A PathLo-

cation holds information about the position of a state within the trace, the

16

CHAPTER 4. IMPLEMENTATIONS IN CPACHECKER

incoming CFAEdge, its Pathformula, and whether it is an abstraction state.
To represent the whole trace we create a list of PathLocations from the initial
state to the error state.

To create the sequence of assertions we loop over the PathLocations and
create the postcondition for each CFAEdge by applying the rules introduced in
Sect. 3. For an assignment, we will first create the conjunction of the post-
condition of the previous edge and the path formula of the edge itself. Within
the resulting formula, we will now existentially quantify the indexed variables
which have been assigned to a new value. Afterwards, we try to eliminate the
quantified variables from the formula by using the PseudoQuantifierElimi-

nationManager introduced in chapter 4.2.

We start with the initial assertion true for the initial state. The predicate
analysis only requires assertions for abstraction states, but we create the post-
condition of each CFAEdge. Therefore we have to detect if a PathLocation

has a corresponding abstraction state and only then do we add its strongest
postcondition to the sequence of assertions. After we iterated over all trace
locations, we obtain the final postcondition which is the postcondition of the
whole error trace. As the error trace is infeasible, otherwise the refinement
would not be performed, this last assertion needs to be false (cf. Eq. 3.6).
If it is not, we return an exception stating that our algorithm was not able
to obtain a strong enough assertion. This may happen as not every quantifier
elimination is successful. If the final postcondition is strong enough, we return
the sequence of assertions.

Edge-level abstraction and block-level abstraction are mutually exclusive set-
tings. Edge-level abstraction is the default configuration but can also be spec-
ified in the configuration file with following option.

cpa . p r ed i c a t e . r e f inement . newtonref inement . ab s t r a c t i onLeve l = EDGE

4.1.2 Implementation of the Block-Level Abstraction for
Newton Refinement

The block-level abstraction is a more high level approach to the methods de-
scribed in Newton vs. Craig [10]. Instead of calculating the postconditions
for each edge of the automaton we use the block formulas calculated between
abstraction states in the abstract reachability graph. These block formulas are
an optimization, as they cover a larger part of the reachability tree.

BlockFormulas between the abstraction states are treated similar to the
path formulas used in Sect. 3. Instead of quantifying a variable at each point
it is assigned a new value, we will abstract all variables with an old index at

17

CHAPTER 4. IMPLEMENTATIONS IN CPACHECKER

each abstraction state. In this case, an old index means that the index is not
equal to the last location where the variable has been assigned. CPAchecker
already holds these information about the variable indices in the path formulas
SSAindex, so that variables with an old index can be easily detected and
existantially quantified. In order to quantify and eliminate the variables we
again use the PseudoQuantifierEliminationManager.

Block-level abstraction can be activated with following configuration setting.

cpa . p r ed i c a t e . r e f inement . newtonref inement . ab s t r a c t i onLeve l = BLOCK

4.1.3 Implementation of the Infeasible Core Abstrac-
tion

One way to abstract the strongest postcondition to a helpful predicate is an
abstraction based on the unsatisfiable core of the trace formula. The trace
formula is the conjunction of all path formulas of the trace. For block-level
abstraction, the path formulas of the blocks between abstraction states are
already computed and provided as a parameter. For edge-level abstraction,
the path formulas can be obtained from the list of PathLocations.

The unsatisfiable core of the trace formula is calculated by the SMT solver
and the result is the infeasible core of path formulas. The infeasible core is a
subset of the path formulas.

We use this set of formulas to determine whether a statement, and re-
spectively its path formula, can be abstracted while performing the strongest
postcondition operation. We test for each path formula(respectively block for-
mula for block-level abstraction) if it is part of the infeasible core. If it is not,
the path formula will not be conjuncted to the postcondition of the previous
block. It does not add any information that is necessary for the infeasibility
of the trace formula. Nonetheless, if an assignment is performed within the
block or edge, the old indexed variables will be quantified.

The infeasible core abstraction is active by default but can be deactivated with
a configuration option:

cpa . p r ed i c a t e . r e f inement . newtonref inement . i n f e a s i b l eCo r e = f a l s e

4.1.4 Implementation of the Live Variable Abstraction

The live-variable abstraction is implemented as a post processing on the pred-
icates to keep it independent from the code for strongest postcondition and
infeasible core.

18

CHAPTER 4. IMPLEMENTATIONS IN CPACHECKER

First, we create a set containing all variables which occur within the predicates.
Then we loop over the trace locations to create a map, where each variable is
mapped to the path location where it is last read. Based on this information
we can now filter the variables in each predicates, whether they are relevant
for following assertions or not. This can be easily done by comparing the last
location where the variable is read with the location of the predicate.

If the variable is not read in following path formulas it will be added to
the set of variables that can be safely quantified. Once all variables within a
predicate are filtered, all variables which are not future live will be existentially
quantified. Then we try to eliminate them using the PseudoQuantifierElim-

inationManager described in Sect. 4.2.

Using live variables is the default behavior. To deactivate live-variable ab-
straction following configuration option may be added:

cpa . p r ed i c a t e . r e f inement . newtonref inement . l i v eVa r i a b l e s = f a l s e

4.2 Implementation of a Solver Independent

Quantifier Elimination

Quantifier elimination is an important operation for the quality of the predi-
cates obtained by Newton Refinement, but several solvers including the solver
MathSAT51, best supported by CPAchecker, do not support it.

As there exist some simple methods to perform quantifier elimination on
conjunctions, a module to utilize these methods is a possible improvement for
Newton Refinement. In particular these methods are described in the paper
Newton vs. Craig[10].

The first way of simplification is Destructive Equality Resolution, abbreviated
as DER. If there is a clause which asserts the equality of the variable and an
arbitrary expression, this variable can be substituted by this expression in all
other parts of the conjunction. Or more formally ∃x.x = t∧ϕ is equivalent to
ϕ[x 7→ t] if t does not contain x.

To achieve this, the quantified formula is sorted in conjuncts containing
quantified variables and those not containing any quantified variables. The
next step is to find conjuncts defining an equality where one of the arguments
is a quantified variable. Once such an equality is found, all other occurrences
of the quantified variable are replaced by the term it is equal to.

1http://mathsat.fbk.eu

19

CHAPTER 4. IMPLEMENTATIONS IN CPACHECKER

DER is activated by default, yet it can be disabled with the following config-
uration option:

cpa . p r ed i c a t e . pseudoExistQE . useDER = f a l s e

The second simplification strategy used is the Unconnected Parameter Drop,
or UPD. If we find a satisfiable conjunct only containing quantified variables
and theory axioms(e.g. numbers, boolean values), we can drop this conjunct
as it does not influence any other part of the formula.

Similar to DER, UPD is also enabled by default but can be deactivated by
setting:

cpa . p r ed i c a t e . pseudoExistQE . useUPD = f a l s e

Additionally the module implements a way to use the quantifier elimination
offered by the solver. If such a functionality is available, it can be used to
quantify variables which cannot be eliminated by the simplification techniques
explained above.

By default, the PseudoQuantifierEliminationManager will use best ef-
fort quantifier elimination(LIGHT). But it can also be configured to not use
the solver(NONE) or to use the full quantifier elimination (FULL), which
may result in very long run times. Not all solvers support quantifier elimina-
tion. For the solvers not supporting it, this option is always set to NONE:

cpa . p r ed i c a t e . pseudoExistQE . so lverQeTact i c = [NONE,LIGHT,FULL]

Quantifier elimination is not always successful as the implemented methods
are only a best effort way of removing quantified variables from the formula.
Furthermore, not all solvers support quantifier elimination and even if they
do it may fail. To avoid returning a still quantified formula it is possible
to overapproximate the formula by dropping all conjuncts containing any of
the quantified variables. The resulting formula is weaker than the result of a
quantification, but it may be helpful to have such a weaker formula.

Overapproximation is turned off by default. To activate the functionality
one can add the following option to the configuration file:

cpa . p r ed i c a t e . pseudoExistQE . overapprox = true

4.3 Implementation of a Fallback to Interpo-

lation for Newton Refinement

As described before, the refinement will not always find a strong enough for-
mula to exclude the analyzed error trace. To be still able to continue the
analysis of the program it is possible to use the existing interpolation-based

20

CHAPTER 4. IMPLEMENTATIONS IN CPACHECKER

refinement as a fallback. Due to the modularized structure of the software,
this can be done quite easily. A fallback will occur either if the last predicate
is not strong enough to exclude the error trace and an exception is raised or if
an error trace is found a second time.

Fallback to interpolation is deactivated by default. To enable the fallback
functionality, following configuration option has to be set:

cpa . p r ed i c a t e . r e f inement . newtonref inement . f a l l b a c k = true

21

5. Evaluation

The implementation of Newton Refinement1 was tested on the SV-COMP 2018
benchmark set2 consisting of a huge number of different programs. The set
is commonly used to perform benchmarks of software verification tools. The
benchmark itself was performed using BenchExec[7], a benchmark framework
developed to evaluate the effectiveness and efficiency of software verification
tools. The benchmarks where executed on Linux3 machines with Intel Xeon
CPUs4. Each run was limited to use at most 15GB of RAM and 2 CPU-cores.
The time limit was set to 600s per run.

The evaluation of our implementation of Newton Refinement is split into three
sections. In Sect. 5.1 we test several configurations of Newton Refinement
against each other to find the best configurations. In Sect. 5.2 we select one
configuration of Newton Refinement and compare the different SMT solvers
supported by CPAchecker. Moreover, we will analyze the influence of solver-
based quantifier elimination for those solvers that support quantifier elimina-
tion. Finally in Sect. 5.3 we compare Newton Refinement with Craig Interpo-
lation.

Another aspect evaluated is the implementation of quantifier elimination,
which we present in Sect. 4.2. The different implemented methods were evalu-
ated regarding the number of successful quantifier eliminations over the bench-
mark set.

5.1 Comparing the Configuration Options of

Newton Refinement

In this section we compare the evaluation results of CPAcheckers predicate
analysis with Newton Refinement for several configuration combinations. We

1Based on CPAchecker revision trunk:29456
2https://github.com/sosy-lab/sv-benchmarks/tree/svcomp18
3Linux 4.15.0-38-generic
4Intel Xeon E3-1230 v5 @ 3.40 GHz

22

CHAPTER 5. EVALUATION

compare these configurations regarding their effectiveness, respectively their
ability to successfully prove or disprove programs of the benchmark set. For all
tests in this section, we will use MathSAT5 5 as SMT-solver. We use MathSAT5
because it is the default solver of CPAchecker and most used in other analysis
configurations. We test the Newton Refinement configurations for two types
of adjustable-block encoding. Adjustable-block encoding can be configured in
several ways to set the block size of the blocks between abstraction states. For
the first type we choose a block size of 1, which means each edge of the CFA
acts as a block. For simplicity, we will refer to this configuration as single-
block encoding(SBE). The second type we use is the default configuration of
CPAchecker, where only loop heads act as abstraction states. We will refer to
this configuration as large-block encoding(LBE).

The configurations of Newton Refinement are named as followed. ”Block”
and ”Edge” refer to the abstraction level used by Newton Refinement(cf. Sect.
4.1.1 and 4.1.2). The additional ”IC” states that infeasible-core abstraction
was used (cf. Sect. 4.1.3). When the configuration name contains ”LV”, we
quantify variables which are not future live (cf. Sect. 4.1.4). If the con-
figuration name contains an additional ”fb” the fallback to interpolation(cf.
Sect. 4.3) option is turned on.

For each configuration we present the total number of correct/incorrect
proofs(true) and alarms(false) as well as the number of timeouts and other
errors. We present the benchmark results of the configurations tested in this
section in Tab. 5.1. The first group shows the results of the predicate analysis
with Newton Refinement for a configurations where the ABE block size is set
to 1(SBE). The second group presents results where the default ABE setting
was used (LBE). The last group contains configurations of the predicate anal-
ysis, where interpolation was used. It contains the default configuration of
predicate analysis as well as configurations of Newton Refinement, where the
fallback to interpolation is activated. This group is included to evaluate the
fallback option of Newton Refinement at the end of this section. Moreover the
inclusion of interpolation-based predicate analysis allows a better estimation
of how effective the Newton Refinement configurations are. A more detailed
comparison of Newton Refinement with interpolation will follow in Sect. 5.3.
We highlight the best configuration for each group and result type with a green
background.

5http://mathsat.fbk.eu/

23

CHAPTER 5. EVALUATION

Table 5.1: CPAchecker benchmark results for different configurations of New-
ton Refinement using Mathsat5 as solver.

Correct Correct Incorrect Incorrect Other
true false true false Timeout Error

SBE-Edge 1329 266 0 3 3166 659
SBE-Edge-IC 1419 241 0 1 1918 1844
SBE-Edge-LV 1287 283 0 2 3242 609
SBE-Edge-IC-LV 1383 222 0 2 1970 1848
SBE-Block 1419 281 0 1 2872 850
SBE-Block-IC 1420 281 0 1 2880 841
SBE-Block-LV 1398 279 0 1 2919 826
SBE-Block-IC-LV 1399 277 0 1 2917 829

LBE-Edge 1786 598 0 3 2473 563
LBE-Edge-IC 1884 628 0 1 1845 1065
LBE-Edge-LV 1894 686 0 3 2241 599
LBE-Edge-IC-LV 1877 625 0 1 1857 1063
LBE-Block 1538 412 0 1 2685 787
LBE-Block-IC 1539 411 0 1 2680 792
LBE-Block-LV 1545 411 0 1 2664 802
LBE-Block-IC-LV 1546 410 0 1 2666 800

SBE-Interpolation 1514 324 0 1 2565 1019
SBE-Block-IC-LV-fb 1405 283 0 1 2951 783
SBE-Edge-IC-LV-fb 1472 295 0 1 2683 972
LBE-Interpolation 2055 731 1 3 1880 753
LBE-Block-IC-LV-fb 1620 435 0 1 2732 635
LBE-Edge-IC-LV-fb 1981 711 1 1 1985 744

24

CHAPTER 5. EVALUATION

First, we will evaluate the results of configurations using ABE with block
size 1(SBE). Therefore, we look at the the first group. Overall the con-
figurations using block-level refinement seem to perform better. Only
”SBE-Edge-IC” achieves a similar number of correct proves, yet it finds no-
ticeably less correct false results. When we look at the infeasible-core abstrac-
tion, it positively influences both edge-level and block-level abstractions for
true proofs. For ”SBE-Edge-IC(-LV)”, infeasible-core abstraction reduces the
number of correct alarms and increases the number of errors. These errors
are mostly cases where the created sequence of assertions is not strong enough
and the error path is discovered a second time. Live variable abstraction has a
negative effect on the number of correct proofs for both edge-level and block-
level abstraction. ”SBE-Edge-LV” is also the configuration finding the most
correct falses.

The second group of Tab. 5.1 contains the configurations of Newton Refine-
ment where the default configuration of ABE was used. First we notice that
all configurations using LBE are better than even the best configuration us-
ing SBE. The best LBE configuration(”LBE-Edge-LV”) correctly verifies 50%
more programs than the best SBE configuration(”SBE-Block-IC”). This shows
that Newton Refinement profits a lot from the more abstract model introduced
by larger block sizes. When we look into the differences between configurations
using block-level abstractions and those using edge-level abstractions, we can
observe two things.

The first observation is that edge-level abstraction creates more correct
proofs and alarms. The difference is quite big: the best edge-level result
”LBE-Edge-LV” is successful in 2580 cases, while ”LBE-Block-IC-LV”(the best
block-level result) solves only 1956 cases.

The second observation is the effect of the optimizations ”IV” and ”LV”
on the results. When we look at the edge-level abstraction ”LBE-Edge-IC”,
it successfully verifies 128 more programs than ”LBE-Edge”. As for the SBE
cases, infeasible-core abstraction results in a higher number of errors. The
reason for these errors are state assertions that are not strong enough to prove
the paths infeasiblity.

The live-variable abstraction has an even bigger effect on the number of
successful verifications. The configuration ”LBE-Edge-LV” produces 198 cor-
rect results more than ”LBE-Edge”. The combination ”LBE-Edge-IC-LV”
performs worse than both ”LBE-Edge-LV” and ”LBE-Edge-IC” but is still
better than ”LBE-Edge”.

Block-level abstraction does not profit as much from the optimizations. The
best block-level configuration ”LBE-Block-IC-LV” creates just 6 successful re-
sults more than ”LBE-Block”. One possible explanation for this small effect
may be the complexity of the formulas because LBE encodes several state-

25

CHAPTER 5. EVALUATION

ments in one formula. For complex formulas, the simple methods of quantifier
elimination introduced in 4.2 are less likely to succeed. The number of errors
is roughly the same for all configurations using block-level abstraction,too.

Finally we look at the third group of configurations in Tab. 5.1. Regarding
the influence of SBE and LBE we can make the same observations as for the
first two groups. The LBE configurations outperform all SBE configurations.
The fallback to interpolation configurations are, as expected, better than the
same configurations without fallback. But they do not reach the same amount
of correct results as interpolation does. The comparison of interpolation with
Newton Refinement will follow in Sect. 5.3.

Based on the findings of this section we can sum up some observations. First,
Newton Refinement profits from the big block sizes created by the ABE default
settings. Second, for LBE the edge-level abstraction outperforms the block-
level abstraction with up to 25% more correct results. Third, ”LBE-Edge-LV”
is the best overall configuration and we will use it in all following benchmarks.

5.2 Evaluation of Newton Refinement regard-

ing Different Solvers

In this chapter we will analyze the effect of different solvers on the results of the
predicate analysis with Newton Refinement. We want to analyze which solver
is most successful when using Newton Refinement. Another aspect we want
to analyze is the influence of solver-based quantifier elimination for solvers
supporting quantifier elimination.

We will perform benchmarks using MathSAT5 6, Z3 7, SMTInterpol8 and
Princess9 as SMT solvers. Each solver has different abilities. MathSAT5 and
Z3 are the only solvers that support the theory of Bitvectors and can com-
pute bitprecise SMT formulas. These two are also the only solvers supporting
floating point formulas. Moreover, only Z3 and Princess support quantifier
elimination.

We present the results of CPAchecker predicate analysis runs with the differ-
ent solvers in Tab. 5.2. All runs presented in this table are configured to use
Newton Refinement with edge-level abstraction and activated live variable ab-
stractions(cf. ”LBE-Edge-LV” in Sect. 5.1). For all runs, ABE is configured
to end block formulas only at loop heads.

6http://mathsat.fbk.eu/
7https://github.com/Z3Prover/z3
8https://ultimate.informatik.uni-freiburg.de/smtinterpol/
9http://www.philipp.ruemmer.org/princess.shtml

26

CHAPTER 5. EVALUATION

Table 5.2: CPAchecker benchmark results of Newton Refinement (”LBE-
Edge-LV” configuration) for different solvers.

Correct Correct Incorrect Incorrect
true false true false Unknown

MathSAT5-none-bv 1894 685 0 3 2841
Z3-none-bv 1574 389 0 10 3450
Z3-light-bv 1576 390 0 10 3447
Z3-full-bv 1366 340 0 9 3708

MathSAT5-none-int 1807 765 12 237 2602
Z3-none-int 1576 554 8 223 3062
Z3-light-int 1575 554 8 223 3063
Z3-full-int 1430 493 8 217 3275
Princess-none-int 1390 251 8 175 3599
Princess-light-int 1393 250 8 175 3597
Princess-full-int 1224 280 8 171 3740
SMTInterpol-none-int 1500 400 11 143 3369

In order to provide a better comparability between all solvers we split the
benchmark configurations in two groups. The first group performs bitprecise
computations and only contains benchmarks for MathSAT5 and Z3. The sec-
ond group contains all solvers and is configured to encode bitvectors as integers.
This is a configuration supported by all solvers. Moreover, in this group, floats
are encoded as rationals with exception of Princess, which only supports the
encoding of floats as integers. For the default stack size Z3 often stops with
segmentation faults. To avoid these errors, we set the stack size for these runs
to 1 GB.

The configurations are named starting with the solver name. The next
name component is ”none”,”light” or ”full” and specifies the setting of the
solver-based quantifier elimination. As only Z3 and Princess support quantifier
elimination, the other solvers are only tested with ”none”. The last component
is either ”bv” for bitvector encoding or ”int” for integer encoding.

First we will look at the solvers supporting the theory of bitvectors, MathSAT5
and Z3. The configurations using bitvector encoding are presented in the first
group of Tab. 5.2. As we can easily see, using MathSAT5 as a solver produces
the best result. But Newton Refinement also produces a good number of
correct proofs and alarms when using Z3. Of the 3 configurations of Z3, we
find the best result for ”Z3-light-bv”. This is the configuration where Z3 solves
quantifier eliminations with a best effort strategy if they could not priorly be
solved by DER and UPD(cf. Sect. 4.2). The result of ”Z3-none-bv” is only
slightly worse than the ”light” setting. Interestingly, the weakest result for

27

CHAPTER 5. EVALUATION

Z3 is the configuration using the ”full” quantifier elimination strategy. In this
case, the quantifier elimination often leads to timeouts or segmentation faults,
even with a stack size of 1 GB.

For the configurations using integers to encode bitvectors we notice a far higher
number of incorrect results. This is not surprising as the integer encoding is
not bitprecise. The high number of incorrect results is an issue of all solvers.
Moreover, we notice that MathSAT5 and Z3 find more correct alarms as for
bitvector encoding. For the configurations using Princess or SMTInterpol, the
number of correct results is smaller than for those using MathSAT5 or Z3. The
solver-based quantifier elimination has only a small effect for a ”light” strategy
and a negative effect for a ”full” strategy. This applies for both supporting
solvers, Z3 and Princess. The full quantifier elimination seems to add too
many complex computations to be useful.

Based on the results of this section we conclude that using bitvector encoding
is much more precise. Therefore, we will concentrate our further efforts on the
solvers supporting bitvectors(MathSAT5 and Z3). Regarding the quantifier
elimination we will use the ”light” configuration.

5.3 Comparing Newton Refinement with Craig

Interpolation

In this section, we compare Newton Refinement and Craig Interpolation re-
garding both their effectiveness and efficiency. The goal is to evaluate in how
far Newton Refinement can be regarded as an alternative to Craig Interpola-
tion. Another interesting observation will be if Newton Refinement can solve
cases where interpolation fails.

In order to get more relevant results, we use a second benchmark set con-
sisting only of programs which need at least one refinement step. For New-
ton Refinement we use the configuration ”LBE-Edge-LV” of Sect. 5.1. This
means we use large-block encoding, edge-level abstraction, and live variables.
The interpolation is performed with the default configuration for the predi-
cate analysis of CPAchecker. Moreover we will use the two solver configura-
tions ”MathSAT5-none-bv” and ”Z3-light-bv” which are the most promising
solver configurations(cf. Sect. 5.2). We define four test cases, ”MathSAT5-
Interpolation”, ”MathSAT5-Newton”, ”Z3-Interpolation” and ”Z3-Newton”.

In Tab. 5.3 we present the effectiveness of the defined Configurations. The
results are divided in two groups. The configurations of the first groups use
MathSAT5 as a solver while the second uses Z3. In each group we add an

28

CHAPTER 5. EVALUATION

Table 5.3: CPAchecker benchmark results of Newton Refinement and Craig
Interpolation using MathSAT5 and Z3 for a reduced benchmark set

Correct Correct Incorrect Incorrect
true false true false Unknown

MathSAT5-Interpolation 1672 735 1 3 2184
MathSAT5-Newton 1507 684 0 3 2401
subset 1427 666 0 1 2084

Z3-Interpolation 1270 391 0 10 2924
Z3-Newton 1188 391 0 10 3006
subset 1119 355 0 10 2819

additional row called subset. It represents the subset of programs where both
interpolation and Newton create the same result.

When we look at the first group we can see that interpolation produces 216
correct results more than Newton Refinement. Regarding the incorrect results,
interpolation produces one incorrect proof and Newton none. By comparing
the configurations with the subset of solved programs we can determine how
many programs can be solved by only one configuration. Interpolation manages
to compute 245 correct proofs and 69 correct alarms, which could not be
solved by Newton. In return, Newton is able to solve 80 correct proofs and 18
correct alarms where interpolation failed. This shows that Newton Refinement
can verify a reasonable amount of problems for which interpolation fails or is
to slow. When we inspect the cases where interpolation fails and Newton
succeeds, we observe that in many cases interpolation ends with an error. The
error states that interpolation is not applicable for the specific problem. For
the cases where interpolation succeeds and Newton fails, the reason often is a
timeout. Thus, Newton would probably solve these cases for a higher timelimit
or additional computing resources.

A similar observation can be made for the second group where Z3 is used.
Interpolation can create 82 correct proofs more than Newton. The difference
between the two configurations is smaller than for MathSAT5. Next we regard
the cases exclusively solved by only one configuration. The number of cases
exclusively solved by interpolation include 151 correct proofs and 46 correct
alarms. Newton manages to create 69 correct proofs and 46 correct alarms
of programs unsolved by interpolation. As for MathSAT5, this shows that
Newton Refinement can increase the number of solvable programs.

The performance indicator we analyze is the CPU time used to create a proof
or alarm. Figures 5.1 and 5.2 contain the scatter plots of the CPU time
used for generating correct results. The horizontal axis indicates the time
needed by Craig Interpolation while the vertical axis shows the time needed

29

CHAPTER 5. EVALUATION

 1

 10

 100

 1000

 1 10 100 1000

C
P
U

 T
im

e
 f

o
r

N
e
w

to
n
 R

e
fi
n
e
m

e
n
t

(s
)

CPU Time for Interpolation (s)

Figure 5.1: Scatter plot Newton
Refinement vs. interpolation using
MathSAT5

 1

 10

 100

 1000

 1 10 100 1000

C
P
U

 T
im

e
 f

o
r

N
e
w

to
n
 R

e
fi
n
e
m

e
n
t

(s
)

CPU Time for Interpolation (s)

Figure 5.2: Scatter plot Newton Re-
finement vs. interpolation using Z3
with light quantifier elimination

by Newton Refinement. The central diagonal line marks the area where both
configurations need the same amount of time. It also divides the plots in two
halfs, the top left half containing results where interpolation was faster than
Newton Refinement and the bottom right half where interpolation was slower.

Based on the plot in Fig. 5.1 we can observe two kind of patterns. The
first observation is the cluster along the diagonal line. It indicates that for a
good part of the test cases both interpolation and Newton Refinement need a
similar amount of time. The second observation are the data points which are
more distant to the diagonal. We can see that the number of points in the top
left half is bigger than in the bottom right half. This means that the amount of
programs where interpolation outperforms Newton Refinement is greater than
the other way around. But the fact that not all points are in the top left half
of the plot also means that in some cases Newton Refinement performs better.

In Fig. 5.2 we present the same kind of plot using Z3 as solver. As for Math-
SAT5 also for Z3 we notice that the majority of the points can be found
along the diagonal. But for Z3 we see two clusters along the diagonal. One
cluster of programs that can be solved rather quickly in the bottom left and
another cluster in the top right. The rest of the data points are more evenly
distributed. This means both Newton-based and interpolation-based predi-
cate analysis solve some problems faster. The amount of these points is also
roughly equal. So we can determine that the difference regarding the solving
time between Newton and Craig is rather small, when we use Z3.

30

CHAPTER 5. EVALUATION

 1

 10

 100

 1000

 0 500 1000 1500 2000 2500

C
P
U

 t
im

e
 (

s)

n-th fastest correct result

Interpolation
Newton Refinement

Figure 5.3: Quantile plot for Math-
SAT5

 1

 10

 100

 1000

 0 500 1000 1500 2000 2500

C
P
U

 t
im

e
 (

s)

n-th fastest correct result

Interpolation
Newton Refinement

Figure 5.4: Quantile plot for Z3-
light

In Fig. 5.3 and Fig. 5.4, we display the quantile plots for the configurations of
Tab. 5.3. When we look at the left figure, we can see the plot for MathSAT5.
Interpolation-based refinement can solve more programs than Newton. The
form of the curves is rather similar, which supports our observation in the
scatter plot that for a big number of programs interpolation and Newton need
a similar amount of time. The difference of solved problems in a specific time
grows continously. This indicates that the advantage of interpolation applies
for programs of all complexities.

In Fig. 5.4 we can see the quantile plot of the predicate analysis using Z3 as
a solver. As we could already establish, Z3 performs worse than MathSAT5.
The two curves share a similar form. Both configurations perform very similar
for the fastest 1300 verification problems, which can all be solved within a
time of roughly 50s. After the fastest 1300 cases the required time for solving
increases fast. For both configurations, there are only few cases that can be
solved in 50s - 100s. Yet both configurations can solve several hundred cases
where the computation takes more than 100s. For these cases, the difference
between interpolation and Newton becomes bigger. Interpolation can solve
more such programs than Newton.

These observations correlate with the two clusters of the scatter plot(cf.
Fig. 5.2). The bottom left cluster contains cases with an execution time of less
than 50s. The top right cluster contains the cases where the execution takes
longer than 100s.

In conclusion we can note that interpolation based predicate analysis performs
better, especially when using MathSAT5. Yet also Newton Refinement can
provide some advantages and is faster for some programs. Moreover, Newton
Refinement succeeds in many cases where interpolation is not applicable. For
these cases, Newton Refinement adds a new way of verification.

31

CHAPTER 5. EVALUATION

Figure 5.5: Successful quantifier
eliminations MathSAT5

Figure 5.6: Successful quantifier
eliminations Z3-light

5.4 Evaluation of Quantifier Elimination

In order to evaluate the effect of the implemented methods to perform some
best effort quantifier elimination, we will analyze which method is responsible
for successful quantifier eliminations. The analysis is based on the statistics
for quantifier elimination over the whole set of benchmark programs used in
Sect. 5.3. We analyze the two configurations of Newton Refinement using
MathSAT5 and Z3 as solvers.

In Fig. 5.5 and Fig. 5.6, we present the percentages of successful and unsuccess-
ful quantifier eliminations. The successful quantifier eliminations are grouped
by the method responsible for the elimination. Both charts are based on the
whole set of programs used in Sect. 5.3. The order of the performed operations
is as followed. First, we try DER then UPD and when both were unsuccessful,
we apply the light strategy of quantifier elimination for Z3. Another order
would probably lead to other results because the light strategy also makes use
of the two other methods.

In Fig. 5.5, MathSAT5 was used as solver. The percentages are based
on ≈ 105 million quantifier eliminations performed while proofing the set of
programs. With around 30.6% solved quantifier eliminations, Unconnected
Parameter Drop is the most useful of the methods that we implemented. To-
gether with Destructive Equality Resolution we were able to perform half of
the quantifier eliminations without the need for a supporting solver.

On Fig. 5.6, we present the statistics for the quantifier eliminations using
the Z3 solver on the same set of programs. We used the light quantifier elimi-
nation strategy as it performed far better than full quantifier elimination in the
previous benchmarks in Sect. 5.2. Surprisingly, the integrated quantifier elim-

32

CHAPTER 5. EVALUATION

ination does not outperform the rather simple methods DER and UPD. Only
a small fraction of additional quantifier eliminations could be solved using the
solver. For Z3 DER is more successful than UPD.

33

6. Conclusion

Over the course of this thesis we presented the concept of CEGAR, introduced
Newton Refinement and implemented it in CPAchecker. Moreover we evalu-
ated various configurations of CPAcheckers predicate analysis using Newton
Refinement. In this context we also analyzed which solvers are the best option
to be used with Newton Refinement. Finally we compared our work with the
already implemented Craig Interpolation.

Even though Newton Refinement cannot create as many correct results as
Craig Interpolation, it is interesting for several reasons. Firstly Newton Re-
finement is able to solve some problems where interpolation does not succeed.
This is interesting as it extends the number of programs that can be veri-
fied. When a problem cannot be solved using Craig Interpolation, Newton
Refinement presents a second configuration to try.

Secondly Newton Refinement is independent of the availability of an in-
terpolating solver. Thus it can be used with solvers where interpolation is no
option. Z3, one of the solvers supported by CPAchecker, will no longer sup-
port interpolation in future releases1. This makes MathSAT5 the only solver
supported by CPAchecker that supports both interpolation and the theory of
bitvectors. In order to stay independent of a single solver it is vital to have
alternatives like the presented Newton Refinement.

A possible future extension of CPAchecker could be to implement a routine to
try Newton refinement if interpolation fails. A similar configuration ”fallback
to interpolation”(cf. Sect. 4.3) has been implemented in this thesis. It tries to
perform an interpolation refinement when Newton fails.

Even though we present extensive benchmarks within this thesis, further
configurations of predicate analysis using Newton Refinement are possible.
Therefore additional benchmarks using other configurations may be interest-
ing.

1https://github.com/Z3Prover/z3/pull/1646

34

Bibliography

[1] Tom Ball and Sriram Rajamani. Generating abstract explanations of
spurious counterexamples in C programs. Technical report, 2002.

[2] Dirk Beyer. Reliable and reproducible competition results with
BenchExec and witnesses (Report on SV-COMP 2016). In Proceed-
ings of the 22nd International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, LNCS 9636, pages 887–904.
Springer, 2016.

[3] Dirk Beyer, Matthias Dangl, and Philipp Wendler. A unifying view
on SMT-based software verification. Journal of Automated Reasoning,
60(3):299–335, 2018.

[4] Dirk Beyer and Karlheinz Friedberger. Domain-independent multi-
threaded software model checking. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, pages 634–
644. ACM, 2018.

[5] Dirk Beyer and M. Erkan Keremoglu. CPAchecker: A tool for con-
figurable software verification. In Proceedings of the 23rd International
Conference on Computer Aided Verification, LNCS 6806, pages 184–190.
Springer-Verlag, 2011.

[6] Dirk Beyer, M. Erkan Keremoglu, and Philipp Wendler. Predicate ab-
straction with adjustable-block encoding. In Proceedings of the 10th In-
ternational Conference on Formal Methods in Computer-Aided Design,
pages 189–197. FMCAD, 2010.

[7] Dirk Beyer, Stefan Löwe, and Philipp Wendler. Reliable benchmarking:
Requirements and solutions. International Journal on Software Tools for
Technology Transfer (STTT), 2017.

[8] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement for symbolic model
checking. J. ACM, 50(5):752–794, 2003.

35

BIBLIOGRAPHY

[9] William Craig. Linear reasoning. a new form of the herbrand-gentzen
theorem. Journal of Symbolic Logic, 22(3):250–268, 1957.

[10] Daniel Dietsch, Matthias Heizmann, Betim Musa, Alexander Nutz, and
Andreas Podelski. Craig vs. newton in software model checking. In Pro-
ceedings of the 2017 11th Joint Meeting on Foundations of Software En-
gineering, ESEC/FSE 2017, pages 487–497, 2017.

[11] Susanne Graf and Hassen Saidi. Construction of abstract state graphs
with pvs. In Computer Aided Verification, pages 72–83. Springer, 1997.

[12] Kenneth L. McMillan. Interpolation and Model Checking, pages 421–446.
Springer, 2018.

36

	List of Figures
	List of Tables
	Introduction
	Counterexample-Guided Abstraction Refinement based Predicate Analysis
	Newton Refinement
	Path-Formula Abstraction using an Infeasible Core
	Quantification of Live Variables

	Implementations in CPAchecker
	Implementation of Newton Refinement in CPAchecker
	Implementation of a Solver Independent Quantifier Elimination
	Implementation of a Fallback to Interpolation for Newton Refinement

	Evaluation
	Comparing the Configuration Options of Newton Refinement
	Evaluation of Newton Refinement regarding Different Solvers
	Comparing Newton Refinement with Craig Interpolation
	Evaluation of Quantifier Elimination

	Conclusion
	Bibliography

