
Chair for Software Systems
Institute for Informatics
LMU Munich

Bachelor Thesis in Computer Science:

Specifying Loops
With Contracts

Reasoning about loops
as recursive procedures

Gregor Cassian Alexandru

August 8, 2019

I dedicate this work to the memory of Prof. Martin Hofmann, who
was an amazing teacher and inspiration, and left us all too soon.

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbstständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

... (Unterschrift des Kandidaten)
München, den 8. August 2019

5

Abstract

Recursive procedures can be inductively verified to fulfill some contract, by assuming
that contract for recursive calls. Since loops correspond essentially to linear recursion,
they ought to be verifiable in an analogous manner. Rules that allow this have been
proposed, but are incomplete in some aspect, or do not lend themselves to straight-
forward implementation. We propose some implementation-oriented derivatives of the
existing verification rules and further illustrate the advantages of contract-based loop
specification by means of examples.

Contents
1 Introduction 11

2 Motivating Example 12
2.1 Verification using an Invariant . 12
2.2 Using a local Recursive Procedure . 13
2.3 Comparison . 15

3 Preliminaries 16

4 Predicate transformer semantics 17
4.1 Prerequisites . 17
4.2 Loop specification rule for weakest precondition 20
4.3 Soundness proof . 20
4.4 Context-aware rule . 22
4.5 Rules in strongest postcondition . 22

5 Rules in Hoare Logic 24
5.1 Preliminaries . 24
5.2 Loop specification rule in Hoare logic . 25

6 Implementation 26

7 Example Application to Textbook Algorithms 29
7.1 Euclid’s algorithm . 29
7.2 Fast Exponentiation . 31

8 Related Work 34

9 Conclusion 34

9

1 Introduction
Writing correct software is hard. If we want to be certain of a program’s correctness, we
need to do two things: First specify how it ought to behave, then verify that it fulfills
that specification. When writing programs that should perform some finite computation,
this is usually done using pre- and postconditions, which together form the program’s
contract. The postcondition often relates the final to the initial state.

The process of finding logical formulae that, if valid, prove the correctness of the
implementation of a contract (assuming some semantics for the language used), is called
verification condition generation. The VCG for a program that contains no loops or
procedure calls may be completely automated using predicate transformers [Dij76].

Of course, in the course of writing a program to implement some contract, we might
need to do iteration, perhaps using a loop. Unrolling the loop will not terminate in
general, even in simple cases. For example, if we wanted to prove such a simple statement
as {i ≥ 0}while i 6= 0 do i := i − 1 done {i = 0}, we could not do it using loop-
unrolling, since i has no upper bound.

If we put aside for a moment the possibility of nontermination, we can prove some
property of a loop by induction over the number of its iterations. The most studied such
inductive property since [Hoa69] has been the invariant assertion, briefly known as the
“invariant”: An assertion that holds before and after each step in the iteration.

We would be similarly justified in wanting to specify a loop by its relation of the pre- to
the post-iteration state. This can also be phrased as an inductive property, but requires
alternative ways of reasoning about loops. Tuerk [Tue10] states an axiomatic rule that
allows this, but uses higher-order logic to do so, making the rule hard to implement
directly and overshooting the rule’s intention a bit in generality.

Hehner [HG99] proposes a refinement semantics for loops which allows inductively
proving a loop fulfills some “specification”, which by his definition may explicitly be
a relation of pre- and post-execution states. Since he doesn’t give these a predicate
transformer semantics though, the approach is not integrated.

To give an overview, in this thesis we:

• Recognize the usefulness of the specification statement [Mor88] for using and ver-
ifying loops with contracts, especially as a reification of the induction hypothesis
in the inductive step of the verification proof.

• Define a rule for inductive verification of while-loops for partial correctness based
on this, in predicate transformer semantics (Section 4.2), as well as as an axiomatic
rule (Section 5.2).

• Prove the soundness of our weakest-precondition rule in the refinement calculus,
using refinement semantics for loops [HG99] (Section 4.3)

• Describe our prototypical implementation of the rule in a verification tool for a
model language, written in Scala (Section 6).

• Specify and verify some textbook algorithms using our rules, observing how it
compares to the invariant (Section 7).

11

2 Motivating Example

Note on the code The following code snippets will all use a Python-like pseudocode,
annotated with specifications in [slanted brackets]. We use Python slice notation
for sublists in the specification. We use separation logic[Rey02] to talk about the state
of the heap.

We want to prove the correctness of a procedure which concatenates two lists:

[pre: list(xs,xdata)*list(ys,ydata)]
def concat(xs,ys):

if xs == None: xs = ys
else:

zs = xs
while zs.next != None:

zs = zs.next
zs.next = ys

[post: list(xs,xdata++ydata)]

The lists we are dealing with here are singly-linked, None-terminated heap-allocated
reference types. The precise definition of the list() predicate is given in Figure 1.

list(p, []) ⇔p = None

list(p, x :: xs) ⇔∃q. (p.data 7→ x) ∗ (p.next 7→ q) ∗ list(q, xs)

Figure 1: list() Definition

2.1 Verification using an Invariant

We will verify this iterative implementation of the algorithm by specifying the loop with
an invariant. To find the invariant, we visualize the iteration happening over the linked
list xs:

12

We find the invariant to be that in every iteration, xs is split at zs into an ini-
tial segment, containing data1, and the remaining list zs, containing data2, so that
data1++data2==xdata. At the end of iteration, we have lseg(xs,xdata[:-1],zs) and
list(zs,xdata[-1:]). With the redirection of zs.next to ys after the loop, we have
the desired postcondition, list(xs,xdata++ydata).

[pre: list(xs,xdata)*list(ys,ydata)]
def concat(xs,ys):

if xs == None: xs = ys
else:

zs = xs
while zs.next != None:
[inv:∃ data1,data2. xdata=data1++data2*
lseg(xs,data1,zs)*list(zs,data2)]

zs = zs.next
zs.next = ys

[post: list(xs,xdata++ydata)]

We notice two things:

• Because the computation is only completed (that is, the pointer is redirected) after
the loop has ended, the invariant only ensures that our program is in the desired
state at the end of iteration.

• We therefore talk about the states left by incomplete computations. This requires
us to introduce the new predicate lseg().

2.2 Using a local Recursive Procedure

We want to find an approach where we only need to specify complete computations.
This means we need to treat the loop and subsequent statement as a single block. We
can rewrite our program to this intent by locally defining a recursive procedure loop(zs
: List), which we immediately apply:

[pre: list(xs,xdata)*list(ys,ydata)]
def concat(xs,ys):

if xs == None: xs = ys
else:

def loop(zs):
if zs.next == None:

zs.next = ys
else:

loop(zs.next)
loop(xs)

[post: list(xs,xdata++ydata)]

13

We now need to annotate the local recursive procedure with pre- and postconditions.
Our proof obligation will be to show:

• That the specification gives us the desired result at the place where the procedure
is called (loop(xs))

• That the procedure fulfills its specification.

We will try to deduce the specification:

• To avoid a None-dereference with zs.next, we need to ensure that zs != None.
This will be in the precondition of loop().

• In order for the method’s postcondition of list(xs,xdata++ydata) to hold after
the call loop(xs), the postcondition of loop() must be list(zs,zdata++ydata)
and list(zs,zdata)*list(ys,ydata) must be added to the precondition accord-
ingly.

The specification is therefore:

[pre: zs != None, list(zs,zdata)*list(ys,ydata)]
def loop(zs):

if zs.next == None:
zs.next = ys

else:
loop(zs.next)

[post: list(zs,zdata++ydata)]

We use Hoare’s axiomatic rules for recursive procedures [Hoa71] to draw the proof outline
for verifying the call loop(xs) in Figure 2.

P := zs!=None,list(zs,zdata)*list(ys,ydata)

Q := list(zs,zdata++ydata)

σ := [zs\xs, zdata\xdata] (Parameter substitution)
IH := {P}loop(zs){Q} (Induction Hypothesis)

Induction base
` {P ∧ zs.next==None}zs.next=ys{Q}

...
Inductive step

IH ` {P ∧ zs.next!=None}loop(zs.next){Q}
...

IH ` {P} if zs.next==None : zs.next=ys else: loop(zs.next){Q} Cond

` {P}loop(zs){Q} Recursive Invocation

` {Pσ}loop(xs){Qσ} Parameter Substitution

Figure 2: Recursive Invocation Proof Tree

14

To prove the specification, it’s enough that in the inductive case zs.next is not redi-
rected, since in the base case the last pointer of the chain is redirected to ys, which
causes the lists to be concatenated, which result is propagated up the call stack due to
the recursive definition of the datatype.

2.3 Comparison
At this point we should pause and reflect on the differences between the approaches.
The invariant talks about states. pre- and postconditions talk about a change in state.
The invariant talks about incomplete computations. A recursive procedure talks about
a complete computation in its postcondition, possibly by relying on its recursive calls to
establish the postcondition in their respective state.

In the particular case of linear iteration over linked datastructures, inductive verifi-
cation gives us the additional benefit that it follows the recursive definition of the type
(compare Definition 1). This is a consequence of the fact that iteration with loops
corresponds to linear recursion, and linear recursive functions are hylomorphisms of
cons-lists [MFP91, p. 4].

Following graphic might serve to illustrate the differences:
I . . .

I ∧ c

↘p1

I . . .
I ∧ ¬c

pre ∧ c postS0
Sn. . .

pre ∧ c post
Si−1

Sn

↘p1 ↖
pre postSi

Sn. . .
pre ∧ ¬c p2−→ post

Sn−1

Sn

The specification with an invariant assertion doesn’t take full advantage of the power
of an inductive proof. If we want to prove the loop establishes some relation post be-
tween the state before iteration, S0, and the final state Sn, we can show inductively that
it holds in the base case (postSn−1

Sn
) and inductively that postSi

Sn
→ post

Si−1

Sn
. We can

see that pre acts like an invariant everywhere except for in the base case, so we could
describe the invariant as an eternal precondition, a description that fits well with the
“incomplete computations” we already related it to.

15

3 Preliminaries
We concern ourselves with a simple while-language:

Prog ::= skip (do nothing)
| Var τ := Exprτ (assignment)
| {Prog;Prog} (sequential composition)
| if ExprBool then Prog else Prog (conditional composition)
| while ExprBool do Prog done Prog (while loop)
| ~Var : [Assertion,Assertion] (specification statement)

• The specification statement is introduced in section 4.1.

• Var τ , Exprτ denote variables/expressions of type τ . We won’t go into detail on
the grammar of these expressions, suffice it to say we assume the usual operations
on integer and Boolean expressions are available.

• We, like Tuerk [Tue10], consider loops of the form while c do p1 done p2, that
is, that have a rest program which executes the base case of the iteration. We
saw in the motivating example a case where this was vital; in general it draws
a nicer correspondence to conditional statements, which are also of the form
if c then p1 else p2. Hehner does not consider this in [HG99], so we have slightly
altered his refinement semantics rule to accommodate for it, in Section 4.1.

• while-loops without done branches or if-statements without else-branches may
be written as while c do p and if c then p, respectively.

Note on Notation:

• With P [~x\~y] we mean “P , where all free occurrences of ~x have been replaced by
~y, avoiding capture of any free variables in ~y”.

• In general we will take f or ~f to stand for a fresh (vector) of variables.

Even though the motivating example uses separation logic, we will not concern our-
selves with its peculiarities in the further examination, as we show in Section 5.2 that
our rule allows local reasoning just like Tuerk’s.

16

4 Predicate transformer semantics

4.1 Prerequisites

As stated in the introduction, we want to find a rule with predicate transformer semantics
that will allow us to inductively verify a loop specified by how it changes the program
state. The two transformers, strongest postcondition and weakest precondition, are dual,
so we will first express ourselves only in weakest precondition, to avoid redundancy. The
applicable rules are found in Figure 6.

Second, we will need the notion of refinement, and will need a way for “specifications”,
that can also relate states, to take the place place of code for the purpose of verification
condition generation, i. e., they must have a predicate transformer semantics.

Third we will need some refinement semantics for loops that will let us inductively
verify they fulfill a specification.

{P}S{Q} := P → wp〈S •Q〉 (1a)
Relation to Hoare-Triples

wp〈skip •R〉 := R (1b)
Skip

wp〈p1; p2 •R〉 := wp〈p1 • wp〈p2 •R〉〉 (1c)
Sequential composition

wp〈x := E •R〉 := ∀y. y = E → R[x\y] (1d)
Assignment – Expanded

wp〈x := E •R〉 := R[x\E] (1e)
Assignment

wp〈if c then p1 else p2 •R〉 := c ∧ wp〈p1 •R〉 ∨ ¬c ∧ wp〈p2 •R〉 (1f)
Conditional

wp〈while c do p1 done p2 •R〉 := c ∧ wp〈p1 • wp〈while c do p1 done p2 •R〉〉
∨ ¬c ∧ wp〈p2 •R〉 (1g)

Loop-Unrolling

Figure 3: wp-Rules – Since wp is used inductively for rule (1g), we need to define what
that means: We define an inductive predicate to be the smallest relation veri-
fying the given clauses.

Refinement

Definition 4.1 (Refinement). An (abstract) program P is refined by Q (denoted P v Q),

17

iff Q satisfies any specification satisfied by P . More precisely:

P v Q :⇔ ∀R. wp〈P •R〉 → wp〈Q •R〉

Refinement allows us to view implementations as fulfilling “more” than the specifica-
tions of a contract that they implement, seen itself as an abstract program. Conversely,
it allows us to abstract away from an implementation to its contract, if only the con-
tract is of interest to us. (The “more” specifications the implementation fulfills are the
implementation details that are frequently not of interest)

Theorem 4.1 (Monotonicity of Refinement). If S[T] is a program with subprogram T ,
and T v T ′ then S[T] v S[T ′] (see [Mor88])

Monotonicity is what makes refinement modular: We can switch out components of
a program for components that fulfill more specifications, and retain a program that
fulfills (now, more than) its original specifications.

Specifications as programs Morgan [Mor88] proposes a way to reason about spec-
ifications as programs: The specification statement. It is a statement of the form
~w : [pre, post] meaning: “A program that, given the condition pre holds, establishes
condition post, while modifying variables ~w”.
Crucially, he allows for relating the pre- and post-execution states using a modifier
(old()) on variables in the postcondition which denotes they should be evaluated in the
pre-execution state. He encodes all this in following semantics:

Definition 4.2.

wp〈~w : [pre, post] •R〉 := pre ∧ (∀~w. post[~old(w)\~f] → R)[~f\~w]

Lemma 4.2. If R contains no old()-designated variables:

wp〈~w : [pre, post] •R〉 = pre ∧ (∀~w. post → R)[~old(w)\~w]

Specification statements are extremely useful in their own right. For example, we can
model an assignment x := E as the specification statement x : [true, x = E[x\old(x)]].
Or we can model a type of generalized assignment where we don’t have an equational
relation describing the assigned value, e.g. x : [x > 0].(We will from now on omit a
precondition of true).

Referring to initial state Morgan doesn’t define a rule for old() appearing in a general
postcondition R in wp〈p • R〉. Since we will need some defined behavior for this in the
following, and since we find old() practical to use in postconditions in general, we propose
following modified weakest precondition transformer, written wp, which we allows us to
reference the states of variables before execution of some program p:

18

Definition 4.3 (Referring to initial state).

wp〈p •R〉 := ~x = ~f → wp〈p •R[~old(x)\~f]〉

⇔ wp〈p •R〉 := wp〈p •R[~old(x)\~f]〉[~f\~x]

⇔ wp〈p •R〉 := wp〈p •R〉[~old(x)\~x]

where ~x are all variables designated with old() in R.

We give an example of referring to initial state in this way with a sequence of assign-
ments modeled as specification statements, in Figure 4.

Reference names for syntactic transformations:

Rename bound variables to avoid capture (2a)
Perform Substitution (2b)

Calculate wp〈x := x+ 2;x := x+ 1 • x = old(x) + 3〉:

wp〈x : [x = old(x) + 2];x : [x = old(x) + 1] • x = old(x) + 3〉 (4.3)

 wp〈x : [x = old(x) + 2];x : [x = old(x) + 1] • x = f + 3〉[f\x] (1c),(4.2)

 wp〈x : [x = old(x) + 2] • (∀x.x = g + 1 → x = f + 3)[g\x]〉[f\x] (2a),(2b)

Here we have to rename x, as bound by the quantifier, so that

the free x will not be captured when we substitute it for g

= wp〈x : [x = old(x) + 2] • (∀y.y = x+ 1 → y = f + 3)〉[f\x] (4.2)

 (∀x.x = g + 2 → ∀y.y = x+ 1 → y = f + 3)[g\x][f\x] (2a),(2b)×2

= ∀z.z = x+ 2 → ∀y.y = z + 1 → y = x+ 3

Figure 4: At any step in the evaluation, x is the current value of x. As soon as we step
back, old(x) becomes the current x and x must be renamed as it is now the x
in the following state.

Refinement Semantics for loops The standard least fixed-point semantics for loops
states:

while c do p1 done p2 = if c then p1;while c do p1 done p2 else p2

W = if c then p1;W else p2 → W w while c do p1 done p2

Hehner [HG99] proposes following alternative refinement semantics:

W v while c do p1 done p2 := W v if c then p1;W else p2

19

That means, if we want to prove that a loop refines some program W , we can use W
instead of the loop after one unfolding1. This corresponds in essence to the Recursive
Invocation Rule [Hoa71, p. 109] for verifying procedures. Note that these semantics
can only be used to prove partial correctness. A variant must be provided to prove
termination, if total correctness is to be shown.

We can use this semantics, in particular, to show that a loop fulfills some specification
[pre, post], by taking as W ~w : [pre, post], where ~w are the variables modified by the loop.

4.2 Loop specification rule for weakest precondition

We want to define wp〈[pre]while c do p1 done p2[post] • R〉, that is, “The weakest
precondition so that our loop, which we assume satisfies post given pre (modifying
variables ~w), fulfills R”. That means, for verification we let ~w : [pre, post] take the place
of the loop. The monotonicity law of refinement (4.1) then requires that the loop refine
~w : [pre, post]. The first version of the rule therefore states:

wp〈[pre]while c do p1 done p2[post] •R〉 :=
wp〈~w : [pre, post] •R〉∧
~w : [pre, post] v while c do p1 done p2

We propose following premises for the refinement condition, which we prove to be
sufficient in Section 4.3:

∀~v. pre → wp〈if c then p1; ~w : [pre, post] else p2 • post〉

⇔ ∀~v. pre ∧ ¬c → wp〈p2 • post〉[~old(w)\~w] Induction Base

∧∀~v. pre ∧ c → wp〈p1; ~w : [pre, post] • post〉[~old(w)\~w] Inductive Step
(where ~v are all free variables in p1, p2.)

Our proposed rule is therefore:

wp〈[pre]while c do p1 done p2[post] •R〉 :=
wp〈~w : [pre, post] •R〉∧

∀~v. pre ∧ ¬c → wp〈p2 • post〉[~old(w)\~w]∧ Induction Base

∀~v. pre ∧ c → wp〈p1; ~w : [pre, post] • post〉[~old(w)\~w] Inductive Step

(3)

where ~w are all variables modified by, and ~v all variables free in p1, p2.

4.3 Soundness proof

For this proof we will need following lemma [Dij76]:
1We could not do this with fixed-point semantics, since using W there would require W w while[. . .],

due to monotonicity

20

Lemma 4.3 (Monotonicity of wp). (R → S) → wp〈p •R〉 → wp〈p • S〉

Theorem 4.4 (Soundness of Contract While-Rule). Let while c do p1 done p2 be
a loop, ~w all the variables modified by, ~v all free in p1, p2. Then ~w : [pre, post] v
while c do p1 done p2 if (Induction Base) and (Inductive Step) hold, where:

∀~v. pre ∧ ¬c → wp〈p2 • post〉[~old(w)\~w] (Induction Base)
∀~v. pre ∧ c → wp〈p1; ~w : [pre, post] • post〉[~old(w)\~w] (Inductive Step)

Proof.

~w : [pre, post] v while c do p1 done p2

(loop refinement semantics)
⇔ ~w : [pre, post] v if c then p1; ~w : [pre, post] else p2

(definition of refinement (4.1))
⇔ ∀R. wp〈~w : [pre, post] •R〉 → wp〈if c then p1; ~w : [pre, post] else p2 •R〉

(condidional rule (1f))
⇔ ∀R. wp〈~w : [pre, post] •R〉 → (c ∧ wp〈p1; ~w : [pre, post] •R〉 ∨ ¬c ∧ wp〈p2 •R〉)

(equational rearrangement, choose arbitrary R)
⇔ ((c ∧ wp〈~w : [pre, post] •R〉) → wp〈p1; ~w : [pre, post] •R〉)
∧ ((¬c ∧ wp〈~w : [pre, post] •R〉) → wp〈p2 •R〉)

(Lemma 4.2)

⇔
((

c ∧ pre ∧ (∀~w. post → R) [~old(w)\~w]
)
→ wp〈p1; ~w : [pre, post] •R〉

)
∧
((

¬c ∧ pre ∧ (∀~w. post → R) [~old(w)\~w]
)
→ wp〈p2 •R〉

)
(use (Induction Base),(Inductive Step))

⇔
((

wp〈p1; ~w : [pre, post] • post〉[~old(w)\~w] ∧ (∀~w. post → R) [~old(w)\~w]
)

→ wp〈p1; ~w : [pre, post] •R〉
)

∧
((

wp〈p2 • post〉[~old(w)\~w] ∧ (∀~w. post → R) [~old(w)\~w]
)
→ wp〈p2 •R〉

)
(unify substitutions)

⇔ ((wp〈p1; ~w : [pre, post] • post〉 ∧ (∀~w. post → R)) → wp〈p1; ~w : [pre, post] •R〉) [~old(w)\~w]

∧ ((wp〈p2 • post〉 ∧ (∀~w. post → R)) → wp〈p2 •R〉) [~old(w)\~w]
(use Lemma (4.3), given that p1, p2 modify only variables in ~w, per definition)

⇒ (wp〈p1; ~w : [pre, post] •R〉 → wp〈p1; ~w : [pre, post] •R〉) [~old(w)\~w]

∧ (wp〈p2 •R〉 → wp〈p2 •R〉) [~old(w)\~w]

21

4.4 Context-aware rule

Previously we showed refinement independently of context – that is, pre has to suffice
as precondition for the inductive base & step. We forced independence from context by
quantifying over all variables ~v free in p1, p2.

We can always strengthen the precondition from the context though: For the variables
modified in p1, ~w1, we must assume an arbitrary value – all others remain unchanged by
each iteration of the loop.

wp〈[pre]while c do p1 done p2[post] •R〉 :=
wp〈~w : [pre, post] •R〉∧

∀ ~w1. pre ∧ ¬c → wp〈p2 • post〉[~old(w)\~w]∧ Induction Base

∀ ~w1. pre ∧ c → wp〈p1; ~w : [pre, post] • post〉[~old(w)\~w] Inductive Step
where ~w are all variables modified by p1, p2 and ~w1 by p1.

(5)
This version of the rule is practical if we want to avoid having to state a lot of informa-

tion from the context in the precondition of the loop. E.g. it would allow following pro-
gram to be verified: (i := 42; [true]while false do skip done j := i[j = 42]), whereas
the other would not. It is a matter of taste which to use – the first is more modular,
while this might spare one needless repetition.

4.5 Rules in strongest postcondition

For completeness’s sake, and because we will need them later, as our implementation is
done on the basis of symbolic execution, we introduce the counterparts of the rules we
used/defined for weakest precondition in strongest postcondition.

Rules Used We first note some of the standard sp Rules:

{P}S{Q} := sp〈P • S〉 → Q (6a)
Relation to Hoare-Triples

sp〈P • p1; p2〉 := sp〈sp〈P • p1〉 • p2〉 (6b)
Sequential composition

sp〈P • if c then p1 else p2〉 := (sp〈c ∧ P • p1〉) ∨ (sp〈¬c ∧ P • p2〉) (6c)
Conditional

Figure 5: sp-Rules

22

Specification statement Morgan does not define a sp-rule for the specification state-
ment, since it is not needed for theoretical considerations and is readily derived from the
wp-rule, again due to the duality of the two. We define the rule here:

sp〈P • ~w : [pre, post]〉 := (P → pre) → (∃~f. P [~w\~f] ∧ post[~old(w)\~f]) (7)

As we can’t add pre to the precondition as in the wp-rule, we make P → pre a pre-
condition of the rest of the postcondition. Only have we proven it may we assume
∃~f. P [~w\~f] ∧ post[~old(w)\~f].

While-Contract Rule

sp〈P • [pre]while c do p1 done p2[post]〉 :=
sp〈P • ~w : [pre, post]〉∧

sp〈pre ∧ ¬c ∧ ~w = ~f • p2〉 → post[~old(w)\~f]∧ Base

sp〈pre ∧ c ∧ ~w = ~f • p1; ~w : [pre, post]〉 → post[~old(w)\~f] Step

(8)

We need to add ~w = ~f to the precondition to “capture” the values of ~w before execution
of p1, p2 respectively.

The context-aware version of the rule is:

sp〈P • [pre]while c do p1 done p2[post]〉 :=
sp〈P • ~w : [pre, post]〉∧

sp〈P [~w1\~g] ∧ pre ∧ ¬c ∧ ~w = ~f • p2〉 → post[~old(w)\~f]∧

sp〈P [~w1\~g] ∧ pre ∧ c ∧ ~w = ~f • p1; ~w : [pre, post]〉 → post[~old(w)\~f]

(9)

where w1 are the variables modified by p1 and ~g is a fresh vector of variables.

23

5 Rules in Hoare Logic

Having stated our rule in predicate transformer semantics, we want to state them in the
alternative and perhaps more familiar form of axiomatic rules in Hoare logic.

5.1 Preliminaries

The standard Hoare-logic rules we will refer to can be found in Figure 6.

{Q}skip{Q} Skip (10a)
{P}p1{R} {R}p2{Q}

{P}p1; p2{Q} Seq (10b)
{P ∧ c}p1Q {P ∧ ¬p2{Q}}
{P}if c then p1 else p2{Q} Cond (10c)

{Q[x\E]}x := E{Q} Assign (10d)
P → P ′ {P ′}p{Q′} Q′ → Q

{P}p{Q} Conseq (10e)

Figure 6: Hoare-Logic Rules

Since Morgan does not define Hoare Logic rules for the specification statement, we will
first define them, as well as a notation that will allow us to use old() in postconditions.
We start with old(): We introduce a modified notation:

{P ∧ ~w = ~f}S{Q[~old(w)\~f]}
LP MSLQM Old (11)

Such triples are useful anywhere we want to use old() in the postcondition, e.g. when S
is the body of a procedure and P , Q its contract. They do the job of introducing shadow
variables for referencing the initial value of program variables.

The rule for the specification statement is:

P → pre P [~w\~f] ∧ post[~old(w)\~f] → Q

{P}~w : [pre, post]{Q} Spec (12)

The fresh variables ~f replacing ~w represent the original values of those variables, before
their indefinite modification by the statement. The postcondition may still talk about
~w, possibly relating them to ~old(w) – now ~f .

To gain some more confidence in this rule, we use it to derive the assignment rule (10d),
using the usual translation of assignment to specification statement, in Figure 7.

24

Q[x\E] → true

Q[x\E[x\f]] ∧ x = E[x\f] → Q

Q[x\E][x\f] ∧ x = E[x\old(x)][old(x)\f] → Q
Subst. comp

{Q[x\E]}x : [true, x = E[x\old(x)]]{Q} Spec

Figure 7: Compatibility of assignment with Spec rule

5.2 Loop specification rule in Hoare logic
The Hoare logic version has three parts again (we refer to them as Use, Base, Step).

{P}~w : [pre, post]{Q}
Lpre ∧ cMp1; ~w : [pre, post]LpostM Lpre ∧ ¬cMp2LpostM

{P}[pre]while c do p1 done p2[post]{Q} While-Contr (13)

where ~w are the variables modified by p1, p2.
We now see why local reasoning can be used in the inductive step: The general frame

rule of separation logic states that:

{P}S{Q}
{F ∗ P}S{F ∗Q} (14)

if S does not modify any variable in F . We know ~w : [pre, post] modifies only variables
~w, so we can frame out unrelated frames. In the loop rule the opportunity to frame out
arises in the inductive step where the specification statement is used as the “induction
hypothesis”.

Context-aware rule As in predicate transformer semantics, we can define a version of
the rule that uses the context to strengthen the precondition in the inductive proof.

{P}~w : [pre, post]{Q}
LP [~w1\~f] ∧ pre ∧ cMp1; ~w : [pre, post]LpostM LP [~w1\~f] ∧ pre ∧ ¬cMp2LpostM

{P}[pre]while c do p1 done p2[post]{Q} (15)

where ~w are the variables modified by p1, p2, ~w1 by p1.

25

6 Implementation

{P ∧ c}p1; rQ {P ∧ ¬p2}; r{Q}
{P}if c then p1 else p2; r{Q} Cond-SE (16a)
{x = E[x\f] ∧ P [x\f]}r{Q}

{P}x := E; r{Q} Assign-SE (16b)

Figure 8: Hoare Rules for Symbolic Execution

We implemented the context-aware version of the rule, in a tool for verification con-
dition generation using symbolic execution, for programs in a DSL (Domain-Specific
Language) with the features described in Section 3. The implementation is in Scala.

The symbolic execution is done following the rules of, essentially, strongest postcon-
dition, but interpreted as Hoare rules (examples in Figure 8), meaning we always have
a postcondition in mind. This makes it simpler to deal with old().

We present the code in slightly simplified form to abstract away inessential details, in
particular the parts concerned with separation logic.

The signature of the method that does the heavy lifting is:
def _hoare(pre: Expr, st0: Subst, st1: Subst, progs: List[Prog], post: Expr)

• Expr is the type for expressions, in both the DSL and the assertions.

• Var is the type for program- and symbolic variables.

• Subst is just a type synonym for Map[Var, Expr], which maps program variables
to their symbolic values in a particular state.

• Prog is the type of an instruction in the Language.

pre and post are both Exprs of type Type.bool. pre never contains free occurrences of
program variables, only symbolic variables that represent the value of program variables
at a particular state in the execution (compare Figure 4). post on the other hand knows
nothing about symbolic variables and predicates only over program variables.
st1 is the current symbolic state of the program, which is updated as execution pro-

gresses. st0 is the state before execution, which can be referred to in the postcondition
by old()-designated variables.

Treatment of old() _hoare is defined as a pattern match over progs. We examine the
case where progs == Nil (that is, there are no remaining instructions). These cases
correspond to the branches of our VCG tree. Let’s look at the code:

case Nil =>
val _post = post eval (st0, st1)
prove(pre ==> _post)

26

prove can be configured to either pass the argument, which should be an ExprBool, to
an SMT-Solver (we use Z3), or print it to the console.
eval is defined for all subtypes of Expr and replaces program variables with their

symbolic values. For Old(expr: Expr) it is defined as:
def eval(st0: Subst, st1: Subst) = expr eval st0
That is, the expression expr is evaluated in state st0 using the overloaded eval method
with a single parameter. The definition for Var(…) is:
def eval(st0: Subst, st1: Subst) = st1 (this)
def eval(st: Subst) = st (this)
That is, we return the symbolic value of this in the current state.

Since pre only predicates about the symbolic values of variables, this implements our
rule for old() (11). The implementation ensures that st0 is the correct state.

Specification statement Let’s consider how we handle the specification statement.

0: case Spec(spre, mod, spost) :: rest =>
1: val _spre = spre eval (st0,st1)
2: val re = Ren.fresh(mod)
3: val st2 = st1 ++ re
4: val _spost = spost eval (st1,st2)
5: prove(pre ==> _spre)
6: hoare(_spost && pre, st0, st2, rest, post)

Since our implementation essentially does SE, we would do best to compare this rule to
our definition for sp in Section 4.5.

1. we evaluate Spec’s precondition in the current state, making it predicate no longer
over program variables, but their symbolic values.

2. We generate fresh variables as symbolic values for the variables mod modified by
Spec.

3. We define define a new state st2, after execution of Spec, where we overwrite the
symbolic values of mod in st1 with the fresh variables.

4. We evaluate spost in the state st2 with old() state st1, to add it to the precon-
dition in the following.

5. To assume _spost and pre, we have to prove that Spec’s precondition is met in
st1. We don’t have to perform any substitution on pre like in the rule because
pre talks only about symbolic values, not program variables.

6. We continue with the new precondition and rest, as the rule for sp of sequential
composition (6b) states. Note that st1 was only locally the old() state, for evalu-
ation of spost. The && here is not Scala’s &&, but overloaded as an Operator in
the DSL.

27

While-Rule

0: case WhileContract(lpre, While(c, p1), p2, lpost) :: rest =>
1: val spec = Spec(lpre, p1.mod ++ p2.mod, lpost)
2: val re = Ren.fresh(p1.mod)
3: val st2 = st1 ++ re
4: val _c = c eval st2
5: val _lpre = lpre eval (st0,st2)
6: hoare(pre, st0, st1, spec :: rest, post)
7: hoare(_c && _lpre && pre, st2, st2, p1 ++ List(spec), lpost)
8: hoare(!_c && _lpre && pre, st2, st2, p2, lpost)

1. We generate the specification that will replace the loop in both the inductive
proof, as the inductive hypothesis, and the the program. mod gives us the variables
modified by a program.

3. We define a new state st2, in which we will verify the induction base & step.

6. We continue SE of the program , replacing the loop with the specification we now
have to prove it refines.

7. We prove the inductive step. The fact that we can just append spec to p1 and
treat it as a normal program is what makes our rule so advantageous.

With so many states at play, a bit of a clarification might be in order. We will look
at the inductive step part of the proof and apply the specification statement. We have
three states to consider: I before execution of the loop body, II after the loop body and
III after the remaining iterations and p2, represented by the specification statement:

I p1; II ~w : [pre, post] III

Using the sp-while rule (8), the proof obligation for the inductive step is:

sp〈pre ∧ c ∧ ~w = ~f • p1; ~w : [pre, post]〉 → post[~old(w)\~f]

In the implementation, referencing the old state is done with maps, not fresh introduction
of variables. We therefore now want to consider only the state in which each assertion
should be evaluated, without performing substitutions. We mark the current state in the
subscript, the old state, if applicable, in the superscript. Thus expanding the application
of the Spec rule we get:

let mid = sp〈(pre ∧ c)I • p1〉 in: ((midII → preII) → midII ∧ postII
III) → postIIII

28

7 Example Application to Textbook Algorithms
We will specify the iterative versions of two popular textbook algorithms, fast exponen-
tiation and Euclid’s algorithm, annotating the loops with contracts.We will find that we
can easily derive the invariants, which will make them seem to be quite a roundabout
way of doing things.

7.1 Euclid’s algorithm
Following code is an iterative implementation of Euclid’s algorithm for finding the great-
est common divisor (gcd) of two integers:

[pre: m>=0,n>=0]
def euclid(m,n):

while m != n:
if m > n: m = m-n
else: n = n-m

return n
[post:n=gcd(old(m),old(n))]

Since the program consists of essentially only the loop, we have no choice but to annotate
it thus:

[pre: m>=0,n>=0]
def euclid(m,n):

[pre: m>=0,n>=0]
while m != n:

if m > n: m = m-n
else: n = n-m

[post:n=gcd(old(m),old(n))]
return n

[post:n=gcd(old(m),old(n))]

We prove this specification using the Hoare rules for symbolic execution 8, in Figure 10.
We need some properties of the gcd for the proof, which we state as axioms in Figure 9.

gcd(m,m) =m (17a)
gcd(m,n) = gcd(n,m) (17b)

m ≥ n → gcd(m,n) = gcd(m− n, n) (17c)

Figure 9: gcd Axioms

29

We use 0 instead of old() to mark old variables in this proof.

W :=while m != n: B

B :=if m>n: m = m-n else: n=n-m

Use Base Step
{a ≥ 0, b ≥ 0,m = a, n = b}W{n = gcd(a, b)} While-Contr

Lm ≥ 0, n ≥ 0MW Ln = gcd(m0, n0)M
Old

Use:

{a, b ≥ 0,m = a, n = b} → m,n ≥ 0

(a, b ≥ 0, c = a, d = b) ∧ (n = gcd(c, d)) → n = gcd(a, b)

(a, b ≥ 0,m = a, n = b)[m,n\c, d] ∧ (n = gcd(m0, n0))[m0, n0\c, d] → n = gcd(a, b)
Subst

{a, b ≥ 0,m = a, n = b}n,m : [m,n ≥ 0, n = gcd(m0, n0)]{n = gcd(a, b)} Spec (18a)

Base:
e = f, n = f → n = gcd(e, f)

(17a)

{e, f ≥ 0, e = f,m = e, n = f}skip{n = gcd(e, f)} Skip

Lm,n ≥ 0,∧m = nMskipLn = gcd(m0, n0)M
Subst,Old

(18b)

Step:
Left Right

{e, f ≥ 0, e 6= f,m = e, n = f}if m>n: m = m-n else: n=n-m;m,n : [m ∧ n ≥ 0, n = gcd(m0, n0)]{n = gcd(e, f)} Cond-SE

Lm,n ≥ 0,∧m 6= nMP ;m,n : [m ∧ n ≥ 0, n = gcd(m0, n0)]Ln = gcd(m0, n0)M
Subst,Old

(18c)

Left:

n = f ≥ 0 g = e ≥ 0, g > n → m = g − n ≥ 0

e, f ≥ 0, g = e, n = f, g > n,m = g − n → m,n ≥ 0

e, f ≥ 0, e = g > i = f, n = gcd(e− f, f) → n = gcd(e, f)
(17c)

e, f ≥ 0, e 6= f, g = e, i = f, g > i, h = g − i, n = gcd(h, i) → n = gcd(e, f)
=

(e, f ≥ 0, e 6= f, g = e, n = f, g > n,m = g − n)[m,n\h, i] ∧ (n = gcd(m0, n0))[m0, n0\h, i] → n = gcd(e, f)
Subst

{e, f ≥ 0, e 6= f, g = e, n = f, g > n,m = g − n}m,n : [m ∧ n ≥ 0, n = gcd(m0, n0)]{n = gcd(e, f)} Spec

{e, f ≥ 0, e 6= f,m = e, n = f,m > n}m = m-n;m,n : [m ∧ n ≥ 0, n = gcd(m0, n0)]{n = gcd(e, f)} Assgt-SE

(18d)
Right: proof analogous to Left

Figure 10: Euclid’s algorithm specification proof

30

Deducing the Invariant We can deduce the invariant from the specification. First
off, the precondition will always be part of the invariant, as it is already treated like
one in the way it is verified in all the contract-loop rules. Second, we will see that
in some cases, the invariant is quite easy to deduce from the postcondition. Let’s re-
turn to our concrete example. We will first take old(old()) to refer to the values of
variables before any iteration. Now we know that n=gcd(old(old(n)),old(old(m)))
must hold at the end of iteration. With the way the inductive proof works, this is
the actually the last result proven, after having proved the corresponding instances for
all intermediary results. But since n in the postcondition always refers to the value
of n at the end of all iterations, all the intermediate results share this connection
→ an invariant. We substitute gcd(old(old(n)),old(old(m))) for this n and get
gcd(old(old(n)),old(old(m))=gcd(old(n),old(m)).

m0 6= n0, nk = gcd(n0,m0)

m1 6= n1, nk = gcd(n1,m1)

. . .

mk−1 6= nk−1, nk = gcd(nk−1,mk−1)

mk = nk, nk = gcd(nk,mk)

Since it doesn’t matter in the invariant if we refer to variables at the start or end of
an iteration, we can define old() to always refer to the state before any iteration in
invariants, and get rid of old(old()): gcd(old(n),old(m))=gcd(n,m). Together with
the part of the invariant that is the precondition we get:

[pre:m>=0,n>=0]
def euclid(m,n):

while m != n:
[inv: m>=0,n>=0, gcd(old(m),old(n))=gcd(m,n)]

if m > n: m = m-n
else: n = n-m

return n
[post:n=gcd(old(m),old(n))]

The fact that we’re specifying the state of incomplete computations forces us to view
all iterations at once, instead of inductively. We will look at another algorithm, fast
exponentiation, and make a very similar observation.

7.2 Fast Exponentiation
Following code is an iterative implementation of exponentiation by squaring (fast expo-
nentiation):

31

[pre: i>=0]
def fastExp(x : Real,i : Int):

r = 1
while i != 0:

if i odd: r = x*r
x=x*x
i=i div 2

return r
[post:r=old(x)^old(i)]

The algorithm is based on the equalities: x2n = (x2)n, x2n+1 = x · (x2)n. We choose
as precondition i ≥ 0, as postcondition r = old(r) · old(x)old(i). We prove using the
while-rule for strongest postcondition (8) that the loop fulfills this specification:

IB Show (r = r0, x = x0 ∧ i = i0 ∧ i ≥ 0 ∧ i = 0) → (r = r0 · xi00):
Assume (r = r0, x = x0 ∧ i = i0 ∧ i ≥ 0 ∧ i = 0).
Then r0 · xi00 = r · xi0 = r · x00 = r · 1 = r �

IB Show sp〈r = r0 ∧ x = x0 ∧ i = i0 ∧ i ≥ 0 ∧ i 6= 0 • if i odd then r := x · r;x =
x · x; i = i div 2; (r, x, i) : [i ≥ 0, r = old(r) · old(x)old(i)]〉 → r = r0 · xi00 :

sp〈r = r0 ∧ x = x0 ∧ i = i0 ∧ i > 0 • if i odd then r := x · r〉 =
(x = x0 ∧ i = i0 ∧ i > 0 ∧ ∃k ∈ N. i = 2k + 1, r = x · r0)

∨(r = r0 ∧ x = x0 ∧ i = i0 ∧ i > 0 ∧ ∃k ∈ N. i = 2k)

i odd:

sp〈(x = x0 ∧ i = i0 ∧ i > 0 ∧ ∃k ∈ N. i = 2k + 1 ∧ r = x · r0)•
x := x · x; i = i div 2〉 →

(∃k ∈ N. i0 = 2k + 1 ∧ r = x0 · r0 ∧ x = x0 · x0 ∧ i = k)

sp〈(∃k ∈ N. i0 = 2k + 1 ∧ r = x0 · r0 ∧ x = x0 · x0 ∧ i = k)•
(r, x, i) : [i ≥ 0, r = old(r) · old(x)old(i)]〉 →

((∃k ∈ N. i = k → i ≥ 0) →
((∃k ∈ N. i0 = 2k + 1 ∧ r1 = x0 · r0 ∧ x1 = x0 · x0 ∧ i1 = k) ∧ (r = r1 · xi11))) →

(r = x0 · r0 · (x0 · x0)(i0−1)/2) =

(r = r0 · x0 · xi0−1
0) =

(r = r0 · xi00) �

32

i even:

sp〈(r = r0 ∧ x = x0 ∧ i = i0 ∧ i > 0 ∧ ∃k ∈ N. i = 2k)•
x := x · x; i = i div 2〉 →

(∃k ∈ N. i0 = 2k ∧ r = r0 ∧ x = x0 · x0 ∧ i = k)

sp〈(∃k ∈ N. i0 = 2k ∧ r = r0 ∧ x = x0 · x0 ∧ i = k)•
(r, x, i) : [i ≥ 0, r = old(r) · old(x)old(i)]〉 →

((∃k ∈ N. i = k → i ≥ 0) →
((∃k ∈ N. i0 = 2k ∧ r1 = r0 ∧ x1 = x0 · x0 ∧ i1 = k) ∧ (r = r1 · xi11))) →

(r = r0 · (x0 · x0)i0/2) =
(r = r0 · xi00) �

We can again use transitivity of equality to deduce the invariant: The value of r at
the end of the iteration will be old(r) · old(x)old(i), old() here again referring to before
any iteration. The invariant is therefore i ≥ 0 ∧ r · xi = old(r) · old(x)old(i). Again, it
doesn’t state what we are doing, but rather what we are not doing.

33

8 Related Work
Hehner [Heh05] [HG99] comes closest in spirit to our stated rule, although he does not
account for a rest program p2 serving as the base case for the iteration. His specifications
are single predicates, with pre, post relationship encoded by implication. He doesn’t give
them weakest precondition semantics, so our adaption of his refinement semantics for
loops to weakest precondition using Morgan’s specification statement[Mor88] is new.

Very similar to Hehner’s work with regard to the specifications is [Lou+11], where “in-
variant relations” are used to specify loops as relations between pre- and post-execution
state. They use a relational semantics of programs for this that is very different from
the predicate transformer semantics that we define.

Earlier work are the rules for procedure calls due to Hoare[Hoa71]. Due to the pro-
cedures’ call-by-name parameters, the rules could very easily be applied to loops that
modify local variables, and we find the only aspect in which they are lacking to be that
he doesn’t allow for parameters to be passed both by name and by value, to circum-
vent the problem of the original value of a variable no longer being referenceable in the
postcondition. We allow this using the old() specifier.

Tuerk [Tue10] states a version of the rule in Hoare logic by parameterizing pre- and
postconditions. This is essentially to allow referring to old values, but this fact is rather
obfuscated by the way the rule is formulated. The observation that this type of loop
specification makes verification of iteration over linked datastructures easier to verify,
because one does not have to talk about partial datastructures, is also due to him, and
he does account for a rest program p2.

Tuerk’s rule is implemented in the tool Verifast [Jac+11] but without the provision for
p2, which is vital if that code is the base case of an otherwise incomplete computation.
Regarding Tuerk’s work, our biggest contribution is probably to make the rule and its
implications more easily understood and, by defining a weakest precondition semantics
for it, make it easier to implement correctly, since we reason only about the aspects
relevant for actual use cases.

9 Conclusion
We have defined a practical rule for inductive verification of loops specified with con-
tracts. We hope the comparison of inductive verification to that with invariants which
we have offered in the various example algorithms we examined convince the reader
at least that the invariant method is lacking in some aspects, if not that it should be
replaced entirely by the (as we have argued) more natural specification of loops with
contracts.

Our utilization of past work that gives well-defined semantics to specifications as
programs, Morgan’s specification statement[Mor88], and a semantics for loops that allow
inductive verification, Hehner’s refinement semantics [HG99], allowed us to prove our rule
sound in the predicate transformer semantics of the refinement calculus.

Our prototypical implementation shows that the rule is not only practical for theoret-
ical considerations, but also straightforward to implement.

34

References
[Dij76] E.W. Dijkstra. A discipline of programming. English. Prentice-Hall series in

automatic computation. Prentice-Hall, 1976. isbn: 0-13-215871-X.
[Heh05] Eric C. R. Hehner. “Specified Blocks”. In: Verified Software: Theories, Tools,

Experiments, First IFIP TC 2/WG 2.3 Conference, VSTTE 2005, Zurich,
Switzerland, October 10-13, 2005, Revised Selected Papers and Discussions.
2005, pp. 384–391. doi: 10.1007/978-3-540-69149-5_41.

[HG99] Eric C. R. Hehner and Andrew M. Gravel. “Refinement semantics and loop
rules”. In: FM’99 — Formal Methods. Ed. by Jeannette M. Wing, Jim Wood-
cock, and Jim Davies. Springer, 1999, pp. 1497–1510. isbn: 978-3-540-48118-
8.

[Hoa69] Charles Antony Richard Hoare. “An axiomatic basis for computer program-
ming”. In: Communications of the ACM 12.10 (1969), pp. 576–580.

[Hoa71] C. A. R. Hoare. “Procedures and parameters: An axiomatic approach”. In:
Symposium on Semantics of Algorithmic Languages. Ed. by E. Engeler.
Springer, 1971, pp. 102–116. isbn: 978-3-540-36499-3.

[Jac+11] Bart Jacobs et al. “VeriFast: A Powerful, Sound, Predictable, Fast Verifier
for C and Java”. In: NASA Formal Methods. Ed. by Mihaela Bobaru et al.
Springer, 2011, pp. 41–55. isbn: 978-3-642-20398-5.

[Lou+11] Asma Louhichi et al. “Invariant relations: an automated tool to analyze
loops”. In: Proceedings of the Fifth international conference on Verification
and Evaluation of Computer and Communication Systems. BCS Learning &
Development Ltd. 2011, pp. 84–95.

[MFP91] Erik Meijer, Maarten Fokkinga, and Ross Paterson. “Functional program-
ming with bananas, lenses, envelopes and barbed wire”. In: Functional Pro-
gramming Languages and Computer Architecture. Ed. by John Hughes. Springer,
1991, pp. 124–144. isbn: 978-3-540-47599-6.

[Mor88] Carroll Morgan. “The Specification Statement”. In: ACM Trans. Program.
Lang. Syst. 10.3 (July 1988), pp. 403–419. issn: 0164-0925. doi: 10.1145/
44501.44503.

[Rey02] John C. Reynolds. “Separation Logic: A Logic for Shared Mutable Data
Structures”. In: Proceedings of the 17th Annual IEEE Symposium on Logic
in Computer Science. LICS ’02. IEEE Computer Society, 2002, pp. 55–74.
isbn: 0-7695-1483-9. url: http://dl.acm.org/citation.cfm?id=645683.
664578.

[Tue10] Thomas Tuerk. “Local Reasoning about While-Loops”. In: VSTTE 2010.
Workshop Proceedings. Ed. by Rajeev Joshi et al. ETH Zürich, 2010, pp. 29–
39.

35

