
Bachelorthesis

in Media Computer Science

Modern Architecture and Improved UI
for Tables of BenchExec

Laura Sofie Bschor

Aufgabensteller: Prof. Dr. Dirk Beyer
Betreuer: Dr. Philipp Wendler
Abgabedatum: 02.10.2019

Erklärung

Hiermit versichere ich, dass ich diese Bachelorthe-
sis selbständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel verwendet habe.

Munich, den 02.10.2019

. .
Laura Sofie Bschor

Abstract

Benchmarking is a common practice in sciences. Benchmarking results are
typically big data sets with hundreds and thousands of values. For a user of
the benchmarking tool to extract and find the results they are interested in the
results must be displayed in a clear way. This thesis is concerned with provid-
ing an interactive and clear presentation of results of the tool BenchExec. As
there is already an implementation for this - which is outdated in design and
architecture and without a holistic concept - this is taken as an idea provider
for creating a new state-of-the-art frontend application for presenting and in-
teracting with the results of BenchExec. Its requirements and the decisions
about development were generated by the users themselves, related work, a
theoretical background and technical researches and comparisons. The new
version was implemented in parallel with the completion of this thesis. Finally
the new version is compared to the original to see if there are improvements
or regressions and to provide a solid basis for continuous human-centered de-
velopment in the future.

Contents

1 Introduction 3

2 Motivation 5
2.1 User in the Focus of Development - Theoretical Background . . 6

2.1.1 User Experience . 6
2.1.2 Usability . 6
2.1.3 Human-centered Design 7
2.1.4 The BenchExec HTML Table 8

2.2 Related Work . 9
2.3 Technical Status . 11
2.4 User’s Issues . 14
2.5 Requirements . 15

3 Software Architecture 16
3.1 Comparison of Frontend Frameworks 16

3.1.1 Introduction . 16
3.1.2 Comparison . 18

3.2 Structure of Features and Deployment Process 20
3.3 Data Structure . 22

4 Improving the User Interface 24
4.1 Analysis of Existing Features 24
4.2 Implementations with Special Challenges and New Approaches 30

4.2.1 Tabpanel . 30
4.2.2 Summary and Information 31
4.2.3 Table Implementation 32

5 Evaluation 33
5.1 Comparison of the Surveys . 33
5.2 Evaluation of Final Comments in Second Survey 36
5.3 Fulfilment of Requirements . 38

1

CONTENTS

6 Conclusion and Perspective 39

List of Figures 41

List of Tables 42

Bibliography 43

A Comparison of Frameworks in Detail 44

B Comparison of One Row in Old and New Version 48

C Survey No. One 50

D Survey No. Two 66

2

Chapter 1

Introduction

A common practice for researchers, developers and tool competitors is bench-
marking. Benchmarking is used to evaluate and compare algorithms, tools
and features as well as different settings, configurations or inputs of a given
tool. Hundreds and thousands of runs can be required for an evaluation in a
single comparison. Results of these benchmarking methods have to be exact
and clearly presented. This can be difficult because the results can be a big
set of data with varying sizes, values or settings. BenchExec, a project of
the Software Systems Lab of the Ludwig-Maximilians-University in Munich
is an open-source implementation of a benchmarking framework. It is tool-
independent and ready to use. So you are able to benchmark and measure
tools and resources. One of the three major features is the table-generator,
which generates interactive tables and plots to visualize the BenchExec’s
XML output results of one or more executions as a HTML or CSV file [2, 8].
BenchExec table-generator is written in Python and generates a fron-
tend application wherein the results are displayed and can be interacted with.
For generating an HTML template is used and has grown with time and in-
coming feature requests, made by the users of BenchExec. The basic im-
plementation of the table including markup, style-sheet and JavaScript in one
file was done in 2015. As a result it is now a collection of features and func-
tions without a holistic concept for handling data, states, user needs and the
architecture of the code.

The goal of this thesis is to provide a state-of-the-art, holistic and intu-
itively usable application which visualizes the results of BenchExec clearly
and lets the user interact with them to get the needed information fast and
easy. To achieve this, we derive requirements based on analysis about related
work and the tool environment, the user issues and researches concepts sur-
rounding modern frontend architectures and frameworks. Decisions about the
implementation were made based on the requirements. The result of these deci-

3

CHAPTER 1. INTRODUCTION

sions is the new version of BenchExec HTML tables, which is implemented
in parallel with the completion of this thesis. In the end the fulfillment of
requirements will be evaluated through the user’s satisfaction.

4

Chapter 2

Motivation

Interaction and dynamic elements within the HTML files are directly linked to
JavaScript - a client-side programming language (so called script language). It
is directly interpreted by the browser, but even so it works without any internet
connection and was developed in 1995 by the company Netscape [3].

Since then, many things have changed. For example different frameworks
have been invented, JSON (JavaScript Object Notation) has taken a big part in
the daily business of JavaScript developers and the language itself has become
one of the most popular programming languages. It has become hard to keep
up-to-date with approaches, technologies and framework versions. But they
are, as well as the words usability, user-experience or human-centered design,
no longer indispensable from the world of web development. In the following
chapter, we will work out why a new version of BenchExec HTML tables
should be implemented and what the requirements for this new version are. To
gain knowledge about these requirements the first part introduces approaches
about focusing on the user during the process of development. After that
related work is analyzed to get ideas of similar projects and visualizations.
Afterwards the technical status and the environment of table-generator
and its template is analyzed to see what has to be improved. At last results
of a survey are analyzed to gain knowledge about the users issues, needs and
workarounds. This survey was sent around to the users of BenchExec before
implementing a new version of BenchExec HTML tables. To get to know the
users issues was only one goal of the survey: The users were also asked about
their opinions of the old version. After the implementation another survey was
sent around about the new version. With the results of both surveys user’s
opinions of the two versions of BenchExec HTML tables can be compared
to evaluate if the implementation was an improvement or a regression for the
user. The details of this comparison are described in Chapter 5.

5

CHAPTER 2. MOTIVATION

2.1 User in the Focus of Development - The-

oretical Background

At first, the main development approaches and associated terms have to be
declared to get a common conceptual basis.

2.1.1 User Experience

By interacting with any kind of tool, system or product (in the following called
system), users have perceptions, reactions and emotions in relation to it [4].
They can prejudge or be excited before using, they can like or hate it, can
have physiological or psychological reactions while using it and they will have
an opinion and a feeling after using it. User experiences (short: UX) are
the sum of all reactions and emotions in relation to the used. They are the
consequence of a combination of users (with their previous knowledge, their
preferences, behaviors, current states and the context of use) and the system
(with its brand image, the functionalities and the general appearance). First
and foremost, user experience cannot be objectively judged, but a developed
system can aim to provide a good user experience. This includes considering
the user in your decisions about design, shaping, behavior and functionalities
when developing the system. Good user experience provides a map for the
users of where they are in the system and how they always can get back
to the starting point [1]. This refers to a mental model which is generated
by the users themselves: They interact with and experiences the system, its
behavior and reactions, they read and observe everything that comes with the
system and form their opinion about what it does, what it is and how it can
be used. If this mental model is not good and something goes wrong, the
users will not understand why it did not go the way they wanted and can only
try. But otherwise, if the system has a logical, clear and consistent concept
communication between system and users will be easy and clear.

2.1.2 Usability

The nature of responses and emotions associated with the users experience just
described may be expressed as usability as far as it is seen with the goals the
users tries to achieve with the system [4]. Good usability does not only mean
the quality of a system or if it is easy to use [5, 6]. It includes the whole user
experience, also with the satisfaction when working with the system. Usability
is the rating of users experience. It depends on the simplicity with which
user can achieve a goal through the system. If this happens effectively with
efficiency and satisfaction, the user experience will be good, so the usability

6

CHAPTER 2. MOTIVATION

will be high. Benyon defines usability as the “quality of the interaction in
terms of parameters such as time taken to perform tasks, numbers of errors
made and the time to become a competent user” [1] and to be more concrete,
Jakob Nielson writes about five quality components1:

• Learnability: If it is the first time users enter the system: How easy is it
to accomplish basic tasks?

• Efficiency: How quickly can users achieve goals once they have gotten to
know the system?

• Memorability: How easily can users re-establish proficiency if they do
not use the system regularly and did not have entered it for a time?

• Errors: How many errors are made by the users and how serious they
are? How bad did the users take it?

• Satisfaction: How well do the users feel after using the system?

To write it as a mathematical function usability is the sum of effectiveness (“is
the user’s goal achieved?”), efficiency (“how much time did it take to complete
the task, how many errors happened, how high was the amount of effort”)
and satisfaction (“how high was the level of comfort users feel when using the
system”) [4].

2.1.3 Human-centered Design

Human-centered design is the main approach which we are following to work
out how the new version of BenchExec HTML tables should work and look
like. It is an approach (standardized and recorded in DIN EN ISO 9241-210 [4])
for developing interactive systems in an usable and appropriate way. As the
title tells us, users with their needs and requirements are in the focus of the
whole process and every step. This focus in combination with techniques of
ergonomics for usability shall rise the effectiveness and efficiency of users and
improve their well-being and satisfaction while working with the system. To
achieve these goals the following principles will be adhered to [4]:

• Understand your users, their tasks and working environment: Who is us-
ing my product, what is the target group, what are their needs and goals.
Gain and include this knowledge into the process and your development.

1 https://www.nngroup.com/articles/usability-101-introduction-to-usability
/

7

https://www.nngroup.com/articles/usability-101-introduction-to-usability/
https://www.nngroup.com/articles/usability-101-introduction-to-usability/

CHAPTER 2. MOTIVATION

Figure 2.1: Example Table with Names of Table Parts - Screenshot
taken from https://sosy-lab.github.io/benchexec/example-table/svcom
p-simple-cbmc-cpachecker.table.html

• Integrate the users during the whole process of development. They can
give you important knowledge for acting with your future product, it’s
tasks, usage and context of use. Ask them directly and include their
answers into your development.

• Adapt and refine your current solution with this gained knowledge. You
can test your prototype with the users. Ask them about decisions to
be made. Test your product in the real world with real users and get
feedback to continuously improve your product.

• This process is iterative.

• During the whole development, consider the user experience.

• Build the team with people of different perspectives and knowledge.

2.1.4 The BenchExec HTML Table

As BenchExec HTML Table - and with it this work - is using a specific
terminology, some of these terms will be explained in the following. To provide
a consistent use of notations a look on BenchExec’s architecture of a table
for results is helpful and shown in Figure 2.1.

8

https://sosy-lab.github.io/benchexec/example-table/svcomp-simple-cbmc-cpachecker.table.html
https://sosy-lab.github.io/benchexec/example-table/svcomp-simple-cbmc-cpachecker.table.html

CHAPTER 2. MOTIVATION

The results for one benchmarking task are displayed per row. Every row has
an identification (Row ID) consisting of the filename and optional properties.
A runset is the benchmarked tool (program) including its results by tasks. It
has one or more columns which represent a parameter and its measured value
for the task (e.g. cputime). In the header of the result table the properties
and environment information of the runset are displayed. To generate such
an interactive table table-generator2 has to be called on the command line
with one or more XML-files (with the results from BenchExec) handed over
to compare. They can be passed through a local path or an URL. To cus-
tomize the table, several flags can be added to the command (e.g. specifying
the format). Table-generator links data and properties (from XML-files and
command line flags) with an HTML file called template.html and puts out
a new file in the specified format (HTML or CSV) which can be opened in
a browser and used without any internet connection. This template.html

includes DOM, styling (CSS) and behavior (implemented in JavaScript with
the use of JavaScript library jQuery).

2.2 Related Work

To get an idea how benchmarking results can be visualized there are several
examples discussed in the following. They are a selection of competition re-
sults from the TOOLympics at the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS)3 and the
Federated Logic Conference (FLoC) Olympic Games4. The first example is
the presentation of the computed results of Model Checking Contest 2019.
The example screenshot in Figure 2.2 shows its visualization of results which
starts with the summary of total points of each participatory tool. These are
displayed in the columns and each row is representing the values of a model
instance. Expected results are presented in a tooltip to be seen by hovering
over the name of the instance. Values including rating, score and a link to the
execution report are contained in a single cell. Above the table, there is an
explanation to read and interpret the presented values.

The CADE ATP System Competition5 provides results in four kinds: A
compact and full summary, a detailed list of results (exemplary screenshot
in Figure 2.3a) and as performance graphs (exemplary screenshot shown in
Figure 2.3b) each behind a link. The tables use colors without any explanation

2 which is one of the main features of BenchExec and written in Python
3 https://tacas.info/toolympics.php
4 https://www.floc2018.org/floc-olympic-games/
5 http://www.tptp.org/CASC/J9/

9

https://tacas.info/toolympics.php
https://www.floc2018.org/floc-olympic-games/
http://www.tptp.org/CASC/J9/

CHAPTER 2. MOTIVATION

Figure 2.2: Screenshot of a Summary of Results for MCC’s StateSpace
taken from https://mcc.lip6.fr/index.php?CONTENT=results/StateSpace
.html&TITLE=Results%20for%20StateSpace

(a) presented as summary, taken from
http://www.tptp.org/CASC/J9/WWWFil
es/ResultsSummary.html

(b) presented as plot, taken from
http://www.tptp.org/CASC/J9/WWWFil
es/ResultsPlots.html

Figure 2.3: Screenshots of Results for One CASC Competition 2018

10

https://mcc.lip6.fr/index.php?CONTENT=results/StateSpace.html&TITLE=Results%20for%20StateSpace
https://mcc.lip6.fr/index.php?CONTENT=results/StateSpace.html&TITLE=Results%20for%20StateSpace
http://www.tptp.org/CASC/J9/WWWFiles/ResultsSummary.html
http://www.tptp.org/CASC/J9/WWWFiles/ResultsSummary.html
http://www.tptp.org/CASC/J9/WWWFiles/ResultsPlots.html
http://www.tptp.org/CASC/J9/WWWFiles/ResultsPlots.html

CHAPTER 2. MOTIVATION

of the colors. The detailed results for each run are displayed in the full result
list. Plots visualize the CPU time of each tool for its solutions. This lets you
easily recognize the rating of the competition, even so the legend overlapping
the graph causes some distraction.

Some competitions present their results in more or less interactive tables
like SAT Competition 20186 or the Reactive Synthesis Competition (synt-
comp)7. For this they use the jQuery libraries tablesorter8 and DataTables9.
This allows a number of functionality, e.g. sorting of rows by values or a free
text search. DataTables is also used by StarExec10, a web-based logic solv-
ing service developed at the University of Iowa [7]. In 2019, syntcomp stored
their benchmarks and results, as well as ran its competition in StarExec11. In
addition to sorting and searching, the table of StarExec has pagination and
highlighting. Besides the storing, running and presenting of competitions, it
gives the possibility to add interactive plots of statistics. Examples screenshots
of plots and results are shown in Figures 2.4 and 2.5.

2.3 Technical Status

The example of StarExec from Section 2.2 shows that it might be useful to
include a library for offering more functionalities in the interactive result table.
Tablesorter’s latest version 2.17.8 was released on September 15th, 2014 which
is not compatible with a modern frontend architecture. So does dataTables:
The latest version (1.10.19) was released on June 22th, 2018. JQuery’s latest
version (3.4.1) was released May 1st, 2019 but the number of contributors
and commits decreased massively. Especially in comparison to other common
JavaScript frameworks like React or Angular jQuery is not any longer state-
of-the-art or developing further like the comparison of github insights shows.

Figures 2.6 and 2.7 show the differences in commits per week for jQuery
and React. The maximum of jQuery commits per week is nine commits which
happened only once in the past year. In most of the weeks there was no or
one commit per week in comparison to the weekly commits of React. There
are only two weeks with one commit (in the last week of December and the
first week of January). The rest of the year React has most of the times up to
fifty commits per week in the week of 7th, 2019 up to 170.

Also the number of contributions to the master branch over the years since

6 http://sat2018.forsyte.tuwien.ac.at/index.php
7 http://www.syntcomp.org/
8 https://plugins.jquery.com/tablesorter/
9 https://datatables.net/
10 https://www.starexec.org/
11 http://www.syntcomp.org/

11

http://sat2018.forsyte.tuwien.ac.at/index.php
http://www.syntcomp.org/
https://plugins.jquery.com/tablesorter/
https://datatables.net/
https://www.starexec.org/
http://www.syntcomp.org/

CHAPTER 2. MOTIVATION

Figure 2.4: Ran Jobs of AIGER-Real-Test, a Competition of Syntcomp -
Screenshot taken from https://www.starexec.org/starexec/secure/explo
re/spaces.jsp?id=388139

Figure 2.5: An Example for a Graph in StarExec - Screenshot taken from
https://www.starexec.org/starexec/secure/explore/statistics.jsp

12

https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=388139
https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=388139
https://www.starexec.org/starexec/secure/explore/statistics.jsp

CHAPTER 2. MOTIVATION

Figure 2.6: Number of Weekly Commits for jQuery in the Past Year - Screen-
shot taken on September 8th 2019 from https://github.com/jquery/jquery
/graphs/commit-activity

Figure 2.7: Number of Weekly Commits for React in the Past Year - Screenshot
taken on September 9th, 2019 from https://github.com/facebook/react/gr
aphs/commit-activity

release of jQuery and Angular are different (Figures 2.8 and 2.9): jQuery max-
imum number of contributions is 60, Angular’s number of contributions is up
to 120. September 6th 2018 GitHub.com announced the complete removal of
jQuery from the GitHub.com frontend because it is not longer necessary12.
In addition, the fact that jQuery manipulates the DOM directly can cause the
problem that keeping track of all manipulations and states can become very
hard as well as the fact that a big DOM might need long loading times and has

12 https://github.blog/2018-09-06-removing-jquery-from-github-frontend/

Figure 2.8: Number of jQuery Contributors from March 19th, 2006 un-
til August 3rd, 2019 - Screenshot taken on August 4th 2019 from https:

//github.com/jquery/jquery/graphs/contributors

13

 https://github.com/jquery/jquery/graphs/commit-activity
 https://github.com/jquery/jquery/graphs/commit-activity
https://github.com/facebook/react/graphs/commit-activity
https://github.com/facebook/react/graphs/commit-activity
https://github.blog/2018-09-06-removing-jquery-from-github-frontend/
 https://github.com/jquery/jquery/graphs/contributors
 https://github.com/jquery/jquery/graphs/contributors

CHAPTER 2. MOTIVATION

Figure 2.9: Number of Angular Contributors from September 14th, 2014 until
August 3rd - Screenshot taken on August 4th 2019 from https://github.com
/angular/angular/graphs/contributors

no clear structure13. To maintain and continuously improve the application to
be state-of-the-art a structuring framework is appropriate especially because
DOM, styling and functions have to be in one document at the end. While
developing frontend applications the code should be well readable, understand-
able and clear structured whereas it needs to be bundled when providing it
for the productive system. This is one major feature which comes along with
modern JavaScript frameworks like React, Vue and Angular. All the before-
mentioned downsides of jQuery lead to rethink the whole frontend architecture
and bring newer frameworks and concepts into mind.

2.4 User’s Issues

As described in Section 2.1.3 we want to align our application to the needs
of BenchExec’s users. Therefore a first online survey (google form) was
sent around for two weeks to the user of BenchExec (per mail and as a
link in gitHub). 16 users participated, most of them are developers (87,5%).
Besides ratings about usability, design and user-experience they were asked
about their way of using BenchExec HTML tables (e.g. “When you open
BenchExec HTML tables, what is the first thing you are looking at?”) and
had the chance to announce their requirements, needs and wishes. The answers
from the survey are a relevant source of information to set the requirements.
Complete results of the survey can be found in the appendix and will be picked
up again when evaluating the new implementation in Chapter 5.

With regards to the usage the most relevant finding the survey should
achieve is the first information the users are searching for when opening the
application/table. Most of the users (56,3%) have a look at the summary first.
This can take a lot of time, because the summary is on the bottom of the table

13 https://academind.com/learn/javascript/the-world-of-javascript/

14

https://github.com/angular/angular/graphs/contributors
https://github.com/angular/angular/graphs/contributors
https://academind.com/learn/javascript/the-world-of-javascript/

CHAPTER 2. MOTIVATION

which can have an unlimited number of rows. Some participants of the survey
also mentioned this as an answer about the most annoying feature (e.g. “first
loading the whole table, with summary at the bottom”, “summary is at the
bottom: need to scroll and often loading takes a while”).

Another finding about the provided features is, that most of them are
used often or very often, but there are some that are hard to find. This
can be interpreted as the reason of the uncontrolled growing as mentioned
in Chapter 1. Because they were already desired by users and are used, it
would be useless to delete this functionality but it is necessary to make them
detectable and intuitively usable so that more people can benefit from them.

Loading times are in sum the most mentioned thing in the survey even
without being asked. Especially in combination with the position of the sum-
mary but also with filtering and selecting (e.g. “Compiling time: it takes a lot
of time to show the whole report, if there are a lot of benchmarks”, “Deselect-
ing columns takes a long time, because the table is updated on every column I
deselect, but e.g. for SV-COMP I often want to deselect all but one column”).

2.5 Requirements

Referring to the sections of this chapter some requirements can be formed
which provides a guide, and later a checklist, to be fulfilled. A new application
has to be created, which is intuitively usable. All given features shall be
maintained to let the users be effective but the application shall help them to
find all of the features and functions that they can decide whether to use them
or not. To be competitive, it shall provide new features like sorting or paging.
The loading time has to be reduced and the structure overthought to let the
user fast and easy achieve their goal. All the previous points shall be provided
through a newly implemented application based on a modern, lightweight,
structuring, maintainable and fast state-of-the-art JavaScript framework.

15

Chapter 3

Software Architecture

The following chapter is focused on fulfilling the elaborated requirements re-
garding the software architecture, maintainability and performance to achieve
a modern architecture of BenchExec HTML tables.

The frontend of table-generator was implemented with the use of jQuery1

(version 1.7.1 which was released in 20112). As argued in the Section 2.3 it has
to be replaced by a modern lightweight, structuring and maintainable frontend
framework. With this new architecture the data structure has to be adapted
and handled in a different way.

3.1 Comparison of Frontend Frameworks

To replace the old one a new framework must be found. Therefore we have
to clarify what a modern frontend architecture is and what shall be taken. At
the moment, there are three popular options available in the world of web-
development: AngularJS, React and Vue.js3. Some time ago frontend only
meant to give a functionality and interaction to a web application. This is
definitely given with jQuery. However, now users want to have reactive content
and developers want to have structured code.

3.1.1 Introduction

All three frameworks solve the problems jQuery left4: They structure the
application component based, keep track of states and render only the asked

1 https://github.com/sosy-lab/benchexec/commits/master
2 https://blog.jquery.com/2014/12/18/jquery-1-11-2-and-2-1-3-released-saf

ari-fail-safe-edition/
3 https://academind.com/learn/javascript/the-world-of-javascript/
4 https://academind.com/learn/javascript/the-world-of-javascript/

16

https://github.com/sosy-lab/benchexec/commits/master
https://blog.jquery.com/2014/12/18/jquery-1-11-2-and-2-1-3-released-safari-fail-safe-edition/
https://blog.jquery.com/2014/12/18/jquery-1-11-2-and-2-1-3-released-safari-fail-safe-edition/
https://academind.com/learn/javascript/the-world-of-javascript/
https://academind.com/learn/javascript/the-world-of-javascript/

CHAPTER 3. SOFTWARE ARCHITECTURE

components at runtime. This means that the framework renders only those
parts of markup based on the relevant data which are needed. This works as
contrasted with jQuery, which renders the complete markup and modifies it.
To decide which framework to take for replacing jQuery, the afore-mentioned
frameworks are introduced in the following before they are compared.

Angular (2+) Angular 2+5 is the rewritten version of AngularJS, released
in 2016 by Google. It uses TypeScript and two-way-data-binding6. Angular
can not be dropped into any existing HTML page, has a complex project
setup and is focused on creating big single-page-applications for every kind of
deployment target7. It works with modules providing the compilation context
for components, each has a purpose and responsibility. Components define
views (a set of screen elements) and use services (provide the functionality)8 9.

React React10 was released by Facebook in 2013 and is described as perfectly
suited for creating interactive user interfaces. The logic of each component is
written in JavaScript and it implements its own language for creating markup
(JSX). Due to this a React component is completely written in JavaScript
so the data can directly be passed, handled and changed. React components
work with virtual DOMs: If the data changes, React compares virtual and
existing DOM and re-renders only the necessary changes. This provides a
faster performance in comparison to exchanging the whole DOM. Data can be
passed through components and held in one to keep track of state and data of
the whole component.

Vue (Version 2.0) Vue11 is the only framework created by a single person
not a company behind it: Evan You, an independent software developer. The
first version of Vue has been published 2014, the second version - Vue(2) -
was released in 2016. It is very flexible in terms of the size of application it is
usable for. One can put it into existing HTML pages (progressive framework)
or build complete single page applications. Vue combines the ideas of React
(controlled part of the HTML to render your data/component in) and Angular

5 https://angular.io/
6 Two-way-data-binding describes the data is synchronized regardless of whether it is

changed by the user or by the application itself (https://angular.de/buecher/angu
larjs-buch/databinding/)

7 https://academind.com/learn/javascript/the-world-of-javascript/
8 https://academind.com/learn/angular/angular-vs-react-vs-vue-my-thought

s/
9 https://angular.io/guide/architecture/
10 https://reactjs.org/
11 https://vuejs.org/

17

https://angular.io/
https://angular.de/buecher/angularjs-buch/databinding/
https://angular.de/buecher/angularjs-buch/databinding/
https://academind.com/learn/angular/angular-vs-react-vs-vue-my-thoughts/
https://academind.com/learn/angular/angular-vs-react-vs-vue-my-thoughts/
https://angular.io/guide/architecture/
https://reactjs.org/
https://vuejs.org/

CHAPTER 3. SOFTWARE ARCHITECTURE

Table 3.1: Comparison of the Average Slowdown Statistics (non-keyed) of
JavaScript Frameworks for One Benchmark Example

Duration for... angular-v7.1.4
non-keyed

react-v16.6.0
non-keyed

vue v2.6.2 non-
keyed

interacting with
the table

1.09 1.10 1.42

startup metrics 2.27 1.20 1.00
memory alloca-
tion

1.61 1.18 1.01

summary 1.66 1.16 1.14

(separate HTML, CSS and JavaScript but place the functionality-instruction
directly into the HTML code).

3.1.2 Comparison

The application should load fast and perform well when running (e.g. updating
the table by filtering). It should be well structured to guarantee the maintain-
ability and keep track of states (like the current set of displayed data etc.).
With all of the three frameworks it is possible to build powerful apps with a
component-based structure. Angular is designed for creating very big single
page applications with good performance. React and Vue can be used as well
for creating single page applications, they only do not have their focus on it.
They can also be implemented in Multi-Page-Applications. To compare the
performance, the framework benchmark project js-framework-benchmark 12

with statistics for the mode non-keyed was used. Non-keyed concerns the
data-binding between data and DOM. It means, that data is replaced by new
ones in elements of the DOM in comparison to keyed, where the elements are
removed and new one would be added. For example, if we compare the function
of pagination in a table: By clicking on a button to the next page, the content
of all rows has to be replaced but the structure of the table stays. The keyed
approach will delete all rows and add all rows as new elements in the DOM.
However, the non-keyed approach leaves the DOM as it is and only replaces
the data. This improves the performance and gives the reason to only compare
and prefer the usage of non-keyed approaches. The slowdown describes always
the duration of current framework divided by the fastest one.

In the benchmark tool we compare angular v7.1.4 with react-v16.6.0 and
vue-v2.6.2 (all non-keyed) with regard to the duration of actions with a ta-

12 https://github.com/krausest/js-framework-benchmark

18

https://github.com/krausest/js-framework-benchmark

CHAPTER 3. SOFTWARE ARCHITECTURE

Table 3.2: Comparison of the Popularity of React and Vue

Popularity of Vue React
Contributors 278 1,304
GitHub-Stars 145,663 134,099
Used by 974,844 2,311,749
Posted jobs 1356 4142

ble, start up metrics and memory allocation. The complete comparison of
values can be found in Appendix A. The summary represents the average of
slowdowns per framework and category of comparison. It is calculated by
comparing the duration for one action (e.g. replacing all rows), and taking
the fastest framework as the reference point for this action. The other frame-
works are compared to this reference point. The values in Table 3.1 are the
calculated average of slowdowns per category of comparison and framework.
Summarizing the first section (interacting with the table like creating, swap-
ping, updating,... rows), vue.js has the worst value with 1.42. This means the
average of the duration of acting with the table in this benchmarking example
in comparison to the fastest one per row. As this distance to 1.0 is quite low
(what would mean, that all three are same), they are close together. Mainly
the duration of selecting rows impairs the rating, to find in Appendix A.

The second section compares the startup metrics of the three frameworks
like the script bootup time or the thread work cost. This output is very
important because the users of BenchExec HTML tables complained a lot
about the loading time of huge result tables. Here, vue.js has the best value
in every task, React is a little bit worse with 1.20 but angular has an average
of 2.27. This is mostly affected by the script bootup time which includes the
parsing, compiling and evaluation of all scripts. In addition the weight of the
application (post-compression) is higher than in React and vue.js (1.70) what
is crucial because e.g. some users of BenchExec send the HTML file of the
table via email.

Also the summarized memory allocation of an angular-app was higher than
in React and Vue: While React and Vue are similar (1.01 and 1.02) Angular
has a slowdown geometric mean of 1.61. This is higher than the others mainly
influenced by the memory usage after page load with a duration of 2.46 (can
be seen in Appendix A).

As React and Vue are similar in performance and usability, the decision
is made by the popularity of the framework; by how easy it would be to
find someone to maintain and improve the application in the future. Both
frameworks were compared by their contributors, GitHub-Stars, number of

19

CHAPTER 3. SOFTWARE ARCHITECTURE

users13 and posted jobs on Xing.com14. As shown in Figure 3.2, React has
more contributors and posted jobs. It is also a lot more used. Only the number
of GitHub-Stars is less than in Vue. Interpreting this table, the chance to find
another person who is familiar with React seems to be higher than with Vue.
In addition, React is developed and advanced by Facebook and not a private
person with supporters.

To summarize, the most suitable framework overall is React. The runtime
of the three frameworks is pretty similar, but Angular is more designed for
bigger applications and not built for small ones what can be seen in the per-
formance: It is slower in startup and has a bigger bundle size than the others.
Comparing the frameworks by popularity, React is more asked and seems to be
more popular. In addition, a big company is the founder of the framework and
these are the reasons for preferring React: More people are using and know
React at the moment and to keep maintainability, it is more likely to find a
developer, who knows React than one who knows Vue.

Not having to reinvent the wheel, we include libraries for implementing
some features: The basic and needed structure of the react application is
created with react’s create react app15, an out of the box application
creation tool. For building the interactive table we include react-table (version
7.0.0)16 and for both plots we use react-vis (version 1.11.7)17. Also included
is react-tabs18 and JSZip19. For testing we choose jest.js20 as it is served with
create react app.

3.2 Structure of Features and Deployment Pro-

cess

The interactive features in the old version of BenchExec HTML table are
all implemented in one HTML file one below each other. As mentioned, one
focus of modern frontend frameworks is the component-based structure. React
also furthers that so the features are now in different files while developing.
Figure 3.1 shows the new structure of the application. Create React App
separates its sources from other elements of the application e.g. builds and
configurations. They are stored in the folder src which is also segmented in

13 Seen on GitHub on August 9th 2019 on https://github.com/
14 Seen on GitHub on August 9th 2019 on https://www.xing.com/jobs/
15 https://github.com/facebook/create-react-app
16 https://www.npmjs.com/package/react-table
17 https://uber.github.io/react-vis/
18 https://github.com/reactjs/react-tabs
19 https://stuk.github.io/jszip/
20 https://jestjs.i

20

https://github.com/
https://www.xing.com/jobs/
https://github.com/facebook/create-react-app
https://www.npmjs.com/package/react-table
https://uber.github.io/react-vis/
https://github.com/reactjs/react-tabs
https://stuk.github.io/jszip/
https://jestjs.i

CHAPTER 3. SOFTWARE ARCHITECTURE

components, data, tests and utils. In the folder src\components all main fea-
tures are stored each as one component (thus each as a file). There are five
tabs and two overlays. All of them are held and navigated by the Overview.js
which also keeps the current state and data of the whole application. Each
component also has own states but only concerning the feature itself. In the
moment of affecting another part of the application, states or data have to
be handed over to the overview. This guarantees a consensus of data in all
components. One example is the filtering of the table: With setting a filter the
currently shown data is affected. Hence the functions to set and build the filter
and how the data is filtered is prepared in the component reactTable.js but
the function to adapt the data of the application is stored in the Overview.js.
Every component is shown in Figure 3.1 with its functionalities, used frame-
works and dependencies. App.js imports the CSS file and Overview.js to
render the complete application. Overview.js is a different file to keep the
opportunity of expanding the frontend application and creating a new inde-
pendent part in parallel Overview.js and its components (displayed in green
boxes with red outline). As the survey revealed most users first have a look at
the summary. Since it is located at the bottom of the table in the current im-
plementation, the users complained about long scrolling. To resolve this issue
the summary has been separated from the table and added as a new compo-
nent respectively its own tab which can be seen in Figure 3.1. In Chapter 4
this topic will be explained in more detail.

The bundle process minifies and bundles all components and style files in
one bundle.min.css and one bundle.min.js (green arrows). Create Re-
act App brings along an out of the box bundle process. By default it splits the
code into multiple styling and multiple JavaScript files (so called chunks). As
we want to include everything into a single template (template react.html)
later, the bundling process needs to be adapted accordingly. In the HTML file
the chunks are brought together with the data and the final HTML file can be
dynamically generated. To generate the HTML file with the new react tem-
plate the flag --react has to be set when using table-generator. The used
data is prepared and handed over by the Python script of table-generator.
It is subsequently parsed to JSON and imported in the template react.html

which dynamically generates the final HTML (see Section 3.3).
In comparison to the old version, we now have a deployment process. It can

be handled with one command by switching to the folder react-table then
running npm run build for building or npm run tablegenerator for building
and testing with example content (taken from components/data/data.json).
The benefit is that the code is now in files per component plus an additional
file for styling and a file containing stateless and common used functions. This
makes it cleaner and easier to maintain. In addition, the size of the generated

21

CHAPTER 3. SOFTWARE ARCHITECTURE

Namics. A Merkle Company

Overview.js
● Holds all data in its state
● Handles the features
● provides multiple used

functions which affect data
● Uses react-tabs

SelectColumns.js
● Select one or more (to all)

columns to hide the
column

● By tool, by column
● Hold state also in Plots

LinkOverlay.js
● Send Ajax-request to

display the content of the
link

● Can be a file in a zip ->
has to be extracted

● Uses JSZip

ReactTable.js
● Presents the table
● Provides filtering and

sorting
● Free text search
● Pagination
● Links
● Fix first column
● Uses react-table

Summary.js
● Information about

environment
● Summary of results
● Select columns
● Link to Quantile Plot
● Uses react-table and html

table

QuantilePlot.js
● Compare all values of one

runset
● Compare runsets by value
● direct and quantile plot,

linear and logarithmic, all
and only correct results

● Hide data
● Tooltips
● Uses react-vis

ScatterPlot.js
● Axis: One value of all

runsets
● Line: Border, to show

distance of data points
● linear and logarithmic, all

and only corect results
● Hide data
● Tooltips
● Uses react-vis

Info.js
● Information
● Explanation

App.scss
● Provides styling
● Uses scss:

Style-sheet
language with
variables

App.js
● Imports App.scss
● Renders App
● gets bundled with all

imports

utils.js
● Provides common used

and stateless functions
which do not affect data

● Testable without
rendering the complete
application

tests (folder)
● Includes tests for

functions and UI
● Includes snapshots
● Uses jest

imports
Imports, handles data and states

Overlays

Tabs

template__react.html
● Holds Header
● Imports data
● Imports chunks via

python

bundle.min.js

bundle.min.css

Get bundled to
Imports and uses functions

Figure 3.1: Structure of the New HTML Application

HTML is smaller, because of the client-side rendering. With outsourcing some
functions into the file utils.js components are clearer. In addition automatic
testing is easier and faster because to test functions in components requires
rendering the whole application (which requires a completely mocked data set).
This is the first way of testing. The second is the so called snapshot testing to
see if the UI has changed. For both variants an example is implemented and
has to be expanded when extending the application. To run automated tests
you can use the command npm run test. All commands can be adapted in
package.json

3.3 Data Structure

As the software architecture will be completely new, it is essential to evaluate
the data structure and adapt it. So far, template.html received its data via
two ways: On the one hand the data is directly prerendered by a Python
templating engine21 in the HTML template. On the other hand some data
is saved in JavaScript variables to process them via jQuery. As all data will
be rendered on the client-side in the future, all the data need to be provided
as one object to access them in the react application. This is done in JSON
format. JSON is a format which is easy to read, write, parse and generate.

21 https://pyrocore.readthedocs.io/en/latest/tempita.html

22

https://pyrocore.readthedocs.io/en/latest/tempita.html

CHAPTER 3. SOFTWARE ARCHITECTURE

It is built in two structures: Arrays (lists in Python) and key/value pairs
(dicts in Python). This makes it easy to handover the data from Python
script to the template (HTML) and is the basis for data handling of the new
implementation22. In the new version all needed data is prepared and handed
over to template.html as JSON objects in the Python script. There, the
data is stored in a variable and separated in objects depending on their area of
use: Header information, tool/runset information, results per rows, statistics
for the summary of the table and properties. The old implementation had
some redundant data like the information about columns in each row. Since
this information is no longer needed and to reduce the size of the data, it
was removed from each row but placed in the information about the tools so
every tool has now the information about its columns. One row only provides
the results of it including the properties and information about its task. Its
results are split as objects for each runset in an array. This unifies the way of
passing the data and reduces its size. The results are objects in an array in
two variations: Formatted and original. The original is used for comparing and
processing with the data (e.g. sorting or calculating the plots), the formatted
version is mostly for displaying. In this way we reduce the actions that have
to be done in JavaScript. The properties (specifying which parts of the row id
shall be displayed) are also placed as one array in the data (’props’) because
it is always the same for every row. A complete comparison of two rows with
the same content but with the old and the new implementation can be found
in the appendix B. By generating a table with same data in the new and old
version and storing it in an JSON file we can compare the size of both result
objects. In the following example the BenchExec result contains 23553 runs.
Generating a table with the old version and storing its results in an JSON
file, the file’s size is 91,1 megabyte. Doing the same process with the same
BenchExec result but setting the flag --react (so that the new version is
used), which adapts the data as described, the size of the JSON file is 47,9
megabyte. This means the file is less than the half of the size as in the old
version.

The preparation takes place in util.py. The methods prepare rows for js,
prepare run sets for js and prepare stats for js take a copy of the orig-
inal data (to ensure, that the original data can be used on other places if
needed) and returns it in the presented way above. As mentioned the rows
lose a lot of their stored data. This is handled with objects to exclude so if
more information can be removed in the future work, the keys have only to be
written in these removing objects.

22 https://www.json.org/

23

https://www.json.org/

Chapter 4

Improving the User Interface

In the following chapter, we attend to the improved user interface (UI) of the
BenchExec HTML tables. Before changing it is necessary to analyse, which
features are implemented at the current status because - as in the introduc-
tions already mentioned - there is no overview or holistic concept of the whole
application. After the analyses we focus on the fundamental alterations, dif-
ficulties and challenges of improving the UI and connections between features
in terms of data and states.

4.1 Analysis of Existing Features

In Figure 4.1 and Figure 4.2 all features or the link to display them is displayed.
These are the same images as used in the first survey so the numbering and
naming is used in this section, in the survey as well as in the whole work. The
following list takes up each characteristic, describes its functionality, features,
and coherencies with other characteristics.
(1) Select columns (Figure 4.1)

By clicking on this first button in the header, an overlay opens and you
can select and deselect the columns of each runset you want to display. It
is implemented as a table with green cells for the selected and red cells
for the deselected columns. With a click on one cell, it toggles the color
and visibility. This also works for all columns of one runset (click on the
name of the runset) and all columns of one type for each runsets. You can
also open this feature with a click on the header of the filename column.
If columns are invisible, they are not shown in the plots, too.

(2) Filter rows (Figure 4.1)
This feature is also shown in an overlay and opened by clicking the link.
You can select filters out of the columns for each runset (in this example
status, cpu time, walltime and memUsage). By choosing the filter a multi-

24

CHAPTER 4. IMPROVING THE USER INTERFACE

Figure 4.1: All Features of BenchExec HTML Tables Part 1 - Screenshot
taken from https://sosy-lab.github.io/benchexec/example-table/svcom
p-simple-cbmc-cpachecker.table.html

25

https://sosy-lab.github.io/benchexec/example-table/svcomp-simple-cbmc-cpachecker.table.html
https://sosy-lab.github.io/benchexec/example-table/svcomp-simple-cbmc-cpachecker.table.html

CHAPTER 4. IMPROVING THE USER INTERFACE

Figure 4.2: All Features of BenchExec HTML Tables Part 2 - Screenshot
taken from https://sosy-lab.github.io/benchexec/example-table/svcom
p-simple-cbmc-cpachecker.table.html

select select field with all values of the this column for the respective runset
is shown. From these one or more (by pressing the shift key) values can be
chosen to set the range to be displayed. After choosing, the filter can be
reset, applied and inverted. It is also possible to select values or none by
clicking the respective button. With the click on one button on the right
side, the overlay closes and the filters are applied except resetting: then
the overlay does not hide.

(3) Quantile plot (Figure 4.1)
Quantile plot has two modes and is also shown in an overlay. One mode
displays all runsets compared on one parameter (e.g. cputime), the other
one visualizes all parameter (columns) of one runset. Each value is rep-
resented with a linked dot. In the first and preselected mode, x-axis rep-
resents the list of tasks, y-axis its value for the selected parameter (like
cputime). On the top you can choose within a dropdown which mode and
parameter (column) should be presented (e.g. cputime). Each runset /
parameter has one color, the legend is on the right bottom. There you
can toggle whether to present the runset(-values) or not and highlighted
by hovering. On the bottom of the left hand side there are three buttons
to toggle: Direct plot and quantile plot, logarithmic or linear scale and

26

https://sosy-lab.github.io/benchexec/example-table/svcomp-simple-cbmc-cpachecker.table.html
https://sosy-lab.github.io/benchexec/example-table/svcomp-simple-cbmc-cpachecker.table.html

CHAPTER 4. IMPROVING THE USER INTERFACE

Figure 4.3: The Feature Filter rows in the Overlay - Screenshot
taken from https://sosy-lab.github.io/benchexec/example-table/svcom
p-simple-cbmc-cpachecker.table.html

27

https://sosy-lab.github.io/benchexec/example-table/svcomp-simple-cbmc-cpachecker.table.html
https://sosy-lab.github.io/benchexec/example-table/svcomp-simple-cbmc-cpachecker.table.html

CHAPTER 4. IMPROVING THE USER INTERFACE

to show all results or only the correct ones. In a direct plot displaying
only correct results, the incorrect ones are bypassed (have no point) so the
line connects only the correct results visualized by a dot. By hovering on
one dot the name of task and the y-value is displayed in a tooltip. If the
selected value is of the type text an ordinal y-axis is shown.

(4) Scattern plot (Figure 4.1)
The Scatter plot is also presented in an overlay. It shows a two dimensional
data visualization. Dots represent the values of variables: One variable is
the x- and one the y-axis. In a dropdown you can choose which axis should
represent which column (like status, cputime, e.g. from which runSet)
In a third dropdown you can choose a factor from 2 to 100.000.000 for
additional lines in the plot, they have the slope y = n · x and y = 1

n·x
where n is the factor of the dropdown for additional line mentioned above
(default value is 10). This is to see fast, whether there are values more
than factor n away. On the bottom of the overlay there are two buttons:
One to switch between the presentation of the logarithmic or the linear
scale and one to switch whether the user would like to show all or only
the correct results. In this case, the plot first filters whether correct or not
and then builds the intersection of tasks, in which all runsets the category
is “correct”. For example this means if you compare two runsets in a
task, where for one runset the category is correct but not for the other
one, it is not shown in the plot. Axis have not always the same gaps
as they fit with the results. With linear scale the red line (y = x) hits
always the point (0|0) in comparison to the logarithmic scale, because of
log 0 = undefinded. For both plots a plugin called jqPlot is used1.

(5) Shrink header (Figure 4.1)
This is the last button in the header. It toggles the display status of
toolinformation (whether it is displayed or not).

(6) Toolinformation (Figure 4.1)
Toolinformation - better called environment information - is on top of
the table and can be hidden. This information about the runsets and
the environment for the executed benchmarking process are displayed in
a given sequence. Cells which are same for both runsets are merged and
displayed only once. The cells for “options” are written in Teletype because
they are command line options. By clicking on the cells of the row “Run
Set” the overlay with the quantile plot of this runset opens.

(7) Result table (Figure 4.1)
This is the main part of BenchExec HTML tables. It displays all results
of the runsets for the given and visible columns. Different runsets are next

1 http://www.jqplot.com/index.php

28

http://www.jqplot.com/index.php

CHAPTER 4. IMPROVING THE USER INTERFACE

to each other, one row shows one task. Exact structure and naming is ex-
plained in 2.1.4. The values are rounded with significant decimal numbers
(which can be adjusted in the table-generator) and the decimal point
of each value of a row has to be directly among the one of the next row to
clearly show differences in the size of the value. With a click on the header
of a column the quantile plot of this value opens in an overlay.

(8) Summary (Figure 4.1)
This section shows a summary of all results from the table. The val-
ues are generated via the table-generator and are not calculated by
JavaScript. This includes, that they are static, so if rows are filtered the
score is not changing. It shows the number of correct and incorrect results
(for each true and false). The summary also shows only the columns which
are visible (and not deselected in Select columns).

(9) Link to source/task definition (Figure 4.1)
Each row represents the values of the results of one task. These tasks
have identifications and source codes (definitions). The identification is
displayed in this cell, consisting of its name and properties. If the cell is
provided with a given link clicking on the cell opens an overlay and the
definition / source is requested via AJAX. There are four opportunities
to find the asked definition: It can be local or online, resided in a zip or
directly behind the linked path. These four options have to be tried to
request. If none is successful an error-message is shown.

(10) Link to tool output (Figure 4.1)
At the status value of each runset for the specific task the tool output
can be linked. The AJAX-request works exactly like the one for the task
definition, described above.

(11) Summary table popUp (Figure 4.2)
This feature is also shown in an overlay and displays the results of summary
in another way than in the table: One row displays the summary results
of one row for only one runset (like local summary, correct results etc.).
By clicking on the description in the head you can switch between the
summary rows. So in every table only the results of one row for all runsets
are shown underneath.

(12) Tooltips
There are a number of tooltips in different variations: In the table itself,
the tooltips are displayed after circa three seconds (on fields with actions)
beneath the cursor to explain which action is possible by clicking here.
The tooltips of the summary show several additional values like average or
minimum for the specific cell. These information are given via the data.
In the plots, they have a different appearance like in the table with an
opacity and they are shown above the cursor.

29

CHAPTER 4. IMPROVING THE USER INTERFACE

Figure 4.4: Table of the New Version of BenchExec HTML Table with
Example Data

4.2 Implementations with Special Challenges

and New Approaches

Most features and functionalities were taken over to the new version. No
implementation can be inherited because of the removal of jQuery but some
concepts of functionalities can be adapted. In the following, only the biggest
changes, special challenges and new approaches are described. An example of
the new version is shown in Figure 4.4. The result table is displayed in this
example and it is filtered by memory (with a minimum of 200 and a maximum
of 1000). Additionally the fourth line is hovered.

4.2.1 Tabpanel

The structure of the complete application new: Instead of buttons and their
overlays a tab panel on the top of the application is shown. You do not have
to open and close overlays any more but can switch between functionalities
with only one click and see where you are in the application. Thus the space
for content is bigger. In the tab of the table (which is shown in an example
in Figure 4.4) the number of displayed rows (depending on the applied filters,
also shown in Figure 4.4) is shown. If one or more filters are set, it is possible
to reset them by the button in the tab panel from everywhere. So the filters

30

CHAPTER 4. IMPROVING THE USER INTERFACE

Figure 4.5: Summary of the New Version of BenchExec HTML Table with
Example Data

can be reset e.g. while having a look on the plot so the difference between
filtered and non-filtered data is more obvious. This is one step to reach the
goal of creating an application, that is easy to handle and every feature and
information is easy to reach. For the background of the tab panel the blue of
the Software-system lab is used. To get a continuity it is defined as the key
color. This means, that it is used for every highlight in the whole application
like links or important buttons.

4.2.2 Summary and Information

By opening the application you see a summary of information first as the shown
example in Figure 4.5. This includes the data of used environments (like tools,
limits, options and so on). Below, the summary of data is presented. It shall
solve the problem of long scrolling to see the summary, which was criticized by
many participants. Now the first look on the summary can be done completely
without waiting. It also replaces the button for shrinking the header because
now the environment information is separated from the table and more space
can be used to show content of the table.

31

CHAPTER 4. IMPROVING THE USER INTERFACE

4.2.3 Table Implementation

The mentioned space is now used to add a bar for filtering: Each column now
has the option to filter without any overlay or long lists of filters. There are
three types of filters: A selection field for the status where you can select a
category or a concrete value, an input field for text and an input field for
values. The value can be a concrete number, a minimum, a maximum or
a combination of it. For example, if users want to find all tasks where the
cputime is less than 3 seconds but higher than 1 second they can put ’1:3’
in the input field over the column cputime. This is represented through a
placeholder. To prevent filtering after every typed character a delay is set
to 500ms. All set filters are displayed in the input field so they are always
reachable in this tab. Filtering is part of the used library react-table but the
filter itself as well as the filter function have to be overwritten with a custom
filtering because of many reasons: setting a placeholder, different handling of
filtering the types of values in the column (text or number), the selection field
for filtering by status, the way data is structured and the explained approach
of typing minimum or maximum. This is handled with a regular expression.

In this filtering method the mentioned distinction from Section 3.3 is needed:
To decide if the row has to be returned by minimum or maximum (with >=

and <=) the original value has to be used to get no rounding problems. If users
enter a concrete value they are searching for, the formatted value has to be
searched because this is what the user sees in the table. By clicking the table
head of a column the rows are sorted. The out of the box sorting function also
is overwritten by a custom sorting. Horizontal scrolling is now possible for the
whole table or for only the results. The column with task names can be fixed
through a checkbox. On the bottom of table a pagination is implemented. On
the left and right side, there are buttons to show the previous or next page
with results, in the middle a select field is placed to set up the number of shown
results per page and a field to go to a specific page. Sorting and filtering works
for all pages and not only for the shown one.

32

Chapter 5

Evaluation

The last part of this thesis is about ascertaining if implementing a new version
of BenchExec HTML tables brought improvements for the users and if the
requirements from Section 2.5 are fulfilled. For this we use the results of
the first survey and compare them with answers from another one which was
conducted after the implementation. The second survey was provided as a
Google form for eleven days. It was publicized through an email to the users of
BenchExec and a link on the BenchExec’s GitHub page (this was the same
publication as the first survey only three days less time to participate). The
full results of each survey with the list of questions can be found in Appendix C
and D.

5.1 Comparison of the Surveys

The users were advised to play around with the new application and attend
to get the information that they are interested in when normally using the
HTML tables. The first survey was answered by 16 and the second one by 13
people. Overall 91.3% of the participants believed that the new version was
an improvement in comparison to the old table.

Comparison of Ratings of BenchExec HTML Tables In one section of
both surveys, the participants could rate usability, design and user-experience
of HTML tables of BenchExec with a number from one to five. In the first
question (which asked about the usability) one was set as “I need a lot of time
to find the feature/information I am searching for” and five was set as “every
feature/tool is reachable and easy to find”, similar were the other ratings: One
was the most negative rating and five the best one. The average rating for all
three asked points raised from the old to new version: Usability raised from
3.2 in the old version to 4.4 in the new one, the design from 3.3 in the old

33

CHAPTER 5. EVALUATION

to 3.4 in the new version and the rating of user experience raised from 3.0 in
the old version to 4.1 in the new one. In the second survey, the participants
could also rate three things in direct comparison between old and new version.
The first of these questions asked, if the users need now more or less time (in
comparison to the old version) to find the information they are searching for
(also with one as the worst and five as the best rating). In this case, twelve
out of the 13 answered that they are faster (or much faster) in finding their
searched information (average: 4.4). Only one participant answered with a
rating of two out of five Also the next question was answered positive from
the view of the new version: The velocity of loading with the new version was
asked in comparison to the old one. In this case, nine out of thirteen people
answered that loading is much faster now (average: 4.5), two people answered
that it is faster and two participants rated it with three out of five. The last
question (in direct comparison) was about the velocity of interacting with the
table (like clicking, sorting, e.g.). Eleven out of thirteen rated it with “faster”
or “much faster” (average: 4.5), two people choose the middle.

In sum, the participants rated the new version in every question better than
the old one so it is an improvement for them to work with the new application.
In the first three questions this is shown by comparing the average: The rating’s
average of all three questions is higher for the newer version. On the second
three questions, an average beneath three would support the old version but
for all questions it is higher than 4.3.

Comparison of Usability for Every Feature in Detail A question about
the usability of the features in detail was asked in both surveys, so we can
compare seven features directly for the new and the old version: Scatter and
quantile plot, the table itself, filter rows, select columns, the summary of results
and the tool information. Some features were asked about only in one survey:
Shrink header was not mentioned in the second survey, as it was removed in
the new version because of the restructuring. Link to source code and tool
output were not asked again because the feature is inherited but only with a
new (and updated library) and the summary table pop up, because it was used
by so few people that a new solution has to be found (explained in Chapter 6
conclusion). In the second survey there are some new features like fixing the
tasks (on the left hand side), to sort rows, the pagination and the information
tab so they can not be compared with the old version. In chart 5.1 we can
see a higher average of usability of the new version of BenchExec HTML
tables for every feature. The average was calculated without the answers
“never used”. In the old version there are only two features with an average
rating more than four: Quantile plot and Select Column. No average of the
new version’s features is less than four, the ratings of table itself and scatter

34

CHAPTER 5. EVALUATION

0.00 1.00 2.00 3.00 4.00 5.00

Tool Information

Summary

Select Column

Filter Rows

Table

Quantile Plot

Scatter Plot 4.5

4.58

4.15

4.38

4.67

4

4.15

3.54

4.08

3.53

3.93

4.29

3.69

3.94

Old Version
NewVersion

Figure 5.1: Comparison of Average Usability for Every Feature in Detail

35

CHAPTER 5. EVALUATION

plot increased most (the average valuation of the table increased by 0.53, the
average valuation of scatter plot increased by 0.96). The ratings of the new
version of comparable features are visualized in Figure 5.2. To mention is
that the filtering of rows was rated with “very bad” from one person. Nine
participants out of thirteen rated it with “very good”, three with “good”, one
with “ok” besides the one with “very bad”. This can be associated with an
answer in the last part of the survey number two where the participants had
the chance to tell their additional comments. In more than one questions there
were answers about the filtering : They said, that the capabilities were more
advanced in the old version and that the table looses a lot of value because
there is no chance for boolean combinations of filtering. Another point to
improve is the summary: Eight participants out of 13 rated it with “good”
and three with “very good” but there is one person, who rated it with bad.
It also has the worst average (four which means “good”) which can be seen
in Figure 5.1. The tool information has its lower quartile and lower whisker
at three and its upper quartile and upper whisker at five. There is no outlier,
six participants rated it with five, three with four and four with five. All of
the other features except the summary have their upper whisker in the upper
quartile. Especially quantile Plot has only ratings between four and five. This
shows, that most of the participants of the survey are satisfied with the new
implementation of features. The average of all of the features of the new
version are four or greater in comparison to the old version. The features of
the old version with the highest average is quantile plot with 4.08.

5.2 Evaluation of Final Comments in Second

Survey

In the last part of the second survey, there were six open questions where
the user had space to write down their experiences and opinions. They were
asked about improvements, regressions, missing features and bugs. In general
many participants were thankful and praised the work. The most mentioned
thing was the velocity: In total, there were eleven positive comments about
the speed of plots, loading or performance of the whole application. Some
complaints were remedied after closing the survey, like the visibility of lines
between columns, bold titles of tabs, the contrast of toggle buttons in the select
columns overlay and the styling of buttons. Also the missed information about
the possibility to fix the first column was added. Some written points were not
changed because their comments were only subjective. For example two users
complain about the font-size: One thinks that it is to small while the other
one recommends to set it smaller “to fit more content on screen”. One point

36

CHAPTER 5. EVALUATION

S
ca

tt
er

P
lo

t

Q
u
an

ti
le

P
lo

t

T
ab

le

F
il
te

r
R

ow
s

S
el

ec
t

C
ol

u
m

n

S
u
m

m
ar

y

T
o
ol

In
fo

rm
at

io
n

1

1.5

2

2.5

3

3.5

4

4.5

5

Features

Figure 5.2: Box Plot of Results for Comparable Features of the New Version

37

CHAPTER 5. EVALUATION

with lots of opinions is the filtering. On one hand, the participants like the
new approach of it, especially that the set filters are displayed on top of the
table. On the other hand, they want it “more advanced” with the possibility
of boolean combinations. This is a bigger issue which could be rethought,
evaluated and implemented in another work. One other point is the separation
of runsets: One participant complained that it is hard to distinguish between
different runsets. Since this is only mentioned once, the design of the table
could be overthought and tested by users but it is not indispensable because
the average meaning about the usability of the table was good.

5.3 Fulfilment of Requirements

According to Section 2.5 and with regards to the second survey we verify
in this section, if these requirements are fulfilled with the new version of
BenchExec HTML tables. With the flag --react (Section 3.2) in the tool
table-generator the new interactive table of benchmarking results, which
is build with the modern JS library react, can now be generated. It provides
all features of the old version except the summary table pop up which was
nearly never used according to the survey. Some features are available now in
a completely new manner like the filtering but always visible while working
with the result table. Even though, the structure of the application is new and
the usage of some features is different, the users have no problems to find them
(e.g. “splitting parts (summary, table etc.) into different tabs” as the biggest
improvement). They voted all comparable functionalities more positive in the
new version than the old one. This is reinforced by 92,3% of the participants
of the second survey who answered that they needed less time to find the in-
formation they were interested in. Based on the aforementioned information,
it is clear that the application is intuitively usable and the users achieve their
goals effectively and efficient. The new application now provides functionali-
ties like sorting and pagination which was not given before and additionally
mentioned in the area for comments of the second survey (e.g. pagination the
biggest improvement). The performance is positively mentioned eleven times
in the open comments part of the second survey. In the questions about the
velocity and time for loading, interacting and finding information, the averages
of answers is always higher than 4. Time for interacting and loading is never
voted with ’much slower’ or “slower”. What the user could not vote for was
the maintainability and clear structure of the code. During development the
frontend is now clear structured and separated in files per feature and imple-
mented with a common used and famous framework so it should be easy for
developers to find the section of code they are looking for.

38

Chapter 6

Conclusion and Perspective

As one of the survey participants wrote as an answer, implementing a new
architecture and improving the UI was the first step to create a comprehen-
sive fast interactive application to visualize the results of BenchExec HTML
tables. Finding and implementing the new framework with its new structure
took most of the time and resources. Since most of the features are needed
by the users and the framework is completely new the features had to be im-
plemented in a new way. Another difficulty was that there was no holistic
concept or a full list of features and (hidden) functionalities which popped up
while implementing something else. This shall be solved with this thesis but
made it hard to estimate the effort for implementing and caused bugs and
challenges. The user-centered approach and the coherent first survey helped
a lot to understand the real users, their needs and ways of using the appli-
cation. This revealed the biggest problem of long loading times which shall
be solved with the new version. The application can now be extended and
further developed with a solid and holistic basis. One point to expand is the
filtering. This was already rethought, improved and positively voted for but
since there are user needs which are not fulfilled it may be expanded by, for
example, boolean combinations or the performance and the filtering concept
could be improved and evaluated. The filter section could also be presented in
the plot tabs so the users have the possibility to filter their graphical presen-
tation of results directly in the plot. Smaller points to improve are to switch
off the pagination or to provide the possibility to download the plots as SVGs.
Another huge point to improve is the summary in combination with the never
found feature summary table pop up. As it was not possible to implement a
whole new and configurable dashboard and the focus on features which are
used more often, the separate summary can be seen as the minimum viable
product. Next steps could be to calculate all summary results via JavaScript
which would make it possible to show also a summary of filtered results or

39

CHAPTER 6. CONCLUSION AND PERSPECTIVE

expand it (e.g. Survey answer: “perhaps cut-off when there are only 1% or so
of results of some type”). This would make it configurable and would give the
possibility to create a handy dashboard which combines summary, summary
table pop up and kind of a dashboard.

The new version of BenchExec HTML tables should not be considered
final: As the human-centered design approach says it should be an iterative
process which means, that the users should be regularly included in an con-
tinuous process of improving and extending the application while never losing
sight of the big picture.

40

List of Figures

2.1 Example Table with Names of Table Parts 8
2.2 Screenshot of a Summary of Results for MCC’s StateSpace . . . 10
2.3 Screenshots of Results for One CASC Competition 2018 10
2.4 Ran Jobs of AIGER-Real-Test - a Competition of Syntcomp . . 12
2.5 An Example for a Graph in StarExec 12
2.6 Number of Weekly Commits for jQuery in the Past Year 13
2.7 Number of Weekly Commits for React in the Past Year 13
2.8 Number of jQuery Contributors from March 19th, 2006 until

August 3rd, 2019 . 13
2.9 Number of Angular Contributors from September 14th, 2014

until August 3rd . 14

3.1 Structure of the New HTML Application 22

4.1 All Features of BenchExec HTML Tables Part 1 25
4.2 All Features of BenchExec HTML Tables Part 2 26
4.3 The Feature Filter rows in the Overlay 27
4.4 Table of the New Version of BenchExec HTML Table with

Example Data . 30
4.5 Summary of the New Version of BenchExec HTML Table

with Example Data . 31

5.1 Comparison of Average Usability for Every Feature in Detail . . 35
5.2 Box Plot of Results for Comparable Features of the New Version 37

41

List of Tables

3.1 Comparison of the Average Slowdown Statistics (non-keyed) of
JavaScript Frameworks for One Benchmark Example 18

3.2 Comparison of the Popularity of React and Vue 19

42

Bibliography

[1] David Benyon. Designing interactive systems: A comprehensive guide to
HCI and interaction design. Pearson Edinburgh, 2010.

[2] Dirk Beyer, Stefan Löwe, and Philipp Wendler. Reliable benchmarking:
Requirements and solutions. International Journal on Software Tools for
Technology Transfer (STTT), 21(1):1–29, 2019.

[3] Peter Bühler, Patrick Schlaich, and Dominik Sinner. JavaScript, pages
32–53. Springer Berlin Heidelberg, Berlin, Heidelberg, 2018.

[4] ISO. Ergonomics of human-system interaction – Part 210: Human-centred
design for interactive systems (ISO 9241-210:2010); German version EN
ISO 9241-210:2010. Beuth Verlag, Berlin, 2011.

[5] J. Lumsden. Handbook of research on user interface design and evaluation
for mobile technology. Number Bd. 1 in Handbook of Research on User In-
terface Design and Evaluation for Mobile Technology. Information Science
Reference, 2008.

[6] Bernhard Preim and Raimund Dachselt. Interaktive systeme: band 1:
grundlagen, graphical user interfaces, informationsvisualisierung. Springer-
Verlag, 2010.

[7] Aaron Stump, Geoff Sutcliffe, and Cesare Tinelli. Starexec: a cross-
community infrastructure for logic solving. In International joint confer-
ence on automated reasoning, pages 367–373. Springer, 2014.

[8] Philipp Wendler. Towards practical predicate analysis. PhD Thesis, Uni-
versity of Passau, Software Systems Lab, 2017.

43

Appendix A

Comparison of Frameworks in
Detail

44

APPENDIX A. COMPARISON OF FRAMEWORKS IN DETAIL

45

APPENDIX A. COMPARISON OF FRAMEWORKS IN DETAIL

46

APPENDIX A. COMPARISON OF FRAMEWORKS IN DETAIL

47

Appendix B

Comparison of One Row in Old
and New Version

1 {
2 ” e xp e c t e d r e s u l t s ” : {
3 ”unreach−l a b e l ” : [
4 f a l s e ,
5 nu l l
6]
7 } ,
8 ” f i l ename ” : ” example f i l ename ” ,
9 ” h a s s o u r c e f i l e ” : t rue ,

10 ” id ” : [
11 ” example id ” ,
12 ”unreach−l a b e l ” ,
13 nu l l
14] ,
15 ” p r op e r t i e s ” : [] ,
16 ” r e s u l t s ” : [
17 {
18 ” category ” : ”wrong” ,
19 ”columns” : [
20 {
21 ” d i s p l a y t i t l e ” : nu l l ,
22 ” h r e f ” : nu l l ,
23 ” n umb e r o f s i g n i f i c a n t d i g i t s ” : nu l l ,
24 ” pattern ” : nu l l ,
25 ” r e l e v a n t f o r d i f f ” : f a l s e ,
26 ” s c a l e f a c t o r ” : 1 ,
27 ” s ou r c e un i t ” : nu l l ,
28 ” t i t l e ” : ” s t a tu s ” ,
29 ” type” :
30 {
31 ” type ” : 5 ,
32 ”name” : ”main status ”
33 } ,
34 ” un i t ” : nu l l
35 } ,
36 { . . . } , // s im i l i a r s t r u c tu r e as above
37 { . . . } // s im i l i a r s t r u c tu r e as above
38] ,
39 ” c o l umn s r e l e v a n t f o r d i f f ” : [

48

APPENDIX B. COMPARISON OF ONE ROW IN OLD AND NEW VERSION

40 ” s t a tu s ”
41] ,
42 ” l o g f i l e ” : ” e x amp l e l o g f i l e ” ,
43 ” s co r e ” : −32 ,
44 ” s o u r c e f i l e s e x i s t ” : t rue ,
45 ” s t a tu s ” : ”done” ,
46 ” t a s k i d ” : [
47 ” example id ” ,
48 ”unreach−l a b e l ” ,
49 nu l l
50] ,
51 ” va lue s ” : [
52 ” t rue ” ,
53 ”0 . 6026 s ” ,
54 ”2170”
55]
56 }
57] ,
58 ” sho r t f i l e name ” : ” example shor t f i l ename ”
59 }

1 {
2 ” e xp e c t e d r e s u l t s ” : {
3 ”unreach−l a b e l ” : [
4 f a l s e ,
5 nu l l
6]
7 } ,
8 ” f i l ename ” : ” example f i l ename ” ,
9 ” h a s s o u r c e f i l e ” : t rue ,

10 ” h r e f ” : ” example path” ,
11 ” id ” : [
12 ” example id ” ,
13 ”unreach−l a b e l ” ,
14 nu l l
15] ,
16 ” r e s u l t s ” : [
17 {
18 ” category ” : ”wrong” ,
19 ” c o l umn s r e l e v a n t f o r d i f f ” : [
20 ” s t a tu s ”
21] ,
22 ” h r e f ” : ” example hre f ” ,
23 ” l o g f i l e ” : ” e x amp l e l o g f i l e ” ,
24 ” s co r e ” : −32 ,
25 ” va lue s ” : [
26 {
27 ” formatted ” : ” t rue ” ,
28 ” o r i g i n a l ” : ” t rue ”
29 } ,
30 { . . . } , // s im i l i a r s t r u c tu r e as above
31 { . . . } // s im i l i a r s t r u c tu r e as above
32]
33 }
34] ,
35 ” sho r t f i l e name ” : ” example shor t f i l ename ”
36 } ,

49

Appendix C

Survey No. One

50

1. I am a… * (Multiple choice)

Answers:

2. What do you use BenchExec for? * (Multiple choice)

Answers:

Legende:

11 1. Compare different versions of one tool
2. Compare different tools
3. extract statistics
4. Reliably measure/limit/kill a single tool
5. Make it easy to integrate/adapt tools into framework (through tool-info modules)
6. Run one tool in parallel
7. Identify weaknesses of a configuration (tool), compare statistics of different tasks
8. Execute generic experiments

1.
2.
3.
4.
5.
6.
7.
8.

3. How would you rate the usability of the tables? * (Single choice)

Answers:

4. How would you rate the design of the tables? * (Single choice)

Answers:

5. How would you rate the user-experience of the tables? * (Single choice)

Answers:

6. When you open BenchExec HTML Tables, what is the first thing you are

looking at? * (Multiple choice)

Answers:

7. How often do you use the following features/information? * (Single choice)

Answers:

4

6
5

4

12

7

13

11

8

12

1

4
5 5

4

1

6

2 2

6

4
5

3 3
4

3 3 3

1

3
2

1
2

3

1 1
2

1 1 1 1

10

0

2

4

6

8

10

12

14

Sele
ct

Colu
mn

Filte
r R

ow
s

Quan
tile

 Pl
ot

Scat
ter

 Plot

Shri
nk

 H
ead

er

Row
s w

ith
 to

ol
inf

orm
ati

on

Row
s w

ith
 ta

ble

Row
s w

ith
 su

mmary

Link
 to

 Sou
rce

/Task
 D

efi
nit

ion

Link
 to

 to
ol

ou
tpu

t

Sum
mary

 ta
ble

 po
pU

p

Often Sometimes Infrequent Never No answer I don't know this feature

8. How food can the following functions be used? * (Single choice)

Answers:

3
2

7

4 4

7

4

8

2

8

4

8

6

2

7

2
1

3 3

1

3

6

2
3

4
5

8

4
3

4

22
3

1
2

4

6

11 1 1 1
2 2

3 3

1 1

11

0

2

4

6

8

10

12

Sele
ct

Colu
mn

Filte
r R

ow
s

Quan
tile

 Pl
ot

Scat
ter

 Plot

Shri
nk

 H
ead

er

Row
s w

ith
 to

ol
inf

orm
ati

on

Row
s w

ith
 ta

ble

Row
s w

ith
 su

mmary

Link
 to

 Sou
rce

/Task
 D

efi
nit

ion

Link
 to

 to
ol

ou
tpu

t

Sum
mary

 ta
ble

 po
pU

p

Very good Good Ok Bad Very bad Never used

9. Do you think a dashboard with a selection of information would help you to
get the most crucial results? * (Single choice)

Answers:

My problem has mostly been just being able to scroll through
all the result rows--- the tool information header takes up way
too much space and sometimes the website is not easily
scroll-able.
 I’m not sure I understand the question. Selection of what
information?

10. Why do you think a dashboard would not help you to get the most crucial

results? (Free text)
Answers:

11. Why do you think a dashboard would not help you to get the most crucial

results? (Free text)
Answers:

12. What do you want to have on your dashboard? * (Multiple choice)

Answers:

 *1) Possibility to arrange your table, A summary that is not just an arbitrary score but also counting the number of

true, false, etc. -- essentially numbers for the different status types.
*2) Diff between columns (diff table)

*1

*2

13. Do you use the BenchExec HTML tables regulary or just rarely? * (Single

choice)

Answers:

14. How often do you use BenchExec HTML Tables? (Single choice)

Answers:

(12)
(4)

at least 3x weekly, mostly as part of inspecting buildbot
results. Apart from that, it is more like one to three times a
month. I would distinguish between tables I generate myself
and tables that I get from other sources (SV-COMP/
buildbot)

8.3%

15. How often have you used BenchExec HTML Tables? (Free text)

Answers:

16. In which situations do you use BenchExec HTML Tables? (Free text)

Answers:

17. What is the most annoying feature and why? (Free text)

Answers:

18. What is the most important feature and why? (Free text)

Answers:

19. What would improve your usage of BenchExec HTML Tables? (Free text)

Answers:

20. What else would you like to get improved?

Answers:

Appendix D

Survey No. Two

66

*Required

1. How would you rate the usability of the table application? * (Single choice)

Answers:

2. How would you rate the design of the application? * (Single choice)

Answers:

3. How would you rate the user experience of the application? * (Single
choice)

Answers:

4. Does the new version affect the time you need to find the information you
are interested in, in comparison to the old one? * (Single choice)

Answers:

5. Does the new version affect the velocity of loading in comparison to the old
one? * (Single choice)

Answers:

6. Does the new version affect the velocity of interacting with the table (click,
sort, etc.) in comparison to the old one? * (Single choice)

Answers:

7. How well can the following functions be used? * (Single choice)

Answers:

6

3

9

5

9
8

5

3

7 7

4
3

8

2 2 2

4
5

4
5

4
5

4

1 1
2

1 1

3

5

1
2

1 111

4

1 1 1 1

Row
s w

ith
 to

ol
inf

orm
ati

on

Row
s w

ith
 su

mmary

Sele
ct

Colu
mns

Fix
tas

k c
olu

mn

Filte
r R

ow
s

Sort
 Row

s

Tabl
e i

tse
lf

Pagi
nat

ion

Quan
tile

 Pl
ot

Scat
ter

 Plot

Inf
orm

ati
on

Very good Good Ok Bad Very bad Never used

8. How many rows do you want to see on one page per default? * (Single

choice)

Answers:

9. Did you have a look at the info tab? * (Single choice)

Answers:

1/13
3/13
0/13
3/13
6/13

12/13
1/13

10. Did you miss any information (if yes, which one)? (Free text)

Answers:

• What does fixed task do?
• I miss the explanation for the fixed check box.
• I would add a column numbering the tasks
• no

11. Was the information helpful to find features and to understand how to

use the application?

Answers:

9/11
2/11

12. Do you think the new version is an improvement in comparison to the
old table application? * (Single choice)

Answers:

13. Please explain your answer from the question before (Free text)

Answers:
• Some minor points:

- The number offset in case of float values is a bit strange.
Maybe normalise the layout with a fixed precision: 10 -> 10.00
- It would improve the readability if you thicken the lines between columns
It is sometimes hard to tell to which a row belong

• much faster, modern interface
• For me the main improvement is velocity of loading the page.
• While loading works better, I heavily relied on the filtering function, especially the boolean

combination of different stati. Moreover, it is now difficult to
• *HUGE* improvement, feels so much smoother to use
• Much better in every way!
• It is much faster and filtering in particular is helpful
• Filtering tasks and selecting columns to be displayed is a great addition. Having different tabs,

including a documentation tab is also useful.
• Faster, more concise information

12/13
1/13

14. What is the biggest improvement and why? (Free text)

Answers:
• Pagination. I hope it will also improve the loading time for huge tables (like ECA-Rers in SV-

Comp). In addition, I am a big fan of the summary tab!
• speed
• splitting parts (summary, table etc) into different tabs
• Velocity of loading the page
• The improved loading time.
• follows ux conventions, clear/friendly design
• performance and clarity
• see above
• See above
• faster loading time, better filtering, sorting
• Speed of plots

15. Do you miss any feature? (Free text)

Answers:

• Also minor: conversation from bytes to mega bytes or giga bytes
•

- General small improvements: bold tab-titles. less blue space above the tab-title. the
column separator color is light grey and is overseen very quickly. I missed that one
table had one and the other one had three columns with benchmark results.

- How do you sort tasks by alphabet? (just kidding, noone will ever sort filenames)
- The new plots seem to be inline SVG. Is there an option to export this SVG directly to

file? Would this be possible?
- Could you rename the "info" tab into "about" and include the following info: version of

BenchExec/TableGenerator.
• showing all results in single page (or paging percentage wise)
• I want more advanced filtering. I would like to have a summary that adapts to the filtering

selection.
• (maybe comparing multiple result sets)
• a summary of the tool results instead of just correct/incorrect would be really helpful (perhaps

cut-off when there are only 1% or so of results of some type)
• See above about numbering columns. I would also display memory in MB
• multi-select for filter on status column (e.g., show "wrong" and "ERROR")
• Plots can't be saved as pictures, when double-clicking column numbers it also selects

whitespace after the numbers

16. Did you find any bugs? Please report them here. (Free text)

Answers:
• On Windows (using Chrome as Browser), once the window to the source code has opened, it

can't be clicked away (except on switching the tabs)
•

- sort by hostname does not work,
- fast clicking on "fixed task" seems to freeze the UI,
- mouse-over on column titles in summary-summary table does not show a click-curser,

also the "click-here-to-select-columns" misses a click-curser.
- the select-columns-overlay has movable (disabled) corners that are not needed and even

overlay the close-button (Chromium browser)
• The spinner only changes the page after additionally pressing enter instead of changing

imediately or after a short time limit.
• /
• no
• Some links are broken, e.g.,

https://www.cip.ifi.lmu.de/~wendler/programs/simple/pointerDereferenceWithNondetPointer_
false-unreach-label.c when I click on that task

17. Is there a regression compared to the old table? What is it and why?

(Free text)

Answers:
•

- I found the green/red column toggle-buttons much better than the black/grey solution.
the contrast is too low. this should be changed back.

- in quantile plot: having the mouse over the legend text had put the corresponding
quantile plot into foreground. this does no longer work.

- the font in the plots is quite small. older people (like Philipp :-)) might need glasses.
- the popup-info-hover-things in the plots seem to be left or right directed depending on

the mouse position (left and right half). this was centerd before. Left/right alignment is
also fine. However, if the window is too small on the right side, an additional
movement border appears (Chromium browser).

• The filtering capabilities were more advanced in the old table and I used. Moreover, it is
difficult to distinguish between different benchmarks, which makes comparison more difficult.
This was better in the old design.

• for my taste, table font could be smaller to fit more content on screen
• /
• didnt see it, but perhaps when viewing a file -- in the sample tables you could not view files
• Don't recall.
• Some cells are too small to have their full content shown (e.g., "ERROR (interpolation failed)"

in status column. It is also not possible to see the full value via hovering in a tooltip, only by
resizing the whole column.

18. Space for your final comment: (Free text)

Answers:
• The new bench exec report is awesome and provide you with some useful features!
• Spam-bots will find the table. Please use a generic "benchexec@googlegroups.com" or

reference the issuetracker, just not your personal email.
• I like the redesign and the new usability. Well done.
• Thanks for the work!
• Without boolean combinations of filtering the tables loose lots of value for me. Additionally, I

do not like the design. Fonts seem to differ. One major problem is the difference in font size.
Large numbers are hard to read and the memory columns dominate the table. Often, the fonts
are larger than I would like to have them. The color gradient for the buttons in the plotting tabs
puzzles me. The plots should use the same colors.

• Great improvement!! One thing, please don't use a gradient for the buttons. It is the only thing
that diminishes the whole experience.

• Definitely a step in the right direction!
• :thumbsup:

	Introduction
	Motivation
	User in the Focus of Development - Theoretical Background
	User Experience
	Usability
	Human-centered Design
	The BenchExec HTML Table

	Related Work
	Technical Status
	User's Issues
	Requirements

	Software Architecture
	Comparison of Frontend Frameworks
	Introduction
	Comparison

	Structure of Features and Deployment Process
	Data Structure

	Improving the User Interface
	Analysis of Existing Features
	Implementations with Special Challenges and New Approaches
	Tabpanel
	Summary and Information
	Table Implementation

	Evaluation
	Comparison of the Surveys
	Evaluation of Final Comments in Second Survey
	Fulfilment of Requirements

	Conclusion and Perspective
	List of Figures
	List of Tables
	Bibliography
	Comparison of Frameworks in Detail
	Comparison of One Row in Old and New Version
	Survey No. One
	Survey No. Two

