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Abstract

Software has become a major business branch in our society. Every enterprise
concern relies on software, and so it is important to ensure the correctness of
programs in usage. One way to accomplish this is the verification of software.
Current tools like CPAchecker are well optimized but even on a cluster with
168x8 processing units based on an x86-architecture it can take a long time
to analyze more complex programs. A side effect of this intense processing
task is the high energy consumption caused by the cluster. Consequences are
high maintenance costs and a significant ecological footprint. Continuing using
software verification while keeping the energy consumption as low as possible
would befit the serious nature of the matter under discussion.

We examine and compare multiple technologies and measurement tech-
niques to reduce and optimize the energy consumption of clusters, especially
in verification work. Data management plays an important role for the analysis
and further evaluation. It comprises the steps of data gathering, saving, and
retrieving. This allows checking two optimization hypotheses, one trying to
decrease the base load of any cluster by dynamical scaling down the availabil-
ity of computers and second, trying to reduce the overall load by a different
approach, in using cluster computers based on an ARM CPU. In addition,
we compare conventional three phase energy meters vs. software-based RAPL
measuring in terms of accuracy and effort.
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1
Introduction

Riding a bicycle, driving a car or using a computer. Everything we do needs
some amount of energy. Physics shows us that there are different types of
energy, e.g., mechanical, thermal, or electrical. The most versatile form is
electrical energy, known as electricity. Its characteristic of being easy con-
vertible into almost every other society-relevant energy type makes it essential
for us. Not for nothing, electrification was called ”the greatest engineering
achievement of the 20th Century” by the National Academy of Engineering
[2]. Modern industrialized countries like Germany rely very much on a stable
power supply. Nearly every household has access to the national power grid.
For continuously supplying the population, a supra-regional power generation
strategy is required. In 2017 the energy mix of Germany consisted of 33.3%
renewable, 11.7% nuclear, and 50.7% coal and natural gas or oil [3]. Con-
sequently, more than half of the generated energy leads to climate-damaging
emissions.

What does this mean for us? We should not only consider reducing energy
consumption because of economic reasons, we also need to keep the ecological
consequences in mind [12]. Getting to 100% renewable energy production
can take a while and completely stop using electrical devices is no option for
any industrial country. Therefore one solution until the energy evolution is
completed would be decreasing the energy consumption.

On the other hand, we need to realize that we are living today in the
21st Century, the so-called Information Age. One major key innovation of
this age among other aspects is the digitization made possible by computers
and software. Using software in many different parts of our life, ranging from
smartphones, cars, and even washing machines, is for the business industry
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a game-changer. Even in medicine, innovations like computed tomography is
helping doctors to have a better look at their patients. To ensure the reli-
ability of software, we have two leading concepts: Testing and Verification.
Whereas testing covers specific scenarios, verification can guarantee that a
program fulfills the given specification or not as long as the verification pro-
cess is validated. So is verification better than testing? No, it depends on the
specification, and as long as this is not given, a verification process is mostly
not the right choice. Testing on the other side is in most cases simpler to
perform and does not necessarily need specific knowledge about the system
(black-box testing). For many enterprise concerns and research institutes ver-
ification work is nowadays like testing, a commonly used method to increase
software quality. Tools for automatic verification like CPAchecker gets im-
proved continuously to run faster and more efficient and also to cover more
specific scenarios like testing Java programs. Running verification tools like
this with more complex software, takes also a longer time to complete the
verification process, which is why the Software and Computational Systems
Lab (SoSy) at LMU Munich has a cluster consisting of 168x8 processing units
based on an x86-architecture. Even with this amount of high-performance
hardware, there are many cases where the verification task is not terminating.
This can have many reasons depending on the heuristics used or still not having
powerful enough hardware. Apparent solutions like expanding the cluster not
only include investment costs, it also increases the energy consumption, one
of the more significant downsides of having a large cluster. This contradicts
the already mentioned idea of trying to decrease the energy consumption to be
more climate-friendly and keep maintenance costs low. The trade-off between
decreasing the energy consumption and run verification work with the same
efficiency is the focus of this thesis. The way to accomplish this problem is
done by optimization.

Optimization is a crucial concept used in many scientific areas. It allows
getting the most out of current technologies by improving the initial idea or
adding new thoughts to it. Research fields in computer science like Software
Verification also make use of optimization. For this thesis, we need to take a
closer look because this term has a broad spectrum of meanings. In mathemat-
ics, optimization means you minimize or maximize a cost function, depending
on its arguments and additional (in)equality constraints.

min
x,y,z,...

f(x, y, z, ...) or max
x,y,z,...

f(x, y, z, ...)

gi(x) ≤ 0, i = 1, . . . ,m
hj(x) = 0, j = 1, . . . , p

(1.1)

Whereas generally spoken it is a methodology of making something such as a
design, system, or decision as fully perfect, functional, or effective as possible
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(according to Merriam Webster).
There are two general ways to achieve improvement. First, by directly de-

veloping more advanced and efficient programs. Second, by generally reducing
the energy consumption caused by the hardware. In this thesis, I will focus on
the second point because the first one is too specific since it depends on the
algorithms and data structures each verification tool uses. To realize this idea,
exact measurements of the current situation are required. Measuring energy
consumption needs specific hardware and software tools, which needs to be
chosen best suitable for our situation. Afterward, I check the optimization hy-
pothesis of reducing energy consumption with another CPU architecture. The
goal is to achieve a relative overall decrease by building a small ARM-cluster
to compare it with the Apollon Intel x86-cluster of the SoSy Lab. Before this
is done, some tools for data management needs to be set up.
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2
Data Management

Optimization needs a clear analysis of the current situation. Achieving this
requires precise measurements over a long period. However, it is not enough
to plug in any measurement device or software and start measuring. All the
collected data need further processing steps to be usable in an objective, re-
producible manner. It is also essential to have all the data in a compact,
human-readable representation. But, what kind of data is essential to mea-
sure for our purpose? We want to know the consumption of electrical energy
in the unit kilowatt-hour (kWh). The relation between the typical used SI
energy unit Joule (J) and kWh is described by the following formula:

1 kWh = 1000Wh = 1000W ∗ 3600 s = 3.6MJ
J(E) = E ∗ 3.6MJ/kWh where E is the energy in kWh

(2.1)

Besides, we want to know the timestamp for each energy data value measured
in seconds. A general way of calculating the energy difference over time is by
using following formula: ∆E =

∫ t2
t1

P (t)dt. Because we only measure discrete

values, the formula results to: ∆E ≈
∑t2

i=t1
∆Ei. This means we need to save

data points of the form (time, energy).
This chapter describes a general way, how to process data, generated by

any measurement technique. The goal is to have the gathered and reduced
data ready for later analysis or comparison. To accomplish this, we need to
collect the data, extracting the relevant information, and save everything into
a time-series database (TSDB)1. We also want to have a way to export and

1A time-series database (TSDB) is a software system that is optimized for storing and
serving time series through associated pairs of time(s) and value(s). [9]
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Figure 2.1: The data flow of the tracked energy consumption of any cluster,
beginning from measuring, resulting in potentially new knowledge.

view the captured data. Figure 2.1 describes an overview of the processing
pipeline, beginning with the raw gathered data and ending with a data visual-
ization, which allows further evaluations and potentially knowledge discovery.

2.1 Data Gathering

At first, all available data needs to be gathered. There are two different ap-
proaches to get information. Actively asking the measurement instance having
new data, this is also called polling and second, passively waiting for new data
arriving. While polling has the advantage of being more controllable con-
cerning the interval time of receiving new data, passive waiting can be more
resource-friendly. So both variants are situationally applicable depending on
their use-case.

2.1.1 Volkzaehler (Vzlogger)

Volkszaehler is a project of realizing your own energy counter including a
software stack to access and manage the data. It consists of four modules:
measurement, transfer, storing, and evaluation. In this section, we want to
take a closer look at the measurement component, Vzlogger. It is compatible
with many smart meters and covers among others the interpretation of the
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Smart Message Language. SML is a commonly used communication protocol
for most modern electricity meters in Germany [4]. Most of them have an
infrared diode for read and write access to the internal data. In practice, a
small computer with a USB or TTL interface like a Raspberry Pi is sufficient
regarding its processing performance. It can run Vzlogger and can be con-
nected with the smart meter via a typical IR-R/W-Plug2 In addition it has a
low energy consumption.

Vzlogger has two options for saving the gathered data: logging and putting
every data point into a database. When using the log, we only have tuples
consisting of time since epoch (unix time) in ms and the energy value in kWh.
Extracting the latest tuple for each connected smart meter is done by a simple
bash script (see A.1). For exporting all captured data, I additionally created a
Python script to convert the log into a CSV file (see A.3). Vzlogger is written
in C++ and runs on most embedded devices that confirm the POSIX standard.
It can be run as a daemon or via cron, and it is also opensource3. This is why
I have chosen this tool in combination with my already mentioned scripts to
fulfill the task of data gathering. Vzlogger uses the concept of passive waiting,
i.e. when new data arrives it automatically gets handled.

If an implementation with less overhead of the data path-through between
Vzlogger and our database is required, there is also an alternative to specify
some specific databases in the Vzlogger config to directly write the data. In
this case, neither the bash extraction script nor other tools are required at
the cost of less compatibility, because not every database software is directly
supported.

2.1.2 Optional Addition: Collectd

Collectd is a daemon which collects system and application performance met-
rics periodically and provides mechanisms to store the values in a variety of
ways. It can make the information also available over the network. Those
statistics can be used to monitor systems, find performance bottlenecks, and
predict future system load. One of Collectds advantages is the native compiled
libraries that get loaded by one C-program. This results in better performance
compared to other similar tools. Another advantage is modularity in terms of
plugins. You can easily create and integrate your plugin or use a wide variety of
already existing plugins. The plugin does not even need to be in C-language; it
could also be programmed in Python. When combing both tools, Vzlogger and

2IR-R/W-plug means infrared read and write plug. It reduces the risk of an electric
shock compared to a conventional electrical plug by only transferring light.

3For more detailed information, see https://github.com/volkszaehler/vzlogger (last ac-
cessed 03.06.2019)
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Collectd, they result in a robust data gathering toolchain. Whereas Vzlogger
retrieves the energy meter data and processes it into readable values, Collectd
gathers these to provide it system-wide to other applications like InfluxDB or
Graphite. For this purpose, we need to create our plugin by importing the Col-
lectd Python library and confirm the specified protocol by implementing and
registering a read function (see A.2). For more complex scenarios, we could
also define a config, init, write, and shutdown function but because of the fact
that we can conveniently read the latest log data via get energy count.sh (see
A.1), we only need to call this bash script for every installed meter and add
all values together to compute the overall consumption. For later availability
issues, I have defined the logic that if an energy meter is offline, its value is
zero. A meter is considered offline when it has no new values in the latest 10
log entries. The number 10 represents the timeout interval and can be adjusted
without any problems beginning from 2 if required. Collectd uses the concept
of polling. This means it is necessary to specify a read time interval. The
range of this interval depends on the measuring duration and the precision
quality.

2.1.3 Thinking one step further: MQTT

Message Queuing Telemetry Transport, short: MQTT can be an alternative
to the toolchain mentioned in 2.1.2. It is an ISO standardized (ISO/IEC PRF
20922) publish-subscribe-based messaging protocol and often used in environ-
ments with multiple independent sensors that act as a data gatherer. The
server, collecting all the data needed, is often called a broker, whereas the sen-
sors or actors are named clients. The broker subscribes to a pre-determined
list of clients that publish new data when available. Transferring this protocol
to our energy meter environment would mean that we have a central instance
which runs the broker software to get all the meter data. Besides, every en-
ergy meter instance needs to be connected with separate computers as long as
they are not located close to each other. In addition we need to run the client
program to allow publishing new information as soon as we retrieve them from
Vzlogger. This setup is more suitable in a situation where we have to coor-
dinate a bunch of distributed sensors. In the case of using one or two energy
meters, this is an unnecessary additional software structure to maintain.
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2.2 Data Storing

The collected data needs to be stored in some way. Otherwise, it would not
be available for later usage. The most common way to do so is by setting up a
database. This has the advantages of mostly redundancy free and efficient data
storage and also the possibility for data aggregation. For our specific case of
saving time-related energy values, we need a time-series database (TSDB). For
our data processing stack, we use InfluxDB as TSDB because of its extensive
programming language and SQL-like query language compatibility. Besides, it
is also easy to install and has extensive application support, for example, for
Graphite, Grafana, and many other IoT apps. Apart from the HTTP API, it
offers support for various input plugins like Graphite, Collectd, and UDP [10].
These are the reasons why we choose InfluxDB over Graphite which is used by
the Chair for Software and Computational System.

2.2.1 InfluxDB

InfluxDB is an open-source schemaless time-series database with optional closed-
source components developed by InfluxData. It is written in Go programming
language and it is optimized to handle time-series data. The support of SQL-
like queries allows a convenient way of accessing all relevant data. For retriev-
ing all energy values tracked in the last seven days, I created the following
query:

SELECT mean( ” value ” )
FROM ” energy count va lue ”
WHERE $ t imeF i l t e r
GROUPBY time ( $ i n t e r v a l )

The data retrieved gets later used by Grafana for visualizing purposes. With
additional features like data aggregations, further analysis steps are easy to im-
plement. Beside the excellent performance and integration ability, this makes
InfluxDB the right choice for my data processing stack [5] [10].

2.2.2 Alternative: Graphite

Graphite is a open source monitoring tool. It has the capability of:

1. Store numerical time-series data

2. Render graphs of this data on demand

This monitoring tool needs to get combined with data gathering tools like
Collectd to work seamlessly for our demands. In general, it is an monitoring
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tool that also runs well on cheap hardware. Architecturally, graphite consists
of three software components:

1. carbon - a daemon that listens for time-series data

2. whisper - a simple database library for storing time-series data

3. graphite web app - A Django web app that renders graphs on-demand

The web app is uncommonly used compared to its alternatives like Grafana
because of its lower customisation capabilities in terms of dashboard design.
Its data storing module whisper is a fixed-size database, similar in design and
purpose to RRD (round-robin-database). It provides fast, reliable storage of
numeric data over time. Whisper allows for higher resolution (seconds per
point) of recent data to degrade into lower resolutions for long-term retention
of historical data.4 Because this DB library is written in Python it is 2-5 times
slower than RRDtool in terms of fetch operations and up to 9 times slower
than InfluxDB in terms of query performance. Also, InfluxDB has compared
to Graphite a significant better disk compression, which is essential for long
measurement intervals where lots of data get captured.5 Graphite includes
almost everything you need; however, compared with other similar tools its
components are less practical for energy measuring.

4According to: https://graphite.readthedocs.io/en/latest/whisper.html (last accessed:
21.10.2019)

5Claimed at: https://www.influxdata.com/blog/influxdb-outperforms-graphite-
in-time-series-data-metrics-benchmark/ (last accessed: 21.10.2019), see also
https://github.com/influxdata/influxdb-comparisons (last accessed: 21.10.2019) for
the test methodology
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2.3 Data Visualization

Finally, our stored data needs to be visualized to allow evaluation by the user.
For small measurement this step is not ultimately required, since the amount of
stored data is manageable by the human eye, when just printed out in a textual
form. For more extended time periods, we need a proper data representations
like graphs or histograms. Nevertheless, to keep an overview, we additionally
want to have data aggregation methods and the possibility to freely define
the boundaries of the depicted time interval. All of this should be done in
a web-interface for conveniently accessing the data from any state-of-the-art
web browser. To accomplish this, a toolkit like Grafana is used.

2.3.1 Grafana

Grafana is a software library for time-series analytics. It allows the user to
query, visualize, alert on, and understand the given metrics. This visualiza-
tion tool runs on every relevant operating system, i.e. Windows, Linux, macOS
and is compatible with InfluxDB, Graphite, and many other data source tools.
Features like user authentication and organization allow an easy way to ad-
ministrate a whole enterprise. The customization ability of the dashboards in
combination with multi dashboard support and import is excellent for main-
taining multiple diverse data sources. In addition, it has a plugin support to
add more specific features. So it is possible to install extra panels like a bubble
chart or heat maps. Setting up Grafana is very easy and user-friendly. When
accessed with the web browser, we only need to add our InfluxDB data source
and a proper dashboard for showing the data. We specify in the panel settings
our query and the viewing options. When everything is set up, it is possible
to track the energy consumption and power usage at any time and depict it as
a comprehensive graph. For a straightforward testing scenario, of measuring
a standby screen with a smart energy meter, which already has a cumulative
energy count offset of 922 Wh, we see in figure 2.2 a graph with an almost
constant slope, whereas the slope describes the power usage. This graphi-
cal interpretation of the data helps to evaluate and compare the upcoming
measuring methods and optimization hypothesis.
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Figure 2.2: Cumulative energy consumption graph with an offset of 922 Wh
generated by Grafana while measuring a standby screen with an energy smart
meter.

2.3.2 Alternative: Volkszaehler

As we are already using Vzlogger as a data-gathering tool, we also could use the
integrated web-frontend module from Volkszaehler. It relies on its middleware
tool for storing all the captured data. The whole module constellation is
depicted in figure 2.3. When installed, we first need to add channels to utilize
the visualization tool. This is done by specifying the value type, resolution,
depiction style, and UUID. The last one is an identifier for specific channels to
import them into the frontend. There are additional export possibilities like
CSV or JSON. All in all the Volkszaehler module stack is a valid alternative to
managing the energy consumption with one smart meter. However, compared
with my suggested tool stack of Vzlogger, optionally Collectd, InfluxDB, and
Grafana there are limitations in functionality. First, the Volkszaehler module
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Figure 2.3: Volkszaehler diagram consisting of four modules Measuring, Trans-
fering, Storing and Evaluation. Source: https://wiki.volkszaehler.org (Last
accessed: 03.11.2019)

stack depends on smart energy meters, consequently when using software-
based solutions like RAPL in exchange for the data gathering tool Vzlogger,
it does not work, because we can see in figure 2.3 the front end relies on
the middleware, and this relies on Vzlogger. Second, there are compatibility
issues in terms of using multiple energy counters, though it is possible to show
both graphs individually, we cannot add both together or use other specific
aggregation methods.
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3
Measurement Techniques

When our data management infrastructure is ready, it is time to begin the
measurements. At first, we need to discuss which kind of techniques best fit
our purpose. Comparing different techniques requires defining specific crite-
ria [1]. For our case, there are two main points to take into consideration:
accuracy and effort. The qualitative performance characteristics of the mea-
sure called accuracy consist of trueness and precision as depicted in figure 3.1.
The trueness represents the degree of proximity between the measurement of a
quantity and that quantity’s actual true value [7]. The effort describes the cost
of the measurement instruments, the maintenance costs and the total human
work to install and perform the measurements. In general, a higher accuracy
results into more measuring effort, on the other hand, we want meaningful
results. Achieving this means to keep the uncertainty of any measurement,
which is derived from the error, as low as possible. The error can be classified
into human error or technical error. The first type of error depends on the
experimenter. This error kind can be eliminated by multiple measurement
repetitions and techniques choices. However, this is not sufficient, and the
measurements should be reproducible with the same instruments by any other
human experimenters to safely exclude this kind of error. Technical errors
can be broken down into systematic errors and random errors. Whereas sys-
tematic errors occur on wrong instrument calibration, random errors depend
on the measurement instance itself. Therefore another characteristic is vital
to take into account: precision. The precision also called repeatability is the
degree to which repeated measurements under unchanged conditions show the
same results [7]. To sum it up, the optimal case is high precision and trueness
which leads to high accuracy combined with low effort.
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Figure 3.1: Relations between type of error, qualitative performance charac-
teristics and their quantitative expression [7].

In this chapter, we take a closer look at two different methods of measur-
ing energy consumption. A common solution, using an energy meter assisted
by a Single Board Computer (SBC) for achieving high accuracy values and a
software-based using hardware features, less effort approach called RAPL. In
addition I want to evaluate an indirect method of measuring energy consump-
tion.
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3.1 Energy Meter with Raspberry Pi

Conventional electricity measuring uses dedicated devices, so called meters.
They get installed before the target system and deliver information typically
via an integrated optical display or using a specific interface and encoding.
Because of the reason that we want further data processing steps for advanced
data analytics, as already discussed in chapter 2, we need a so-called smart
energy meter. We use two household electricity meters (HEM) named ED300L
manufactured by EMH metering [8]. The measurement accuracy for HEMs is
defined by the EN 50470-3 class index, ranging from A to C. In our case, the
ED300L is specified to comply with class A corresponding to an error of ± 2.0%
when operated within its rated electric current and temperature range [13] [14].
According to the user manual, measurements with a current of 60 A by 230 V
voltage (corresponds to the power usage of 13.8 kW) is possible. For measuring
a big cluster of computers and also for conveniently replacing one of these
meters without interrupting the current flow, a second energy meter is required.
Additionally, the ED300L has an infrared read-write connector for transferring
the data via SML to any compatible device. This optical data interface has
a data package transfer rate of 1/4 Hz to 1 Hz with a resolution of 0.1 Wh [8].
The variation is caused by the workload of the internal processing chip of the
energy meter. Since we measure a computer cluster in a more extended period,
at least for some hours, neither the transfer rate nor the resolution puts any
significant restriction on our measurement. In detail calculation:

We expect values in Wh range, but at least 10 Wh, so the fluctuation of
± 0.1 Wh results in a relative uncertainty of 0.1 Wh / 10.0 Wh ≤ 1.0%. Also,
we measure in almost every scenario for at least 15 minutes, so maximum
fluctuations of ± 4 s results relatively to an uncertainty of 4 s / (15 * 60 s)
≤ 0.5%. Compared to the measuring error of the device itself of 2.0% the
additional maximum uncertainty of 1.5% adds up to:

m(x) = x±
√

0.0202 + 0.0152 = x± 0.025x (3.1)

When x is the measured value this means we have a max error margin of 2.5%
for most of the following tests. The real-world value xreal should be within the
measurement interval m(x).

For the purpose of data processing, we need a computer. In our case, a
so-called Single Board Computer (SBC) is sufficient. It has the advantages
of being small and energy-efficient. Moreover, a SBC is significant cheaper
compared to a traditional computer. I decided to use a Raspberry Pi 3B+ as
SBC because of multiple reasons. First, it has all relevant interfaces: WLAN,
Ethernet, USB, Serial. Second, it supports all relevant programming languages
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like Python, C, and command languages like bash. Also, it has enough pro-
cessing power for the tasks described in section 2. In addition it has a good
availability on the market and is supported by big companies. When all soft-
ware components which build up our data processing stack are installed like
in section 2 explained, the Raspberry Pi needs to get connected to the energy
meters. To realize the connection between both devices, an IR-R/W-Plug is
required.

In my case, I have used two TTL-IR-R/W-Plugs1, one connected to the
serial port of the Raspberry Pi, the other connected to the USB port with an
FTDI FT232RL TTL to USB Adapter since the Raspberry Pi only has one
hardware-accelerated UART pin combination consisting of TXD and RXD.

1More detailed specifications of the IR-R/W-Plug are described in the volkszaehler wiki:
https://wiki.volkszaehler.org/hardware/controllers/ir-schreib-lesekopf
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3.2 RAPL

Intel introduced the Running Average Power Limit (RAPL) feature with the
Sandy Bridge microarchitecture. It is available since 2011 for all new Intel Core
CPUs (2nd generation or newer) and Xeon server-level CPUs. RAPL provides
sensors that can be configured and examined by reading Model-Specific Regis-
ters (MSRs) [6]. These sensors measure the energy consumption of the whole
CPU package consisting of cores, uncores (all modules within the CPU package
except the cores) and DRAM, as you can see in 3.2. The fact of only measuring
the CPU package and DRAM raises the question: Is the energy consumption
of the remaining computer modules (mainboard, any IO device, PSU) while
on idle or verification work constant over a long period of time? Fulfilling
this requirement is the prerequisite of using RAPL for our purpose since it is
not possible for us to measure the energy consumption exclusively of any of
the mentioned devices. Knowing the constant power offset leads to an easy
transformation of the measured values by adding this offset to the gathered
data to gain the real energy consumption of the system. For obtaining these
values, there exist different solutions for reading the current energy consump-
tion via RAPL. There is a multi-platform graphical interface solution like the
Intel Power Gadget. It supports sample rates of up to 1 ms and additionally
tracks the frequency, temperature, and utilization. With its additional ex-
port to CSV feature, it is possible to make useful measurements. However, its
lack of automation and integration raises the need for a modifiable code-based
solution. Therefore we use a C program designed by Intel to track energy
consumption. To integrate this program to my data stack discussed in 2, I had
additionally designed a Collectd plugin. All in all, it is possible to evaluate the
measurements in a similar way as in section 3.1. This allows an appropriate
comparison of both mentioned measurement techniques.
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Figure 3.2: Example scheme of a multi CPU which shows the read-
able RAPL domains. Source: https://software.intel.com/en-us/articles/intel-
power-governor (Last accessed: 21.10.2019)

3.3 PSU

An indirect method of measuring energy consumption is by using appropriate
Power Supply Units which supports a digital interface of accessing the voltage
and current values used to supply the system with power. Since the power is
defined by P (t) = U(t)∗I(t) and the energy can be calculated by E =

∫
P (t)dt,

we can quickly determine the energy consumption. The PSUs used by the
Apollon cluster allows us to read the Ampere values for the output current at
12 V voltage.
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3.4 Evaluation

To compare all three measuring techniques we need some appropriate tests.
Since we are interested in verification work, I decided to utilize CPAchecker 1.8
as a verification tool combined with Benchexec to create reliable benchmarks
with the help of containers to isolate the processes. In addition, I have chosen
the VerifierCloud 0.700-207 to schedule all tasks evenly on all cluster nodes.
The Apollon cluster serves as verification hardware. It consists of 168 Intel
Xeon 1230 v5 with 33 GB RAM. We want to test the idle, full load, and mixed
power usage for at least 8 hours.

3.4.1 Idle Test

In these tests, we see different power usage values depending on the testing
method. This is caused by the way each measuring technique works. The
Energy Meter measures the whole systems energy consumption which includes
the PSU, mainboard, processor, RAM, SSD, etc. whereas RAPL measures the
processor and RAM. The PSU measuring is done by the following formula:

Power P = Output Voltage U ∗Output Current I (3.2)

Both values I and U are measured by the PSU. As we see in table 3.1, the
PSU value is much lower than the Energy Meter one because it is just the
outgoing current with 12 V voltage. In addition, there are some power losses
in the voltage transformation.

Idle Power Usage
Testing Method Duration Avg. Power Us-

age
Difference to
EM

EM 8 h 0 m 0 s 2.86 kW 0 W
Intel RAPL 8 h 0 m 0 s 445 W 2.42 kW
PSU 8 h 0 m 0 s 1.86 kW 1.00 kW

Table 3.1: Comparison of the measurement techniques Energy Meter (EM),
Intel RAPL and Power Supply Measurement (PSU) of the idle power usage of
the Apollon cluster.
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Figure 3.3: Power usage graph captured with the energy meter which shows
the almost constant propagation within a specific time range of about 8h.

3.4.2 Constant Workload Test

For the constant load test, I have chosen multiple random svcomp19 tests
running for more than 10 hours. To assure the constant load on all nodes of
the cluster I measured the power usage within a fixed time span of 8 hours,
where all nodes had almost always work to complete. The Energy Meter power
usage went up significantly to 5.82 kW (see table 3.2). This is almost twice the
value compared to the idle test. Apart from this, the RAPL measuring has
an even higher relative increase of almost 700%. This is a clear indicator of
a intensive computation task. If we take the PSU Difference to Energy Meter
value into consideration we can see it stays almost constant.

Constant Load Power Usage
Testing Method Duration Avg. Power Us-

age
Difference to
EM

EM 8 h 0 m 0 s 5.82 kW 0 W
Intel RAPL 8 h 0 m 0 s 3.03 kW 2.79 kW
PSU 8 h 0 m 0 s 4.75 kW 1.06 kW

Table 3.2: Comparison of the measurement techniques Energy Meter (EM),
Intel RAPL and Power Supply Measurement (PSU) of the constant random
svcomp19 workload power usage of the Apollon cluster.
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Figure 3.4: Power usage graph captured with the energy meter which shows
the almost constant propagation within a specific time range of about 8 h.

3.4.3 Variable Workload Test

This test both mixes some aspects of the constant load test, an idle test.
Again I have chosen to run some random svcomp19 tests but one test set
after another, always with a break with the random duration within each run
collection. Since the Difference to EM data points vary considerably because of
the variable load, I additionally calculated the standard deviation to determine
the fluctuation, as you can see in table 3.3. Less relative standard deviation
means that the respective measuring techniques behave more like the Energy
Meter.

Very noticeable is the relatively low deviation of the Difference to EM
measuring values for the PSU method.

Mean value = (1001W + 1064W + 942W )/3 = 1002W
Standard deviation = (1W + 62W + 58W )/2 = 61W

(3.3)

Considering the previous tests we can assume an approximate difference to
EM of about 1.0kW. The difference to EM value for the RAPL measurement
rises whenever the average power usage of the EM increases. This means that
there is no constant offset for the RAPL measurement to extrapolate the whole
power usage of the system. Consequently, there are more system components
except for the CPU and RAM which has a higher power usage when there is a
workload. One distinct component could be the CPU fan. Other system parts
like the mainboard and SSD are also possible to cause this issue. Nevertheless,
we could gather more data points and try to extrapolate with a higher grade
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polynomial function, but the usage of this result would be system and software
specific.

Variable Load Power Usage
Testing
Method

Duration Avg. Power
Usage

Difference to
EM

Standard De-
viation

EM 14 h 0 m 0 s 3.81 kW 0 W 0 W
Intel RAPL 14 h 0 m 0 s 1.27 kW 2.53 kW 355 W (14%)
PSU 14 h 0 m 0 s 2.86 kW 942 W 176 W (19%)

Table 3.3: Comparison of the measurement techniques Energy Meter (EM),
Intel RAPL and Power Supply Measurement (PSU) of the variable random
svcomp19 workload and idle power usage of the Apollon cluster.

Figure 3.5: Power usage graph captured with the energy meter which shows
the variable propagation within a specific time range of about 14 h.

3.5 Comparison

Both RAPL and the PSU measuring methods have their advantages but also
disadvantages compared to a conventional Energy Meter measuring technique.
RAPL, as well as the PSU method, does not need any additional hardware to
run. Downsides are unknown or wide accuracy ranges. According to [6] the
RAPL RAM measurement matches between a 20% range. Both methods are
system-specific, so it is difficult to compare for example, an ARM SBC with
an Intel CPU server cluster. For determining the real system consumption
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the PSU method could be used with extrapolation by merely adding a specific
constant, nevertheless, it is not as accurate as of the conventional method.
This is why we only use the energy meter for the following optimization tests.
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4
Optimization

There are several ways of optimizing the energy consumption of clusters. In
this chapter, I want to describe a software-based solution by dynamically shut-
ting down unused computers. And on the other hand, I want to evaluate a
hardware-based solution by using an alternative CPU architecture as computer
nodes in the cluster.

4.1 Dynamic Scaling

Having a big cluster of high-performance computers also has its downsides.
When there is no need for processing any relevant tasks, all cluster nodes are
typically on an idle mode. This means that the computers are immediately
ready to run new tasks but on the other hand, this state requires a significantly
higher energy consumption as if they would be turned off. For example, the
Apollon cluster at SoSy-Lab has a power usage of 3kW when all nodes are on
idle (see measurements in section 4.3.6). Compared to the peak load of 8kW,
the idle mode has a portion of 37.5%.

A solution to this problem is shutting down most of the unused computers
and turning them on when they are needed. This idea is called dynamic scaling
and is also a widespread solution for cloud computing. To realize this approach,
we need a master host which is capable of turning all relevant cluster nodes
on and off [11]. Shutting down can be done by a simple shutdown command
via ssh. An easy way to boot the computers is by using Wake on LAN (WoL).
Therefore the only technical requirement, besides WOL support, is network
reachability over LAN between the master host and its clients so that the
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WoL magic packets and ssh commands can be reliably delivered. Additionally,
scheduling software is needed to decide which cluster node should be available.
There are some policies the scheduler needs to be aware of:

1. A cluster node which already runs some tasks is never allowed to be
turned off.

2. If a cluster node is long enough in idle mode, it should be turned off.

3. If any job is scalable on all potentially available computers, every cluster
node should be turned on.

4. A specific amount of cluster nodes should always be available.

Besides these strict rules, there should be some prediction methods depending
on the tasks and time. Usually, at night, there is no high demand for computing
power, so that most computers can be shut down. When running a svcomp
test-set, most computers are needed to process it quicker.

In general, having a dynamic scaling system has almost only advantages if
the scheduler is appropriately adjusted on our requirements. Even in the worst
case, no computer is turned off by the scheduler, there is still no disadvantage
compared to if maintaining the system without a dynamic scheduling approach.
The only real drawback is some more waiting time when needing a lot of
compute power, since the cluster nodes have to be turned on first. Because
every computer can boot up at once this waiting time does not depend on the
number of machines needed and is constant. Therefore we can safely say that
when using a dynamic scaling system we have the potential of reducing the
energy consumption of any cluster, which has some idle time.
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4.2 ARM-based Cluster

ARM processors are often used in the mobile smartphone market. One signifi-
cant advantage of these CPUs is the power efficiency for usual smartphone
tasks like taking photos, viewing and processing videos and long standby
phases. So it is reasonable to claim the following hypothesis: ARM CPUs
have the potential to be more power-efficient in verification tasks than con-
ventional x86 server CPUs. To verify this statement in a practical way, we
use the following test setup: An ARM cluster from PINE64 consisting of 7
SOPINE A64 compute modules mounted on the SOPINE Clusterboard versus
the Apollon cluster which has 168 Apollon computers equipped with an Intel
Xeon E3-1230 v5 clocked at 3.40 GHz with 33GB RAM. The SOPINE modules
use a Cortex A53 Allwinner A64 Quad Core SOC CPU clocked at 1.1 GHz
with 2 GB LPDDR3 RAM.

The verification framework we use for our testing purposes is CPAchecker

version 1.8 combined with a modified version of the VerifierCloud 0.700-207.
The necessary modification is described in A.4. Some libraries CPAchecker

uses are only available on x86 platforms, for example, MathSAT5. This splits
the testing into two more categories. One testing category for determining
the power efficiency depending only on the hardware difference, and one is
testing the same but with different software libraries to have an overview in
real-world scenarios. Both clusters are connected with my previous discussed
measuring system: Energy Meter + Raspberry Pi including my software tool
stack: Vzlogger + Influxdb + Grafana.

As verification test scenario, we use following svcomp19 test categories1:
overflows, memsafety, termination and reachsafety. Running the whole svcomp19-
reachsafety test would take too long for the Pine cluster, wherefore I have re-
duced it to the following subcategories: ArraysReach, ControlFlow, HeapReach,
Recursive, and Loops. We want to compare the verification work per power
consumption ratio. Since it is difficult to compare different verification work
tasks and describe it in a numerical way we keep this variable constant for
both CPU architectures, so the significant value is the power consumption for
the same amount of verification work.

Since it is clear that the Intel cluster will be much faster than the ARM-
based one, it is also important to determine the scaling factor of the SOPine
modules. So we know if the Pine system has the potential when it has enough
nodes to be as fast as the Apollon cluster, to exclude the disadvantage regard-
ing the cluster throughput. In practise it has a great significance not only to
be power efficient, it is also good to be time efficient. Therefore the scaling

1Source of the tests: https://github.com/sosy-lab/sv-benchmarks ea7880b
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factor is defined by the following formula:

time(i) = total time needed to complete all the tasks with i cluster nodes
scaling(i, j) = (time(i) ∗ i)/(time(j) ∗ j), where i ≤ j

(4.1)

The scaling is normal when following statement is always true:

∀i ∈ N : ∃j ∈ N : scaling(i, i ∗ j) = 1 (4.2)

Calculating the scaling factor for each possible value is practically impossible,
why we measure the duration of the svcomp19–overflows test with every possi-
ble node amount setup, ranging from 1 node to 7 nodes. If the values are close
to the numerical value 1, then we know that for small amounts, it is efficient
to add more SOPines to boost the verification process via the VerifierCloud
software.

In addition, we want to test the idle consumption of both clusters to de-
termine the minimal cost of maintaining both computer arrays.
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4.3 Evaluation

4.3.1 Pine-Efficiency Scaling Test

The scaling tests purpose is to give an indicator for normal scaling behavior
of the Pine cluster when using the VerifierCloud as workload scheduler and
manager. Table 4.1 depicts this normal scaling behavior. When determining
the mean of every scaling step we get a value of 0.99, which is relatively close
to 1.

When taking these results into regard, we can safely say, that a normal
scaling for the pine cluster is given when using the VerifierCloud with enough
workload. Obviously when there are fewer verification tests to run than cluster
nodes available then the scaling factor is decreased because of the lack of
capacity utilization.

Pine Efficiency Scaling Test
Number of Pines Duration Scaling to previous
1 3 h 25 m 31 s n.a.
2 1 h 38 m 51 s scaling(1,2) = 1.04
3 1 h 05m 42 s scaling(2,3) = 1.00
4 48 m 51 s scaling(3,4) = 1.00
5 42 m 39 s scaling(4,5) = 0.92
6 33 m 08 s scaling(5,6) = 1.07
7 30 m 46 s scaling(6,7) = 0.92

Table 4.1: svcomp19–overflows executed on the Pine cluster with 1.1 GB mem-
ory limit and 750 MB Java Heap and SMTInterpol as SMT solver with 900 s
time limit on Ubuntu 18.04.

4.3.2 Pine-Energy Consumption with SMTInterpol Test

Since we are using SMTInterpol as SMT solver, we need to change the CPAchecker

config, so that it uses Integers as Bitvector representation. Therefore I have
added the following code lines to the config files:

# use unbounded i n t e g e r s in formulas in s t ead o f int−va r i a b l e s .
cpa . p r ed i c a t e . encodeBitvectorAs = INTEGER
# use r a t i o n a l s in formulas in s t ead o f f loat−va r i a b l e s .
cpa . p r ed i c a t e . encodeFloatAs = RATIONAL
# p r e c i s e handl ing o f s t r u c t s only p o s s i b l e with b i t v e c t o r s .
cpa . p r ed i c a t e . hand leF ie ldAcces s = f a l s e

As we can see in table 4.2, the duration for each type of svcomp test differs.
Since energy consumption also depends on the test duration, it also varies.
Because of the unsound Bitvector to Integer conversion, some tests like the

28



Overflows and Reachsafety have a bad result score. The score for each in-
dividual test is calculated by svcomp19 method. For each average test row
we see a tuple consisting of correct predictions, incorrect predictions and un-
knowns (short: (cor/inc/unk)). From these components the numerical score is
calculated.

Pine Energy Consumption with SMTInterpol Test
Test Duration Energy needed Score (cor/inc/unk)
Overflows 1 29 m 02 s 10.3 Wh -2970/691
Overflows 2 33 m 35 s 11.2 Wh -2970/691
Overflows 3 30 m 17 s 10.7 Wh -2970/691
Overflows avg 30 m 58 s 10.7 Wh (243/203/5)
Memsafety 1 02 h 37 m 07 s 56.2 Wh 349/753
Memsafety 2 02 h 55 m 23 s 59.4 Wh 349/753
Memsafety 3 03 h 13 m 51 s 64.1 Wh 349/753
Memsafety avg 02 h 55 m 27 s 59.9 Wh (251/1/223)
Termination 1 01 h 13 m 04 s 23.7 Wh 301/443
Termination 2 01 h 18 m 07 s 24.3 Wh 301/443
Termination 3 01 h 14 m 23 s 23.4 Wh 301/443
Termination avg 01 h 15 m 11 s 23.8 Wh (177/1/72)
Reachsafety 1 10 h 12 m 50 s 200 Wh -370/1534
Reachsafety avg 10 h 12 m 50 s 200 Wh (448/67/384)

Table 4.2: svcomp19–overflows/memsafety/termination/reachsafety runcollec-
tion executed on the Pine cluster with 1.1 GB memory limit and 750 MB Java
Heap and SMTInterpol as SMT solver with 900 s time limit on Ubuntu 18.04.

4.3.3 Apollon-Energy Consumption with SMTInterpol
Test

As expected in comparison to the Pine cluster the Apollon cluster is much
faster at the cost of much higher energy consumption, as we can see in table
4.3. The best test to compare both is the Memsafety avg test, since both
clusters achieve almost the same score. The Apollon cluster was about 12
times faster but also needed 14 times more energy. Because of the excellent
scaling value of the Pines combined with the VerifierCloud, we could also have
used 12 times the amount of pines to achieve the same speed, with equally the
same amount of energy used.

The Overflows Test is finished by the Apollon cluster noticeably faster since
of the unsound Integer approximation for Bitvectors.
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Apollon Energy Consumption with SMTInterpol Test
Test Duration Energy needed Score (cor/inc/unk)
Overflows 1 37 s 37.0 Wh -3000/691
Overflows 2 37 s 36.4 Wh -3000/691
Overflows 3 38 s 35.9 Wh -3000/691
Overflows avg 37 s 36.4 Wh (245/205/1)
Memsafety 1 14 m 53 s 869 Wh 351/753
Memsafety 2 14 m 48 s 859 Wh 351/753
Memsafety 3 14 m 49 s 857 Wh 351/753
Memsafety avg 14 m 50 s 862 Wh (252/1/222)
Termination 1 14 m 52 s 792 Wh 311/443
Termination 2 14 m 51 s 793 Wh 311/443
Termination 3 14 m 49 s 790 Wh 311/443
Termination avg 14 m 51 s 792 Wh (184/1/65)
Reachsafety 1 17 m 07 s 1.65 kWh -333/1534
Reachsafety 2 17 m 17 s 1.64 kWh -333/1534
Reachsafety 3 17 m 16 s 1.64 kWh -333/1534
Reachsafety avg 17 m 13 s 1.64 kWh (483/69/347)

Table 4.3: svcomp19–overflows/memsafety/termination/reachsafety runcollec-
tion executed on the Apollon cluster with 1.1 GB memory limit and 750 MB
Java Heap and SMTInterpol as SMT solver with 900 s time limit on Ubuntu
18.04.

4.3.4 Apollon-Energy Consumption with MathSAT5 Test

Due to the MathSAT5 SMT solver, the overall score of all svcomp tests got
better, as depicted in table 4.4. This is caused by the bitprecise encoding
which is more sound than linear encoding. The paper Towards practical pred-
icate analysis also shows this behavior [15]. Besides, the energy consumption
slightly decreased, except for the Overflows Test. This one kind of test set is
an exception since with MathSAT5 it runs sound compared to SMTInterpol
and mostly executes the tasks correctly, why the processing time rises and
approaches a similar value like on the other tests.

The Apollon cluster is again less power efficient than the pine cluster,
because of the much higher energy consumption.
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Apollon Energy Consumption with MathSAT5 Test
Test Duration Energy needed Score (cor/inc/unk)
Overflows 1 16 m 21 s 933 Wh 108/691
Overflows 2 15 m 05 s 861 Wh 108/691
Overflows 3 15 m 06 s 874 Wh 108/691
Overflows avg 15 m 30 s 889 Wh (296/20/135)
Memsafety 1 14 m 51 s 837 Wh 351/753
Memsafety 2 14 m 53 s 838 Wh 351/753
Memsafety 3 14 m 51 s 840 Wh 351/753
Memsafety avg 14 m 52 s 838 Wh (252/1/222)
Termination 1 14 m 52 s 790 Wh 311/443
Termination 2 14 m 51 s 785 Wh 311/443
Termination 3 14 m 49 s 787 Wh 311/443
Termination avg 14 m 51 s 787 Wh (175/0/75)
Reachsafety 1 17 m 34 s 1.49 kWh 676/1534
Reachsafety 2 17 m 26 s 1.47 kWh 676/1534
Reachsafety 3 17 m 33 s 1.49 kWh 676/1534
Reachsafety avg 17 m 31 s 1.48 kWh (472/5/422)

Table 4.4: svcomp19–overflows/memsafety/termination/reachsafety runcollec-
tion executed on the Apollon cluster with 1.1 GB memory limit and 750 MB
Java Heap and MathSAT5 as SMT solver with 900 s time limit on Ubuntu
18.04.

4.3.5 Apollon-Energy Consumption with MathSAT5 and
more RAM Test

In this test, we have increased the memory limit and Java Heap to determine
the energy consumption difference and score increase and depict memory sig-
nificance. As we can see in table 4.5 the overall score values slightly increases,
due to a lower chance of getting out of memory. Since we are utilizing more
RAM, the energy consumption noticeably growth.

Even with the SMT solver MathSAT5 which supports for the system better
optimized features and a memory advantage the Apollon cluster has no signif-
icant higher score in Memsafety and Termination. On the other hand, there
are tests like the Overflows and reduced Reachsafety which achieve viable re-
sults in contrast to the pine clusters score. This shows a lack of optimization
regarding the usage of ARM-based hardware in terms of software verification.
As long as the tests uses well ARM optimized libraries the pine cluster is much
more efficient.
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Apollon Energy Consumption with MathSAT5 and more RAM Test
Test Duration Energy needed Score (cor/inc/unk)
Overflows 1 15 m 05 s 1.10 kWh 109/691
Overflows 2 15 m 06 s 1.11 kWh 109/691
Overflows 3 15 m 06 s 1.10 kWh 109/691
Overflows avg 15 m 06 s 1.10 kWh (297/20/134)
Memsafety 1 14 m 54 s 1.01 kWh 355/753
Memsafety 2 14 m 53 s 995 Wh 355/753
Memsafety 3 14 m 55 s 996 Wh 355/753
Memsafety avg 14 m 54 s 1.00 kWh (254/1/220)
Termination 1 14 m 52 s 811 Wh 321/443
Termination 2 14 m 50 s 808 Wh 321/443
Termination 3 14 m 59 s 810 Wh 321/443
Termination avg 14 m 54 s 810 Wh (179/0/71)
Reachsafety 1 25 m 08 s 2.24 kWh 724/1534
Reachsafety 2 25 m 03 s 2.25 kWh 724/1534
Reachsafety 3 25 m 04 s 2.24 kWh 724/1534
Reachsafety avg 25 m 05 s 2.24 kWh (501/5/393)

Table 4.5: svcomp19–overflows/memsafety/termination/reachsafety runcollec-
tion executed on the Apollon cluster with 15 GB memory limit and 10000 MB
Java Heap and MathSAT5 as SMT solver with 900 s time limit on Ubuntu
18.04.

4.3.6 Pine-, Apollon-Idle Power Usage Comparison

As depicted in table 4.6, the power usage per node of the Pine cluster is much
lower compared to the Apollon cluster. This means, when we need less than
(17.0W/1.5W ) ∗ 168 = 1904 Pine nodes to achieve the same performance as
the Apollon cluster on verification work, we would have a lower idle energy
consumption for the same performance.

Pine, Apollon Idle Power Usage Comparison
Cluster Duration Power usage Power usage per

node
Pine 24 h 8 m 10.2 W 1.50 W
Apollon 8 h 12 m 2.86 kW 17.0 W

Table 4.6: Comparison of both clusters’ power usage when no workload (idle
state) applies.
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5
Conclusion

We have shown an optimization approach to reduce the energy consumption
on clusters running verification work. The used ARM processors have the
potential to be ten times more power-efficient than our conventional x86 Intel
cluster. Even big web service providers like Amazon AWS offer ARM-based
server instances. As long as your application fully supports the ARM platform
it will most likely be more power-efficient caused by the RISC-architecture
using less transistor logic and lower clock rates. Therefore you need more
cluster nodes to achieve the same speed performance compared to an Intel
Xeon processor. Provided that the application has a good scaling behavior for
the number of cluster nodes, like the VerifierCloud I have used to distribute
the verification tasks; there should not be any problems caused by the lower
speed performance when both cluster nodes are compared one by one.

In addition, we discussed different energy measuring approaches. RAPL
is an excellent way to measure the CPU and RAM power usage but not to
extrapolate the whole system power usage, since there are other computer
components having a variable power usage depending on the workload. Also, it
is not compatible with every CPU, especially with non-Intel CPUs. Therefore
the conventional energy and power measuring with an Energy Meter was the
appropriate choice for measuring the energy consumption of clusters.

When in the future even better ARM support for verification tools and
libraries are given, upgrading to an ARM-based cluster could be a valid option
to take into account. Especially when considering lowering the maintenance
costs and ecological footprint through increasing power efficiency.
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A
Implementations

All project relevant code snippets are listed here chronologically in the order
I have used them.

A.1 Energy Counter Value Extractor

Simple bash script to extract for the measurement important energy meter
data.

#!/ bin /sh
# This s c r i p t ou tput s the current acc . energy consumption
# depending on OBIS code 1 .8 . 0 (IEC 62056).
# Depending on the argument (1 or 2) you can access one o f the meters data .
# The output c a l c u l a t i o n depends on the l a s t 10 1 . 8 . 0 l o g en t r i e s .
# I f dev i ce 1 has the l a t e s t 10 en t r i e s and dev i ce 2
# for example the 11 th newest then the output r e s u l t
# fo r dev i ce 2 i s nothing ( l a t e r i n t e r p r e t e d as 0)
# because every dev i ce answers at the same frequency
# ( even i f nothing has e f f e c t i v e l y changed ) so i t means t ha t
# dev i ce 2 i s apparent l y o f f l i n e .
# So t a i l argument 80 / 8 output v a r i a t i on s = 10 ” l o g entry t imeout ”

logLength=80
logPath=”/var / log / vz l ogge r . l og ”

i f [ $1 −eq 0 ]
then t a i l −n $logLength $logPath 2> /dev/ nu l l |
awk ’ ( $3 ˜ /mtr0/ && $5 ˜/1 . 8 . 0 / ) { s p l i t ( $6 , a ,”=”) ; p r i n t a [ 2 ] } ’ | t a i l −1

e l i f [ $1 −eq 1 ]
then t a i l −n $logLength $logPath 2> /dev/ nu l l |
awk ’ ( $3 ˜ /mtr1/ && $5 ˜/1 . 8 . 0 / ) { s p l i t ( $6 , a ,”=”) ; p r i n t a [ 2 ] } ’ | t a i l −1

else
echo ”ERROR: wrong parameter ”

f i
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A.2 Collectd Plugin For Energy Value Dis-

patching

A plugin for collectd, written in python to dispatch the energy meter values
to other applications.

#!/ usr / bin /python

import c o l l e c t d
import os , subproces s

ge t ene rgy count path = ”/home/ pi /Energy Counter / s c r i p t s / ge t ene rgy count . sh”
mete r id 0 = ”0”
mete r id 1 = ”1”

def r e t r i e v e en e r gy c oun t ( id ) :
”””Reads the current energy count va lue s f o r a energy meter from the l o g f i l e v ia
bash s c r i p t , t h i s s c r i p t re turns the l a t e s t va lue f o r each id
( depending on the l a s t 10 va lue s l ogged )
”””
cumulat ive energy count = subproces s . Popen ( [ ”bash” , ge t ene rgy count path , id ] ,
s tdout=subproces s . PIPE ) . communicate ( ) [ 0 ]
i f cumulat ive energy count == ”” :

cumulat ive energy count = 0 .0
else :

cumulat ive energy count = f loat ( cumulat ive energy count . r ep l a c e ( ” \ ’ ” , ”\\n” ) )
return cumulat ive energy count

def r ead func ( ) :
””” Ret r i eve s f o r both energy meter t h e i r current va lue s and adds them toge t h e r
Then d i spa t che s the va lue s f o r c o l l e c t d
”””
cumulat ive energy count combined = r e t r i e v e en e r gy c oun t ( mete r id 0 ) +
r e t r i e v e en e r gy c oun t ( mete r id 1 )

va l = c o l l e c t d . Values ( type=’ energy ’ )
va l . p lug in = ’ energy count ’
va l . d i spatch ( va lue s=[ cumulat ive energy count combined ] )

def main ( ) :
c o l l e c t d . r e g i s t e r r e a d ( read func )

main ( )
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A.3 Vzlogger Log To CSV Converter

This script allows an easy way to export all gathered data into a csv file.

#! /usr / bin /python
# −∗− coding : u t f−8 −∗−
import pytz , sys , csv
from datet ime import datet ime
from t z l o c a l import g e t l o c a l z o n e

meter id = ”mtr1”
ob i s code = ” 1 −0 :1 .8 .0 ”
l o g f i l e p a t h = ”/var / log / vz l ogge r . l og ”
o u t f i l e p a t h = ”out/ log ”
o u t f i l e f o rma t = ” . csv ”
date format = ”%Y−%m−%d %H:%M:%S”
va l u e i d = ” value=”
timestamp id = ” t s=”

def conver t2csv ( l i n e ) :
”””Converts the l o g f i l e in to csv , depending on the g iven ob i s code
and meter id . The datet ime and energy va lue w i l l be e x t r a c t ed f o r
the g iven l i n e and then returned in csv s t y l e
”””
i f meter id in l i n e and va l u e i d in l i n e and ob i s code in l i n e :

new l ine = l i n e . s p l i t ( ” ” )
time = int ( new l ine [ 6 ] . r ep l a c e ( timestamp id , ”” ) . r ep l a c e ( ”\n” , ”” ) )
date = datet ime . fromtimestamp ( time / 1000 , g e t l o c a l z o n e ( ) ) .
s t r f t im e ( date format )
m i l l i s = str ( time % 1000)
value = new l ine [ 5 ] . r ep l a c e ( va lue id , ”” )
return date + ” : ” + m i l l i s + ” , ” + value + ”\n”

else :
return ””

def reverseCSV ( ) :
”””Reverses a csv−f i l e , in terms o f l i n e order ing
”””
with open( o u t f i l e p a t h + ” ” + meter id + ” r ev e r s ed ” + ou t f i l e f o rma t ) as f r ,
open( o u t f i l e p a t h + ” ” + meter id + ou t f i l e f o rma t , ”wb” ) as fw :

cr = csv . r eader ( f r , d e l im i t e r=” , ” )
cw = csv . wr i t e r ( fw , d e l im i t e r=” , ” )
cw . writerow (next ( c r ) )
cw . wr i terows ( reversed ( l i s t ( c r ) ) )

def conve r tF i l e ( ) :
”””Reads the g iven l o g f i l e l i n ew i s e and
conver t s each l i n e to a csv compat ib le l i n e
regard ing on the timestamp and energy va lue
”””
l og = open( l o g f i l e p a t h , ” r ” )
out = open( o u t f i l e p a t h + ” ” + meter id + ” r ev e r s ed ” + ou t f i l e f o rma t , ”w” )
out . wr i t e ( ”time , va lue \n” )
for l i n e in l og :

out . wr i t e ( convert2csv ( l i n e ) )
out . c l o s e ( )
l og . c l o s e ( )
reverseCSV ( )

def interpreteArguments ( ) :
”””Very s imple argument i n t e r p r e t e r
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This method does not v a l i d a t e the arguments .
”””
global meter id , ob i s code , l o g f i l e p a t h
i f len ( sys . argv ) > 4 :

print ( ”Too many arguments” )
print ( ”<1. meter id> <2. ob i s code> <3. l o g f i l e path>” )
print ( ”<1. meter id> = mtr0 | mtr1” )
print ( ”<2. ob i s code> = 1 −0 :1 .8 .0 . . . 1 −0 :2 .8 .2 ” )
print ( ”<3. l o g f i l e path> = /path/ to / l o g f i l e . l og ” )
print ( ” Po s s i b l e combinations : 1 . or 1 . and 2 . or 1 . and 2 . and 3 . ” )
sys . e x i t ( )

i f len ( sys . argv ) >= 2 :
meter id = sys . argv [ 1 ]

i f len ( sys . argv ) >= 3 :
ob i s code = sys . argv [ 2 ]

i f len ( sys . argv ) >= 4 :
l o g f i l e p a t h = sys . argv [ 3 ]

i f name == ” main ” :
interpreteArguments ( )
c onve r tF i l e ( )
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A.4 Verifiercloud Addition

Alongside with other small additions in ProcessReader.java and LinuxSystem-
InformationProvider.java in the VerifierCloud software, I have added a new
getCPUModel() method in ProcessReader.java to obtain all relevant CPU
model information also for ARM processors.

public St r ing getCPUModel ( ) throws SystemEnvironmentException {
try {

Fa i l ingProce s sExecutor pe = new Fa i l ingProce s sExecutor ( logger , ” l s cpu ” ) ;
pe . j o i n ( ) ;
S t r ing rawCpuInfoLines = pe . getOutputRAW ( ) ;
L i s t<Str ing> cpuIn foL ines = Arrays . a sL i s t ( rawCpuInfoLines . s p l i t ( ”\n” ) ) ;

i f ( ! pe . getErrorOutputRAW ( ) . isEmpty ( ) ) { // f a l l b a c k to o ld cpuInfo determinat ion
cpuIn foL ines = F i l e s . r eadAl lL ine s (CPUINFO PATH, Charset . de f au l tChar s e t ( ) ) ;

}
return getCleanCPUModel ( cpuIn foL ines ) ;

} catch ( IOException e ) {
throw new SystemEnvironmentException ( e ) ;

} catch ( Exception e ) {
throw new SystemEnvironmentException ( ”Unable to determine energy usage . ” ) ;

}
}
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