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Abstract
Software model checking has become a powerful technique in program verification. In spite
of its success, it still suffers from the ’state explosion problem’. Although there have been
many improvements concerning this matter, there are still many verification tasks remaining
which are not yet manageable. Some of these challenging programs might be feasible if the
analysis takes a different traversal route through the program avoiding the difficult structure.
A way of altering the traversal route of an analysis is to change the analysis direction.
In this work, the analysis direction is compared for two symbolic model checking approaches,
a BDD based program analysis and a predicate based analysis, on a subset of the SV-
COMP 19 repository. The comparison reveals that the analyses in the traditional forwards
direction outperform in most cases the respecting analysis in backwards direction.
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1 Introduction
Nowadays, software is present in nearly all areas of everyday life. Consequently, the efficient
and bug free software development becomes increasingly important. Not only that erroneous
software often involves a huge economic loss but can also be dangerous if safety-critical sys-
tems are affected. Model checking has become a powerful approach in software verification
that can find a large number of bugs, thus representing a promising alternative to software
testing [1]. One of the main challenges in model checking is the ’state explosion problem’ [2].
This arises when the investigated system has many components which make transitions in
parallel. An enormous advance concerning this matter was the introduction of binary deci-
sion diagrams (BDDs) for the representation of transition relations [3]. With this, a larger
number of states could be handled [4], [5]. Another improvement for tackling the ’state
explosion problem’ is the counterexample-guided abstraction refinement (CEGAR) [6], [7].
This technique reduces the state space by starting the analysis with a coarse model of the
system and iteratively refining the model until it is detailed enough for a reliable verifica-
tion result. In spite of these advances, there are still many verification tasks that exceed
the available capacities.

A different approach for coping with this circumstance is to avoid the challenging struc-
ture of not feasible programs. This can be attempted by investigating the program starting
at the exit locations and not from the beginning as it is commonly done. Backwards traver-
sal has already been applied in hardware model checking [8] as well as in symbolic software
model checking based on BDDs [9]. The power of the combination of forwards and back-
wards traversal has been showed for hardware model checking [10], software verification
with BDDs [11]–[13], abstract interpretation [14] or using Craig interpolants [15], [16]. As
a program analysis in backwards direction takes a different run through a program, it is
possible that it manages to verify programs that the corresponding forwards analysis is not
able to tackle.

The aim of this work is to compare the backwards program analysis approach to the
forwards program analysis. For this reason two symbolic model checking approaches are
implemented in CPAchecker [17] for the use in backwards analysis direction. The first one
is the BDD based program analysis [18] and the second one is the predicate based program
analysis [19], [20] that is compatible for the use in the CEGAR algorithm. These two
approaches are compared in forwards and backwards analysis direction using bread-first
and depth-first traversal on a selection of tasks of the SV-COMP 19 repository [21].
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2 Theoretical Background

2.1 Software Model Checking
Software model checking is an approach to prove the correctness of a program according to a
given specification. One approach for this is reachability analysis, in which it is investigated
if an execution path for a program exists that reaches a specified program location. This
is often done by construction of an abstract reachability graph (ARG) [22], [23]. An ARG
is build up by traversing the control flow automata (CFA) of the program and sequentially
calculating the successor state(s) using the information of the edges of the CFA [19].

Example 1 Example program adopted from Ref. [19].
1: int main() {
2: int i = 0;
3: while (i < 2) {
4: i++;
5: }
6: if (i != 2) {
7: ERROR: return 1;
8: }
9: }

Figure 1: Control flow automaton of the example program shown in Example 1. The nodes
represent program locations with the respecting line number as label. The edges represent
program statements. Assumptions like assume(p) are denoted as [p].

The nodes of an ARG are abstract states which contain more domain specific data like
control-flow location, call stack information, and a path formula which represent the data
state [24]. The edges of the ARG represent the program operations corresponding to the edge
that was followed in the CFA. For illustration of the construction of an ARG using single-
block encoding (SBE) [25], the example program shown in Example 1 and its corresponding
CFA (Figure 1) are considered. The reachability analysis starts normally at the entry of
the main function (root of the CFA), so the first abstract state that is represented by the
first node of the ARG (Figure 2) contains the program location before execution of line 2.
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2 Theoretical Background

Figure 2: Abstract reachability graph for the example program shown in Example 1.The
abstraction of the path formula of the respecting abstract state (node) is attached in a box.
The edges contain as the CFA (Figure 1) the program statements.

The successor abstract state is obtained by interpreting the next program operation that
is succeeding the current location state (label of the outgoing edge of the corresponding
CFA node). The resulting path formula of the computed abstract state corresponds to the
strongest postcondition of the path formula of the predecessor and the interpreted program
operation. In this way the CFA is enrolled into an ARG by successively going along the
CFA edges and appending the information to the path formula until either the additional
information gives a contradiction together with the path formula of the predecessor state
resulting in a path formula ’false’ or the location of interest lERR (here an error label)
is reached without conflict in the path formula. The latter case proves that lERR can be
reached by the execution path documented in the ARG from the root to this leaf. A path
formula of ’false’, as in the first case, for a given abstract state reveals that the contained
program location under the given conditions is not reachable. So a complete ARG has either

14



2.1 Software Model Checking

the a path formula ’false’ in all of its leafs as the ARG of the example program (Figure 2),
which implies that the lERR can not be reached, or it has a leaf with a path formula
without contradiction and lERR as location state proving that this location is reachable.
Despite from the SBE also large-block (LBE) or adjustable-block encoding (ABE) can be
applied. The difference here from be SBE is that the path formula is not recomputed after
interpreting every single program operation. In the LBE the CFA is transformed into a
’summarized’ CFA where each edge contains a block of the same predefined number of
program operations [24]. In ABE indeed every single program operation is interpreted but
the newly gained information is not integrated into the complete information of the current
path (abstraction formula) but stored in a second formula (path formula) and in intervals
of adjustable length these two formulas are combined and evaluated [19]. Thus, ABE also
summarizes multiple CFA edges and represents a generalization of LBE by summarizing
a variable number of operations in each block. These two approaches have the advantage
that the costly evaluation of the complete path formula does not take place for every single
program operation.

2.1.1 Configurable Program Analysis

For a reliable comparison of different model checking and program analysis approaches it
is essential to express them in the same formal setting. This is enabled by the CPAchecker
framework [17] that provides an interface for the definition of program analyses via the
configurable program analysis (CPA) formalism. For the CPA formalism, it is assumed that
the program analysis operates on a program represented by an CFA A = (L, lINIT , G) which
consists of a set of program locations L, an initial location lINIT , and a set G ⊆ (L×Ops×L)
of edges representing the program operations [23].

A CPA D = (D, ,merge, stop) consists of an abstract domain D, a transfer relation  ,
a operator ’merge’, and a termination check ’stop’. The abstract domain D = (C, E , [[·]])
comprises a semilattice E = (E,v) over a set of partially ordered abstract-domain elements.
The concretization function [[·]] assigns to each abstract state e ∈ E the set of concrete states
C e represents. Furthermore the CPA has a transfer relation  ⊆ E ×G×E which assigns
to each abstract state e all possible successor states e′ while each transfer can be mapped
onto a control-flow edge g ∈ G: e g

 e′. The following theoretical description is limited to
programs with only assume or assignment statements. The operator ’merge’: E × E → E
defines if and how the information of two abstract states are combined and the termination
check ’stop’: E×2E → B probes if a given abstract state is already covered by the remaining
set of abstract states.

The CPA interface makes use of the composite pattern enabling the combination of several
CPAs using a ’Composite CPA’ where the abstract states are tuples of the abstract states of
each component CPA and the operators delegate to the respecting operator of the component
CPAs [26]. For most analysis purposes the Composite CPA contains the Location CPA L
which traces the reachability of CFA locations and an ARG CPA A which enables the
construction of an ARG by memorizing the predecessor-successor relationships between
abstract states [27].

The core algorithm of the CPA formalism (Algorithm 1) is a reachability analysis. It
computes for a given CPA D starting from (an) initial state(s) e0 the set of reached states.
Therefore it works on two sets abstract states, a list of states reached that have already
been found to be reachable and a list of states waitlist that are not yet processed. The
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2 Theoretical Background

waitlist is iteratively processed by taking one state e in each iteration from the list and
computing all of its successor states e′ via the transfer relation. For each e′ it is checked
by the merge operator whether it is to be merged with an existing state e′′ in the list
reached. Then it is checked by the stop operator if the abstract successor state e′ is already
covered by a state in reached. If this is not the case, e′ is added to both lists, reached and
waitlist. There also exists a for dynamic precision adjustment augmented interface, the

Algorithm 1 CPA execution algorithm, taken form Ref. [23]
Input: a configurable program analysis D = (D, ,merge, stop), an initial abstract state
e0 ∈ E, let E denote the set of elements of the semi-lattice of D
Output: a set of reachable abstract states
Variables: a set reached of elements of E, a set waitlist of elements of E

1: reached := {e0}
2: waitlist := {e0}
3: while waitlist 6= ∅ do
4: pop e from waitlist
5: for all e′ with e e′ do
6: for all e′′ ∈ reached do
7: //Combine with existing abstract state.
8: enew := merge(e′,e′′)
9: if enew 6= e′′ then

10: waitlist := (waitlist ∪ {enew})\{e′′}
11: reached := (reached ∪ {enew})\{e′′}
12: end if
13: end for
14: if ¬stop(e′,reached) then
15: waitlist := waitlist ∪ {e′}
16: reached := reached ∪ {e′}
17: end if
18: end for
19: end while
20: return reached

extension CPA+ D+ = (D,Π, ,merge, stop, prec) [28]. The precision Π defines the level of
abstraction of the analysis, i.e., the set of variables that are tracked in the analysis. That
means Π determines how coarse the analysis is.

2.1.2 Location CPA

The reached program locations can be tracked in the Location CPA L = (DL, L,mergeL,
stopL) [18], [23]. The lattice EL, on which the abstract domain DL = (C, EL, [[·]]) is based
on, consists of the set L of program locations where each l ∈ L maps to a location in
the CFA. The transfer relation  L gives for each program location l ∈ L the successor
location l

g
 L l′ if there exists an edge g in the CFA directed from l tp l′. The merge

operator mergeL(l, l′) = l′ does not merge the abstract states if the control flow meets and
the operator stop(l, R) indicates termination if l is already contained in R.
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2.1 Software Model Checking

2.1.3 BDD-Based Program Analysis

A binary decision diagram (BDD) is a data structure for the representation of a boolean
function based on the Shannon expansion [29], [30]. It is a rooted, directed, acyclic graph,
where each non-terminal vertex is associated to a boolean variable vn and has two outgoing
edges. The lower one refers to the situation where vn has the value 0 and the upper one to
vn = 1. Correspondingly, there are two types of leafs, the ’0-terminal’ and the ’1-terminal’.
A BDD is ordered if the variables occur always in the same order going from the root to the
leafs and the BDD can be reduced by merging any isomorphic sub-graphs and eliminating
any node whose two children are isomorphic. In the following all BDDs that are considered
are reduced ordered BDDs.

By using BDDs as main data structure for representation of state sets in program anal-
ysis, not only boolean variables but also integer variables have to be considered [30]. The
representation of data states of integers is achieved by encoding the integer assignments as
bit vectors and integer variables as vectors of boolean variables.

A BDD-based program analysis is implemented in CPAchecker [17] as a configurable pro-
gram analysis BDD = (DBDD, BDD,mergBDD, stopBDD), with the abstract domain DBDD =
(C, E , [[·]]). Each abstract state e ∈ EBDD contained in the lattice EBDD = (EBDD,v) con-
sists of a BDD to which the concretization function [[·]] assigns the set C of all concrete
states that are represented by the BDD. The transfer relation  BDD computes all abstract
successor states e′ for a given abstract state e traversing along all outgoing CFA edges g
containing the program operation op: e g

 BDD e′. The resulting successor state e′ has the
form:

e′ =

e ∧ e[p] if op = assume(p)
(∃w : e) ∧ e[w=expr] if op = (w := expr),

where eϕ is a BDD that is constructed from the formula ϕ. This means in the case of an
assumption the BDD of the successor state is formed by conjugating the current BDD with
a BDD that encodes the assumption. In case of an assignment, the current BDD is at first
processed by existential quantification of the variable that gets a new value assigned and
is then conjugated with a BDD representing the new value of the variable resulting in the
BDD of the successor state. The merge operator is defined by mergeBDD(e, e′) = e ∨ e′ and
the termination check by stopBDD(e, R) = ∃e′ ∈ R : e v e′.

The purely BDD-based program analysis has turned out to be efficient for a special
sub-class of event-condition-action programs which consist of a single loop in which many
conditional branches occur because at the one hand all required operations appearing in
these programs are efficiently supported by BDDs and at the other hand, these programs
are challenging for most traditional analysis techniques as they have a complex control and
data flow [30].

2.1.4 Predicate CPA

In predicate based program analysis the abstract states are represented using predicates over
program variables. A predicate-based program analysis is implemented in CPAchecker [17]
as extended configurable program analysis P = (DP,ΠP, P,mergeP, stopP, precP) which
implements the extended interface CPA+ described in Section 2.1.1. The abstract domain
DP = (C, EP, [[·]]) contained in P consists of the set C of concrete states, semi-lattice EP over
abstract states e ∈ EP, and the concretization function [[·]] under the precisions ΠP. The
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2 Theoretical Background

transfer relation  P computes the abstract successor states e′ for abstract state e under a
precision π for an outgoing CFA edge g containing the program operation op: e g

 P (e′, π),
with e′ = e ∧ eop, where eop is a formula describing op. The merge operator mergeP com-
bines states if their abstraction formula and location is the same and the termination check
stopP only checks coverage for abstraction states (states where the complete path formula is
evaluated when SBE is not used). The precision-adjustment operator precP returns for an
abstract state the state and precision or turns a non-abstraction state into an abstraction
state. The precision π ∈ ΠP maps program locations to sets of predicates over program
variables enabling the usage of different abstraction levels at different locations in the pro-
gram. Typically, the initial precision is π(l) = ∅ for all locations l ∈ L. Dynamic precision
adjustment is not used during the CPA algorithm in standard predicate CPA but enables
the usage of P in the counterexample-guided abstraction refinement (CEGAR) [6], [7], [25].
CEGAR is a iterative algorithm for finding a suitable precision for the verification of a pro-
gram that is fine enough to be able to report if the error location lERR can be reached but
coarse enough to efficiently run the program analysis. The algorithm (Algorithm 2) starts
with a coarse initial precision π0 that only tracks few relations. With π0 the underlying
program analysis CPA+ (extended form of Algorithm 1) is executed. If the CPA finds lERR

under the given precision not reachable, the algorithm stops and reports that the program
is safe. Otherwise, if the CPA+ has found an execution path of the program where lERR is
reached there are two possibilities: Either the found error path is an actual feasible path
which means it is a concrete program execution or the error path is a infeasible path that
only had been found because of the imprecise abstraction. In the first case, the algorithm
stops and reports the found error path as counterexample. In the second case, the precision
is refined and the algorithm restarted. Such a refinement procedure extracts information
from infeasible error path and returns a precision π that would indicate the infeasibility of
this error path.

2.2 Backwards Model Checking
The model checking approach described in the previous sections analyses programs in a
forward direction. In principle, model checking can also be done in a backwards manner.
Backwards model checking has already been applied in hardware model checking [8] as well
as in symbolic software model checking based on BDDs [9]. Also combinations of forward and
backward reachability analysis have been applied in hardware model checking [10], software
verification with BDDs [11]–[13], abstract interpretation [14] or using Craig interpolants [15],
[16]. A reachability analysis as described in section 2.1 can also be done backwards by
constructing an ARG. In this case, the construction starts at the investigated program
location lERR. The backwards ARG (bwARG) is build up by successively traversing the
edges of the CFA in reverse direction of arrow. A successor state here is obtained by the
weakest precondition of the current state and the operation of the traversed edge. The
iterative buildup stops if all leafs contain a path formula of ’false’ or there exists an ARG
node which contains the entry of the program lENT RY as location and a non-contradicting
path formula. The first case proves as in the forward ARG that there is no program execution
path in which lERR can be reached. The latter case reports an execution path in which lERR

is reached going from the leaf containing lENT RY to the root of the bwARG. Considering
again the example program of section 2.1 (Example 1) with CFA (Figure 1) the construction
of a bwARG (Figure 3) starts at the error label location (line 7) and the successor node is
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2.2 Backwards Model Checking

Algorithm 2 CEGAR(D+, e0, π0), taken form Ref. [7]
Input: CPA with dynamic precision adjustment D = (D,Π,merge, stop, prec), initial ab-
stract state e0 ∈ E with precision π ∈ Π, where E denotes the set of elements of the
semi-lattice of D
Output: verification result safe or unsafe
Variables: set reached ⊆ E × Π, set waitlist ⊂ E × Π, error path σ =
〈(op1, l1), . . . , (opn, ln)〉

1: reached := {(e0, π0)};
2: waitlist := {(e0, π0)};
3: π := π0;
4: while true do
5: (reached,waitlist) := CPA+(D,reached,waitlist);
6: if waitlist = ∅ then
7: return safe
8: else
9: σ := extractErrorPath(reached);

10: if isFeasible(σ) then //error path is feasible: report bug
11: return unsafe
12: else//error path is not feasible: refine and restart
13: π := π ∪ Refine(σ);
14: reached := (e0, π);
15: waitlist := (e0, π);
16: end if
17: end if
18: end while

Figure 3: Backwards ARG for the example program Example 1.The path formula of the re-
specting abstract state (node) is attached in a box. The edges contain as the CFA (Figure 1)
the program statements.

computed by interpretation of the incoming CFA edge ’[i != 2]’. Here again, the complete
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ARG has only leafs containing ’false’ revealing that the error label in line 7 cannot be
reached. On average, the forward and backward analysis should be equally powerful but
comparing both ARGs, the one of the forwards analysis (Figure 2) and the backwards
analysis (Figure 3), reveals that there are cases in which the backwards analysis needs less
computations (less states). It remains to be investigated whether there is a class of programs
on which the backwards analysis performs better than the forward analysis.

Looking again at the example bwARG (Figure 3) makes clear that a backwards program
analysis only is reasonable for analyses that memorize the change history of variables rather
than storing only exact values like in explicit-value analyses [31]. In a explicit-value analysis
i would stay undefined until the analysis reaches line 2 of Example 1 and thus would not be
able to give a verification result. Such a situation would arise for many programs since the
assignment of a value to a variable is naturally at the beginning of the program. For this
reason the symbolic program analyses in the BDD and predicate domain are investigated
for the use in backwards direction.

2.2.1 Backwards CPA

For a given CPA D = (D, ,merge, stop) the corresponding backwards CPA Dbw = (D,
 bw,merge, stop) has the same abstract domain D and same operators merge and stop. The
only difference in D and Dbw is the calculation of the successor states meaning D and Dbw

only differ in the transfer relation. Backwards CPAs are executed by the same algorithm
than forwards CPAs (see Algorithm 1). The same holds for the extension CPA+.

2.2.2 Backwards Location CPA

As described in Section 2.1.2, the transfer relation  L of the Location CPA L in for-
wards analysis direction gives at the program location l for the outgoing CFA edge g with
g = (l, op, l′) the successor state l′: l g

 L l
′. The transfer relation  Lbw

contained in the
backwards Location CPA Lbw = (DL, Lbw

,mergeL, stopL) is defined as the inverse func-
tion of  L. This means  Lbw

gives at location l′ for the incoming edge g = (l, op, l′) the
successor location l: l′ g

 Lbw
l.

2.2.3 Backwards BDD CPA

The backwards BDD CPA BDDbw = (DBDD, BDDbw
,mergBDD, stopBDD) differs from the

corresponding BDD CPA BDD in forwards analysis direction only in the transfer relation.
The transfer relation BDDbw

of BDDbw calculates the successor abstract state e′ for abstract
state e by interpretation of the program operation op contained in the incoming CFA edge
g: ebw

g
 BDDbw

e′bw, with

e′bw =

ebw ∧ e[p] if op = assume(p)
∃w : (ebw ∧ e[w=expr]) if op = (w := expr).

In the case of op = assume(p) the interpretation is the same as for the forwards transfer
relation. Thus it is decoded in exactly the same BDD e[p] in both analysis directions.
The interpretation of op = w := expr in the backwards analysis slightly differs from the
interpretation in the forwards BDD analysis. In the backward analysis the order of the
sub-steps of the calculation of the successor BDD is reversed. Here, at first the BDD ebw
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2.2 Backwards Model Checking

of the current state is combined by conjunction with a BDD representing the new variable
assignment e[w:=expr]. Substantially, w is existentially quantified, as the value of a variable is
not yet determined in the locations preceding its assignment. In the special case, where the
assigned variable w also occurs right-hand side, the assignment statement is split into two
statements by first assigning the old value of w to a temporary variable. This can be best
illustrated using a example program cutout (see Example 2) and the corresponding CFA
(Figure 4).

Example 2 Code snippet for illustration of the interpretation of assignments in backwards
analysis direction.

1: a = 3;
2: a = a + 1;
3: if a == 2 then
4: ERROR: return 1;
5: end if

Figure 4: Control flow automaton of the example program cutout (Example 2). The nodes
represent program locations with the respecting line number as label. The edges represent
program statements. Assumptions like assume(p) are denoted as [p].

The backwards analysis starts at the error label in line 4 of the example program with a
BDD e[1] = etrue representing ’true’. The first statement that is evaluated is the assumption
a == 2 in line 3, so the state is represented by the BDD e[2] = e[1] ∧ e[a=2] = e[a=2]. Next,
the analysis comes to the assignment a = a + 1. Here the variable occurs left-hand side as
well as right-hand side. So the assignment is split into:

a = a + 1

tmp = a
a = tmp + 1

for the interpretation. As the analysis direction is backwards, a = tmp + 1 is interpret fist
according to the interpretation rules for an assignment. This gives the temporary BDD

eTMP = ∃a : (e[2] ∧ e[a=tmp+1]) = ∃a : e[a=2∧a=tmp+1] = e[tmp=1].

Subsequently, the temporary variable disappears again in the interpretation by evaluating
tmp = a:

e[3] = ∃tmp : (eTMP ∧ e[tmp=a]) = ∃tmp : e[tmp=1∧tmp=a] = e[a=1].
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Last, the analysis approaches a = 3, which results in a BDD containing a contradiction:
e[4] = ∃a : (e[3] ∧ e[a=3]) = ∃a : e[a=1∧a=3] = ∃a : efalse = efalse.

2.2.4 Backwards Predicate CPA

The corresponding backwards CPA to P in the predicate domain is defined by Pbw =
(DP,ΠP, Pbw

,mergeP, stopP, precP). Pbw is distinguished from P only by the transfer re-
lation  Pbw

. De facto, the successor state e′bw given by ebw
g
 Pbw

e′bw has a similar form
as the successor state obtained by  P (see Section 2.1.4): e′bw = ebw ∧ eop, where the in-
terpretation eop of op is for both analysis directions similar (for assume and assignment
statements).

Assumption [p] is interpreted in both cases by augmenting the path formula by the as-
sumption: e′ = e ∧ [p] and e′bw = ebw ∧ [p], at which in both analysis directions the current
static single assignment (SSA) indices of the occurring program variables are used. Also for
an assignments w := expr, in both analysis directions this information is appended to the
path formula. The interpretation of assignments only differs in the used SSA indices for the
assigned variables. In the forward analysis, the value expr is assigned in the assignment
w := expr to variable w with a fresh index: w[n + 1] = expr. If in expr also variable w is
contained, the old index n is used for this occurrence of w. In the backwards analysis in
contrast, the value expr is assigned to the variable w with the current index w[n] = expr
while a fresh index n+ 1 is used for w if it occurs in expr. So the new path formulas would
be: e′ = e ∧ (w[n+ 1] = expr) and e′bw = ebw ∧ (w[n] = expr). This situation is visualized
considering Example 2 again.

The forward analysis starts at the beginning of the program, so the first statement that
is interpreted is a = 3 (line 1) as path formula e[1] = (a[1] = 3). The next statement
a = a + 1 contains variable a on the left-hand side as well as the right-hand side of the
assignment. Here, the augmented ’old’ value of a is reassigned resulting in a new value for
a. The new path formula hence is e[2] = (a[1] = 3) ∧ (a[2] = a[1] + 1). The last statement
is an assume statement [a = 2]. In its interpretation no new index for a is created as the
value of a remains the same in the program execution. So the resulting path formula of the
forward analysis for the whole program fragment is:

e[3] = (a[1] = 3) ∧ (a[2] = a[1] + 1) ∧ (a[2] = 2),
which contains a contradiction and would result in ’false’. Performing a backwards analysis
on the same program code, the analysis starts at the error label in line 4. So the assume
statement a = 2 is the first to be interpreted giving a path formula of ebw[1] = (a[1] = 2).
Next, the analysis comes to the statement a = a + 1, where variable a appears at both
sides of the assignment. As the left-hand side a, to which a new value is assigned, is ’the
same’ as the a in the previous assumption, the current index must be kept for the left-hand
side a while the a appearing on the right-hand side in the assigned value is a ’different’ a,
so a fresh index has to be created for it. The resulting path formula is ebw[2] = (a[1] =
2) ∧ (a[1] = a[2] + 1). The last statement interpreted in the backwards analysis is a = 3,
resulting in a path formula for the whole code fragment of

ebw[3] = (a[1] = 2) ∧ (a[1] = a[2] + 1) ∧ (a[2] = 3),
which also gives ’false’.
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3 Implementation of Backwards Analyses in
CPAchecker

3.1 Backwards CPA

Program analyses are implemented in CPAchecker [17] as CPAs (see Section 2.1.1) by the use
of the composite Pattern (see Figure 5). The CPA execution algorithm operates on an object

Figure 5: Core architecture of CPAchecker. Figure taken from Ref. [17].

of the CPA interface leaving the concrete specification of the CPA variable. The concrete
CPA can be a Composite CPA which combines different CPA into one CPA. The CPAs con-
tained in the Composite CPA can again be a Composite CPA or a Leaf CPA. A special form
of the Leaf CPA is the Wrapper CPA which wraps around another CPA. This construction
is used for realization of backwards analyses in CPAchecker. A Wrapper CPA BackwardCPA
is implemented. It swaps the methods getAbstractSuccessors/getAbstractSuccessorsForEdge
and getAbstractPredecessor/getAbstractPredecessorsForEdge of the Transfer Relation Inter-
face. As the only difference between a CPA and its corresponding backwards CPA is the
interpretation direction of the CFA edges in the transfer relation (see Section 2.2.1) this
wrapping is sufficient for changing the analysis direction of any CPA that implements all of
the methods specified above.

This framework for backwards program analysis was established for backwards BDD
analysis by Friedberger et al. (not published). For unification of backwards analyses in
CPAchecker, the already existing backwards predicate CPA, which didn’t make use of the
BackwardCPA, was refactored in this work so that the analysis direction of the predicate
CPA can now be reversed using this Wrapper CPA.
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3 Implementation of Backwards Analyses in CPAchecker

3.2 Presentation of the Results
The results of a backwards analysis in CPAchecker are presented in a HTML interface like
for the corresponding forwards analysis. In the HTML document, the CFA as well as the
ARG are shown graphically. Additionally, it displays the source code of the verified program
and the log messages of the analysis.

The visualization of the ARG and CFA is given in graphviz format (.dot) additionally to
the graphical representation in the HTML document and in the file ’reached.dot’, the CFA
with the abstract states on top is given.

The counterexample export is also available for the backwards analysis. Here, the infor-
mation about a found error-path is given in different formats including simple txt-format,
C code, or graphically in dot-format.
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4 Evaluation
For investigation whether there exists a class of programs on which the backward analysis
performs more efficiently than the program analysis in forward direction the analysis in both
directions was compared on several benchmark tasks.

4.1 Compared Verification Approaches
The impact of the analysis direction was investigated for the program analyses using BDD
or predicates for the abstract domain. In the following, the forward analysis in the BDD
domain is referred to as BDD while the corresponding backwards analysis is referred to as
bwBDD. In the same way, the predicate analysis is named as Pa and bwPa. Additionally,
the traversal order in the analysis is compared for both directions. If depth-first search is
used insted of the default breadth-first search, the suffix -DFS is appended to the respecting
name of the analysis approach.

4.2 Verification Tasks
For comparison of the forward and backward reachability analysis, verification tasks were
taken from the verification task repository of SV-COMP 19 [21]. The sub-categories BitVec-
torsReach, ControlFlow, ECA, HeapReach, Loops, and ProductLines from ReachSafety were
verified using the ’unreach-call’ specification that checks for the not-reachability of a certain
function call. These categories were chosen as they mainly contain simple loop structures
and conditional branches. Sub-categories ArraysReach, Recursive, Sentimentalized, and the
categories Concurrency and Systems DeviceDriversLinux64 ReachSafety were excluded as
they require pointer aliasing and recursive function call handling which is not yet supported
by the backwards analyses.

4.3 Experimental Setup
The verification tasks were run using revision 31643 of the backwardsTransfer branch of
CPAchecker [17] with the options:
- benchmark
- heap 5000M
- timelimit 90s
- stats.
The configuration of the BDD and the bwBDD analyses can be found in the configu-
ration files bddAnalysis.properties and bddAnalysis-backwards.properties, respec-
tively. For Pa an additional option of cpa.predicate.handlePointerAliasing = false
was used extending the configuration of predicateAnalysis.properties. This option
was applied to disable the pointer aliasing handling for a better comparability to bwPa
configured in predicateAnalysisBackward.properties (renamed to predicateAnalysis
-backwards.properties in the current revision) as here this option is not yet supported.

Here it is worth mentioning that for the forwards analyses, the initial state is the entrance
of the main function, while it is the defined error location lERR for the backwards analyses.
This is specified in the configuration files by the option analysis.initialStatesFor, which
is set to ENTRY or TARGET, respectively. The reachability of the defined error location is
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4 Evaluation

monitored with a different automaton in both analysis directions. In the forwards analyses
the automaton, which is defined in config/specification/sv-comp-reachability.spc,
is used by the option specification. This automaton indicates the reaching of lERR by
switching from the state ’Initial’ to the error state if the analysis comes over the function
call VERIFIER error().

In the backwards analysis the automaton config/specification/MainEntry.spc, spec-
ified in the option backwardSpecification, is used for checking the reachability of lERR.
Since in backwards analysis direction a location lERR is reachable if the analysis reaches the
beginning of the program starting from lERR, this automaton switches from the initial state
’Body’ to state ’MainEntry’ if the evaluated line matches the regular expression of the head
of a main function and further switching to an error state indicating that the entry point of
the main function is reached which means that lERR can be reached in an execution of the
program (see Figure 6).

Figure 6: Automaton specified in MainEntry.spc. This automaton detects the entry point
of the main function.

OBSERVER AUTOMATON MainEntryAutomaton

INITIAL STATE Body;

STATE USEFIRST Body :
MATCH [.*\\s+main\\s*\\(.*\\)\\s*;?.*] -> GOTO MainEntry;

STATE USEFIRST MainEntry :
MATCH ENTRY -> ERROR("main entry reached");

END AUTOMATON

The analyses with depth-first traversal were performed using the option
analysis.traversal.order = DFS.

All tasks were run on machines with a Intel Core i5-4590 (3.30 GHz) that have 33 GB of
RAM and a memory limitation of 7 GB.

4.4 Results
4.4.1 BDD vs. bwBDD

Comparing the verification approaches BDD and bwBDD on the benchmark set defined
in 4.2 reveals that both give similar results whereat the forwards analysis solves slightly
more tasks successfully (see Table 1). The main difference is the number of correct results
of ’false’. This difference primarily arises from the subset ProductLines. Here, BDD gives for
262 a correct result of ’false’ whereas bwBDD has only found for 6 tasks a correct ’false’ as
it runs out of memory or results in a timeout in most cases. Both approaches give for about
the same number of verification tasks incorrect results. Also both analysis approaches do
not exhibit big differences in performance. The required CPU time for the correctly solved
tasks (Figure 7) is approximately the same for both approaches. The bwBDD analyses
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4.4 Results

Table 1: Detailed results of the BDD and bwBDD analysis.

correct results incorrect results
Benchmark subset BDD bwBDD BDD bwBDD

Complete set
(2449 tasks)

total 1448 1054 558 530
true 692 600 2 2
false 756 454 556 528

ProductLines
(597 tasks)

total 584 217 10 0
true 322 211 0 0
false 262 6 10 0

Loops
(208 tasks)

total 60 65 46 44
true 23 35 0 0
false 37 30 46 44

HeapReach
(241 tasks)

total 75 77 123 111
true 7 17 0 0
false 68 60 123 111

ECA
(1256 tasks)

total 641 616 325 325
true 306 306 0 0
false 335 310 325 325

ControlFlow
(95 tasks)

total 71 62 21 17
true 30 27 0 0
false 41 35 21 17

BitVectors
Reach
(52 tasks)

total 17 17 33 33
true 4 4 2 2
false 13 13 31 31

however, has for the majority of the tasks more reached states than BDD. This again issues
from the ProductLines subset but also to some extent from subset ECA. In addition it has
to be noted that for the HeapReach subset, the backwards analysis reaches for some tasks
zero states. The reason for this could be that the initial location lERR is not found due to
differences in the notation of the error label or the absence of an error label.
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Figure 7: Quantile functions CPU time (left) and number of reached states (right) needed
for the verification tasks of the complete benchmark set described in Section 4.2 and the
subsets of it for the BDD (blue) and bwBDD (red) analysis. Only tasks are plotted for
which the correct verification result was found.
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4.4.2 BDD-DFS vs. bwBDD-DFS

Table 2: Detailed results of the BDD-DFS and bwBDD-DFS analysis.

correct results incorrect results
Benchmark subset BDD-DFS bwBDD-DFS BDD-DFS bwBDD-DFS

Complete set
(2449 tasks)

total 1447 1054 558 530
true 692 600 2 2
false 755 454 556 528

ProductLines
(597 tasks)

total 584 217 10 0
true 322 211 0 0
false 262 6 10 0

Loops
(208 tasks)

total 60 65 46 44
true 23 35 0 0
false 37 30 46 44

HeapReach
(241 tasks)

total 75 77 123 111
true 7 17 0 0
false 68 60 123 111

ECA
(1256 tasks)

total 641 616 325 325
true 306 306 0 0
false 335 310 325 325

ControlFlow
(95 tasks)

total 70 62 21 17
true 30 27 0 0
false 40 35 21 17

BitVectors
Reach
(52 tasks)

total 17 17 33 33
true 4 4 2 2
false 13 13 31 31

The usage of depth-first search (DFS) instead of bread-first search (BFS) in the BDD
analysis does not have an impact on either the accuracy or on the performance of the
analysis in both analysis directions. They both give the same verification results (compare
Table 1 and 2) requiring the same amount of CPU time and number of reached states (data
not shown).
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4.4.3 Pa vs. bwPa

Table 3: Detailed results of the Pa and bwPa analysis.

correct results incorrect results
Benchmark subset Pa bwPa Pa bwPa

Complete set
(2449 tasks)

total 1090 1039 144 141
true 692 718 16 16
false 398 321 128 125

ProductLines
(597 tasks)

total 475 435 0 0
true 290 287 0 0
false 185 148 0 0

Loops
(208 tasks)

total 90 99 18 14
true 56 65 4 4
false 34 34 14 10

HeapReach
(241 tasks)

total 109 106 125 126
true 47 45 11 11
false 62 61 114 115

ECA
(1256 tasks)

total 296 297 0 0
true 231 268 0 0
false 65 29 0 0

ControlFlow
(95 tasks)

total 86 72 0 0
true 46 34 0 0
false 40 38 0 0

BitVectors
Reach
(52 tasks)

total 34 30 1 1
true 22 19 1 1
false 12 11 0 0

Comparing the predicate analysis for forward and backward analysis direction reveals
that both are almost identical regarding the verification result (Table 3). Even for the
ProductLines subset, for which the backwards BDD analysis performed significantly inferior,
Pa and bwPa verify nearly the same number of programs successfully. Both approaches give
some incorrect results for the Loops and HeapReach subset which is in most cases due to
the disabled pointer aliasing handling.

Here again, both approaches need the same CPU time for the correctly verified programs
(see Figure 8, top left). In total, however, the performance of bwPa is to some extent inferior
to Pa as it has on average more reached states (Figure 8, top right). This is clearly visible for
the ProductLines, HeapReach subsets but also holds for ControlFlow and BitVectorsReach.
Only ECA doesn’t follow this trend. Here, the backwards analysis has less reached states
and needs less CPU time for the correctly verified tasks.

As the bwBDD analysis, bwPa has for some tasks of the HeapReach subset zero reached
states. This is not surprising as the same statement as initial location of the analysis is used
for both backwards analyses (for further explanations see Section 4.4.1).
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Figure 8: Quantile functions regarding the CPU time (left) and number of reached states
(right) needed for the verification tasks of the complete benchmark set described in Sec-
tion 4.2 and the subsets of it for the Pa (blue) and bwPa (red) analysis. The results of the
approaches with DFS traversal order are plotted in green (Pa-DFS) and black (bwPa-DFS)
but are covered by the respecting BFS analysis in most cases as they give similar results.
Only tasks are plotted for which the correct verification result was found.
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4.4.4 Pa-DFS vs. bwPa-DFS

Table 4: Detailed results of the Pa-DFS and bwPa-DFS analysis.

correct results incorrect results
Benchmark subset Pa-DFS bwPa-DFS Pa-DFS bwPa-DFS

Complete set
(2449 tasks)

total 1120 1029 145 144
true 696 722 16 16
false 424 307 129 128

ProductLines
(597 tasks)

total 506 428 0 0
true 296 287 0 0
false 210 141 0 0

Loops
(208 tasks)

total 90 99 18 17
true 56 65 4 4
false 34 34 14 13

HeapReach
(241 tasks)

total 110 108 126 126
true 47 45 11 11
false 63 63 115 115

ECA
(1256 tasks)

total 293 301 0 0
true 228 270 0 0
false 65 31 0 0

ControlFlow
(95 tasks)

total 85 63 0 0
true 45 36 0 0
false 40 27 0 0

BitVectors
Reach
(52 tasks)

total 36 30 1 1
true 24 19 1 1
false 12 11 0 0

In the predicate analysis, in contrast to the BDD analysis, the change of the traversal
order from BFS to DFS does make a slight difference. While for Pa-DFS the number of
correct results increases with the DFS option from 1090 to 1120 it decreases from 1039 to
1029 for bwPa-DFS compared to bwPa (compare Table 3 and 4). This difference arises
mainly from the subset ProductLines and for the backwards analysis additionally from the
ControlFlow subset. The number of incorrect results stays for both analysis direction about
the same. The performance regarding CPU time and reached states, however, is about the
same as for Pa and bwPa (see Figure 8).
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4.5 Conclusion

4.5 Conclusion
For the benchmark set used in this work, the backwards analysis is in most cases outper-
formed by the respecting forwards analysis. In the Complete Set, the forwards analyses
verify more tasks correctly than the respecting backwards analyses. An exception is the
Loops subset where bwBDD as well as bwPa give slightly more correct results than BDD or
Pa.

The numerous incorrect results in the Pa as well as the bwPa, especially in the HeapReach
subset, are owed the disabled handling of pointer aliasing. This option was chosen for the
comparability of both analysis directions as this option is not yet available for the backwards
analysis.

The performance of forwards and respecting backwards analysis regarding CPU time is
about the same for both, predicate analysis and BDD analysis.

The performance regarding the number of reached states, however, is in most cases inferior
in the backwards analysis compared to the forwards analysis. This could be due to a
unfavorable selection of test programs for backwards analysis or a not yet detected bug in
the implementations of the backwards analysis.

A change of traversal order from BFS to DFS apparently does not have an impact on the
BDD analysis in both analysis directions at all. For the predicate analysis the DFS traversal
does make a little difference. Here, the number of correct verified results slightly increases
for Pa in the ProductLines subset and slightly decreases for bwPa in the ProductLines and
ControlFlow subsets while for both the performance does not change.

Summing up, the results indicate that the backwards analyses, bwBDD and bwPa, as they
are currently implemented in CPAchecker, perform not as good as the respecting forwards
analysis but there are some types of programs (Loops subset and ECA for Pa) where the
backwards analysis is as good as or even better than the respecting forwards analysis.
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5 Outlook
The backwards predicate analysis could be further improved by enabling the pointer aliasing
handling also for the backwards analysis direction. As pointer aliasing is a common pattern
in C programming language, this is an important feature for a competitive program analysis.
Unfortunately, the pointer aliasing handling, as it is currently implemented for the forwards
predicate analysis in CPAchecker [17], is not applicable for backwards analysis. Here, after
the occurrence of a referencing p = &a, a and *p are treated as aliases. In the remaining
analysis, if one of the aliases occurs in the left-hand side of an assignment, the other one is
considered as well. In the backwards analysis this concept doesn’t work. If here the analysis

Example 3 Code snippet for illustration of the pointer aliasing handling in the predicate
analysis as it is currently implemented in CPAchecker [17].

1: a = 3;
2: p = &a;
3: a = 1;
4: *p = 5;
5: *p = 0;
6: if a == 0 then
7: ERROR: return 1;
8: end if

comes over a referencing, the pointer aliasing hasn’t to be handled any more since in the
code lines preceding the referencing the variables aren’t aliased. The pointer aliasing can
also not be considered repressively either as the history in which the two variables have been
assigned is not saved. This is best illustrated on an example (see Example 3). Analyzing
the example program in a backwards analysis, first it is assumed a[1] = 0. Then lines 5 and
6 are interpreted as ∗p[1] = 0 and ∗p[2] = 5. Next, line 4 gives a[1] = 1. Then the analysis
comes to the referencing p = &a in line 2. The information about this aliasing is no longer
needed in the remaining analysis, as the variables aren’t aliased in the lines above. The
aliasing can also not be handled afterwards for the already interpreted lines as the history
in which a and *p were accessed has not been memorized and thus it is not possible to
decide which a resembles which of the *p.

The handling of pointer aliasing would have to be adapted for the backwards analysis
in a way that it somehow considers all possible variables as aliased location as soon as the
analysis comes over an assignment of a variable over a pointer such as *p = 0 in line 5 of
Example 3.

Besides the enabling of the pointer aliasing for backwards predicate analysis, further ways
of optimizing backwards analyses in general might be recognized by a more closely investiga-
tion. One aspect which can be examined more extensively is the impact of the used ordering
of the waitlist (compare Algorithm 1) in backwards analysis. In this work, only the order-
ing according to BFS and DFS traversal are compared. These two traversal options seemed
not to make a huge difference for both analysis directions and both investigated analysis.
Since the ordering only influences the analysis where a specification violation is found [32],
the comparison between these two options may be more precise if only the verification results
’false’ are considered. Additionally to the BFS and DFS ordering, further ordering schemes
could be evaluated in the use in backwards analyses. Possible other schemes comprise the
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preference of deep branches, subsequent treatment all statements of a called function, or
the prioritizing of states with less threads.

Moreover, other model checking approaches could be implemented for the investigation
in backwards analysis. Therefore, analyses that track variables and assignments in most
instances symbolically are suited, which is the case for the SymbolicValue-Analysis, Inter-
valCPA, OctagonCPA, and SMT-based analysis like Impact, BMC, or PDR that are already
implemented in CPAchecker [17] for forwards analysis.

Last but not least, establishing a concept for the combination of forwards and backwards
program analysis appears to be promising as it had been shown that the combination of
backwards and forwards traversal in model checking approaches is more powerful than one
analysis direction on its own [10]–[16]. This concept could be realized by starting the analysis
at both locations, lINIT and lERR, at once. Then the reachability analysis is started from
lINIT in forwards direction and form lERR in backwards direction. If the analyses meets at a
location, the states have to be merged and the traversal has to be stopped for these branches.
The advantage of this approach is, that potentially a smaller state space is explored by only
examining the region of interest, which are paths from the entry of the program lINIT to
the investigated error location lERR.
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[23] D. Beyer, T. A. Henzinger, and G. Théoduloz, “Configurable Software Verification:

Concretizing the Convergence of Model Checking and Program Analysis,” Computer
Aided Verification, pp. 504–518, 2007.

[24] D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Sebastiani, “Software
model checking via large-block encoding,” 9th International Conference Formal Meth-
ods in Computer Aided Design, FMCAD 2009, pp. 25–32, 2009.

[25] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar, “The software model checker
Blast,” International Journal on Software Tools for Technology Transfer, vol. 9, no. 5-
6, pp. 505–525, 2007.

[26] D. Beyer, T. A. Henzinger, and and Gregory Theoduloz, “Program analysis with
dynamic precision adjustment,” Proceedings of the 23rd International Conference on
AutomatedSoftware Engineering (ASE), ACM, pp. 29–38, 2008.

[27] P. Wendler, “Towards Practical Predicate Analysis,” Dissertation, 2017.
[28] D. Beyer, M. Dangl, and P. Wendler, “A Unifying View on SMT-Based Software

Verification,” Journal of Automated Reasoning, vol. 60, no. 3, pp. 299–335, 2018.
[29] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, “Handbook of model check-

ing,” Handbook of Model Checking, pp. 1–1210, 2018.
[30] D. Beyer and A. Stahlbauer, “BDD-based software verification,” International Journal

on Software Tools for Technology Transfer, vol. 16, no. 5, pp. 507–518, 2014.
[31] S. Apel, D. Beyer, K. Friedberger, F. Raimondi, and A. Von Rhein, “Domain types:

Abstract-domain selection based on variable usage,” Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 8244 LNCS, no. May, pp. 262–278, 2013.

[32] D. Beyer and K. Friedberger, “A light-weight approach for verifying multi-threaded
programs with CPAchecker,” Electronic Proceedings in Theoretical Computer Science,
EPTCS, vol. 233, no. Memics, pp. 61–71, 2016.

40


	Introduction
	Theoretical Background
	Software Model Checking
	Configurable Program Analysis
	Location CPA
	BDD-Based Program Analysis
	Predicate CPA

	Backwards Model Checking
	Backwards CPA
	Backwards Location CPA
	Backwards BDD CPA
	Backwards Predicate CPA


	Implementation of Backwards Analyses in CPAchecker
	Backwards CPA
	Presentation of the Results

	Evaluation
	Compared Verification Approaches
	Verification Tasks
	Experimental Setup
	Results
	BDD vs. bwBDD
	BDD-DFS vs. bwBDD-DFS
	Pa vs. bwPa
	Pa-DFS vs. bwPa-DFS

	Conclusion

	Outlook

