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Abstract

Witness validation is an important step for increasing the confidence in
the results of software verification. This is especially true when the verifier
claims that the specification holds, i.e., when it outputs a correctness
witness. While there are currently two validators for correctness witnesses,
it is generally desirable to add new, conceptually different algorithms for
validation. The goal of this thesis is to explore how predicate abstraction can
be used in that regard. Possible approaches include reusing the invariants in
the witness for the initial predicate precision or adding them as additional
verification goals to the original verification task.
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Chapter 1

Introduction

Software is a fundamental component in today’s society. As new require-
ments are demanded by industry and costumers, the complexity of software
continuously increases and challenges the implementation of robust programs.
Software has to fulfill the significant criterion of safety e.g. in vulnerable
systems like autonomous driving or pacemakers. Incorrect behavior of
software can lead to bad consequences for humans.
Testing is a common technique to increase the confidence in a program. By
applying a wide range of test cases to the program, errors are detected and
can be repaired. However, testing can not guarantee that the program is
correct and minimizes only the likelihood of errors. Formal software verifi-
cation is an alternative approach which tries to prove the (in-)correctness
of a program. In order to verify a program a specification is first chosen
which the program must fulfill. A specification describes properties in the
program, for instance memory release after termination or the unreachability
of a program line. If the property holds the program is correct regarding
the specification, if the property does not hold the program is incorrect
regarding the specification.
A verification tool (verifier) for formal verification can additionally output
a witness. The type of the witness depends on the verification result. If
the verifier claims that the program is correct it can produce a correctness
witness which is a partial proof and can contain important invariants which
have been found during the analysis. If the verifier claims that the program
is incorrect it can produce a violation witness which summarizes paths to
the property violation.
Witnesses can be validated. A verification tool with the ability to validate
(validator) tries to reestablish the result. It receives the witness as input and
analyzes the contained information. Since witnesses have a standardized
exchange format, they can be validated independently from the tool which
generated them. This enables sharing and validating of witnesses among
tools and increases the confidence in the result when different validators
return the same result.
The objective of this thesis is to use predicate analysis as new approach
for validating correctness witnesses. The implementation is done in the
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verification framework CPAchecker. Predicate analysis is based on the
concept of predicate abstraction and already used in CPAchecker for verifi-
cation. Regarding the validation of correctness witnesses, CPAchecker uses
k-induction as validation method so far [2]. By using predicate analysis as
an alternative validation method we will compare both methods. Further-
more, we will compare correctness witness validation of predicate analysis
in CPAchecker with the verification tool Ultimate Automizer which can
also validate correctness witnesses [2].

Related Work. The concept of producing correctness witnesses and
validating them among different verification tools is relatively new. Concepts
have been introduced in [2] which continue from work that has been done for
the validation of violation witnesses [4]. Furthermore, approaches to validate
correctness witnesses in CPAchecker and Ultimate Automizer have been
presented in [2]. We extend the validation of correctness witnesses by using
predicate analysis as technique. Since our work is done in CPAchecker, we
can reuse implementations of reading and producing correctness witnesses
in CPAchecker [2].
For validating correctness witnesses by using predicate analysis we present
two approaches.
In the first approach we extract the invariants from correctness witnesses
and reuse them as precision information. Similar work has been made in
[9]. In this work precision information is stored in a precision file after the
verification of a program finishes and reused in a later verification run.
In the second approach we define the correctness witness invariants as
additional verification goal. Therefore, we use the invariants to build a
specification automaton so that predicate analysis can verify this automa-
ton. This approach has similarities to the validation approach in Ultimate
Automizer. In order to validate correctness witnesses Ultimate Automizer
uses a modified control-flow automaton. This automaton is built by taking
the original control-flow automaton of the program and extending it with
the invariants so that the invariants can additionally be verified [2].
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Chapter 2

Background

Before we present the implementation we give an overview about the theo-
retical background. First, we describe basic terms of software verification.
After that we explain the functionality of predicate analysis. Subsequently,
we inform about the structure and information of witnesses and show in
particular the concept of correctness witnesses. Furthermore, we describe
how predicate analysis produces correctness witnesses and describe the func-
tionality of k-induction in CPAchecker and the automata based concept of
Ultimate Automizer to produce and validate correctness witnesses. Finally,
we explain precision reuse.

2.1 Specification and Reachability

Providing a specification means to define properties which are to be proved
for a given program. For instance, for a program P with a variable x ∈ X
where X denotes the set of program variables, a possible specification is the
safety property that x is always equal or greater than zero. The program
meets the specification when no program location can be found where x is
less than zero. Checking whether a program fulfills a given specification is
called software model checking [14].
A program can have an (infinite) amount of concrete paths and concrete
states. A concrete state represents the variable assignment at a certain
program location. Each concrete path consists of a sequence of concrete
states starting at the initial state of the program. A specification separates
all concrete paths into two sets. One set contains those paths which fulfill
the specification, the other set contains those which violate the specification.
The paths in the latter set are called concrete error paths and the concrete
states that violate the specification are called concrete error states. If the set
of concrete error paths is empty the program is proven as correct regarding
the given specification.
Finding an error state can be reduced to the reachability problem with
the error state as target state. The reachability problem is asking the
question whether a concrete target state in the program is reachable. A
state is reachable if a feasible program path starting from the initial program
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location exists that leads to the state.

2.2 Control Flow Automaton

A program can be translated into a control-flow automaton (CFA) [6]. The
CFA is a directed graph A = (L, linit, G) with nodes as program locations
and edges or transitions as relation between program locations. L is the set
of of program locations and linit ∈ L the program entry location. G is the
set of transitions. A transition (l, ops, l′) ∈ G describes the operation ops
that is executed if the control flow goes from location l to target location
l′. The operation can be either an assignment or an assumption because
we restrict the presentation to a simple imperative programming language
[6]. Let x be a program variable of the set X of all program variables.
An assignment has the form x := e for which the value of the arithmetic
expression e is assigned to x. An assumption [ρ] with the predicate ρ over
variables of X is evaluated at control statements and loop heads to guide
the control flow.
Fig. 2.1 shows a program1 taken from SV-COMP 2019 and a corresponding
CFA. The program has two variables x and y which are initialized with the
same non-deterministic value and contains a while loop which increments x
and y in sequence until x is greater than 1024. In line 9 an ERROR label is
inserted. When we define as specification the unreachability of the ERROR
label and a concrete path exists which reaches line 9 the program violates
the specification. The program is safe since x == y always holds when the
program reaches line 8. It is obvious that x != y can never be true at line
8. However, to show the correctness of the program a verification technique
must effectively prove that x == y is a loop invariant which holds when the
program enters the loop head. We will refer to this example several times
in this work.

1 int main (void ) {
2 unsigned int x =

__VERIFIER_nondet_uint ( )
;

3 unsigned int y = x ;
4 while ( x < 1024) {
5 x++;
6 y++;
7 }
8 i f ( x != y){
9 ERROR: return 1 ;

10 }
11 return 0 ;
12 }

start

unsigned int x = nondet_uint();

unsigned y = x;

[x < 1024]

x++

y++

[!(x < 1024)]

[x != y][!(x != y)]

ERROR: return -1;return 0;

l2

l3

l4

l5

l6

l8

l11 l9

l12

Figure 2.1: A program written in C and its corresponding CFA

1. https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/loop-acceleration/
multivar_true-unreach-call1_true-termination.c
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2.3 Abstract Model

We can create an abstract model of the program in form of an abstract
reachability graph (ARG) [9]. For the abstract model we use abstract states
that can overapproximate the reachable concrete program states. Each
concrete state can be assigned to one or multiple abstract states and if an
abstract state is reachable the concrete states covered by the abstract state
are reachable as well. Since several concrete states might be represented by
the same abstract state, abstraction can increase computation efficiency.
The abstract domain defines the abstract model. It specifies which program
information the abstract states should contain.
The precision in an abstract domain describes the current stored information
in an analysis. When we compute a successor state of an abstract state the
computation is guided by the precision [9]. Often we try to get a balanced
precision. A precision that is not accurate enough can lead to false alarms
during the verification. A precision that is too accurate, on the other hand,
might increase computation costs unnecessarily [9].
The ARG represents the abstract model. It is a directed graph and consists
of reachable abstract states and transitions. The ARG is built iteratively by
going through the CFA and applying the operations of the CFA on abstract
states to compute abstract successor states.

2.4 Configurable Program Analysis

We can use a configurable program analysis (CPA) to define the abstract
domain. A configurable program analysis algorithm (CPA algorithm) can
perform a reachability analysis for a given CPA [6].

A CPA is a tuple (D,Π, ,merge, stop, prec) [6].

Abstract Domain. D = (C, E , [[ · ]]) is the abstract domain with a set C
of concrete states, a semi-lattice E = (E,v,t,>) with the set of abstract
states E and the concretization function [[ · ]]. The semi-lattice E defines
the relation of abstract states with the partial order v between two states,
the join t of two states and the join over all states >. The concretization
function [[ · ]] computes for an abstract state e ∈ E all concrete states it
represents.

Precision. Π is the set of precisions used for the analysis. π ∈ Π describes
the precision used for an abstract state.

Transfer Relation.  ⊆ E × G × E × Π defines the transfer relation
between two states of E with respect to the set of CFA edges G and the set of
precisions Π. A transfer between two states e and e′ exists if (e, g, e′, π) ∈ 
and g ∈ G and π ∈ Π. This means that e′ is a reachable state from e taking
the control-flow edge g using the precision π.
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Operations. merge : E × E × Π→ E merges two states. If defined and
possible, merge merges e ∈ E and e′ ∈ E to a state enew ∈ E.
stop : E × 2E × Π → B checks if an abstract state e ∈ E is covered by a
set of reached abstract states 2E under the precision π ∈ Π. If there exists
a subset of abstract states which covers e stop returns true, otherwise it
returns false.
prec : E × Π× 2E×Π → E × Π recomputes the precision. For a state e ∈ E
with precision π ∈ Π and a given set of reached abstract states prec adjusts
the precision for e.

2.4.1 Configurable Program Analysis Algorithm

Algorithm 1 CPA++(D, reached, waitlist, abort)
Input: a CPA D = (D,Π, ,merge, stop, prec) where Π denotes the set of precisions and
where E denotes the set of elements of the semi-lattice of D
a set reached ⊆ E ×Π of reachable abstract states
a set waitlist ⊆ E ×Π of reached abstract states which are not yet processed
a function abort : E → B that possibly aborts the algorithm
Output: the updated set reached and the updated set waitlist
Note: the technique of forced covering is omitted here

1: //Main loop
2: while waitlist 6= ∅ do
3: pop (e, π) from waitlist;
4: for each e′ with ê (e′, π) do
5: (ê, π̂) := prec(e′, π, reached);
6: for each (e′′, π′′) ∈ reached do
7: enew := merge(ê, e′′, π̂);
8: if enew 6= e′′ then
9: waitlist := (waitlist ∪ {(enew, π̂)}) \ {(e′′, π′′)};

10: reached := (reached ∪ {(enew, π̂)}) \ {(e′′, π′′)};
11: if ¬stop(ê, {e|(e, ·) ∈ reached}, π̂) then
12: waitlist := waitlist ∪ {(ê, π̂)};
13: reached := reached ∪ {(ê, π̂)};
14: if abort(ê) then
15: return (reached,waitlist);
16: return (reached, waitlist);

The CPA algorithm, more precisely the CPA++ algorithm2 conducts a
reachability analysis on a CPA [6].
The set waitlist stores abstract states and their corresponding precisions
which have been reached but not processed so far. The set reached stores all
reachable abstract states and their corresponding precision that have been
found so far. The CPA++ algorithm is wrapped into another algorithm
that conducts counterexample-guided abstraction refinement (CEGAR) and
calls the CPA++ algorithm. CEGAR checks the satisfiability of reached
when CPA++ returns reached. CEGAR then might refine the precision and
call the CPA++ algorithm again. We explain CEGAR more detailed in 2.7.
In each loop iteration a pair (e, π) is picked from waitlist. In a for loop
each successor e′ is computed based on the transfer relation  . First,
the precision of the abstract state is adjusted using the prec operator. In
the nested second for loop each new successor is merged with states e′′

2. The CPA++ algorithm is used for predicate analysis as an extension of the CPA algorithm.
Both algorithms perform a reachability analysis
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from reached. If a merge can be applied depends on the implementation of
merge and whether merge conditions of the abstract states are satisfied. If
enew 6= e′′ holds because merging has lead to a merged state enew, (enew, π̂)
is inserted into reached and waitlist whereas (e′′, π′′) is removed. For each
successor ê with π̂ it is checked whether another state from reached covers
ê. If not, ê is a new abstract state that is inserted into reached and waitlist.
abort takes as argument ê and checks whether ê is an abstract error state. If
that is the case the algorithm returns the current waitlist and reached. The
algorithm returns the set of all reachable abstract states when the waitlist
is empty and no abstract error state has been found before.

2.5 Predicate CPA

Predicate abstraction is an abstract interpretation technique which is used in
software verification. It computes predicates over program variables in order
to abstract concrete states and their assigned variables. The predicates are
expressed as first-order formulas [9] which can be solved by a SMT solver.

Adjustable Block Encoding (ABE). ABE is a concept to compute
abstractions only at locations where it is necessary [8]. Let ψ denote the
abstraction formula of an abstract state and let ϕ denote the path formula
which is a conjunction of several program operations. Instead of computing
ψ for each program location, ψ is only computed at locations where necessary,
for example at loop heads or control statements. When we compute ψ′ as
next abstraction, we call the SMT solver to combine the information from ψ

and ϕ. For instance, for a sequence of assignments we do need to compute
abstraction for each assignment. Instead, the sequence can be grouped into
a block by conjugating the assignment operations in ϕ and will be evaluated
together with ψ at the end of the sequence. Consequently, we need less
solver calls without having information loss.

Predicate CPA. The Predicate CPA provides a predicate-based abstract
domain for a reachability analysis.

The PredicateCPA P is a tuple (DP,ΠP, P,mergeP, stopP, precP) [6].

Abstract States. An abstract state is a triple (ψ, lψ, ϕ) where ψ denotes
the abstraction, lψ denotes the location of the abstraction formula and ϕ
denotes the path formula.
Since PredicateCPA is based on the concept of ABE, it separates abstract
states into abstraction states and intermediate states. Abstraction states
satisfy always ϕ = true because the abstraction has been computed. Inter-
mediate states which are created between abstract states are grouped into
a block. Their abstraction formulas refer to the last computed abstraction
state. For two intermediate states (ψ1, l

ψ
1 , ϕ1) and (ψ2, l

ψ
2 , ϕ2) in the same
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block the following holds:

ψ1 = ψ2 The abstraction formula is the same
lψ1 = lψ2 The location of their abstraction formula is the same

Abstract Domain. DP = (C, EP, [[ · ]]P) is the abstract domain with a
set C of concrete states, a semi-lattice EP over the abstract states E and the
concretization function [[ · ]]P. An abstract state e of E represents a set of
concrete states using the concretization function: [[(φe, lφe , ϕe]]P := {(c, ·) ∈
C | c |= (φe ∧ ϕe)}. For two abstract states e1 and e2, e2 is stronger when
(ψe1, lψe1, ϕe1) v (ψe2, lψe2, ϕe2) = ((ψe1 ∧ ϕe1)⇒ (ψe2 ∧ ϕe2)) holds.

Precision. A precision π ∈ ΠP is a mapping from program locations to
sets of predicates over the program variables [6]. ΠP is the set of possible
predicate precisions. π(l) is the predicate precision at a program location l.

Transfer Relation. The transfer relation takes an edge of the CFA and
computes always an intermediate state of an abstract state. It only changes
the path formula and no abstraction computations are done, so in general:
(ψ, lψ, ϕ) P ((ψ, lψ, ϕ′), π).

Merge. The mergeP operation can only be applied to intermediate states
in the same block:

mergeP((ψ1, l
ψ
1 , ϕ1), (ψ2, l

ψ
2 , ϕ2), π) =(ψ2, l

ψ
2 , ϕ1 ∨ ϕ2) if (ψ1 = ψ2) ∧ (lψ1 = lψ2 )

(ψ2, l
ψ
2 , ϕ2) otherwise

Stop. The stopP operator checks coverage only for abstraction states.
An abstraction state is covered by another abstraction state from a set of
abstract states when it is weaker or equal:

stopP((ψ, lψ, ϕ,R, π) =((ψ′, lψ′
, ϕ′) ∈ R : ϕ′ = true ∧ (ψ, lψ, ϕ) vP (ψ′, lψ′

, ϕ′) if ϕ = true

false otherwise

Prec Operator. The precP uses boolean predicate abstraction (φ)ρB
where φ denotes a formula and ρ a set of predicates. It applies predicate
abstraction on intermediate states to get abstraction states: It takes the last
abstraction formula ψ and the path formula ϕ as conjunction and computes
the strongest boolean combination of predicates from the precision. The
path formula gets true. blk defines at which locations abstraction states
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should be computed. Its concrete configuration can be chosen. For instance,
when selecting blkl, abstraction states are computed at loop heads and at
the error location.

precP((ψ, lψ, ϕ), π, R) =

(((ψ ∧ ϕ)π(l)
B , l, true), π) if blk((ψ, lψ, ϕ), l)

((ψ, lψ, ϕ), π) otherwise

Refinement. For the refinement process refineP takes the abstract states
from reached [6]. First, it builds an abstract counterexample using the
abstraction states in reached that lead to the abstraction error state. After
that it constructs a sequence of abstraction formulas as conjunction from
the abstraction states of the counterexample. The resulting counterexample
formula is then given as query to a SMT solver in order to check if the
formula is satisfiable. refineP stops if the formula is satisfiable and the
analysis has found a violation of the specification. If not, the abstract states
are too coarse and a refinement is necessary. Therefore refineP continues
with interpolation in order to refine the abstract model. For the refinement
refineP uses a given refinement strategy which modifies reached and waitlist.
After that the reachability analysis starts again with the modified reached
and waitlist.

Predicate Refinement. Predicate Refinement is a refinement strategy
that refines the precision only at locations where it is necessary [6] (see Lazy
Abstraction in 2.7). From the interpolation we obtain a sequence of sets of
predicates that can be mapped to the program locations. At each location
the current set of predicates is joined with the new set of predicates. After
constructing the new precision we look at the first abstract state (pivot
state) in the abstract counterexample for which the set of predicates has
been updated. The pivot state and all its descendants are removed from the
ARG so that the reachability analysis does not need to explore the whole
state space again [6].

2.6 CompositeCPA

Several CPAs can be combined to components by using a Composite CPA
[6]. A state of the CompositeCPA is a tuple that wraps one state of each
component CPA. The precision of a Composite CPA state is a tuple which
wraps the precisions of the component CPA states.
When the ARG is built the operations of the CFA are applied to abstract
states of the Composite CPA. In order to compute the transfer relation the
predecessor abstract state of the CompositeCPA delegates the operation
to each of its component states. The component states compute their
successors respectively. By building the cartesian product of the successors
the successor for the composite state is obtained.

9



By using a CompositeCPA we can use CPAs that can focus on a specific
task and can combine the information they track. Furthermore, such a
composite pattern gives flexibility for different verification approaches.

2.6.1 Important Component CPAs

LocationCPA. Since many analyses need information about the program
counter, the CompositeCPA often includes the LocationCPA L [6]. It
explicitly tracks the program counter. For instance, the CompositeCPA
contains a PredicateCPA and a LocationCPA. When the PredicateCPA
detects an error state on a feasible path the LocationCPA can be consulted
to get the program location of the error.

AutomatonCPA. The AutomatonCPA enables a configurable program
analysis for an observer automaton or a control automaton. An observer
automaton and a control automaton are protocol automata formalized by
A = (Q,Σ, δ, q0, F ) [3]. Q is the set of states and q0 is the initial state. Σ
defines the alphabet over the relations between states. δ ⊆ (Q× Σ×Q) is
the set of transfer relations. F is the set of accepting states.
An observer automaton monitors the state space exploration but does not
affect it [5]. For instance, we can use an observer automaton to keep track
of the specification by monitoring the reachability of an ERROR label in a
program. A control automaton affects the state space exploration [5]. It
can contain assumptions to guide and restrict the computation of abstract
states.
The AutomatonCPA for an observer automaton or control automaton can
be used as a component of a Composite CPA.

2.7 CEGAR with Predicate Abstraction

Counterexample-guided Abstraction Refinement (CEGAR). CE-
GAR [10] is a technique which enables model checking to find iteratively
a suitable precision [9]. In each iteration it invokes a nested reachability
analysis that uses the current precision to build an abstract model.
An iteration in CEGAR works as follows [6]:
CEGAR calls the reachability analysis to construct the abstract model.
The analysis uses the current precision. If an abstract error state is found
during the construction the concrete path to this state is built in order to
analyze if this counterexample is feasible. If the counterexample is feasible,
the specification is violated. CEGAR terminates and the program does not
satisfy the specification. If the counterexample is not feasible, the precision
has been too coarse. With the information from the feasibility check the
precision is refined so that the counterexample can be excluded in the next
time. After the refinement CEGAR starts the next iteration.
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If no abstract error state has been detected during the whole construction,
the ARG is proven as safe. The program satisfies the specification.
By using CEGAR we try to find a suitable precision which is neither too
coarse and nor to accurate [9]. A precision that is too accurate tracks
unimportant facts and increases computations. The abstract domain often
starts with an empty precision that gets continuously refined during the
iterations.

Combining CEGAR with Predicate Abstraction. Predicate ab-
straction can be combined with CEGAR. As component in a Composite CPA
the Predicate CPA is applied on a CPA++ algorithm which executes a reach-
ability analysis on it [6]. Further components of the CompositeCPA are
usually a LocationCPA to track the program counter and a AutomatonCPA
for the specification. The CPA algorithm is inserted into CEGAR so that
the precisions of the composite CPA components and hence the precision of
the Predicate CPA are continuously refined by CEGAR. In the following
the term predicate analysis describes this configuration which we extend in
parts of our implementation.

Lazy Abstraction. Lazy abstraction [11] can increase the efficiency
when using predicate abstraction with CEGAR [6]. When a spurious coun-
terexample in the refinement process has been found new precision facts will
only be stored at program locations where the precision facts are necessary
to exclude the counterexample. Consequently, the precision can vary for the
computation of abstract successor states. This can decrease computation
effort [9]. Furthermore, the abstract model is not built from scratch again.
Parts of the abstract model which do not need to be recomputed in order
to rule out the spurious counterexample remain.

2.8 Correctness Witnesses

We can distinguish between a violation witness or a correctness witness.
The violation witness is a control automaton that restricts the state space
[2]. The validator follows assumptions in the violation witness and validates
the witness if it can replay the path to the error state.
The correctness witness is an observer automaton that does not restrict the
state space of the program [2]. A state can be labeled with an invariant
θ which is a boolean expression. When a witness validator analyses the
witness and enters a state labeled with an invariant the validator must check
whether the invariant indeed holds.

2.8.1 Format of Witnesses

On the syntactic level we store a witness in a GraphML file [2]. GraphML
is an XML based format. An important characteristic of a witness file is its
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uniform format which enables verifiers to share their witnesses among each
other.
The file includes general information about:

• witness type (violation witness, correctness witness)
• producer
• language of the verified program (C)
• applied specification
• path to the verified program
• program hash to identify the program
• used computer architecture (32 bit, 64 bit)
• time of creation

Exchange Format of Correctness Witnesses. As exchangeable
witness format we save the correctness witness as graph with nodes and
edges [2]. A node represents a state of the witness automaton. An edge
represents a transition of the witness automaton and has as attributes a
source node and a target node. Furthermore, edges can be labeled with
source-code guards. They directly refer to the program code and contain
conditions that can be matched when the witness is analyzed by a validator.
Compared to violation witnesses correctness witnesses do not have state-
space guards since those restrict the state-space[2]. A node can be labeled
with an invariant.

Source-Code Guards. For a correctness witness transition there exists
several source-code guards3 [2]:

startline -
endline

The CFA edge must match with the program lines

startoffset -
endoffset

The CFA edge must match with the program offsets

control with
condition-true

The CFA edge must match with the head of a control
statement and the statement is evaluated as true

control with
condition-false

The CFA edge must match with the head of a control
statement and the statement is evaluated as false

enterFunction The CFA edge must enter another function
returnFrom The CFA edge must return to the calling function
enterLoopHead The CFA edge must enter the head of a loop statement

State-Space Guards. Transitions of a correctness witness are not
allowed to have state-space guards [2]. For state-space guards in violation
witnesses the guard assumption is used to restrict the state-space. This
guard contains a boolean expression ρ. If a state s has a transition with an
assumption [ρ] that goes into a successor state s′, the transition can only
be taken when ρ is evaluated as true.

3. Violation witnesses uses the same source-code guards except enterLoopHead
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2.8.2 Correctness Witness Automaton

On the semantic level we regard the correctness witness as observer au-
tomaton and call it correctness witness automaton. The automaton is a
protocol automaton A = (N,Σ, δ, ninit, F ) where N denotes the set of states
with initial state ninit, Σ denotes an alphabet over source-code guards,
G ⊆ (N × Σ×N) denotes the set of transitions and F denotes the set of
accepting states. A transition (n, guards, n′) is taken when the automaton
stays in n and the guards (i.e. source-code guards) are satisfied. A state
n ∈ N can be labeled with an invariant θ which must be proved when a
validator validates the witness.

Example of a Correctness Witness Automaton. In Fig. 2.2 an
example of a correctness witness automaton for the program in Fig. 2.1
is shown. It is a simplified version of a witness which is created when the
verifier can prove the task. PL represents the program line guards. For
example, the transition (n1 , (PL=3, enterLoopHead), n2) corresponds to
the program operation that enters the head of the while loop. The witness
state n1 covers all program operations before entering the loop head and
the witness automaton remains in this state by executing the self-transition
o/w ("otherwise").

start

PL=3, enterLoopHead

PL=4, condition-true PL=4, condition-false

PL=6, enterLoopHead

o/w

o/wo/w o/w

n1
true

n2

x = y
n3

true
n4

true

Figure 2.2: Example for a correctness witness automaton for the program from
Fig. 2.1

Furthermore, we see that each state is labeled with an invariant. State n2

is labeled with the non-trivial loop invariant x = y. This invariant has
been found during the verification of the program. It must hold when the
program proceeds to the head of the while loop. Then the automaton enters
state n2 and the invariant must be proved by the validator.
The transitions from n2 to n3 and n4 respectively are taken based on the
evaluation of the while condition of the program. The automaton takes
the edge to n3 if x is less than 1024 otherwise it takes the edge to n4. The
witness remains in n3 (inside the while-loop) until a program operation
proceeds to the loop head again. The automaton takes the transition to
n4 when x is not less than 1024 and will then remain in n4 forever. The
witness will take the self-transition o/w in n4 for all program operations
after the while loop in order to remain in n4.
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Note that we explicitly label each witness automaton state with an invariant.
In general, a correctness witness on the syntactic level contains non-trivial-
Invariants and does not need to label other states with the trivial invariant
true. We say an invariant is non-trivial if it does not logically equals true
and is expressed over variables of the program.

2.9 Approaches to Produce and Validate Correctness
Witnesses

2.9.1 Producing Correctness Witness with Predicate Analysis
in CPAchecker

Predicate analysis can produce a correctness witness when it labels the task
as correct. In order to extract invariants it iterates over the edges of the
CFA and gets for each target node the assigned abstract state. For each
abstract state the predicate state is filtered and only predicate states are
regarded further which are abstraction states. If the abstraction state has
an abstraction formula that is also a valid boolean formula, the formula is
translated into a C expression and written into the correctness witness. If a
target of a CFA edge is assigned to more than one abstract state and each
of the states return a C Expression we apply logic conjunction for the C
expressions.

2.9.2 Producing and Validating Correctness Witnesses with
k-induction in CPAchecker

k-induction in CPAchecker can produce correctness witnesses in a verifica-
tion run. In addition, it has been extended to validate correctness witnesses
[2].

Producing Correctness Witnesses. k-induction extends the technique
of bounded model checking by combining it with induction to conduct
unbounded safety checks [7].
Bounded model checking extracts all program paths that exists from a
bounded unrolling of the program [6]. If a feasible path with an error state
exists the specification is violated. However, bounded model checking can
only find an error state for an unsafe program when the counterexample is
detected within the given bound. It is limited when the program contains an
unbounded loop like a while loop with a nondeterministic condition which
executes a random amount of iterations.
With the concept of k-induction we can make unbounded model checking.
For a specification S k-induction makes a bounded model check within
bound k to check whether S holds and tries to proof S for consecutive steps
in an induction phase [2].
Parallel to the analysis of k-induction an invariant generator is used which
creates invariants and provides them as auxiliary invariants to the k-induction
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analysis to strengthen the induction hypothesis [2]. The precision of the
invariant generator increases as long as the analysis continues [7] so that
the invariants get stronger. If k-induction can show the safety property, the
auxiliary invariants can be written into a resulting correctness witness.

Validating Correctness Witnesses. CPAchecker with k-induction
uses a preparatory step for the validation [2]. It matches the correctness
witness with the CFA of the program so that each invariant of the witness is
mapped to one or more CFA locations (see also section 6.1 in the appendix).
The mapping to several program locations is based on the assumption that
the witness might be imprecise [2]. After the preparation the analysis starts
and CPAchecker applies the same k-induction algorithm that is used for
the verification. Each k-induction iteration has two phases. In phase one
the validator applies a bounded model check on the original safety property
and the invariants. If the invariant can not be validated the invariant
is discarded for the mapped location under the condition that there still
exists other locations where the invariant might hold. If there is no other
location mapped for the invariant the witness is violated. When the safety
property can not be validated, the witness is violated as well. In phase two
the validator applies k-induction on the safety property and the invariants.
When it can prove the safety property the witness is accepted. Invariants
which can be proved as inductive can be used as auxilarly invariants for
following k-induction iterations [2].
It is to mention that for the validation analysis k-induction only uses a
static invariant generator and can not create new invariants. The reason
behind this design choice is not to validate witnesses that contain no non-
trivial-Invariants [2]. In consequence, accepting a correctness witness with
k-induction in CPAchecker strongly depends on the quality of the invariants
in the correctness witness [2].

2.9.3 Producing and Validating Correctness Witnesses in Ulti-
mate Automizer

Ultimate Automizer can produce correctness witnesses using automata-
based verification. In addition, it has been extended to validate correctness
witnesses [2].

Producing Correctness Witnesses. Ultimate Automizer constructs
the CFA of the program and regards the CFA as automaton ACFA. This
automaton defines an alphabet over letters which represent the operations
between CFA nodes [2]. A word is a path in the ACFA. Accepted words
are only those, which lead to an error state. Each accepted word must be
infeasible for the correctness of the program. During the analysis Ultimate
Automizer builds sequentially automata A1, ..., An which only accepts in-
feasible words. If the set of accepted infeasible words defined by the union
of the automata A1, ..., An is a superset of the set of words accepted by
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the ACFA and each accepted automata word is infeasbile the program is
proved as correct [2]. If, however, an automaton accepts a feasible word the
program violates the specification.
If the program is proved as correct Ultimate Automizer creates invariants
from the automata [2]. First, it computes the product of ACFA and A1, ..., An

to obtain a set of all reachable states. Each element of this set has the
the form (l, s1, ..., sn) where l denotes the CFA location and s denotes an
automaton state. Each state s is labeled with a boolean formula which
holds at s. In the second step Ultimate Automizer conjugates the formulas
of elements which have the same location in order to receive a program
invariant for each CFA location. Ultimate Automizer then only selects
invariants which are loop invariants and writes them into the correctness
witness.

Validating Correctness Witnesses. For the validation Ultimate Au-
tomizer uses two preparatory steps [2]. First Ultimate Automizer matches
the correctness witness with the CFA of the program so that each invariant
of the witness is assigned to its corresponding CFA location. After that it
modifies the CFA using the invariants and their locations. Let l be a CFA
location and let (l, op, l′) be an outgoing edge of l. If l matches with one
of the invariant locations Ultimate Automizer creates one transition to the
new target locations l̂ and lerr respectively. l goes into l̂ if the invariant is
assumed or goes into lerr if the negated invariant is assumed. For l̂ Ultimate
Automizer creates an outgoing transition (l̂, op, l′) to l′ the original target
of l with op the original operation.
After the modified CFA is constructed Ultimate Automizer uses again
automata-based verification by applying it on the modified CFA [2]. Ulti-
mate Automizer accepts the witness when it can reestablish the proof of
the original safety property and can confirm each invariant in the modified
CFA.

2.10 Precision Reuse

Precision reuse describes the technique to reuse precision information for an
abstraction-based analysis [9]. It is possible to store precision information
in a program-precision file after the run of a program has finished. When
the same program is analyzed again the precision can be initialized with
the file content.
The motivation behind precision reuse is to decrease the necessary amount
of refinements for the analysis and to decrease computation effort and time
[9]. Each refinement needs computation costs because of feasibility checks
and interpolation queries. Furthermore, when the precision is too coarse
the ARG or parts of the ARG are constructed again. Using predicate
abstraction the computation for abstract successors can be expensive since
predicate abstraction sends queries to a SMT solver.
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A precision can be distinguished regarding its scope: global-scoped precision,
function-scoped precision and local-scoped precision [9]. When we reuse
precision facts we add them to a certain scope. When adding them to the
global-scope they are assigned to all program locations. When adding them
to the function-scope they are assigned to all program locations of a certain
function. When adding them to the local-scope they are only assigned to
one certain program location.
Different reasons exist which precision scope should be chosen: Global-
scoped and function-scoped precision are more robust against code changes
[9]. For instance, after the first run the file stores a location-scoped precision
that corresponds to the program line 6. Before the second run starts one new
line of code has been inserted at line 6, hence the original line is shifted to
line 7. In consequent, reusing the precision in a local-scope will not be helpful
since it still corresponds to program line 6. Local-scoped precision, however,
has the advantage that it avoids a mapping of precision facts to locations
where such facts are not necessary. This might unnecessarily increase the
computation effort. A precision initialization at a wrong location can be
misleading and must be corrected during the refinement.
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Chapter 3

Predicate Analysis based
Correctness Witness
Validation

We present two approaches to explore how predicate abstraction can be
used to validate correctness witnesses. For our first approach we show a
possibility to reuse the invariants from the correctness witness for the initial
predicate precision. For our second approach we present three different
concepts of a so-called invariant specification automaton (ISA). An ISA
contains invariants from a correctness witness and gives us the opportunity
to validate the invariants by using predicate analysis.

3.1 Location Invariants

A location invariant (l, θ) is a tuple where l denotes the CFA location and
θ the invariant. I denotes the set of location invariants.
We need I for our approaches to initialize the predicate precision at CFA
locations and to build two of our three proposed ISAs1.
If we get a location invariant (l, θ) and it exists another location invariant
(l′, θ′) ∈ I so that l = l′ holds we add the location invariant (l, θ ∧ θ′) to I
and remove (l′, θ′) from I. This conjunction of two invariants is necessary
to guarantee soundness.
In CPAchecker we can receive I by performing a preparatory step that
includes several substeps: Parsing the correctness witness, performing a
reachability analysis on the witness automaton, extracting location invari-
ants from the reached set. We explain these steps in section 6.1 in the
appendix.

1. The ISAWI does not require location invariants for its construction
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3.2 Predicate Precision Initialization with Witness
Invariants

We can use the elements (l, θ) of the set I pf location invariants for the
initial predicate precision. Each invariant θ is a C expression which we
can transform into a predicate formula ρ that is understandable by a SMT
solver.
Note that this validation approach only validates the original safety property
from the correctness witness. It does not validate the invariants but only
reuses them.

Precision Scope. The predicate precision can distinguish between local,
function and global sets of predicates. Since we store for each element in I
the CFA location l, we can add the invariants-based predicate to the local
sets of predicates. In our evaluation, however, we will inspect all three
possibilities and add the invariants-based predicates to the sets of local,
function and global predicates respectively.
The following example shows the initialization of the predicate precision
for each scope respectively for the program in Fig. 2.1 and its correctness
witness in Fig. 2.2. From the witness we get I = {l4, x = y}. Let L denote
the set of CFA nodes. π(l) maps a CFA location l ∈ L to sets of predicates
over the program variables. ρ = (x = y) is the invariant-based predicate we
get for location l4.

• Adding the predicate to the location scope: π(l4) = {ρ},∀l ∈ L.l 6=
l4 : π(l) = ∅
• Adding the predicate to the function scope: ∀l ∈ Lf : π(l) = {ρ}
where Lf denotes the set of locations in the scope of main.
• Adding the predicate to the global scope: ∀l ∈ L : π(l) = {ρ}

Using Atomic Predicates. We can additionally extract atomic pred-
icates from a predicate. This technique splits the binary expressions of
a predicate into components until each component is in atomic form. A
predicate is in atomic form when a further split of this predicate would lead
to components that are no boolean formulas anymore.
Let ρ1 = (a = 5 ∧ b = 2) denote a predicate. We can extract the atomic
predicates ρ2 = (a = 5) and ρ3 = (b = 2). We can add these predicates to
one of the scopes. For a CFA location l ∈ L which is part of the scope the
initial precision is then π(l) = {ρ1, ρ2, ρ3}. Note that we also add ρ1 since
we might not be able to derive ρ1 from ρ2 and ρ3 in the analysis.

Setup for Predicate Analysis with Invariants for Precision Reuse.
We initialize the precision of the PredicateCPA with the invariants-based
predicates and add it as a component to a CompositeCPA. We apply the
CPA++ algorithm with CEGAR to conduct an abstraction-analysis. We

19



will inspect whether the invariants are useful and whether the analysis can
verify the orginal specification of the witness.

3.3 Witness Validation with an Invariants Specifica-
tion Automaton (ISA)

In order to validate correctness witness we insert the witness invariants as
additional verification goal into an ISA. Each ISA we present is a control
automaton since it contains assumptions. In the following we show three
different ISA concepts.

3.3.1 Two States Invariants Specification Automaton (ISA2S)

Let L denote the set of CFA locations. Let I denote the set of location
invariants. Let Θ denote the set of invariants we get from the invariants
in I. The ISA2S is a protocol automaton A = (S,Σ, δ, s, F ) with the set of
automaton states S, the initial state s := sinit, the alphabet Σ ⊆ (L×Θ),
the transfer relation δ ⊆ (S × Σ× S) and the set of accepting states F . Θ
denotes the set of invariants that contains the invariants from the elements
in I, the invariants from the elements in I as negated invariants and the
invariant true.
The automaton has two states: The initial state s and the error state E. E
is an accepting state. For each location invariant (l, θ) we add two leaving
transitions to s: (s, l ∧ ¬[θ], E) is the transition that goes into the error
state assuming the negation of θ and (s, l ∧ [θ], s) is a self transition of s
assuming θ. Furthermore, for each CFA node l′ for which l′ 6= ∀l̂ ∈ LI

holds the automaton stays in s using the self transition (s, (l′ ∧ [true]), s)2

respectively.

start l4 ∧ [x 6= y]

¬l4 ∨ l4 ∧[x = y]

s E

Figure 3.1: Example for an ISA2S based on the program in Fig. 2.1 and the
witness in Fig. 2.2

Fig. 3.1 illustrates an example of an ISA2S based on the program in Fig. 2.1.
The corresponding correctness witness in Fig. 2.2 has the invariant x = y

at witness node n2. With the preparatory step we get I = {(l4, x = y)}
which means that the invariant x = y must hold when the CFA enters
location l4 (=̂ entering the while loop). Therefore, when the CFA provides
a transition to l4, the abstraction-analysis must assume that the invariant
x = y is valid otherwise it takes the transition (s, (l4 ∧ [x 6= y]), E) to the
error state. For all CFA operations with a target location that does not
equal l4 the automaton stays in s.

2. In the concrete implementation we can omit this kind of transitions
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3.3.2 CFA Based Invariants Specification Automaton (ISACFA)

The ISACFA is another possibility of a specification automaton for invariants
and has a structure that refers to the CFA. Let L be the set of CFA locations.
Let I be the set of location invariants with i = (l̂, θ) where l̂ denotes the
CFA location and θ the invariant. Let LI be the set of locations of the
invariants. Let Θ be the set of invariants we get from the invariants in
I. The ISACFA is a protocol automaton A = (S,Σ, δ, sinit, F ). S denotes
the automaton states, sinit denotes the initial state, Σ ⊆ (L×Θ) denotes
the alphabet, δ ⊆ (S × Σ × S) denotes the automaton transitions and F
denotes the accepting states. Θ denotes the set of invariants that contains
the invariants from the elements in I, the invariants from the elements in I
as negated invariants and the invariant true.
The automaton is constructed by using the CFA nodes and edges. A state
s ∈ S in the automaton refers either to one location node of the CFA or
is an error state E or bottom state B. Each error state is an accepting
state. sinit as initial state corresponds to linit of the CFA. For each CFA
edge of the set of CFA edges GCFA ⊆ (l × ops× l′) we create a transition
(s, l′ ∧ [true], s′)3 if l′ 6= ∀l̂ ∈ LI . For CFA edges for which l′ = ∃l̂ ∈ LI
we create two transitions (s, l′ ∧ ¬[θ], E) and (s, l′ ∧ [θ], s′). For a CFA
node which has no successors the automaton goes into a bottom state:
(s, l′ ∧ [true], B) if succ(l′) = ∅. If the automaton enters a bottom state it
will remain in this state forever. Note that also the special case l′ = ∃l̂ ∈ LI
with succ(l′) = ∅ might be possible. For this case we create two transitions:
(s, l′ ∧ [θ], B) and (s, l′ ∧ ¬[θ], E).
Fig. 3.2 shows an example of a ISACFA based on the program in Fig. 2.1.
We can see that for each CFA node we obtain a ISACFA state respectively.
Since we get I = {(l4, x = y)}, we construct for state s2 and state s5 two
transitions respectively. For s2 we create one transition that goes into the
original successor s3 assuming the invariant and one transition that goes
into the error state assuming the negated invariant. For s5 we create one
transition that goes into the original successor s3 assuming the invariant
and one transition that goes into the error state assuming the negated
invariant. The CFA location l12 has no successors, hence the ISACFA goes
into a bottom state. Note the two leaving edges l5 and l8 of s3: A CFA node
might have more than one leaving edge. In consequence, the corresponding
state of the ISACFA has for each leaving CFA edge a unique transition.

3. in the concrete implementation we can omit [true]
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Figure 3.2: Example for an ISACFA based on the program in Fig. 2.1 and the
correctness witness in Fig. 2.2

3.3.3 Witness Invariants Specification Automaton (ISAWI)

The ISAWI is a protocol automaton A = (S,Σ, δ, sinit, F ) with the set
of states S, the initial state sinit, the alphabet Σ ⊆ (Guards × Θ), the
automaton transitions δ ⊆ (S × Σ× S) and the set of accepting states F .
Guards are source-code guards of the witness. Θ is a set of invariants that
contains the invariants from the witness, the invariants from the witness
in negated form and the invariant true. Each error state E in ISAWI is an
accepting state.
Basically, the ISAWI extends the witness automaton by using the invariants
from Θ to build transitions that contain the invariants as (negated) assump-
tions. For each state in the witness we built a ISAWI state s. For each
transition in the witness we distinguish whether its target state s′ is a state
with a non-trivial-Invariant or not. If the invariant in s′ equals true we built
one ISAWI transition (s, (guards) ∧ [true], s′)4. If the invariant θ in s′ does
not equal true we built two ISAWI transitions: (s, (guards) ∧ [θ], s′) enters
the original witness successor state assuming [θ] and (s, (guards) ∧ ¬[θ], E)
goes into the error state E assuming ¬[θ]. We add E to the set of states S.
Note that each state of the correctness witness has a self transition. If such
a state is labeled with a non-trivial-Invariant we built in the ISAWI two self
transitions using the invariant as assumption and negated assumption.
In particular, the ISAWI does not need the preparatory step to receive the
set of location invariants. We can apply the ISAWI directly for the main
predicate analysis.
Fig. 3.3 shows a ISAWI based on program 2.1. We create two transitions
when the original witness transition enters a state which is labeled with

4. In the concrete implementation we can omit [true]
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an invariant. One transition goes into the original state assuming that the
invariant holds. The other transition goes into an error state assuming the
negated invariant. Since state s2 is labeled with a non-trivial invariant,
we create two self-transitions with assumptions that contain the (negated)
invariant.

start

(PL=3, enterLoopHead)∧[x = y]

(PL=4, condition true) (PL=4, condition false)

(PL=6, enterLoopHead)∧[x = y]

o/w

o/w ∧ [x = y]o/w o/w

o/w ∧ [x 6= y]

(PL=3, enterLoopHead)∧[x 6= y]

(PL=6, enterLoopHead)∧[x 6= y]

s1

s2s3 s4

E

E

E

Figure 3.3: Example for an ISAWI based on the program in Fig. 2.1 and the
correctness witness in Fig. 2.2

3.3.4 Analysis with an ISA

Setup of Predicate Analysis with an ISA. Each of the presented ISA
can be embedded in an AutomatonCPA. The resulting AutomatonCPA is
added as component to a CompositeCPA. The CompositeCPA contains
furthermore a PredicateCPA for predicate abstraction and a LocationCPA.
We use the CPA++ algorithm for an abstraction-analysis to build the
ARG and insert the CPA++ algorithm into a CEGAR algorithm. This
configuration allows us to use predicate analysis to validate the original
safety property and the invariants of a correctness witness.

Refinement in Predicate Analysis. When an ISA stays in a state for
which one of the successor states is an invariant based error state one of the
two following cases will happen for an ISA during predicate analysis:
Case 1: The transition to the error state is taken because conditions are
satisfied and the analysis assumes based on the current precision that the
invariant is not valid. Hence, the CPA++ has found a target state and
CEGAR checks the satisfiability of reached that contains the error state as
last state. CEGAR will check whether the predicate precision is accurate
enough. If the predicate precision is not accurate enough the precision is
updated with the information from the refinement process and the (partial)
construction of the ARG starts again. If the predicate precision is accurate
enough the error state is reachable and we consequently have found an
invariant which can not be verified. The analysis stops and the witness is
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rejected.
Case 2: The transition to the error state is not taken because conditions are
not satisfied or the current precision shows that the invariant holds. The
CPA++ continues to process the waitlist.
Predicate analysis accepts the witness when the ARG has been completely
built and has no reachable error states. This means that during the con-
struction of the ARG no invalid invariant and also no violation of the safety
property has been detected.
If a witness is rejected due to a reachable invariant-based error state, we
say that the rejection is due to a witness invariant violation (WIV). The
implementation in CPAchecker we use to detect a WIV is explained in
section 6.2 in the appendix.

3.4 Types of Correctness Witnesses

Since invariants in correctness witnesses play an important role for our
concepts, we distinguish three types of correctness witnesses:

non-trivial-witness The correctness witness has states with non-
trivial-Invariants and at least on of these states
is reachable in the analysis.

true-witness The correctness witness has no states labeled with
non-trivial-Invariants.

hidden-true-witness The correctness witness has states with non-
trivial-Invariants but each of these states is un-
reachable in the analysis.

For a true-witness or a hidden-true-witness we can only verify the original
safety property. The computation of location invariants I from a true-witness
or hidden-true-witness leads to an empty set of I.
The types of correctness witnesses have the following consequences for our
approaches:
For precision reuse of invariants a true-witness or hidden-true-witness leads
to an empty set of predicates in the initial predicate precision π0 since I is
empty. A non-trivial-witness leads at least to one location for which the set
of predicates is not empty.
The ISA2S or ISACFA has no transitions into error states for a true-witness
or hidden-true-witness since I is empty. The ISAWI has no transitions into
error states when it refers to a true-witness. However, if the ISAWI refers to
a hidden-true-witness, it has transitions into error states but these states are
not reachable. The reason is that we directly take the unreachable states
from the witness to create invariant-based error states in the ISAWI without
computing I. For a non-trivial-witness the ISA2S, ISACFA and ISAWI have
transitions into reachable error states.
How we can detect true-witnesses and hidden-true-witnesses in our imple-
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mentations in CPAchecker is explained in section 6.2 in the appendix.
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Chapter 4

Evaluation

Procedure. In order to investigate how well predicate abstraction
validates correctness witnesses we perform a large benchmark study.
Our evaluation is divided into three parts: The first part contains the
necessary step to produce correctness witnesses. The second part covers
the approach to reuse invariants from correctness witnesses for the initial
predicate precision. In the third part we evaluate the ability of predicate
analysis using an ISA to validate correctness witnesses and compare it
with the k-induction-based validator in CPAchecker and the validator in
Ultimate Automizer.

4.1 Abbrevations in the Evaluation

For better readability in the evaulation we use the following abbrevations:

pA Predicate analysis in CPAchecker

kI k-induction in CPAchecker

uA Automaton-based analysis in Ultimate Automizer

x-Verification Verification with analysis x = (pA | kI | uA)
x-CWitnesses Correctness witnesses produced by analysis x =

(pA | kI | uA)
x-CWitnessesno-true Correctness witnesses produced by analysis x =

(pA | kI | uA) which are no true-witnesses accord-
ing to our implementation

x-CWitnessesno-true+h Correctness witnesses produced by analysis x =
(pA | kI | uA) which are no true-witnesses or
hidden-true-witnesses according to our implemen-
tation

x-Invariants Invariants of correctness witnesses produced by
analysis x = (pA | kI | uA)

x-Validation Validation with analysis x = (pA | kI | uA)
pA-Validation-PR Validation with predicate analysis and reuse the

witness invariants for predicate precision initial-
ization

pA-Validation-PR lo|fu|gl Adding the invariants-based predicates to the
location(lo), function(fu) or global(gl) predicate
precision scope
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pA-Validation-PR scope+a Adding the invariants-based predicates to the
given scope additionally as atoms

pA-Validation-ISA2S Validation with predicate analysis using the ISA2S

pA-Validation-ISACFA Validation with predicate analysis using the
ISACFA

pA-Validation-ISAWI Validation with predicate analysis using the
ISAWI

pA-Validation-ISA Generic term to summarize pA-Validation-ISA2S ,
pA-Validation-ISACFA and pA-Validation-ISAWI

4.2 Results Explanation

In our evaluation we use the following status results by an analysis for a
verification (marked with 1) or validation (marked with 2) task:

all The sum of all tasks given for the analysis
correct-true1 Tasks which satisfy the specification and are labeled correctly by

the analysis
correct-false1 Tasks which do not satisfy the specification but are labeled

correctly by the analysis
incorrect-true1 Tasks which do not satisfy the specification and are labeled

incorrectly by the analysis
incorrect-false1 Tasks which do satisfy the specification but are labeled incorrectly

by the analysis
timeout1,2 Tasks for which the analysis exceeds the time limit of 900 s
error1,2 An error appears during the analysis leading to an unknown

result
other1,2 Groups other reasons during the analysis that lead to an unknown

result: memory errors, exceptions, verifier/validator explicitly
returns unknown

accepted2 Tasks for which the analysis was able to validate the correctness
witness

violated2 Tasks for which the analysis explicitly returns that the original
specification or the invariants of the correctness witness is violated

In the following we only consider correctness witnesses for tasks for which
the analysis that produces the correctness witnesses can label the tasks as
correct-true.
We say that a correctness witness is accepted or confirmed when the analysis
can validate the witness. On the contrary, we say that a correctness witness
is rejected when the specification or invariants of the correctness witness
are violated or when the analysis produces an error, a timeout or fails for
another reason.
In the evaluation we sometimes compare a verification run with a validation
run. Then we regard the result correct-true as equivalent to the validation
result accepted.

4.3 Experiment Goals

Validation with Precision Reuse
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Claim 1.1 pA-Validation-PR can validate the original safety property
of pA-Witnesses and in particular does not violate pA-Witnesses.
Claim 1.2 Precision reuse of pA-Witnesses in pA-Validation-PR leads to
less refinements and less CPU time since the predicate precision is initialized
with useful predicates based on the invariants from pA-Witnesses.

Validation with Witness Invariants as Additional Specification
Claim 2.1 pA-Validation-ISA2S, pA-Validation-ISACFA and pA-Validation-
ISAWI are able to validate the original safety property and the invariants of
pA-Witnesses respectively.
Claim 2.2 pA-Validation-ISA2S, pA-Validation-ISACFA and pA-Validation-
ISAWI are able to understand kI -Witnesses and uA-Witnesses.

4.4 Experimental Setup

Benchmarks. The set of benchmarks for our evaluation is taken from
the category ReachSafety and category SoftwareSystems of SV-COMP
2019. We take tasks from the following subcategories:

• ReachSafety-Arrays

• ReachSafety-BitVectors

• ReachSafety-ControlFlow

• ReachSafety-ECA

• ReachSafety-Floats

• ReachSafety-Heap

• ReachSafety-Loops

• ReachSafety-ProductLines

• ReachSafety-Sequentialized

• Systems_DeviceDriversLinux64_ReachSafety

We exclude the subcategory ReachSafety-Recursive because our configu-
ration of predicate analysis in CPAchecker can not handle recursion1. As
specification we chose the unreachability of the error function __VERIFIER_-
error().
In general, the name of each tasks consists of the identifying name and the
specification(s) it has to fulfill. All tasks from the subcategories satisfy the
regular expression *_(false|true)-unreach-call* in their name. Since
we focus on correctness witnesses and do not want to receive violation wit-
nesses, we exclude all tasks that violate the specification, i.e. we exclude all
tasks with names matching the regular expression *_false-unreach-call*.
In total we have 4668 verification tasks for our evaluation.

1. Some tasks in Systems_DeviceDriversLinux64_ReachSafety and some few tasks in
ReachSafety-Heap and ReachSafety-Loops contain also recursions so that predicate analy-
sis will return recursion errors in the evaluation for these tasks.
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Tools. The evaluation is made with BenchExec an open-source bench-
marking framework [1]. It manages benchmarking to evaluate the perfor-
mance of verification tools. It is independent from the verification tool
and gives us the opportunity to produce and validate correctness witnesses
under the same conditions for CPAchecker and Ultimate Automizer.
The CPAchecker version we use has revision number 31181. The version of
Ultimate Automizer is taken from SV-COMP 20192. For BenchExec we use
the version integrated in CPAchecker with revision number 31181.

System Setup. Benchmarking is done on machines with 8 core CPUs
with 3.40GHz (Intel Xeon E3-1230 v5) and 33GB of RAM memory. The
operating system on the machines is Ubuntu 18.04 (64Bit). For each
verification task we set the following resource options: a processing time
limit of 900 s, a memory limit of 15GB and a requirement of 8 CPU cores.

Verification Setup. For pA-Verification and kI -Verification we switch
off the options to aggregate basic blocks in the CompositeCPA and to
simplify the CFA. Both options can increase the efficiency but might affect
the precision of witnesses. Apart from that we take the default settings
CPAchecker provides for predicate analysis and k-induction. The verification
configurations for uA-Verification are adopted from SV-COMP 20193.

Validation Setup. For all configurations of pA-Validation-ISA and for
kI -Validation we switch off the option to check the program hash in the
witness. For each pA-Validation-ISA we apply the same predicate abstraction
settings which are used for pA-Verification. The specific settings we add in
order to use different approaches of pA-Validation-ISA are summarized in
Tab. 6.1 with a short explanation. For kI -Validation we adopt the default
settings CPAchecker provides. For uA-Validation we adopt the validation
configurations from SV-COMP 20194.

4.5 Generation of Correctness Witnesses

The verification results are presented in Tab. 4.2. We see that pA-
Verification verifies 2396 tasks as correct-true and consequently we receive
2396 valid pA-Witnesses that we can use for validation. kI -Verification
verifies 2599 tasks as correct-true and consequently we receive 2599 valid
kI -Witnesses. uA-Verification is able to verify 2688 tasks as correct true
and consequently we receive 2688 valid uA-Witnesses.
It is possible that the verification analyzes produce correctness witnesses
also when they exceed the timeout. Such witnesses are always filtered when

2. https://gitlab.com/sosy-lab/sv-comp/archives-2019/raw/svcomp19/2019/uautomizer.
zip

3. https://github.com/sosy-lab/sv-comp/blob/svcomp19/benchmark-defs/uautomizer.xml
4. https://github.com/sosy-lab/sv-comp/blob/svcomp19/benchmark-defs/

uautomizer-validate-correctness-witnesses.xml
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we evaluate validation runs.

Table 4.2: Verification results for pA-Verification, kI -Verification and
uA-Verification.

status all correct-true correct-false incorrect-true incorrect-false timeout error other
pA-Verification 4668 2396 0 0 5 1533 696 38
kI -Verification 4668 2599 0 0 1 1784 134 150
uA-Verification 4668 2688 0 0 2 1684 90 204

Note that we also show the results correct-false and incorrect-true in Tab.
4.2. These results should not be returned since we only have tasks which
are correct regarding the unreachability of the error function. However, we
put correct-false and incorrect-true into the table for completeness.
The received correctness witnesses will be validated in different approaches
in the following experiments.

4.6 Reusing Invariants from Correctness Witnesses
as Initial Predicate Precision

In our first experiment for validation of correctness witnesses using predicate
analysis we take the invariants from the witnesses and add them to the initial
predicate precision (pA-Validation-PR). We observe whether pA-Validation-
PR can reestablish the original safety property. Furthermore, we study how
the precision-scope affects the computation and whether extracting the
invariants-based predicates into atoms benefits the computation.
Our main focus in this experiment are invariants from pA-Witnesses. We
have evaluated whether uA-Invariants or kI -Invariants are useful for the
initial predicate precision. Fig. 4.1 illustrates the computation time between
pA-Validation-PRlo and pA-Verification when we initialize the precision of
pA-Validation-PRlo with kI -Invariants or uA-Invariants. Note that we only
consider invariants from kI -Witnessesno-true+h and uA-Witnessesno-true+h since
true-witnesses or hidden-true-witnesses would have no effect on the initial
predicate precision in pA-Validation-PRlo. Looking at Fig. 4.1 we assume
that kI -Invariants are rather misleading as facts for the predicate precision
and might be discarded or updated during the refinement. For uA-Invariants
we can not say whether they might be helpful because the task set we can
consider is extremely reduced. There are two reasons for this reduction:
First, pA-Validation-PRlo detects many witnesses from uA-Verification that
are true-witnesses or hidden-true-witnesses. Second, pA-Validation-PRlo

and pA-Verification can sometimes not label tasks correct-true for which
uA-Verification produces kI -Witnessesno-true+h .
Tab. 4.3 sums up our validation results using pA-Validation-PR for pA-
Witnesses. We see that pA-Validation-PR can reestablish the result for
nearly all witnesses. For two tasks each pA-Validation-PR can not parse
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Figure 4.1: Scatter plots for comparing CPU time of pA-Validation-PRlo

and pA-Verification for each task that both analyzes can label as correct-
true. Left Side: pA-Validation-PRlo initialized with kI -Invariants from kI -
Witnessesno-true+h . Right Side: pA-Validation-PRlo initialized with uA-Invariants
from uA-Witnessesno-true+h .

the correctness witness because of an an exception5 or interpreting the
witness as invalid6. We can also see that using atomic predicates produces
more often timeouts. The configuration for using atomic predicates is
also applied for the main analysis and not only for the initialization of
the predicate precision. The timeouts are mainly produced for tasks from
subcategories ReachSafety-ECA and Systems_DeviceDriversLinux64_-
ReachSafety. When we use atomic predicates we have in the analysis more
predicates compared to an analysis that does not use atomic predicates.
Having more predicates might increase computation costs.

Table 4.3: Status results when using pA-Invariants as predicates in the initial
predicate precision
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Looking at pA-Witnessesno-true+h in Tab. 4.3 we can say that pA-Validation-
5. https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/ldv-linux-4.2-rc1/

linux-4.2-rc1.tar.xz-43_2a-drivers--regulator--lp8755.ko-entry_point_
true-unreach-call.cil.out.c

6. https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/bitvector/parity_
true-unreach-call_true-no-overflow.c
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PR is able to reuse invariants-based predicates in the initial predicate preci-
sion7. Moreover, pA-Validation-PR never violates the original specification
as expected.
We take a closer look at the computation time and amount of refinements
between pA-Verification and pA-Validation-PR. For this part of the exper-
iment we only regard pA-Witnessesno-true+h . Witnesses which do not have
any invariants except true have no effect for our experiment since they lead
to an empty initial predicate precision.
In Fig. 4.2 we see the number of CEGAR refinements and CPU time for pA-
Validation-PRlo and pA-Validation-PRlo+a comparing it with pA-Verification
respectively.
For pA-Validation-PRlo the invariants-based predicates have no effect on
the number of refinements (see also Tab. 4.4). We also can observe a
small tendency that the CPU time is higher for pA-Validation-PRlo. This
is probably caused by the preparatory step where we compute the set of
location invariants by performing a reachability analysis.
For pA-Validation-PRlo+a there exists some few tasks for which the number
of CEGAR refinements is reduced. However, fewer refinements does not
decrease the CPU time. The atomic predicates increase the precision
information and sometimes make the solver computations more costly. We
can also observe again the small tendency that the CPU time is slightly
higher for pA-Validation-PRlo+a because of the preparatory step.
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Figure 4.2: Scatter plots for comparing CEGAR refinements in interval [0− 30],
CEGAR refinements in interval [30 − 150] and CPU time. pA-Validation-PRlo

and pA-Validation-PRlo+a precision initialized with pA-Invariants. Upper row:
Comparing these values of pA-Validation-PRlo and pA-Verification for each task
that both analyses labeled correct-true. Lower row: Comparing these values of
pA-Validation-PRlo+a and pA-Verification for each task that both analyses labeled
correct-true.

7. For 2 from 2396 kI -Witnesses we can not detect whether they contain non-trivial-Invariants
because each pA-Validation-PR failed to produce statistics.
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In Fig. 4.3 we see the number of CEGAR refinements and CPU time for pA-
Validation-PRfu and pA-Validation-PRfu+a comparing it with pA-Verification
respectively.
For pA-Validation-PRfu the invariants-based predicates reduce for few tasks
the number of refinements. Again we see a tendency that the CPU time is
slightly higher for pA-Validation-PRfu because of the preparatory step.
For pA-Validation-PRfu+a there exists some tasks for which the number of
CEGAR refinements is reduced. The CPU time is often higher for pA-
Validation-PRfu+a because of the greater amount of precision information.
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Figure 4.3: Scatter plots for comparing CEGAR refinements in interval [0− 30],
CEGAR refinements in interval [30 − 150] and CPU time. pA-Validation-PRfu

and pA-Validation-PRfu+a precision initialized with pA-Invariants. Upper row:
Comparing these values of pA-Validation-PRfu and pA-Verification for each task
that both analyses labeled correct-true. Lower row: Comparing these values of
pA-Validation-PRfu+a and pA-Verification for each task that both analyses labeled
correct-true.

In Fig. 4.4 we see the number of CEGAR refinements and CPU time for pA-
Validation-PRgl and pA-Validation-PRgl+a comparing it with pA-Verification
respectively.
For pA-Validation-PRgl as well as pA-Validation-PRgl+a the invariants-based
predicates reduce for several tasks the number of CEGAR refinements.
Moreover, many tasks for pA-Validation-PRgl and pA-Validation-PRgl+a even
need 0 refinements when we look at Tab. 4.4. Having the invariants-based
predicates in the global predicate precision, predicate analysis tracks them
for every location.
For the CPU time when comparing pA-Validation-PRgl and pA-Validation-
PRgl+a with pA-Verification we can still see a line but see also tasks that
are not located on the line. For the majority of tasks the initial precision
information is not helpful and these tasks need slightly more CPU time
because of the preparatory step. For a few tasks the initialized precision
contains information that might be rather costly to track and increases
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computation time. For some other tasks the invariants-based predicates
might be indeed helpful and reduce computation time. Furthermore, it is
possible that some of the tasks which are not located on the line can be due
to random variances, caused e.g. by nondeterministic behavior during the
validation.
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Figure 4.4: Scatter plots for comparing CEGAR refinements in interval [0− 30],
CEGAR refinements in interval [30 − 150] and CPU time. pA-Validation-PRgl

and pA-Validation-PRgl+a precision initialized with pA-Invariants. Upper row:
Comparing these values of pA-Validation-PRgl and pA-Verification for each task
that both analyses labeled correct-true. Lower row: Comparing these values of
pA-Validation-PRgl+a and pA-Verification for each task that both analyses labeled
correct-true.

Table 4.4: Comparing number of CEGAR refinements for pA-Validation-PR
approaches with pA-Verification for each task that both analyzes can label as
correct-true. pA-Validation-PR approaches initialized with pA-Invariants.

CEGAR refinements 0 1 2 3 4 5 [6-10] [11-20] [21-30] 30< Number of tasks
pA-Verification 0 180 3 6 4 1 9 7 1 12 223

pA-Validation-PRlo 0 182 5 3 3 1 10 6 1 12 223
pA-Verification 0 179 3 6 4 1 9 7 1 9 219

pA-Validation-PRlo+a 0 181 5 3 3 1 9 7 2 8 219
pA-Verification 0 180 3 6 4 1 9 7 1 12 223

pA-Validation-PRfu 2 181 4 3 4 0 10 8 0 11 223
pA-Verification 0 179 3 6 4 1 9 7 1 9 219

pA-Validation-PRfu+a 2 180 4 3 4 0 9 8 2 7 219
pA-Verification 0 180 3 6 4 1 9 7 1 11 222

pA-Validation-PRgl 115 69 4 5 4 0 9 7 0 9 222
pA-Verification 0 179 3 6 4 1 9 7 1 7 217

pA-Validation-PRgl+a 114 69 4 5 4 0 8 8 1 4 217

Summary. When we look at all different possibilities of pA-Validation-
PR we observe that the CEGAR refinements are sometimes reduced when
we initialize the predicate precision. However, we can not observe that this
decreases the CPU time. For pA-Validation-PRlo, pA-Validation-PRlo+a and
pA-Validation-PRfu we see no changes for the CPU time. For pA-Validation-
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PRfu+a we see a few changes for the CPU time and for pA-Validation-PRgl

and pA-Validation-PRgl+a the invariants-based predicates can sometimes be
either helpful or disadvantageous.
It is noticeable that we see for pA-Validation-PRlo or pA-Validation-PRlo+a

hardly changes when we compare it with pA-Verification and that we never
can reduce the number of CEGAR refinements to zero.
A possible reason why we see no impact in our approach is that pA-Witnesses
contain only invariants and no other precision relevant information that
we can use for predicate precision initialization. Predicate analysis in
CPAchecker can produce a program-precision file which contains the predi-
cate precision. Reuse of program-precision files in CPAchecker has been
confirmed to improve the performance [9]. However, when we translate the
invariants from a pA-Witnessno-true+h into location predicates the precision
information we receive is a subset from the precision information we get
from a program-precision file for the same task. Both, the correctness
witness and the precision file are created by using the precision from the
ARG when the analysis finishes. For a precision file CPAchecker collects
the precision information from the abstract states and for a correctness
witness CPAchecker writes an invariant for a witness state by using the
stored precision from an abstract state.
Another reason could be a bug in our approach or a bug in CPAchecker in
general. We can reduce the number of refinements to zero for tasks only when
we apply invariants-based predicates to the global scope (pA-Validation-PRgl

and pA-Validation-PRgl+a). Maybe we do not map the predicates to the
correct location when we use the local scope.
Finally, we must conclude that our current approach of taking invariants
from witnesses to initialize the predicate precision does not lead to an
efficient precision reuse.
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4.7 Validation of Correctness Witnesses with Wit-
ness Invariants as Additional Specification

4.7.1 Validating Witnesses produced by Predicate Analysis in
CPAchecker

The bar chart in Fig. 4.5 illustrates the results we receive when validating
pA-Witnesses. Each pA-Validation-ISA can reestablish the result for ≈97%
of pA-Witnesses. The two tasks for which each pA-Validation-ISA detects
a violation is due to a witness invariant violation (WIV) respectively (see
Tab. 4.5). k-Induction performs also quite well and can validate ≈92% of
pA-Witnesses. Ultimate Automizer has an accepting rate of ≈76%.
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Figure 4.5: Validation results of pA-Witnesses

Table 4.5: Reason for pA-Witnesses violation for pA-Validation-ISA

configuration pA-Validation-ISA2S pA-Validation-ISACFA pA-Validation-ISAWI

all violations 2 2 2
original specification 0 0 0

WIV 2 2 2

At first glance all validation approaches seem to perform well. However,
in this diagram true-witnesses or hidden-true-witnesses are not filtered.
Validating a true-witness or hidden-true-witness from pA-Witnesses is in
particular trivial for pA-Validation-ISA because it produces an ISA without
any invariant error states. When receiving a true-witness each pA-Validation-
ISA is identical to predicate analysis for a verification task since the original
safety property is the only specification.
In Fig. 4.6 we have filtered8 all true-witnesses to receive pA-Witnessesno-true.
We do not filter hidden-true-witnesses in this section in general because

8. For 4 of 2396 pA-Witnesses we can not detect whether they are non-trivial-witnesses because
each pA-Validation-ISA failed to produce statistics.

36



when we use the ISAWI we can not detect hidden-true-witnesses (see section
6.2). In section 4.7.4 we will have a look how many hidden-true-witnesses
are detected by comparing the printed statistics of pA-Validation-ISA2S

and pA-Validation-ISACFA with those of pA-Validation-ISAWI to infer about
hidden-true-witnesses.
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Figure 4.6: Validation results of pA-Witnessesno-true

Regarding pA-Witnessesno-true, pA-Validation-ISA2S confirms ≈ 70%, pA-
Validation-ISACFA confirms ≈72% and pA-Validation-ISAWI confirms ≈70%.
The accepting rate is lower compared to the accepting rate of pA-Witnesses
because all approaches produce a noticeable high number of timeouts.
kI -Validation only accepts ≈43% of pA-Witnessesno-true and exceeds more
often the time limit than it can accept pA-Witnessesno-true. When kI -
Validation is applied to tasks without loops, bounded model checking is
sufficient and induction is not necessary. However, pA-Witnessesno-true are
written in general for tasks that contain loops because pA-Verification finds
invariants for loops. kI -Validation is configured with a static invariant
generator which means kI -Validation can only use the pA-Invariants from
pA-Witnessesno-true for an induction proof. It might be possible that the
pA-Invariants give not enough information for k-induction when it is applied
as validator for tasks with loops.
uA-Validation confirms ≈66% of pA-Witnessesno-true which is an accepting
rate almost similar to pA-Validation-ISA.

Inspecting pA-Validation-ISA. We look at the following tasks in detail
to inspect pA-Validation-ISA of pA-Witnesses:

# Task Subcategory

1 https://github.com/sosy-lab/sv-benchmarks/
blob/svcomp19/c/loops/veris.c_NetBSD-libc_
_loop_true-unreach-call_true-termination.c

ReachSafety-Loops
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2 https://github.com/sosy-lab/sv-benchmarks/
blob/svcomp19/c/loop-invgen/id_build_
true-unreach-call.i.v%2Blhb-reducer.c

ReachSafety-Loops

3 https://github.com/sosy-lab/sv-benchmarks/
blob/svcomp19/c/loop-lit/cggmp2005b_
true-unreach-call_true-termination.c

ReachSafety-Loops

Task #1 is one of the two tasks for which each pA-Validation-ISA produces a
WIV. The reason for the rejection are problems in the intepretation of pointer
arithmetics in the invariant. In the program of task #1 pA-Verification
finds an invariant for a while loop. The program contains pointer variables
and pA-Verification also writes those pointer values into the invariant. In
the analysis pA-Verification receives address values for these pointers from
the SMT solver which manages the pointer values internally. However,
pA-Validation-ISA cannot prove the pointer values and therefore rejects
the invariant. For task #1 kI -Validation returns unknown. uA-Validation
detects a violation as well and we assume that it has also problems with
the pointer values.
Task #2 is the second of the two tasks for which each pA-Validation-ISA
produces a WIV. The correctness witness of task #2 contains a state
labeled with an invariant that refers to the assignment of a program variable
in a sequence of several program variable assignments. pA-Verification
proofs that the invariant holds for a while loop that follows the sequence of
assignments in the program. However, when using pA-Validation-ISA the
witness state is mapped to the beginning of the sequence of assignments so
that the invariant is applied to a CFA location where the invariant variables
are not yet assigned. This wrong mapping is not due to an bug in the ISA.
The witness is imprecise for our ISA approaches and the source-code guards
of the witness state require this mapping.
We can see that pA-Validation-ISA produces sometimes a timeout for pA-
Witnessesno-true in Fig. 4.6. But it seems that the invariants are not invalid
since pA-Validation-ISA does almost never reject them. Nevertheless, pA-
Validation-ISA has difficulties to proof the invariants within the time limit.
We take a look at task #3 for which each pA-Validation-ISA exceeds the
time limit. pA-Verification can label the task as correct-true. In the analysis
of each pA-Validation-ISA we see that CEGAR can show that the path
to the invariants-based error state is infeasible, but it can not refine the
precision in a way that the invariant error state is not reached again in the
next iteration. In each following iteration the reachability analysis enters
the error state again and CEGAR checks that the state is unreachable
and refines until the whole analysis exceeds the time limit. This problem
might be similar for other tasks for which pA-Validation-ISA produces a
timeout. When we count the CEGAR refinements for tasks for which pA-
Verification can label the task as correct-true whereas pA-Validation-ISA
produces a timeout we observe the following: pA-Verification often needs
only 1CEGAR refinement to proof the task whereas each pA-Validation-ISA
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has made ≈ [50− 5000] CEGAR refinements after it exceeds the time limit.
We assume that the timeouts are not due to bugs in the implementation of
an ISA. A reason might be the additional computation effort to validate
the invariants.
Therefore, we take a closer look at the computation effort for validating
pA-Witnessesno-true. Fig. 4.7 compares the CPU time of pA-Validation-
ISA2S, pA-Validation-ISACFA, and pA-Validation-ISAWI with pA-Verification
respectively. We can see that the CPU time increases for each pA-Validation-
ISA because of the additional work to verify invariants. Because of the
invariants pA-Validation-ISA has to do many refinements to exclude the
reachability of invariants-based error states. This likely leads to more
timeouts.

1 10 100 1 0001

10

100

1 000

CPU time for pA-Validation-ISA2S (s)

C
PU

tim
e
fo
r

pA
-V
er
ifi
ca
tio

n
(s
)

1 10 100 1 0001

10

100

1 000

CPU time for pA-Validation-ISACFA (s)

C
PU

tim
e
fo
r

pA
-V
er
ifi
ca
tio

n
(s
)

1 10 100 1 0001

10

100

1 000

CPU time for pA-Validation-ISAWI (s)

C
PU

tim
e
fo
r

pA
-V
er
ifi
ca
tio

n
(s
)

Figure 4.7: Scatter plots for comparing CPU time of pA-Validation-ISA2S , pA-
Validation-ISACFA and pA-Validation-ISAWI with pA-Verification respectively for
each task that both analyses are able to label as correct-true.

When we compare the results of pA-Validation-ISA2S, pA-Validation-ISACFA

and pA-Validation-ISAWI we see that their results slightly differ. The differ-
ence between pA-Validation-ISA2S and pA-Validation-ISACFA is marginal and
only based on two tasks where pA-Validation-ISACFA manages to not exceed
the timeout and accepts the corresponding witnesses. When we compare
pA-Validation-ISAWI with pA-Validation-ISACFA or pA-Validation-ISA2S we
see that pA-Validation-ISAWI exceeds the timeout for some tasks for which
the preparatory step in pA-Validation-ISACFA or pA-Validation-ISA2S fails
due to recursion in these tasks.

4.7.2 Validating Witnesses produced by k-induction in
CPAchecker

Fig. 4.8 illustrates the validation of kI -Witnesses. pA-Validation-ISA2S

and pA-Validation-ISACFA are able to confirm ≈ 52% kI -Witnesses and
pA-Validation-ISAWI can confirm ≈ 51% of kI -Witnesses. They return a
noticeable high number of violations mainly due to a WIV what we can see
in Tab. 4.7. Also they produce a high number of errors which is mainly
due to recursion errors. When we compare pA-Validation-ISA2S and pA-
Validation-ISACFA to pA-Validation-ISAWI we see that pA-Validation-ISAWI

exceeds more often the time limit.
kI -Validation performs very well on validating kI -Witnesses. It accepts
≈92% of kI -Witnesses and never rejects a witness.

39



uA-Validation confirms ≈ 62% and accepts therefore more kI -Witnesses
than each pA-Validation-ISA which is noticeable since the production of
kI -Witnesses and each pA-Validation-ISA are part of the same verification
framework. But uA-Validation also rejects many kI -Witnesses.
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Figure 4.8: Validation results of kI -Witnesses

Table 4.7: Reason for kI -Witnesses violation for pA-Validation-ISA

configuration pA-Validation-ISA2S pA-Validation-ISACFA pA-Validation-ISAWI

all violations 534 534 524
original specification 1 1 1

WIV 533 533 523

Fig. 4.9 illustrates the validation results of kI -Witnessesno-true 9.
pA-Validation-ISACFA and pA-Validation-ISA2S accept ≈ 47% and
pA-Validation-ISAWI ≈ 46%. Each pA-Validation-ISA detects a property
violation in more than 500 witnesses. For kI -Validation the acceptance rate
is ≈ 95%. kI -Validation is mostly able to reestablish the original safety
property with the invariants from kI -Witnessesno-true. uA-Validation accepts
≈55% of kI -Witnessesno-true.

9. For 292 of 2599 kI -Witnesses we can not detect whether they are non-trivial-witnesses because
each pA-Validation-ISA approach failed to produce statistics.
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Figure 4.9: Validation results of kI -Witnessesno-true

Each pA-Validation-ISA in CPAchecker and uA-Validation rejects a notice-
able number of kI -Witnesses. We inspect this further to search for possible
reasons.

Inspecting Correlation. We first have a look whether a correlation
exists for rejections of kI -Witnessesno-true when we compare pA-Validation-
ISA and uA-Validation. Therefore we look at all tasks for which at least
one of the pA-Validation-ISA approaches observes a WIV. For a meaningful
comparison we only regard tasks which are labeled by an independent uA-
Verification run as correct-true. This gives us confidence that the rejection
by uA-Validation is caused by invariants in kI -Witnessesno-true and not due
to the original specification. Then we inspect for the reduced task set which
status results uA-Validation returns. For uA-Validation we also present the
rejection reason unknown which we have added before to the result other
in Fig. 4.8 and Fig. 4.9. In Tab. 4.8 we can observe the results.

Table 4.8: Results for uA-Validation of kI -Witnessesno-true for which a
pA-Validation-ISA detects a WIV and for which the corresponding programs are
labeled correct-true by uA-Verification.

status all accepted violated timeout error unknown
uA-Validation 414 180 74 17 93 50

We can see that the acceptance rate of uA-Validation in Tab. 4.8 is ≈43%.
It is smaller than the acceptance rate of ≈55% from Fig. 4.9. The violation
rate increase from ≈ 6% in Fig. 4.9 to ≈ 18%. But this is not enough
to see a tendency that uA-Validation returns a witness violation when
pA-Validation-ISA does this as well. Moreover, uA-Validation is still able
to confirm 180 kI -Witnessesno-true for which at least one pA-Validation-ISA

41



detects a WIV.
Now we observe a possible correlation the other way around. We look at
kI -Witnessesno-true for which uA-Validation detects a violation and inspect
what kind of result pA-Validation-ISA produces. Also here we take only
those tasks into account that pA-Verification could verify in order to have
confidence that a rejection is due to the invariants from kI -Witnessesno-true.

Table 4.9: Results for pA-Validation-ISA2S , pA-Validation-ISACFA and
pA-Validation-ISAWI of kI -Witnessesno-true for which an uA-Validation detects a
violation and for which the corresponding programs are labeled correct-true by
pA-Verification.

status all accepted violated timeout error other
pA-Validation-ISA2S 109 10 82 0 17 0
pA-Validation-ISACFA 109 10 82 0 17 0
pA-Validation-ISAWI 109 10 81 1 17 0

In Tab. 4.9 we see a correlation: When uA-Validation detects a violation
in kI -Witnessesno-true, pA-Validation-ISA mostly detects a violation as well.
pA-Validation-ISA has only an accepting rate of ≈9%.

Inspecting pA-Validation-ISA. In order to find out why pA-Validation-
ISA often detects a WIV we select some tasks and analyze pA-Validation-ISA
for these tasks in detail. We discover two reasons: pA-Validation-ISA rejects
kI -Witnessesno-true because the invariants in the witnesses are not valid or
the witness is too imprecise for pA-Validation-ISA so that invariants are
applied to locations where they not yet hold.

Invalid Invariants. For this reason we look at the following tasks:

# Task Subcategory
4 https://github.com/sosy-lab/sv-benchmarks/

blob/svcomp19/c/bitvector/num_conversion_1_
true-unreach-call_true-no-overflow.c

ReachSafety-Bitvectors

5 https://github.com/sosy-lab/sv-benchmarks/
blob/svcomp19/c/loops/sum03_true-unreach-call_
false-termination.c

ReachSafety-Loops

We first look at task #4. All pA-Validation-ISA approaches reject the
corresponding correctness witness because of an WIV whereas uA-Validation
and kI -Validation accept the witness. The program contains a while loop
that is executed until the loop variable unsigned char c is equal to 8U. As
loop invariant that must hold at the head of the while loop kI -Verification
has written a sequence of assignments over program variables in disjunctive
form so that one of the operands should be satisfiable. However, the
invariant is only satisifiable for the first iterations: The operands do not
include assignments over variables when c is greater than 3. It seems that
kI -Verification shows the safety property by induction without needing
auxiliary invariants that correspond to the 4th, 5th, 6th or 7th iteration of
the loop. Therefore, those auxiliary invariants lack as operands in the
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resulting loop invariant. pA-Validation-ISA, however, checks the loop for
the iteration steps greater than 3 and does not have the lacking operands.
In consequence, pA-Validation-ISA shows that the negated invariant is
satisfiable and rejects the witness. Since uA-Validation accepts the witness,
we assume that uA-Validation does not verify the invariant for all iterations
of the while loop.
For task #5 we encounter the same problem when pA-Validation-ISA ana-
lyzes the corresponding kI -Witnessno-true and detects a WIV. The program
contains an infinite while loop that never reaches the ERROR label in the
while loop. kI -Verification can proof the unreachability and writes the
loop invariant that is based on used auxiliary invariants into the witness.
pA-Validation-ISA, however, cannot validate the invariant after a certain
number of iterations of the while loop. This example also shows the limits
for kI -Invariants. The loop is infinite and concrete assignments of program
variables for a loop invariant can never represent the endless variable as-
signments. For a non-terminating while loop kI -Verification should write
invariants with program variables in a relative context like x = y. Ultimate
Automizer rejects the witness as well.

Imprecise Correctness Witness. For this reason we look at the
following tasks:

# Task Subcategory
6 https://github.com/sosy-lab/sv-benchmarks/blob/

svcomp19/c/float-benchs/filter1_true-unreach-call.
c.p%2Bcfa-reducer.c

ReachSafety-Floats

7 https://github.com/sosy-lab/sv-benchmarks/blob/
svcomp19/c/floats-esbmc-regression/Double_div_
true-unreach-call.c

ReachSafety-Floats

8 https://github.com/sosy-lab/sv-benchmarks/blob/
svcomp19/c/float-newlib/double_req_bl_1032d_
true-unreach-call.c

ReachSafety-Floats

9 https://github.com/sosy-lab/sv-benchmarks/
blob/svcomp19/c/loop-industry-pattern/mod3_
true-unreach-call.c.v%2Bcfa-reducer.c

ReachSafety-Loops

10 https://github.com/sosy-lab/sv-benchmarks/blob/
svcomp19/c/product-lines/email_spec0_product11_
true-unreach-call_true-termination.cil.c

ReachSafety-ProductLines

We first inspect task #6. Each pA-Validation-ISA approach rejects the
task because the corresponding kI -Witnessno-true is too imprecise for the
approach. The witness state that is labeled with an invariant is mapped to
the beginning of a sequence of assignments in the program. However, the
variable that is contained in the invariant does not yet exist at the beginning
of the sequence and therefore pA-Validation-ISA immediately finds a WIV
and rejects the witness. kI -Validation can validate the witness because it
considers in general that a witness is imprecise [2] and maps the invariant
to each location of the assignments. Since the invariant indeed holds after a
certain program location in the sequence of assignments, kI -Validation can
confirm the invariant. It is interesting that uA-Validation does not detect a
violation of the invariant and produces a timeout. As the witness states can
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be mapped to concrete CFA locations using program line and offset guards,
uA-Validation should modify the CFA at the CFA location for which the
invariant program variable is not yet assigned.
Task #7 is rejected by pA-Validation-ISA also because of an imprecise
witness. When we extract the invariant from the witness state we apply this
invariant one location to early where it does not yet hold. kI -Validation
applies this invariant to both locations. In the analysis it will discard the
invariant for the first location and proof it for the second location and is
therefore able to validate the witness. uA-Validation confirms the witness.
We encounter the same problem for #8, #9 and #10. pA-Validation-ISA
can not validate the invariant because the invariant is applied to a location
where it not yet holds. For all tasks uA-Validation also detects a violation.
Each pA-Validation-ISA shows for all tasks a very small CPU time since it
immediately rejects the witness when the invariant is mapped to the wrong
program location. There are many other tasks for which pA-Validation-ISA
rejects the witness because of a WIV with a very small CPU time and we
assume that it is often because of an imprecise witness.

4.7.3 Validating Witnesses produced by Ultimate Automizer

In Fig. 4.10 we can see the validation results of uA-Witnesses.
pA-Validation-ISA2S and pA-Validation-ISACFA are able to confirm ≈76%
of uA-Witnesses whereas pA-Validation-ISAWI confirms ≈75%. The high
amount of errors for all approaches is in particular due to recursion in some
tasks. Violation of uA-Witnesses are because of WIVs and for one task
because of the original specification (see Tab. 4.10).
kI -Validation confirms ≈85% of uA-Witnesses and never observes a witness
violation.
uA-Validation accepts ≈88% of uA-Witnesses. However, it also produces
the highest number for witness violations compared to pA-Validation-ISA
and kI -Validation.
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Figure 4.10: Validation results of uA-Witnesses

Table 4.10: Reasons for uA-Witnesses violation for pA-Validation-ISA

configuration pA-Validation-ISA2S pA-Validation-ISACFA pA-Validation-ISAWI

all violations 5 5 2
original specification 1 1 1

WIV 4 4 1

Fig. 4.11 illustrates the validation results of uA-Witnessesno-true. The
reduction10 leads to 248 uA-Witnessesno-true.
We see in Fig. 4.11 that pA-Validation-ISACFA, pA-Validation-ISA2S and pA-
Validation-ISAWI produce often errors for uA-Witnessesno-true. The accepting
rate of pA-Validation-ISACFA, pA-Validation-ISA2S and pA-Validation-ISAWI

is ≈50%.
kI -Validation performs better than pA-Validation-ISA and can confirm
≈ 67%. However, it also exceeds the time limit for ≈ 30% of the uA-
Witnessesno-true. This indicates that the uA-Invariants give not enough
information to support a safety proof in the induction.
uA-Validation performs very well on uA-Witnessesno-true and accepts ≈92%.

10. For 72 of 2688 uA-Witnesses we can not say whether they are non-trivial-witnesses because no
pA-Validation-ISA approach is able to print statistics.
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Figure 4.11: Validation results of uA-Witnessesno-true

Inspecting pA-Validation: All pA-Validation-ISA approaches produce
a high number of errors for uA-Witnessesno-true. A possible reason is that
uA-Verification can proof the specification for tasks for which predicate
analysis in general has problems. Tab. 4.11 illustrates this. It contains the
results for the programs of the 248 uA-Witnessesno-true when analyzed by
an independent pA-Verification run. We see that pA-Verification does not
perform well for those tasks and often produces an error or timeout. We
see that the results highly correlate to the results of pA-Validation-ISAWI in
4.11.

Table 4.11: Results of pA-Verification for tasks for which uA-Witnessesno-true are
produced.

status all correct-true correct-false incorrect-true incorrect-false timeout error other
pA-Verification 248 127 0 0 0 68 49 4

It is interesting that pA-Validation-ISACFA and pA-Validation-ISA2S reject
four uA-Witnesses due to a WIV but pA-Validation-ISAWI rejects only one
uA-Witnesses due to a WIV. We inspect the following tasks:

# Task Subcategory
11 https://github.com/sosy-lab/sv-benchmarks/blob/

svcomp19/c/loops/invert_string_true-unreach-call_
true-termination.c

ReachSafety-Loops

12 https://github.com/sosy-lab/sv-benchmarks/
blob/svcomp19/c/psyco/psyco_security_
true-unreach-call_false-termination.c

ReachSafety-ECA

13 https://github.com/sosy-lab/sv-benchmarks/blob/
svcomp19/c/psyco/psyco_io_1_true-unreach-call_
false-termination.c

ReachSafety-ECA

14 https://github.com/sosy-lab/sv-benchmarks/
blob/svcomp19/c/psyco/psyco_accelerometer_1_
true-unreach-call_false-termination.c

ReachSafety-ECA

For task #11 each pA-Validation-ISA detects a WIV. The reason is that
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pA-Validation-ISA can not replay the values of the pointer variables in
the invariant. This problem is similar to an example we have shown in
the section of validating pA-Witnesses. The loop invariant in the witness
of #11 contains pointer variables of arrays. Ultimate Automizer, i.e. uA-
Verification, assigns them to zero in the witness. pA-Validation-ISA, however,
can not validate these pointer values and detects a WIV. uA-Validation also
returns a violation of the witness and kI -Validation returns unknown.
For task #12, #13 and #14 pA-Validation-ISA2S and pA-Validation-ISACFA

detect a WIV wheras pA-Validation-ISAWI not. When we inspect #12 we
can not see a bug in the ISAs that might explain the different behavior.
The reason we observe is the structure of the correctness witness. The
witness does not correspond to the loop structure of the program. Fig.
4.12 illustrates this witness. Witness state n9 corresponds to the head
of a while loop and is labeled with an invariant θ. In the corresponding
program the while loop has several entering edges. However, n9 has only
two entering edges and one leaving edge: one edge comes from n8, one edge
is as self-transition and one edge leaves the state going to n10. n10 has only
a self-transition so the witness will stay forever in n10. When we take the
witness to build the ISAWI we adopt the structure of the witness and hence
create s8, s9 and s10 and the transitions with θ and ¬θ as assumptions.
During the analysis θ is validated only once because as soon as the program
leaves the loop head the ISAWI proceeds to s10 and remains there forever.
The ISA2S and ISACFA differs from ISAWI . They have an automaton state
for n9 that can be revisited. But when the program reenters the while
loop, the invariant is not satisfiable and therefore pA-Validation-ISACFA or
pA-Validation-ISA2S will take the transition to the error state assuming the
negated invariant.
However, we determine that this WIV happens because ISACFA and ISA2S

overapproximate the invariant based error states and this overapproximation
leads to false alarms. The witness might not correspond to the loop structure
but this should not be a reason to reject the witness. Let θ be the invariant
at n9: When we build the ISACFA or ISA2S based on the correctness witness
from #12 we apply a reachability analysis on the witness first to get the
location invariants. When we iterate over the reached set we get θ but also
true for the same CFA location. For soundness we use at this location the
conjunction of θ and true which is equal to θ. In consequence, θ must always
be verified when the loop head is entered. However, when the program
reenters the loop head the original witness semantics specify that there is
no invariant to proof since the original witness remains in n10. We see that
our implementations of pA-Validation-ISACFA and pA-Validation-ISA2S are
not precise because they overapproximate the error states.
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Figure 4.12: Correctness witness produced by Ultimate Automizer for task #12
with a non-trivial-Invariant θ at n9

The correctness witnesses for tasks #13 and #14 trigger the same problem.
Their structure is similar to the structure of the witness of #11 in Fig. 4.12
what leads again to the different rejection behavior of pA-Validation-ISACFA

and pA-Validation-ISA2S compared to pA-Validation-ISAWI .

4.7.4 Comparing the Detection of Correctness Witness Types

Although pA-Validation-ISAWI can not detect hidden-true-witnesses we
can check for pA-Witnesses, kI -Witnesses and uA-Witnesses whether they
contain hidden-true-witnesses. Our check is based on the following detection:
In pA-Validation-ISAWI the witness is a non-trivial-witness whereas in
pA-Validation-ISACFA and pA-Validation-ISA2S the witness is either a true-
witness or hidden-true-witness. Then the witness is a hidden-true-witness
because pA-Validation-ISAWI is able to exclude true-witnesses.
Tab. 4.12 shows the detection of correctness witness types. We can see
that pA-Verification and uA-Verification produce no hidden-true-witnesses
because the numbers are all equal. However, for uA-Verification we can
estimate that 147 uA-Witnesses are hidden-true-witnesses because they
are detected as hidden-true-witnesses or true-witnesses by pA-Validation-
ISACFA and pA-Validation-ISA2S but detected as non-trivial-witnesses by
pA-Validation-ISAWI .

Table 4.12: Comparing the detection of correctness witness types for pA-
Validation-ISA approaches. Only tasks are considered for which all three pA-
Validation-ISA approaches can produce statistics.

approach non-trivial-witnesses hidden-true-witnesses or true-witnesses true-witnesses

23
96

pA
-W

it
ne

ss
es pA-Validation-ISA2S 220 2169 -

pA-Validation-ISACFA 220 2169 -

pA-Validation-ISAWI 220 - 2169

25
99

kI
-W

it
ne

ss
es pA-Validation-ISA2S 1696 559 -

pA-Validation-ISACFA 1696 559 -

pA-Validation-ISAWI 1696 - 559

26
88

uA
-W

it
ne

ss
es pA-Validation-ISA2S 40 2337 -

pA-Validation-ISACFA 40 2337 -

pA-Validation-ISAWI 187 - 2190

To search for explanations why we receive hidden-true-witnesses from uA-
Verification in our implementations we look at the following tasks:
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# Task Subcategory
15 https://github.com/sosy-lab/sv-benchmarks/blob/

svcomp19/c/loop-invariants/eq1_true-unreach-call_
true-valid-memsafety_true-no-overflow_
false-termination.c

ReachSafety-Loops

16 https://github.com/sosy-lab/sv-benchmarks/
blob/svcomp19/c/ssh-simplified/s3_srvr_1b_
true-unreach-call_false-termination.cil.c

ReachSafety-ControlFlow

17 https://github.com/sosy-lab/sv-benchmarks/
blob/svcomp19/c/ldv-regression/test28_
true-unreach-call_true-termination.c

ReachSafety-Heap

18 https://github.com/sosy-lab/sv-benchmarks/
blob/svcomp19/c/bitvector-regression/
implicitunsignedconversion_true-unreach-call_
true-termination.c

ReachSafety-BitVectors

In task #15 we inspect that the correctness witness produced by uA-
Verification contains transitions which can not be taken in the analysis
in CPAchecker. For example, the assignment unsigned int w = __VERIFIER_-

nondet_uint(); is represented by two states and two transitions: one transition
with the whole assignment as guard that goes into the first state and a second
transition that goes into the successor state with __VERIFIER_nondet_uint(); as
guard. In the analysis of CPAchecker when the witness automaton stays in
the first state the transition to the successor state can not be taken since
CPAchecker applies already the next program operation. In consequence,
the automaton remains in the first state.
In task #16 and #17 we encounter the same problem. The program contains
calls of VERIFIER_nondet_uint(); and the correctness witness produced by uA-
Verification has two states when this function is called in the program.
In task #18 the witness from uA-Verification has one state that is labeled
with invariant 0. We assume that uA-Verification explicitly labels the state
with invariant 0 to note the unreachability of the state because the state
is indeed unreachable when we look at the program location that refers to
the state. Nevertheless, this leads to an empty set of location invariants for
pA-Validation-ISA2S and pA-Validation-ISACFA and is therefore classified as
hidden-true-witness in our implementations.
In conclusion, we have found two reasons why we detect hidden-true-
witnesses in uA-Witnesses: Firstly, Ultimate Automizer writes two states
for the call VERIFIER_nondet_uint(); in the witness. This has as consequence
that in the analysis in CPAchecker the automaton stucks in the first state.
Secondly, an uA-Witness might contain an invariant 0 to label explicitly an
unreachable state.

4.7.5 Summary

Each ISA approaches can be used to apply witness invariants as additional
verification goal. However, only the ISAWI is precise whereas the ISACFA and
ISACFA can produce false alarms because they overapproximate the error
states. Moreover, the ISAWI in CPAchecker does not need a preparatory
step and requires less code in CPAchecker. The ISAWI also produces less
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error results. We can inspect this in all validation results diagrams since
the preparatory step for pA-Validation-ISA2S and pA-Validation-ISACFA

sometimes fails due to a recursion error. However, for these tasks pA-
Validation-ISAWI produces a timeout.
The main advantage of ISA2S and ISACFA is the compact automaton structure.
In Fig. 4.13 pA-Validation-ISA2S and pA-Validation-ISACFA show a lower
computation time compared to pA-Validation-ISAWI in particular for kI -
Witnessesno-true. For pA-Witnessesno-true and uA-Witnessesno-true they also
perform for a few tasks better compared to pA-Validation-ISAWI .
Tasks for which a verifier produces huge correctness witnesses are sometimes
difficult for pA-Validation-ISAWI . For these witnesses pA-Validation-ISAWI

exceeds more often timeouts compared to pA-Validation-ISA2S and pA-
Validation-ISAWI . The reason we assume is the continuous matching of
source-code guards during the analysis which is required by the ISAWI .
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Figure 4.13: Scatter plots for comparing CPU time of our pA-Validation-ISA
approaches respectively for tasks for which both analyses accepted the cor-
rectness witness. Upper Row: Comparing pA-Validation-ISA approaches for
pA-Witnessesno-true. Middle Row: Comparing pA-Validation-ISA approaches
for kI -Witnessesno-true. Lower Row: Comparing pA-Validation-ISA approaches
for uA-Witnessesno-true.

We have seen that pA-Validation-ISA is able to confirm correctness wit-
nesses from uA-Verification and kI -Verification. However, we have also seen
problems which have lead to WIVs in pA-Validation-ISA. Imprecise correct-
ness witnesses can not be handled by our ISA implementations. Invariants
in kI -Witnesses for a loop head might not reflect all iterations. Pointer
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variables with value assingments in witness invariants can be violated in
the validation.
Furthermore, we have discovered that uA-Witnesses can be hidden-true-
witnesses in the context of a witness analysis in CPAchecker.
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Chapter 5

Conclusion

We implemented several approaches to validate correctness witnesses using
predicate analysis. In a large benchmark study we evaluated whether predi-
cate analysis can understand its own and other witnesses and whether it can
reestablish the result. We have shown that predicate analysis in CPAchecker
can be applied as validator for correctness witnesses in CPAchecker.
In our first validation approach we investigated in particular the precision
reuse of invariants from correctness witnesses produced by predicate analysis.
We have seen that the predicate analysis-based validator can verify for
almost all tasks the original specification. However, precision reuse with
witness invariants does not decrease computation time in our approach.
Moreover, applying the invariant-based predicate to the exact location does
not decrease CEGAR refinements. We conclude that the information from
the invariants might not be sufficient to create a initial predicate precision
that decreases the computation time or we have a bug in the precision
mapping in CPAchecker. Further investigations whether we have a bug
might be helpful.
Each invariants specification automata (ISA) we have implemented in
CPAchecker allows us to validate the original specification and to validate
the correctness witness invariants. We have seen that predicate analysis
can validate the majority of correctness witnesses produced by predicate
analysis as well. Furthermore, predicate analysis validation understands
correctness witnesses produced by k-induction in CPAchecker or produced
by automata-based verification in Ultimate Automizer.
We propose that correctness witnesses should be precise. For our approaches
imprecise correctness witnesses can not be handled and trigger a WIV. The
source-code guards of a transition that enters a witness state with an
invariant should correspond to the program location where the invariant
indeed holds. Moreover, correctness witnesses and their invariants should
reflect the program structure. A witness with a loop invariant that needs
to be verified only once contradicts our understanding of validating a
loop invariant. We have seen that validators have problems with pointer
variables in invariants. The reason might be due to bugs which should
be fixed or that a formal standard lacks how pointer values are written
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into correctness witnesses. We have also seen that correctness witnesses by
Ultimate Automizer can be hidden-true-witnesses in our implementations
in CPAchecker. One reason is that CPAchecker can not understand the
transitions. This behavior might be due to a bug or it lacks a more precise
formalization for transitions.
The ISAWI is the only ISA that defines the witness invariants as additional
verification goal and guarantees to reflect the semantics of the correctness
witness. Since ISACFA and ISA2S overapproximate invariants-based error
states, they can produce false alarms in the analysis.

5.1 Future Work

The invariants we get from the correctness witnesses could be negated so
that we can investigate, whether predicate analysis as validator can reject
correctness witnesses when the invariants are intentionally wrong.

Each ISA is independent from the applied abstraction-technique. This
means, that other techniques in CPAchecker can validate theoretically the
original specification and the witness invariants of correctness witnesses.
This might be interesting for a developer of CPAchecker since the developer
gets the opportunity to validate correctness witnesses with the analysis
he or she has implemented. For the community of software verification
using an ISA can be beneficial because validating the correctness witnesses
of a program with different techniques in CPAchecker can increase the
trustworthiness in the program when the result is reestablished.

Our approach of validating correctness witness invariants could be combined
with the program generation concept presented in [12][13][15]. According to
this concept a program P that has been verified for a given specification
can be transformed into a behaviorally equivalent program P ′ which can
be verified more efficient. The abstract states of the ARG can be used to
create P ′.
When we validate the correctness witness of a program and use the ISAWI

the invariant error states in the ISAWI extend the specification and affect the
construction and structure of the ARG. When the validation task finishes
and we build a program using the ARG the resulting program also includes
the invariant error states in form of code. This program can be analyzed by
a verifier and a validator is not necessary.
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Chapter 6

Appendix

6.1 Receiving a set of location invariants from a cor-
rectness witness

The prepatory step to receive the set of location invariants from a cor-
rectness witness has the following substeps in CPAchecker: (I) Parsing a
correctness witness into a correctness witness automaton. (II) Performing
a rechability analysis on the witness automaton.(III) Extracting the loca-
tion invariants from the reached set. For (I) and (II) implementations for
k-induction validation in CPAchecker already exists and we can reuse these
implementations.

Parsing a Correctness Witness. For an analysis we can parse the
correctness witness into an observer automaton that can be understood by
CPAchecker. The automaton (witness automaton) is a protocol automaton
A = (S,Σ, δ, sinit, F ) where S denotes the set of automaton states, sinit
denotes the starting state, Σ denotes the alphabet over the source-code
guards, δ ⊆ (S × Σ× S) denotes the set of automaton transitions and F
denotes the set of accepting states. The structure refers to the structure of
the correctness witness. For each correctness witness state n we built an
automaton state s. For each witness transition (n, (guards), n′) we built an
automaton transition (s, match(guards), s′). The function match evaluates
whether a CFA edge matches with the source-code guards and returns true
or false. When we unroll the CFA the CFA edges must satisfy the guards. If
a CFA edge does not match with the guards the automaton remains in the
current state using the self-transition. For each witness target state n′ that
is labeled with a non-trivial-Invariant we store the invariant in the parsed
automaton transition that leads to s′ which is the corresponding state of n′

in the parsed automaton. If the witness target state has no invariant we
store true as invariant in the transition.
Fig 6.1 illustrates a graph of the parsed witness automaton of 2.2. For
instance, the automaton enters state s2 using the transition (s1, match(PL=3,
enterLoopHead), s2), if the CFA edge goes into the head of the while loop.
Moreover, the transition stores the invariant x = y because the original
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witness target state s2 is labeled with invariant x = y.

start

match(PL=3, enterLoopHead), Inv : (x = y)

match(PL=4, condition true), Inv : true match(PL=4, condition false), Inv : true

match(PL=6, enterLoopHead), Inv : (x = y)

o/w, Inv : true

o/w, Inv : (x = y)o/w, Inv : true o/w, Inv : true

s1

s2s3 s4

Figure 6.1: Parsed witness automaton in CPAchecker of the correctness witness
from Fig. 2.2

Reachability Analysis on a Witness Automaton. We can perform
a reachability analysis on the witness automaton which we have parsed
before. In order to do so we embed the witness automaton into an Automa-
tonCPA. Together with a LocationCPA we can add them as component
CPAs to a Composite CPA and perform a reachability analysis. Note that
we do not specify any safety properties. The analysis terminates when all
reachable states have been processed (=̂ the waitlist is empty). During the
analysis, automaton states of the AutomatonCPA are discovered based on
the witness automaton transitions. This means in particular that we get a
successor automaton state with a non-trivial-Invariant when the underlying
witness automaton transition stores a non-trivial-Invariant. When the ARG
construction is finished we obtain a set of reachable abstract states and
each abstract state contains an automaton state.

Extracting the Invariants. After the witness is analyzed we receive
a reachable set of composite abstract states. We can iterate over this set
to get the invariants and to get for each invariant its corresponding CFA
location1. For each composite abstract state we extract the CFA location
which we get from the LocationCPA and extract its witness automaton
state from the AutomatonCPA. We can inspect for each automaton state
whether it has a non-trivial-Invariant. The invariant true is always valid
and therefore ignored. We store each non-trivial-Invariant together with
the location as location invariant (l, θ). Each location invariant is added to
the set of location invariants I. If we receive two or more invariants for the
same CFA location we use the conjunction for the invariants. After iterating
over the set of composite abstract states we can use I for our predicate
analysis validation approaches. If I is empty the correctness witness is a
true-witness or hidden-true-witness.

1. For validation with k-induction an invariant is mapped to a group of CFA locations so that the
invariant might be applied to several CFA locations.
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6.2 Statistics Features

Detecting Types of Correctness Witnesses. For our evaluation we
distinguish between correctness witnesses that give us at least one non-
trivial-Invariant (non-trivial-witnesses) and those which do not contain any
non-trivial-Invariants (true-witnesses) or for which states with non-trivial-
Invariants are unreachable (hidden-true-witnesses).
For our approach to initialize the predicate precision with correctness
witness invariants we count the number of location invariants which we
receive after the preparatory step. We add this number to the statistics of
each task. If the number is zero, we infer that the witness is a true-witness
or hidden-true-witness.
Counting the number of location invariants does not work for the ISAWI .
Therefore, we follow a different approach for an ISA in general. When we
validate correctness witness invariants by using an ISA we count the number
of states that contain transitions with assumptions. We add this number
to the statistics output of each task. A transition with an assumption can
only be based on an invariant in our ISAs implementations.
The ISAs differ in their detection behavior. An ISA2S or ISACFA that has
no states with transitions with assumptions is based on a true-witness
or hidden-true-witness. A hidden-true-witness or true-witness leads to an
empty set of location invariants when we built an ISA2S or an ISACFA. An
ISAWI that has no states with transitions with assumptions is always based
on a true-witness. In our implementation we can not detect hidden-true-
witnesses when we use the ISAWI because unreachable states with invariants
are included as unreachable ISAWI states. Therefore, the ISAWI has states
with transitions with assumptions.
We must clarify that CPAchecker might break the analysis without delivering
statistics information. If this is the case we can not infer about the existence
of non-trivial-Invariants. For instance, the parsing of the witness can lead
to an error or the reachability analysis we apply in the preparatory step to
get location invariants can fail. If we get no statistics for a validation task
we can not say whether the correctness witness is a non-trivial-witness.
In general, the detection of non-trivial-witnesses depends on our implemen-
tations in CPAchecker. It might be possible that we wrongly classify a
non-trivial-witness as hidden-true-witness or true-witness. Since we can not
guarantee to detect all non-trivial-witnesses, the set of non-trivial-witnesses
which we can detect is a subset of the real set of non-trivial-witnesses.

Detecting Witness Invariant Violation (WIV). If predicate analysis
validation with an ISA in CPAchecker rejects a witness we explicitly output
in the statistics whether it is due to an invariant violation.
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6.3 Specific Settings in CPAchecker

For our approaches explained in chapter 3 we need to set configurations in
CPAchecker. The configurations are summarized in Tab. 6.1.

Table 6.1: Configurations in CPAchecker for precision reuse of witness invariants
and for building an ISA

Option Values Meaning

analysis

.validateCorrectnessWitness

NONE,
INVARIANTS
AUTOMATON,

LOCATION
INVARIANTS
AUTOMATON,

WITNESS
AUTOMATON

Add invariants as additional specifica-
tion by using an invariant specification
automaton
INVARIANTSAUTOMATON: section 3.3.1
LOCATIONINVARIANTSAUTOMATON: sec-
tion 3.3.2
WITNESSAUTOMATON: section 3.3.3

cpa.predicate

.correctnessWitness

.reuseInvariants

false, true Reuse invariants from the correctness wit-
ness by transforming them into predi-
cates and adding the predicates into the
initial predicate precision

cpa.predicate

.correctnessWitness

.atomPredicatesFromFormula

false, true Witness invariants are transformed into
atomic predicates

cpa.predicate

.refinement

.splitItpAtoms

false, true Needs to be enabled in order to get
atomic predicates

cpa.predicate

.correctnessWitness

.witnessInvariantScope

LOCATION,
FUNCTION,
GLOBAL

Defines the precision scope for the
invariants-based predicates
- LOCATION: predicates applied at the
corresponding location
- FUNCTION: predicates applied at all
locations in the function scope
- GLOBAL: predicate applied at all pro-
gram locations
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