
Ludwig Maximilian University of Munich

Bachelor’s Thesis in Informatics

Test-based Fault Localization in the Context
of Formal Verification: Implementation and

Evaluation of the Tarantula Algorithm in
CPAchecker

Schindar Ali

Supervisor: Prof. Dr. Dirk Beyer
Mentor: Thomas Lemberger
Submission Date: 25.08.2020

Eidesstattliche Erklärung

I confirm that this bachelor’s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Hiermit versichere ich, dass ich diese Bachelorarbeit selbstständig und ohne Benutzung
anderer als der angegebenen Quellen und Hilfsmittel angefertigt habe und alle Aus-
führungen, die wörtlich oder sinngemäß übernommen wurden, als solche gekennzeich-
net sind, sowie dass ich die Bachelorarbeit in gleicher oder ähnlicher Form noch keiner
anderen Prüfungsbehörde vorgelegt habe.

Munich, 25.08.2020 Schindar Ali

Acknowledgments

First of all, I would like to thank Professor Beyer for the opportunity to write this
thesis in his group and thank you also goes to the group at the chair of Software
and Computational Systems Lab for reviewing my code and for allowing me to use
the great framework CPAchecker – without which this thesis would not have been
possible. Special thanks go to my Mentor Thomas Lemberger for the excellent support.
Whenever I needed help or had a question, I could rely on good advice, which was
received almost instantly via Slack. I would also like to thank my parents, who raised
me despite the many difficulties in an educated environment. I hope I can meet them
again. I also thank my country Syria, who took care of me in its schools. My hope that
one day the prosperity will return and I can visit it again. Many thanks to the Germans
and Germany who recognized me as a refugee and who gave me the residence permit
so I could continue studying normally.

Abstract

Many current fault localization approaches use test information to identify bugs in
source codes, assuming that test cases satisfying a certain test adequacy criterion
can provide adequate information for fault localization. Unfortunately due to the
different purposes of fault locating and testing, test information is not sufficient for
fault localization and can have a significant impact on performance. An alternative
approach is a formula-based technique to fault localization, that’s an algorithmic
method that could provide distinctive facts for the recognized root causes.

This paper presents a novel idea of automatic fault localization by exploiting coun-
terexamples generated by a model checker. We decided to evaluate the Tarantula
algorithm for efficiency by using an Abstract reachability graph (ARG) instead of test
suites, the key idea to find correlations between execution events and path outcomes —
those events that correlate most highly with failure are suggested as places to begin an
investigation. We (1) applied test-based tarantula to software verification and imple-
mented it in a state of the art formal verification framework (CPAchecker), and (2) we
conducted the first experimental evaluation between formal-based Tarantula against
formal-based DStar and Ochiai and then against test-based Tarantula approach using
Klee and VeriFuzz test suites generators on a set of benchmarks.

The results show that the formula-based approach on ARG can be significantly
more effective in locating faults than the other considered techniques based on test-
suite generators, showing that our approach is promising and capable of quickly and
precisely localizing faults.

Contents

List of Figures i

List of Tables ii

1 Introduction 1

2 Related Work 6

3 Background 8
3.1 Automated Software Testing . 8

3.1.1 Klee . 9
3.1.2 VeriFuzz . 9
3.1.3 TestCov . 10

3.2 Automated Software Model Checking . 10
3.2.1 Simple Programs and Control Flow Automata (CFA) 11
3.2.2 Concrete State . 12
3.2.3 Abstract State and Abstract Domain 13
3.2.4 Symbolic Execution . 13
3.2.5 Predicate Abstraction and Predicate CPA 14
3.2.6 Abstract Reachability Graph (ARG) 15
3.2.7 Counterexample . 16
3.2.8 CPAchecker . 18

3.3 Fault Localization . 19
3.3.1 Preliminaries . 19
3.3.2 Ranking Metrics . 20

4 Theoretical Contributions 23
4.1 Contribution in CPAchecker . 23

4.1.1 Example of Ranking Metric on ARG with Tarantula 26

5 Implementation of Tarantula Algorithm 27
5.1 Implementation in CPAchecker . 27

5.1.1 All Possible Paths . 27

Contents

5.1.2 Coverage Information . 29
5.1.3 Options . 30

5.2 Implementation in TestCov . 31

6 Experimental Evaluation 32
6.1 Benchmark . 33
6.2 Evaluation Metric . 34

6.2.1 Example . 34
6.3 Experimental Setup . 35
6.4 Results . 37

6.4.1 Symbolic Execution vs Predicate-merge-sep 37
6.4.2 Tarantula vs other Ranking Metrics with Symbolic Execution . . 40
6.4.3 Formal Verification Tarantula vs Test-based Tarantula 42

6.5 Threats to Validity . 44
6.6 Discussion . 44

7 Future Work 46

8 Conclusion 47

Bibliography 49

List of Figures

3.1 Workflow of how the test-based Tarantula works in combination with
Klee,VeriFuzz and TestCov . 8

3.3 The model checking approach . 11
3.4 A simple C program (Left) and a CFA representing it (Right) 12
3.6 ARG construction by execution of predicate analysis by CPAchecker for

the example program shown in Example Figure 3.4. The red rectangle is
target state and yellow states (3@N9 and 8@N8) are safe states. 16

3.8 ARG construction with a generated colored with red counter example by
execution of predicate analysis by CPAchecker for the example program
shown in Example Figure 3.4. The red rectangle is target state and red
path is the error path and yellow states (3@N9 and 8@N8) are safe states.
and green paths are safe paths (Starts from root and ends at safe states). 17

3.10 CPAchecker Architecture, after Beyer and Keremoglu [BK11] 18

4.1 All edges in error path. Contains code line numbers and node identities
and the descriptions which presents the states. 24

6.1 A simple C-Program . 36
6.3 Comparison between ARGs created by PredicateCPA with mergesep (left)

and with default merge (right) operators generated by CPAchecker . . . 36
6.5 Results of running Tarantula on CPAchecker using symbolic execution

and predicate abstraction with merge=SEP command line on our bench-
mark. Note: the lower the column the better the technique 38

6.7 Comparison of the effectiveness of Tarantula Algorithm against other
Ranking Metrics techniques, such as DStar and Ochiai using Symbolic
Execution . 41

6.9 Comparison of the effectiveness of each technique: Symbolic execution
against Klee and VeriFuzz . 43

i

List of Tables

1.1 Example of Tarantula technique . 2

4.1 Example of how the CFAEdges are covered by Safe(S)/Error(E) paths.
The number after S or E means how many time is the corresponded
CFAEdge covered by which kind of path 25

4.2 Example of Tarantula technique in CPAchecker using ARG 26

6.1 Overview of used type of error in bekkouche benchmark and sv-benchmark 33
6.2 The represented example of while_in f inite_loop_1 from used Bench-

marks after analyzed by predicate-merge-sep 35
6.3 Results of running Tarantula on CPAchecker using symbolic execution

and predicate abstraction with merge=SEP command line on our bench-
mark. Note: The lower the omega result the better the technique.

. 37
6.4 Results of running Tarantula against DStar and Ochiai ranking metrics

using the CPAchecker configuration: Symbolic Execution 40
6.5 Results of running Tarantula on test suites generated by Verifuzz and

Klee in TestCov on our benchmark. Note: The lower the omega result in
Ω the better the technique . 42

ii

1 Introduction

There is no such thing as 100 percent bug-free software. Also, Edsger Dijkstra1 was
already aware of the risk of software bugs

‘If debugging is the process of removing bugs, then programming must
be the process of putting them in2’

However, the volume and severity of existing errors, as well as their impact on
users, can be reduced through two processes: (1) formal verification, i.e., checking
whether the software design satisfies some requirements (properties) (2) debugging,
i.e., localizing the faults that are the causes of the failures and fixing the program.

In the software development process, debugging is a difficult task that required a lot
of effort and time from programmers. However, finding causes for these bugs cannot
be skipped, it must be analyzed to endure the software quality.

As the complexity of software systems is increasing, there is also a growing demand
for tools that assist the programmer in the debugging process. Therefore, many
techniques and methods have been developed over the years to automatically detect the
location of faults in various ways in software. Among these methods, coverage-based or
spectrum-based debugging [JH05] is considered a promising method. It is an empirical
method that calculates ranking orders between the program statements or spectrum to
show that a particular fragment of code is more suspicious than the others. However,
the method requires many successful and failed executions to calculate the statistical
metrics.

To illustrate how the Tarantula technique works, we provide a simple faulty C
program and a test suite, given in Table 1.1. Program max(int line1, int line2) takes two
integers as input and outputs the max value between them. The program contains
a fault in line10. And this check is not necessary since the actual function says that
if two numbers are the same, then one of them must be returned. To the right of
each line of code is a set of four test cases, their input is shown at the top of each
column, their coverage is shown by the black dots, and their pass/ f ail status is shown

1Edsger Dijkstra: was a Dutch computer scientist, programmer, software engineer, systems scientist,
science essayist, and pioneer in computing science.

2https://www.goodreads.com/author/quotes/1013817.Edsger_W_Dijkstra

1

https://www.goodreads.com/author/quotes/1013817.Edsger_W_Dijkstra

1 Introduction

at the bottom of the columns. To the right of the test case columns are one column
labeled suspiciousness shows the suspiciousness score that the technique computes by
Equation (3.2)

For example, consider statement1 in line7, which is executed by all four test cases
that contain both passed and failed test cases. The Tarantula technique assigns a
suspiciousness rating of 0.5 to this statement because one failed test case executes it out
of a total of one failing test case in the test suite (with a ratio of 1), and three passed
test cases run from a total of three passed test cases in the test suite (with a ratio of
1). Hence, we get 1/(1 + 1) or 0.5. Using the suspiciousness score, the covered entities
of the program are sorted. The set of entities that have the highest suspiciousness
value (statement9 and its block 10) are the set of entities to be considered first by the
programmer when looking for the fault.

Table 1.1: Example of Tarantula technique
Input Values

Code Line
(4,3) (3,2) (5,6) (3,3)

Suspiciousness

3: int num1 • • • • 0.5
4: int num2 • • • • 0.5
5: int result =0; • • • • 0.5
7: if(num1>num2) • • • • 0.5
8: result = num1 • • 0.0
10: else if (num1 == num2) • 1.0
11: ERROR:__VERIFIER_error(); • 1.0
12: else • 0.0
13: result = num2; • 0.0
15: return 0; • • • • 0.5
Pass/Fail Status P P P F

If we consider the example above Table 1.1, we can see a problem that we try to solve
through model-checking in this paper. In simple words, if the user tries to enter two
different numbers all the time and did not try to enter two equal numbers. Then we
cannot know if there is a bug in the function max(). Or if we want to test the function
automatically, how many test cases do we have to generate to achieve the failed test
case?

The purpose of testing is to reveal as many failures as possible with as few test cases
as possible. Therefore, the following two cases are used:

• The more test cases that are provided for fault localization, the more relevant
information needs to be provided for fault localization in order to achieve good

2

1 Introduction

results. However, to keep the cost as low as possible, the number of test cases
from the test should be as low as possible. Therefore, getting a large number of
test cases from a test is somewhat difficult for fault localization.

• Fault localization usually focuses on program information related to the fault.
The location of the failing program is the root cause of the failure, so you need
enough test cases to cover the location of the failing program.

The two cases above indicate that the purpose of fault localization and testing are
different and may provide insufficient information for fault localization.
Therefore, the number of required test cases explodes and forces tests to consume
more than 50% of the development costs for embedded software and 60% to 70% for
safety-critical software [BH13]. Complete execution of all test cases in a test suite can
be slow; execution times of up to seven weeks have been reported in the literature
[Rot+01]. For larger test suites, it may not be realistic to expect the engineers to wait
for all test cases to be executed before they can start working on fault fixing. Also, it
may not be worth executing all test cases, once the first failure has been detected. In
many scenarios, as soon as the first failure is detected, the engineer will want to switch
from testing to fixing [Rot+01].

However, the error detection rate is too low to prevent common errors and incidents,
especially with security-critical software. Therefore, the dilemma has to be solved
differently. The use of formal methods is an approach that has sparked great interest in
the industry [Woo+09].

Model-checking is alluring for two primary reasons. First, it does not require the
user to provide annotations such as preconditions or loop invariants. Second, when a
property violation is detected, a witness to the violation is produced in the form of an
error trace (a counterexample) at the source level [BNR03].

The formula-based strategy is more precise than the cover-based approach. Typically
because it has a logical establishment developed in the model-based diagnosis (MBD)
hypothesis [Rei87].

Furthermore, existing formula-based strategies do not guarantee that all root causes
are covered. This is partly because the complete list of the root causes requires a lot of
computing effort. Its complexity increases exponentially with the size of the program
and the number of errors in the program.

This paper focuses on fault localization and presents a method for determining the
cause of errors in C programs. We introduced the Tarantula algorithm as part of the
verification of software models instead of information on test coverage. We assume we
are given a program written in C and specification. If the program is faulty, then we
have a counterexample that indicates that the specification does not hold. We use the

3

1 Introduction

counterexample as input to the Tarantula algorithm, and we get as output set of fault
candidates for the given traces. Otherwise, Tarantula reports “no bugs found“.

Finally, we evaluate our implementation on one hand against other ranking metrics
such as DStar and Ochiai, on the other hand against the test-based Tarantula algorithm
using test suite generators Klee and VeriFuzz and show which of the two approaches
(Formal verification vs testing) is more efficient in finding bugs.

4

1 Introduction

Contributions. We present the following contributions:

• We design Tarantula, as a new module of fault localization based on the Abstract
Reachability Graph (ARG).

• We implement Tarantula to software verification in the open-source verification
framework CPAchecker, to establish a baseline for comparison with new ideas for
improvement.

• We implement Tarantula to work with the tool TestCov for robust running test
suites and measuring test coverage.

• We conduct an experimental study to compare two important CPAchecker con-
figurations, Predicate Analysis against Symbolic to show which of them is more
efficient in fault localization.

• We have made a comparison with Tarantula against the other ranking metrics,
DStar and Ochiai methods to show if the technique shown in testing as better/-
worse than Tarantula can still give better/worse results in formal verification
environment.

• We collected and adjusted a set of small examples of faulty C-Programs as a
benchmark set for evaluation setup.

• We developed an evaluation metric which helped us to evaluate all available
techniques in this study.

• Finally, we conduct a large experimental study to compare test-based Tarantula
against software verification using ARG (considered ARG paths instead of test
cases) to highlight the strengths and weaknesses of our implementation in the
domain of software verification.

5

2 Related Work

There are various techniques for locating the causes of faults that complement the
approach presented in this paper. As a counterexample, fault localization for traces
generated by model checkers has been an active research area in recent years. [GSB07;
BNR03].

Program slicing [Wei] was introduced to help with debugging, and this has been
empirically proven to be effective [Kus+14]

The formula-based automatic error localization method essentially combines the
SAT-based formal verification techniques [PBG05] with the model-based diagnosis
(MBD) theory. The MBD theory establishes a logical formalism of the fault localization
problem [Rei87]. The model is presented as a formula that is expressed inappropriate
logic. The formula is not satisfactory because it is an artifact that contains faults.

MBD theory distinguishes between conflict and diagnosis. Conflicts are the wrong
situations that are represented by unsatisfactory minimal subsets (MUS) of the un-
satisfactory formula. Conflicts represent a series of program fragments that contain
errors and should therefore be compared to the sectors identified in the program split
approach. Diagnostics are defects to identify and minimal correction subsets (MCS).
The MBD theory states that the MUS and the MCS are linked by the relationship of
the stroke set. So the problem is to list all MUS or all MCS. Such quantities can be
calculated automatically if the formula is presented in decidable fragments of first-order
theory.

An alternative approach to obtaining MCS has been used in the fault localization
of "Very Large Scale Integration" or (VLSI) circuits [Saf+07]. The procedure reduces the
problem of error localization to the maximum feasibility of the non-feasible formula in
the statement logic and calculates maximum feasible partial quantities (MSS). An MCS
is a complement to one MSS [LS08].

This idea was applied to the problem of locating errors in imperative programs and
was implemented in a tool, BugAssist[JM02]. It uses an iterative location algorithm to
obtain the MCS from which the CSR is calculated. CSR is smaller than with program
cut approaches. However, the algorithm does not guarantee the enumeration of all MSS,
which means that some errors may be overlooked. If multiple fault location passes
are required, BugAssist combines MCS by combining all atomic elements (clauses)
into a single sentence. For example, the set of MCSes {{1, 2, 3}, {4, 5, 6}} becomes

6

2 Related Work

{1, 2, 3, 4, 5, 6}. Such a combination loses information contained in the calculated MCS
because the MCS obtained for the same error-inducing inputs are merged. This makes
it difficult for software developers to debug programs with multiple errors.

The most closely work related to the current research is that of Ball, Naik, and
Rajamani [GSB07], who use multiple calls to a model checker and compare the coun-
terexamples to a successful trace. The faults are those transitions that do not appear in
a correct trace. Our approach is similar: Where is required to comparing safe paths to
failed paths and outputs after analyzing the possible coverage by a specific function, a
potentially ranked list of suspicious program elements.

An alternative approach to reducing the cognitive load of debugging is the use of
delta debugging [Zel02]. Multiple runs are used to minimize the “relevant” part of the
input, and data and control dependency information is used to remove statements that
are irrelevant to the cause of the bug.

7

3 Background

3.1 Automated Software Testing

Software developers spend a lot of time checking the accuracy of the software. Software
testing is the most widely used technique to accomplish this task. Most software test
cases are created manually and may not always cover all paths of software execution.
If important test cases are not executed, there is still the possibility of software errors.
With tools such as Klee and VeriFuzz1, we introduced a test-based tarantula so that
software tests for checking and validation can be automated.

Buggy
Program

Klee or
VeriFuzz

Test
Suites TestCov

Coverage
Statistics

Tarantula

Ranking

Figure 3.1: Workflow of how the test-based Tarantula works in combination with
Klee,VeriFuzz and TestCov

Figure 3.1 shows the workflow of the walking tarantula on TestCov. As we can see,
we first put a buggy program into test-generator, Klee or VeriFuzz which creates the
corresponding test suites. Afterwards we run the output by TestCov[BL19], a tool that
runs the test suite and measures the possible coverage. TestCov creates output files
such as .info files which includes the coverage information for each test case in test
suites and result.json which includes the status of the ran tests, where Returncode gives
the status of the coverage. If a test has returncode = 1, it has hit the error. We use all
this information in our implemented Tarantula Python script in order to automate the
generation of ranking information about possible fault code lines.

1https://gitlab.com/sosy-lab/test-comp/archives-2020/-/tree/master/2020

8

https://gitlab.com/sosy-lab/test-comp/archives-2020/-/tree/master/2020

3 Background

3.1.1 Klee

KLEE [CDE08] is a symbolic execution tool for automatic test generation. It is open
source. It performs a combination of concrete and symbolic execution for C applications
to generate test cases with high line coverage. This tool works with the publicly available
LLVM compiler for GNU C. The source code of an application is first compiled in
bitcode with the LLVM compiler, and then performs symbolic execution of the LLVM
bitcode. KLEE models memory with bit-level precision and uses heuristics to reduce
the number of execution paths to be examined, resulting in increased line coverage.

There are two important goals of KLEE:

1. Hits every line of the program’s executable code.

2. All dangerous operations (dereferences, requests, etc.) to determine if there are
any input values could cause an error.

When the symbolic execution finishes, KLEE uses the STP constraint solver to resolve
the current path conditions and create test cases that follow the same execution path
when running the unmodified version of the source code. This tool has proven to be a
successful approach to automated software testing. KLEE detected 56 fatal errors when
applied to multiple UNIX utility applications. Some of them have been unrecognized
for more than 15 years.

3.1.2 VeriFuzz

VeriFuzz [BMV19] is a coverage-driven automated test entry generation tool. VeriFuzz
based on Gray Box Fuzzing analysis to provide meaningful information about program
behavior extract that can help generate test inputs based on fuzzing to quickly reach
coverage targets. VeriFuzz is based on evolutionary algorithms to generate newer test
inputs from an initial population of test inputs. A key evolutionary algorithm is the
selection of the most suitable candidates from a population and the generation of a
source by applying crossover and mutation operations to them. The newer sources are
checked for their suitability against a target. The population develops by adding the
source of the source to the existing population.

VeriFuzz’s core strength is the ability to find test input that can cause program
execution to quickly reach the points of failure.

VeriFuzz‘s weakness is that the text input that leads to execution reaching a fault
location may not always be recognized because VeriFuzz examines the specific program
paths randomly due to its evolutionary approach.

9

3 Background

3.1.3 TestCov

TestCov [BL19] is a tool for running robust test suites and measuring test coverage in C
programs. TestCov is based on the existing benchmarking tool BenchExec, it uses an
overlay file system and a Linux control group to protect the file system from changes
and prevent unexpected resource usage during test runs.

TestCov takes as input the C-Program under test, the coverage criterion to verify and
the test set, and creates an executable program that can be used to feed the tests to the
program under test, coverage statistics about the test set and a set of tests that achieve
the same coverage as the original set of tests. TestCov reads and writes test suites in
XML-based exchange format for test suites, which consists of two parts: A metadata
file that describes the test suite and a set of test case files, each defining a single test
case.

3.2 Automated Software Model Checking

A complementary approach to testing is software model checking (SMC). This has
many advantages over testing: it can firstly (symbolically) explore all of the program
executions, and consequently, it can prove the absence of bugs and find them. The
disadvantage of model checking is that it is generally more complex to define a
specification for model testing than for a test case (for similar problems). This is
because specification languages must provide the ability to define expected results
for different program execution paths. In contrast, a test case may only consider one
program execution path [Cla08]

Model checking is a very effective technique for verifying temporal specifications
and the correct functioning of hardware and software systems.

The essential idea behind model checking is shown in Figure 3.3.
A model-checking tool accepts model/program and system property (specification)

that the final system is expected to satisfy. The tool then outputs "yes" if the given
model satisfies the given specifications, or otherwise generates a counterexample. The
idea is that by ensuring that the model satisfies enough system properties, confidence
in the correctness of the model is increased. Model-checking is therefore considered to
be a very powerful approach to finding a large number of bugs [JM07].

Examples of properties are simple assertions, (e.g., “the variable x is positive when-
ever control reaches l”), global invariants, (e.g., “each array access is within bounds”),
or termination properties, (e.g., “the program terminates on all inputs”). In general,
properties are classified as safety and liveness:

1. Safety: stipulates that nothing bad will ever happen.

10

3 Background

2. Liveness: stipulates that something good will eventually happen.

One way to check for safety is by using a reachability analysis, which consists of
deciding whether a given system configuration (a.k.a. target) can ever be reached from
a given initial configuration.

All of this means that model checkers are a powerful technique for applying many
fault-localization algorithms, such as Tarantula, set union, and set intersection or even
nearest neighbor [JH05].

Model
Checking

Tool

Specification (system
property)

Model/Program

Answer: Yes, if the model
meets the specification.
Otherwise generate
counter-example

Figure 3.3: The model checking approach

3.2.1 Simple Programs and Control Flow Automata (CFA)

To understand how the Tarantula algorithm can be applied to the abstract reachability
graph, we need to examine how source code can be represented as a graph.

The internal representation of the model (the program to be verified) in CPAchecker
is a control-flow automaton (CFA) [Bey+09].

We limit the presentation to a simple imperative programming language, where all
operations are either assignments or assume operations, and all variables range over
integers.

A CFA A = (L, l0, G) consists of a set L of control (program), an initial location l0 ∈
L models the program entry point, and a set G of edges between the nodes. Each edge
g ∈ G is a tuple (l, Ops, l′), where l, l′ ∈ L are control locations (nodes). Each edge is
identified with operation Ops that is executed when control flows from one program
location to another. The sets of nodes and edges naturally define a directed labeled
graph, called the control-flow (CF) of the program.

If a node has no successors, it is called "final" and represents a program exit. And if a
node is an error location this is called target program location le ∈ L. A path σ [BLW15]

11

3 Background

is a sequence 〈(op1, l1),, (opn, ln)〉 of pairs of an operation and a location. The path
σ is called program path if for every i with 1 ≤ i ≤ n there exists a CFA edge g =
(li−1, opi, li) and l0 is the initial program location, i.e., the path σ represents a syntactic
walk through the CFA.

Example 1 (Simple Program and Control-Flow Automaton) Figure 3.4 shows an
example C program and the corresponding CFA. The CFA has ten program locations
(Nodes) L = {3,4,5,7,8,10,11,13,15,16}, such that l0 is the initial location of this program
and contains three variables (X = {num1, num2, result}), such that num1, num2 are
both initialized to non− deterministic values and result initialized to 0. At line10 num1

and num2 are checked for equality. If the variables are equal, control flows to the error
location 11, otherwise flows to the exit location 16.

1 int main()
2 {
3 int num1 =_VERIFIER_nondet_int ();
4 int num2 =_VERIFIER_nondet_int ();
5 int result = 0;
6

7 if(num1 > num2){
8 result = num1;
9 }

10 else if(num1 == num2){
11 ERROR:__VERIFIER_error ();
12 }else{
13 result = num2;
14 }
15 return 0;
16 }

3start

4

5

7

10
8

11
13

15

16

num1 := nondet_int()

num2 := nondet_int()

result := 0

[num1 > num2][!(num1 > num2)]

[num1 == num2]

ERROR

[!(num1 == num2)]

result = num2

return 0

[result = num1]

Figure 3.4: A simple C program (Left) and a CFA representing it (Right)

3.2.2 Concrete State

A concrete data state of a program [BLW15] is a variable assignment cd : X → Z, which
assigns to each program variable an integer value. The set of integer values is denoted
as Z. A concrete state of a program is a pair (l, cd), where l ∈ L is a program location,
and cd is a concrete data state. The set of all concrete states of a program is denoted
by C, a subset r ⊆ C is called a region. A region of concrete states that violate a given
specification is called target region σ.

12

3 Background

3.2.3 Abstract State and Abstract Domain

Abstract state: Abstraction uses abstract states domain instead of concrete states do-
main and checks the properties the domain of the abstract states. It is probably the most
significant technique for reducing the complexity of model checking. This is usually
done by a method called data abstraction. The key point is to construct a function
mapping concrete state to abstract states.

Abstract domain: The main problem with the program semantics is that there are
potentially infinitely many data states and the program paths cannot be analyzed indi-
vidually. Analyzing the set of program paths together (abstract domain) is a solution
for that:

1. Group concrete states⇒ abstract states.

2. Define (abstract) semantics for abstract states.

The abstract domain [BHT07] D = (PC, ε, J�K) is defined by a set PC of concrete
states, a semi-lattice ε = (E,>,v,t) that describes the abstract states and their possible

relationship to each other, and a concretization function J�K : E →
C
2 assigns to each

abstract state its meaning, i.e., the set of concrete states that it represents.
A semi-lattice ε = (E,>,v,t) consists of a set E of elements, a top element > ∈ E, a

partial order v⊆ (E× E) and the total function t : (E× E) → E called join operator.
The elements e ∈ E of an abstract domain are called abstract states.

3.2.4 Symbolic Execution

The tool which is implemented in CPAchecker for symbolic execution called CPA-
SymExec [BL18] and is based on abstraction and counterexample-guided abstraction
refinement (CEGAR) [Cla+03], and uses a constraint-interpolation approach to detect
symbolic facts. The symbolic execution is a static program analysis [BL18] that uses
symbol values as input values instead of actual data and to display the values of the
program variables as symbolic expressions. As a result, the output value calculated by
the program is expressed based on the value of the input symbol.

The state of a symbolically executed program includes the value of the program
variable (symbol), the path condition (PC) and the program counter. Path conditions are
Boolean formulas (without quantifiers) for symbolic input. Accumulates the restrictions
the input must meet for the execution to follow a particular related path.

13

3 Background

3.2.5 Predicate Abstraction and Predicate CPA

Predicate abstraction [GS97; BWK12] is an important method for checking software.
It abstracts data by tracking only certain predicates on the data. Each predicate is
represented in the abstract program by a Boolean variable while the original data
variables are removed. The verification of a software system with predicate abstraction
consists of the construction and evaluation of a system with finite states, which is an
abstraction of the original system with respect to a series of predicates. When model
checking of the abstract program fails it may produce a counterexample that does not
correspond to a concrete counterexample. This is usually called a spurious counterexample.
When a spurious counterexample is encountered, refinement is performed by adjusting
the set of predicates in a way that eliminates this counterexample. The abstraction
refinement process has been automated by the Counterexample Guided Abstraction
Refinement paradigm or CEGAR for short. In CPAchecker the predicate uses the
predicate abstraction called predicate CPA [BGS; BHT08] to compute abstract states
from a formula φ and a set π of predicates. The cartesian predicate abstraction (φ)C

π

is used in predicate CPA and is the strongest conjunction of predicates from π that is
implied by φ.

The predicate CPA P = (DP, Π
P

, P, mergesep, stopsep, prec) consists of:

1. The Abstract domain DP = (C, ρ, J�K)

2. The set of precisions ΠP = 2p models a precision of an abstract state as a set of
predicates

3. The transfer relation r
g
 P (r‘, π)

4. Merge operator: there are two options at predicateCPA:

• mergesep(r, r‘, π) = r‘ for all r, r‘ ∈ ρ. This is that we used in our evaluation,
because it considers each path of CFA separately Figure 6.3b.

• The other merge operator is the default merge which combines two paths,
or makes two possible paths into a single path Figure 6.3a

5. Termination check stopsep defind as stopsep(r, R, π) = ∃r‘ ∈ R : r v r‘

6. The presicion prec defined by: prec(r, π, R) = (r, π)

14

3 Background

3.2.6 Abstract Reachability Graph (ARG)

In this section, we explain what ARG is and what this graph consists of.
If the number of states is large, it can be very difficult to determine whether such

a program is correct or if it’s possible to extract potential error paths. For programs
with infinite states, the symbolic reachability analysis cannot be ended or it can take an
excessive amount of time or memory to complete. Abstract model checking trades off
precision of the analysis for efficiency. When checking abstract models, a reachability
analysis is carried out for an abstract domain, which uses some abstract semantics of the
program to collect some, but not necessarily all, information about an execution. Proper
choice of the abstract domain and semantics ensures that the analysis is sound (i.e.
proving the safety property in the abstract semantics implies the safety property in the
original, concrete, semantics) and efficient.[CGL83] This is often done by construction
of an abstract reachability graph (ARG); predicate abstraction is one of the preferred
abstract domains. The ARG [BDW17] represents unrolling of the control-flow of the
program.

The definition of ARG looks like the following:
Let P = (L, l0, G) be a CFA and A = ((C, (E,v,t,>), J�K),)

An ARG for P and A is ARG = (N, root, $), such that
For some abstract domain with abstract states N ⊆ E, root ∈ N is an initial abstract

state, $ ⊆ (N × G× N) and fulfills two very important properties:

1. Rootedness: Root considers all initial states i.e., {c ∈ C|c(pc) = l0} ⊆ [root]

2. Completeness: No concrete successor is forgotten: ∀n ∈ N, g ∈ G :

(∃c, c′ ∈ C : c ∈ JnK∧ c
g−→ c′)⇒ (∃(n, g, n′) ∈ G : c′ ∈ Jn′K)

The nodes of an ARG are abstract states that contain more domain-specific data such as
control flow location, call stack information, and a path formula that represent the state
of the data. The edges of the ARG represent the program operations that correspond to
the edge that was followed by the CFA.

15

3 Background

0@N1start

2@N7

3@N9 4@N10

6@N14 5@N13

7@N17
Target State

8@N8

Variables Initialization line1−8

num1 > num2 line10 !(num1 > num2)line10

!(num1 == num2) line12 num1 == num2line12

result = num2

line16

ERRORline13

Figure 3.6: ARG construction by execution of predicate analysis by CPAchecker for the
example program shown in Example Figure 3.4. The red rectangle is target
state and yellow states (3@N9 and 8@N8) are safe states.

Figure 3.6 is an example ARG for the domain of predicate analysis. In this paper we
differ from two different nodes, target state/error state (red-colored node): is the node
which present the mouth of the error path (by CPAchecker generated counterexample)
and safe states (yellow states): are the nodes which presents the leaves of the safe paths.

3.2.7 Counterexample

A major strength and one of the most important features of model checking is the
ability to generate counterexamples in case a property is violated. The counterexample
[Gen+18] details why the model doesn’t satisfy the specification. By studying the
counterexample, we can pinpoint the source of the error in the model and providing a
user with information on how to debug their system and/or specification, correct the
model, and try again.

The Figure 3.8 is an example of a generated counterexample in ARG of Figure 3.6
by CPAchecker. The abstract state "Error" that belongs to the error location is found
and the concrete program path that leads to this state is reconstructed from the ARG
and checked for feasibility. If the error path is feasible, the program is unsafe and
the analysis terminates. Otherwise, the error path is infeasible, and the precision
of the analysis will be refined to be precise enough to eliminate this infeasible error
path from the ARG. Then the analysis is restarted, and the steps are repeated until

16

3 Background

either a concrete error path is found, the generated counterexample report will include
information about the program path leading to the error - the error path or the abstract
model (and thus the program) is proven safe. In this paper, we considered this error
path σ = 〈(op0−→ ...

opn−1−−−→)〉 as failed path and its leaf as target state opn−1 ∈ σ.

0@N1start

2@N7

3@N9 4@N10

6@N14 5@N13

7@N17
Target State

8@N8

Variables Initialization line1−8

num1 > num2 line10 !(num1 > num2)line10

!(num1 == num2) line12 num1 == num2line12

result = num2

line16

ERRORline13

Figure 3.8: ARG construction with a generated colored with red counter example by
execution of predicate analysis by CPAchecker for the example program
shown in Example Figure 3.4. The red rectangle is target state and red path
is the error path and yellow states (3@N9 and 8@N8) are safe states. and
green paths are safe paths (Starts from root and ends at safe states).

17

3 Background

3.2.8 CPAchecker

CPAchecker [BK11] is a configurable software verification [BHT07; CW09] tool that ex-
presses different approaches to program analysis and model checking in a single
formalism. The main algorithm is configurable to perform a reachability analysis for
any combination of the existing configurable program analysis (CPA). One application
of CPAchecker is the checking of Linux device drivers.

Ranking

Parser &
CFA Builder Algorithm

Tarantula
CPA

CEX
Check

CEGAR

Symbolic
Execution

Specification

Source Code

Interpolation
Interface

.... Math
SAT

SMT
Interpol

Java
BDD

BDD
Interface

Predicate
CPA

.....

Verification
Result

False

True

CEX

Figure 3.10: CPAchecker Architecture, after Beyer and Keremoglu [BK11]

The Figure 3.10 above is the overview of CPAchecker’s architecture. The central data
structure consists of a series of control-flow automata (CFA). Before a program analysis
starts, the input program is transformed into a syntax tree, and further into CFAs. The
current version of CPAchecker uses the parser from the CDT2, a fully functional C and
C++ IDE plug-in for the Eclipse platform.

The framework provides interfaces to SMT solvers and interpolation procedures,
such that the CPA operators can be written concisely and conveniently. From the
picture, we know that they use MathSAT as an SMT solver and CSIs at and MathSAT
as interpolation procedures. They also use JavaBDD as a BDD package and provide
an interface to an Octagon Library as well. Important to mention that CPAchecker
generates HyperText Markup Language (HTML) reports that represent the verification
outcome. A Report.html file is generated if there is no error found by the verification
run and a Counterexample.html file is generated for each counterexample found by the
system. If a counterexample is found by CPAchecker, the report will also include a
table-like representation of the error path, the path that leads to the error as shown in
the Figure 3.8. Next to the CPA algorithm, we can see the Tarantula algorithm.

2Available at http://www.eclipse.org/cdt

18

http://www.eclipse.org/cdt

3 Background

3.3 Fault Localization

Fault localization techniques aim to reduce the cost of debugging by automating the
process of searching for the location of the fault in the program. In this section we
first discuss some aspects of fault localization then we explain the Tarantula algorithm
based on an example. Finally, the problem with this approach.

3.3.1 Preliminaries

3.3.1.1 Failures, Errors, and Faults

As defined in [Avi+04], we use the following terminology. A failure is an event that
occurs when delivered service deviates from the correct service. An error is a system
state that may cause a failure. A fault is the cause of an error in the system. To illustrate
these concepts, consider the C function in Table 1.1. It is meant the maximum between
two integer numbers, then returns the largest number between them. There is a fault
(bug) in the equality statement: If the two integer numbers given by the user are
equal, e.g. 3 and 3, which leads the execution to __VERIFIER_error(). In this case,
the check is true and a failure occurs, and an error occurs after the code inside the
conditional statement is executed, num1 == num2. Therefore, to detect and remove
existing and potential errors (also called ‘bugs’) in a software code that can cause it to
behave unexpectedly or crash, programmers mostly use manual debugging process.

3.3.1.2 Software Debugging

All definitions in this section are provided by the Glossary of computer science [90].
The test phase is defined as the process of exercising or evaluating a system or system
component manually or automatically to check whether it is fulfills specified require-
ments or to identify differences between expected and actual results. The test phase
includes different types of tests. Unit testing, integration tests and Acceptance tests are
better known.

Unit testing: is a test of a single program module that can contain multiple functions
or procedures in one isolated environment (i.e., isolated from all other modules) to see
if the device meets the specified device design specification.

Integration tests: Test the interfaces between modules to determine if the system
behaves like the specified design Specification.

Acceptance test: Is the validation of the system or program to the Requirements
specification.

If failures are found during testing, the faults that cause the failures must be corrected.
This activity is called debugging. Debugging can be seen as three successive activities:

19

3 Background

(1) failure localization, during this process the failures which have been detected in
the testing are reproduced. (2) fault localization: The location of the fault in the target
program is identified. (3) fault correction: The fault is corrected.

3.3.1.3 Code Coverage

To detect and locate faults anywhere in the program, any diagnosis technique requires
each statement to be covered by the tests.

Code coverage is a measure that describes the extent to which the source code of a
program is tested. It is a form of white box testing that finds areas of the program that
are not practiced by a group of test cases. It also creates some test cases to increase
coverage and define a quantitative measure of code coverage.

In this work we will use the branch coverage.

Branch coverage. Branch coverage is a code coverage measure, which aims to en-
sure that each branch from each decision point (e.g., if statements, loops) is executed at
least once during testing. (It is sometimes also described as saying that each branch
condition must have been true at least once and false at least once during testing.) It
helps in validating all the branches in the code making sure that no branch leads to
abnormal behavior of the application.

The formula to calculate Branch Coverage:

Branch Coverage =
Number of Executed Branches
Total Number of Branches

(3.1)

3.3.1.4 Program Entity

A program entity [SCK17] is a part of a program. It comprises any granularity of a
program, from a statement to a subprogram. Program entities include statements, blocks,
branches, predicates, definition-use associations, components, functions, program elements, and
program units.

3.3.2 Ranking Metrics

Ranking metrics [SCK17] are utilized in fault localization to calculate the chance that
program entities could be faulty. The studies on fault localization use special phrases to
consult ranking metrics: technique, threat assessment formulation, metric, heuristic, ranking
heuristic, coefficient, and similarity coefficient.

Several ranking metrics were suggested for error localization, which was created or
adapted from other areas. Everyone has their specific characteristics.

20

3 Background

In software development, a test suite is a collection of test cases that are intended
to be used to test a software program to show that it has some specified set of behaviors.

Tarantula. A fault localization technique with Tarantula [JH05] takes as input a faulty
program and a set of test cases with at least one failed test, and it generates as output a
potentially ranked list of suspicious program elements.

The Idea behind Tarantula is, that when executing a test suite, execution events that
correlate to errors are more likely to be the cause of the error. In other words, events
that mostly occur in failed test cases but rarely in passed test cases are more likely to be
the fault. This conclusion examines the event similarities between the failed test cases
and distinguishes these similarities from the events that occur in the passed test cases.

The suspiciousness of a coverage entity e is defined as the following equation:

suspiciousnessTarantula =

(
Failed(s)

TotalFailed

)
(

Failed(s)
TotalFailed

)
+

(
Passed(s)

TotalPassed

) (3.2)

Where Passed(s) is the number of passing executions that execute statement(s),
Failed(s) is the number of failing executions that execute statement(s), TotalPassed
is the total number of passing test cases, and TotalFailed is the total number of failing
test cases.

Ochiai. Ochiai differs from Tarantula in that the lack of a statement is taken into
account in the case of failed runs. Ochiai metric [Ali12] defines the suspiciousness of a
statement (s), as follows:

suspiciousnessOchiai =
Failed(s))√

TotalFailed ∗ (Failed(s)+ Passed(s)))
(3.3)

Similar to the Tarantula algorithm, the Failed(s) is the number of failing test cases
which execute s, Passed(s) is the number of successful test cases that execute, and
TotalFailed is the number of failing test cases in the test suit. Unlike Tarantula, Ochiai
does not require that a passed case should exist since the denominator of the equation
will not be divided by 0. Therefore, this technique is considered an improvement for
Tarantula.

DStar. DStar has the same variables in its suspicion equation that have the same
explanation as the other mentioned techniques.

21

3 Background

The function is defined as follows:

suspiciousnessDStar =
Failed(s)δ

Passed(s) ∗ (TotalFailed− Failed(s))
(3.4)

For the variable δ > 0. We used δ = 2. This is the most thoroughly researched
value that has been experimentally proven and is the best case where DStar can work
efficiently [Won+14].

22

4 Theoretical Contributions

In this chapter, we explain in detail and theoretically which classes and methods we
used in the framework and in TestCov as contributions.

4.1 Contribution in CPAchecker

CPAchecker is a framework and tool for formal software verification, and program
analysis, of C programs. When executed, CPAchecker performs a reachability analysis,
i.e., it checks whether a certain state, which violates a given specification, can potentially
be reached.

However, the most difficult step was to apply an algorithm that was developed for
testing on ARG. We, therefore, had to define what should be a pass case and what
should be a fail case.

We will now explain the most important classes of the implementation:
Pass/Fail Case. Unlike the test-based algorithm, we used in CPAchecker the ARG to
distinguish the fail from pass cases. Ranking Metrics use the information on ARG such
as the pass/fail information for each path, the CFAEdge that were executed by each
path (e.g. statements, branches, methods) and the source code for the program.

Each safe/error path consists of a series of control flow automaton edges (CFAedge)
that describe the traces of the error/safe paths from the root to the target/safe state.
Each CFAedge is an error/safe edge and contains the code line number from the source
code and between which nodes the edge is located.

Both pass and fail-case classes have a very important verification method, which is
used to check whether a safe/fail path is generated during the CPAchecker analysis
since it is known that some ranking techniques such as Tarantula or DStart ensure at
least one safe one Path and an error path to need to work. Otherwise, ArithmeticExcep-
tion will be thrown since divided by zero will be possible.

23

4 Theoretical Contributions

• Fail Case: In our implementation, the fail case contains all error paths that start
from the root and end in the target state. For example from the ARG in the
Section 3.2.7 we can see the error path as the following set of CFAedges:

1

2 [[line 10: N16 -{[!(num1 > num2)]}-> N19 , line 12: N19 -{[num1 == num2
]}-> N22 , line 13:N4 -{Label: ERROR}-> N5]]

Figure 4.1: All edges in error path. Contains code line numbers and node identities
and the descriptions which presents the states.

• Pass Case: The pass case in other hand contains all safe paths, starts from root
and end to "safe states" (not target state and is leaf).

Fault Localization Ranking. After getting all information about both cases and the
coverage. The information about the coverage will be then stored in a key-value data
structure and finally the suspicious will be calculated by the following equation:

Let us take the function of Tarantula algorithm Table 1.1. We have to redefine the
function by replacing fail test case by errorPath and safe test case to sa f ePath and so
for all other ranking metrics as following:

suspiciousness =

(
errorPath(s)

totalErrorPaths

)
(

errorPath(s)
totalErrorPaths

)
+

(
safePath(s)

totalSafePaths

) (4.1)

Coverage Information. Coverage information is a metric that determines how often a
CFAEdge was successfully visited by a safe/error path.

This can help us to understand how much of the source code is tested. It’s a very
useful metric that can help us to assess the quality of paths of ARG.

24

4 Theoretical Contributions

Table 4.1: Example of how the CFAEdges are covered by Safe(S)/Error(E) paths. The
number after S or E means how many time is the corresponded CFAEdge
covered by which kind of path

CFAEdge Coverage

(num1>num2) ((S,1),(E,0))
[!(num1>num2)] ((S,1),(E,1))
[!(num1==num2)] ((S,1),(E,0))
((num1==num2) ((S,0),(E,1))
(result=num2) ((S,1),(E,0))
ERROR ((S,0),(E,1))

The class has to be initialized with failedcase and shutdownNotifier.

• FailedCase: is class attribute is necessary because we need to use the method
existsErrorPath More details on pseudo-code can be found in the upcoming
Section 5.1.2.

• ShutDownNotifier: is designed for operations where you think that they could
take longer, it should hand over the shutdown notifier and check regularly
whether it has been activated - e.g. at the beginning of the loop of an algorithm.

Faults Ranking. Since TestCov does not provide CFAEdges as output, so that we
can compare test suite generators with the ranking algorithms in the evaluation, but
we only get coverage statistics in the art of code line numbers. We have sorted and
summarized the CFAEdges in CPAchecker according to their code line number so that
we can carry out a valid evaluation between the techniques.

Each line number has its corresponding maximum suspicion rating between all
suspected CFAEdges, the corresponding line number, and a list of hints that represent
all fault contributions. This is explained in detail later in this chapter.

For the output, we have used the fault data structure [Ket20] where the algorithms
are embedded in a statistics structure that has been created explicitly for each fault
localization algorithm. The structure is designed to be easily usable and extendable
in any manner and to be easily tailored to all sorts of fault localization algorithms.
Each time a counterexample is found, CPAchecker creates a visible record of the use
of HTML, JavaScript and, CSS. The record already incorporates a visual illustration of
the CFA, enables get entry to the supply code, and lists all applicable edges from the
counter pattern in the correct order from the beginning of this system to the error.

We will now explain the most important classes of the data structure in which we
were able to summarize CFAEdges under their code line numbers:

25

4 Theoretical Contributions

FaultLocalizationFault. This class allows us to call the most important methods.
This has to be initialized with the default constructor. The methods in this class are:

• sumUpFaults: This function summarized the CFAEdges into a list of FaultInfor-
mation which is already explained at the beginning of this section.

• faultsDetermination This function converts faultinformation into a list of errors
for use as input in the fault data structure. Besides, the function sorts the errors
in reverse order so that the code line number with the highest suspicion is sorted
first.

4.1.1 Example of Ranking Metric on ARG with Tarantula

To illustrate how the Tarantula technique with CPAchecker works, we applied our
technique to the same faulty C program in Section 3.3.2. And as we can see in the
Table 4.2 to the right of each Code Line is a set of three paths: two are safe and one is an
error path which represents the counterexample, their coverage is shown by the black
dots. To the right of the paths, column is one column labeled suspiciousness shows the
suspicious score that the technique computes by the redefined equation Equation (4.1)
for each statement.

Table 4.2: Example of Tarantula technique in CPAchecker using ARG
Possible ARG Paths

Code Line
path1 path2 path3

Suspiciousness

3: int num1 • • • 0.5
4: int num2 • • • 0.5
5: int result • • • 0.5
7: if (num1 >num2) • 0.0
8: result = num1; • 0.0
10: else if (num1 == num2) • 1.0
11: ERROR:__VERIFIER_error • 1.0
12: else • 0.0
13: result = num2 • 0.0
Safe/Error Status S S E

If we take a closer look at both tables, we can see the difference that ARG to CFAEdges
can give us more precise information about where the fault is located. In contrast to the
test-based technique, which covers the entire line of code, so we do not know exactly
what could be the cause of the error. Besides, the suspiciousness is better distributed,
and we have fewer cases than the test-based tarantula.

26

5 Implementation of Tarantula Algorithm

In this section, we explain the most important algorithms which helped us to apply
Tarantula algorithm on ARG.

5.1 Implementation in CPAchecker

5.1.1 All Possible Paths

Since there was no specific function in CPAchecker where you can get all paths to form
root to a specific state (whether error or safe state), we had to implement an algorithm
to returns all needed paths. The algorithm takes the following inputs:

1. reachedSet: is a ReachedSet data type which is an interface representing a set of
reached states, including storing a precision for each one. In all its operations it
preserves the order in which the state was added. All the collections returned
from methods of this class ensure this ordering, too.

2. chosenState: is an ARGstate data type which is a class representing the state of
the Abstract reachability graph (ARG).

As output, we expected a set of ARGPath from ARGPath data type and which is a
class that contains a non-empty path through the ARG consisting of both a sequence of
states and the edges between them.

We need to remember all the paths that we had to traverse in all the different ways
on the graph, therefore we need a path list. For every path, we will make it longer by
one if it has one parent, and if it has two or more we will duplicate this list and add

27

5 Implementation of Tarantula Algorithm

the parent to each one like in Algorithm 1.

Algorithm 1: findAllPaths algorithm for finding all error/safe paths

1 function findAllPaths (reachedSet, chosenState);
Input : reachedSet is set of all ARGstates and chosenState is the selected state

whether safe state or error state and has datatype ARGstate
Output : A set of all paths as ARGPath

2 root←− f irstState o f reachedSet;
3 states←− empty list;
4 results←− empty set o f state lists;
5 paths←− list o f lists o f states;
6 add chosenState to states;
7 add states to paths;
/* This is assuming from each node there is a way to go to the start

*/
/* Go on until all the paths got the start */

8 while the paths is not empty do
/* Expand the last path */

9 curPath←− remove the last element o f paths;
10 if no more to expand then
11 results←− curPath ;
12 continue
13 end
14 foreach parentElement ∈ parntes of curPath do
15 tmp←− copy curPath;
16 tmp←− parentElement;
17 paths←− tmp;
18 end
19 end

Time Complexity: We should think about the time complexity with terms of E and
V since the algorithm is (Breadth-first search) BFS which is a graph algorithm. Usually,
the time complexity of BFS is O(E + V) but now we need to save all the different paths
O(E ? V) in the complexity.

28

5 Implementation of Tarantula Algorithm

5.1.2 Coverage Information

We implemented an Algorithm called "calculateCoverageInformation" which counts
how many times a safe/error path has visited each CFAEdge as already explained
theoretically in Section 4.1. The algorithm takes only one input and its ARGpath and
outputs a Map of CFAEdge as key and "TarantulaCasesStatus" as its corresponding
value.

The "FaultLocalizationCasesStatus" is a data structure that includes two integer
values: failedCases represent the number of CFAEdge that is visited by an error path
and passedCases represent the number of CFAEdge that is visited by a safe path.

Algorithm 2: calculate the coverage information of each CFAEdge in the paths

1 function calculateCoverageInformation (paths);
Input : paths is set of all ARGpaths both safe paths and error paths
Output : coverageInfo: A Map data structure of CFAEdge and

TarantulaCasesStatus
2 coverageIn f o ←− empty Map;
3 foreach path in paths do
4 foreach cfaEdge in the f ull path o f paths do
5 caseStatus← empty TarantulaCaseStatus;
6 if c f aEdge not in coverageIn f o then
7 coverageIn f o ←− key : c f aEdge and Value : new empty

TarantulaCaseStatus;
8 end
9 caseStatus← element at index o f c f aEdge f rom coverageIn f o

10 if path is error path then
11 Increase the failedCase of caseStatus
12 else
13 Increase the passedCase of caseStatus
14 end

/* skip 0 line number */
15 if line number of cfaEdge is not 0 then
16 coverageIn f o ←− key : c f aEdge and Value : caseStatus;
17 else

18 end
19 end
20 end

29

5 Implementation of Tarantula Algorithm

Time Complexity: The outer loop executes N times. Every time the outer loop
executes, the inner loop executes M times. As a result, the statements in the inner loop
execute a total of N * M times. Thus, the total complexity for the two loops is O(N2).

5.1.3 Options

We added one option that can be set to select a ranking metric algorithm:
faultlocalization.type The option accepts three inputs: “TARANTULA”, “OCHIAI”

and “DSTAR”. Via this option the algorithm for the further analysis is set. Each one
executes its corresponding ranking strategy. If this option is not set, we run TARAN-
TULA by default.

Example Configurations We give example configurations for each of the implemented
algorithms. The option alwaysStoreCounterexample is required to perform error local-
ization. The cpa.predicate.merge is required to separate the paths. With The option
-[configuration analysis e.g. predicateAnalysis] we can choose configuration analysis e.g.
Predicate or symbolic execution. The following commands can be used to locate errors
using the implemented ranking algorithms:

TARANTULA:
-[configuration analysis e.g. predicateAnalysis]
-setprop analysis.algorithm.FaultLocalization=true
-setprop analysis.alwaysStoreCounterexamples=true
-setprop faultlocalization.type=TARANTULA
-setprop cpa.predicate.merge=SEP
<path to program>
DSTAR:
-[configuration analysis e.g. predicateAnalysis]
-setprop analysis.algorithm.FaultLocalization=true
-setprop analysis.alwaysStoreCounterexamples=true
-setprop faultlocalization.type=DSTAR
-setprop cpa.predicate.merge=SEP
<path to program>

30

5 Implementation of Tarantula Algorithm

OCHIAI:
-[configuration analysis e.g. predicateAnalysis]
-setprop analysis.algorithm.FaultLocalization=true
-setprop analysis.alwaysStoreCounterexamples=true
-setprop faultlocalization.type=OCHIAI
-setprop cpa.predicate.merge=SEP
<path to program>

5.2 Implementation in TestCov

In this section, we explain the idea of our implementation of finding faults in source
code from coverage information of TestCov.

Information Extraction. Since most fault localization algorithm with ranking metrics
has four important inputs e.g. TotalFailed, TotalPassed, Passed(s) and Failed(s). We have
to extract the important information from the output of TestCov. As mentioned in
Section 3.1.3 the .info files include the failed cases and passed cases.

The python Script has a very important method, namely data_extrac This function
Extracts data from all info files in the ‘in f o_ f iles‘ folder and ‘results.json‘ as well and
combine the result in the ‘output_tar/result_tar.in f o This result is then sorted in a
collection data structure called OrderedDict. This is then the input data to tarantula
suspicious function where the four already mentioned parameters are defined.

The structural design with TestCov is implemented in such a way that it can be easily
used in every possible way and allows easy adaptation to find errors in all types of test
suites that are generated by each test suite generator.

31

6 Experimental Evaluation

In this section, we show the capabilities of Tarantula in CPAchecker with some exper-
iments made on a benchmark provided by Bekkouche and sv-benchmarks. The section
concludes with a discussion of the obtained results and lessons learnt.

Table 6.1 shows the types of errors that our benchmarks contain. This type of bug is
taken from BugAssist’s evaluation [JM02].

All the experiments were carried out using an Intel Core i7, 2.4 GHz with 8 GB of
RAM on the operating system macOS High Sierra version 10.14.6 using Ubuntu20
virtual-Box version 6.1, base Memory 4869 MB. All data of these experiments are stored
and available in GitLab1. The CPU and Wall times are measured by BenchExec version
2.6 2 a modern framework for reliable benchmarking and resource measurement, to
run the experiments, and verification witnesses to validate the verification results. It
measures CPU time, wall time, and memory usage of a tool, and allows specifying
limits for these resources.

For all experiments, we have set for each technique 900 seconds for the CPU time
limit. Within this, the technique should deliver results, otherwise, we consider it

“timeout“, and we do not have an explicit memory limit, but it is limited by the memory
of the virtual machine.

1https://gitlab.com/Schindar/fault_localization_tarantula/-/tree/master/evaluation_
results

2https://github.com/sosy-lab/benchexec/releases/tag/2.6

32

https://gitlab.com/Schindar/fault_localization_tarantula/-/tree/master/evaluation_results
https://gitlab.com/Schindar/fault_localization_tarantula/-/tree/master/evaluation_results
https://github.com/sosy-lab/benchexec/releases/tag/2.6

6 Experimental Evaluation

6.1 Benchmark

Benchmarks play an important role in evaluating the efficiency and effectiveness of
solutions to automate several phases of the software development life cycle.
The benchmark provided by Bekkouche3 consists of several C programs of 15 to 100
lines of code. It includes programs with arithmetic operations, and the faults in these
programs were injected specifically for experimenting with automatic fault localization
methods. To expand our benchmarks with more kinds of programs, we add one section
of sv-benchmarks to this set, which include while, for loops, to cover as much as
possible of type of errors.

We also use these benchmarks and replace the function assertion sniper_assert by the
function used by CPAchecker __VERIFIER_assert and replaced the cover assumption
by non-deterministic values with the function __VERIFIER_nondet_int() to cover all
possible options.

The SV-benchmarks structure was developed for the International Competition on
Software Verification SV-COMP.4 We take some safes versions and compared them to
the unsafe versions and considered the difference between them as a bug and marked
this in the program to check the effectiveness of the Tarantula.

Table 6.1: Overview of used type of error in bekkouche benchmark and sv-benchmark
Error Type Explanation for the error

assign Wrong assignment expression

op
Wrong operator usage
e.g.: <=instead of <

init Wrong value initialization of a variable
branch Error in branching due to negation of branching condition
assign-for-loop Wrong assignment inside loop
if-for-loop Wrong check inside loop
add-unecessary Wrong assignment which should be removed
assign-while Wrong assignment inside while loop
index-for-loop Use of wrong array index
index-while Use of wrong array index inside while loop

In addition, we add more examples to the Bekkouche set called MiddleNumber and
maxLoop. And inject those manually with bugs using the same principle of Bekkouche.
We used this time the equality technique between the correct version and the incorrect
version to confirm the correctness of the output.

__VERIFIER_assert(wrongResult == correctResult).

3http://capv.toile-libre.org/Benchs_Mohammed.html
4https://github.com/sosy-lab/sv-benchmarks

33

http://capv.toile-libre.org/Benchs_Mohammed.html
https://github.com/sosy-lab/sv-benchmarks

6 Experimental Evaluation

Since our real goal is to find the bug, so we need the unreach-call specification,
therefore we ran symbolic execution and predicate-merge-sep with the property unreach-
call by the command line config/properties/unreach-call.prp.

6.2 Evaluation Metric

There are various metrics to evaluate the fault localization techniques, we developed in
this section our evaluatoin metric which helped us to evaluate all available techniques
in this study which is based on ranking metrics.
Our evaluation metric is called omega. Where we look at the accuracy and efficiency
of each fault localization technique when the developer tries to use the technique to
analyze his code and find bugs accordingly. With omega-percentage, we can determine
which fault localization technique is "better" than others. Therefore, consider the worst
case, leaving no gaps in the evaluation.
Ω is the percentage of the measure worst-case-step divided by the total code lines of
the corresponding program and it indicates how many lines of code, its suspiciously
higher or equal to the suspect of the bug location, so the lower the omega result Ω the
better the technique.
The worst-case-step is defined as the following:

worst-case-step:=|{codeLine;rank(codeLine)<=rank(faulty codeLine) && codeLine != faulty codeLine}| (6.1)

Equation (6.1) shows the worst case step definition. This is a cardinality of a set of
code lines, whose rank is less than or equal to the rank of the actual error code line and
this set should not contain any faulty code line.

6.2.1 Example

Let us consider the ranking result in Table 6.2 of the program while_infinite_loop_1
from the used benchmark: The bug position is colored with gray. The suspicious column
shows the suspiciousness score that the technique computes for each statement applied
on this example. The ranking column shows the maximum number of statements that
would have to be examined.
If we apply our evaluation metric on this example then we will have:

worst-case-step = |{5, 6, 1, 2, 11, 14, 4, 12}| = 8 since there are 2 code lines with 1.0
suspicious and 6 code lines with 0.5 suspicious is because we take the worst case.

The result of the Ω = 8/20 = 0.400 that is because we have 20 total code lines of the
program.

34

6 Experimental Evaluation

Table 6.2: The represented example of while_in f inite_loop_1 from used Benchmarks
after analyzed by predicate-merge-sep

codeline suspicious rank

5 1.0 1
6 1.0 1
1 0.5 2
16 0.5 2
2 0.5 2
11 0.5 2
14 0.5 2
4 0.5 2
12 0.5 2

6.3 Experimental Setup

CPAchecker provides many analysis configurations, e.g. the symbolic execution and
predicate analysis. We compared both techniques in our experiment to choose the best
of them and compare Tarantula with the chosen configuration against other ranking
metrics, DStar and Ochiai then against test-based Tarantula algorithm using test suites
generators, Klee and VeriFuzz.
We have used the implementation from Section 3.1.3 to evaluate Klee and VeriFuzz. We
used branch coverage as a test goal for both techniques. We first ran the programs using
our algorithm (Tarantula) on CPAchecker, and since predicate analysis in CPAchecker
with default merge provide merged paths as defined at Section 3.2.5., the number of
error paths always corresponds to the number of safe paths, therefore the suspicion is
always 0.5 for all edges. In this case, it is not possible to determine the error position.
As a solution, we use in our experimental the command line: cpa.predicate.merge=SEP
which ensures that PredicateCPA uses the mergesep. This gives us an advantage that
each path case is separated from its neighbor path and therefore the result is more
efficient. But this technique is very expensive and slows down the analysis, and even
runs the analysis for certain large programs infinitely.

35

6 Experimental Evaluation

1 int main() {
2 char a = __VERIFIER_nondet_char ();
3 char b = __VERIFIER_nondet_char ();
4 char c = __VERIFIER_nondet_char ();
5

6 if (a == ’a’ && b == 5 && c == 16) {
7 ERROR:__VERIFIER_error ();
8 }
9 }

Figure 6.1: A simple C-Program

(a) mergesep (b) Default Merge

Figure 6.3: Comparison between ARGs created by PredicateCPA with mergesep (left)
and with default merge (right) operators generated by CPAchecker

Figure 6.1 shows a simple C program example and Figure 6.3 shows two ARGs
applied at that example. The left one is generated using mergesep. From the diagram,
we can find out how three paths end up at one node has identity 15. After applying
the Tarantula formula to this ARG, we can easily see that all edges in the circle of the
graph will get suspicious of 0.5, while on the right graph we can see that the paths are
separate and run to different nodes, which ensures that Tarantula is more efficient.

36

6 Experimental Evaluation

6.4 Results

6.4.1 Symbolic Execution vs Predicate-merge-sep

This subsection explains the results of running Tarantula on CPAchecker using symbolic
execution without CEGAR and predicate analysis without merging the paths.

Table 6.3: Results of running Tarantula on CPAchecker using symbolic execution and
predicate abstraction with merge=SEP command line on our benchmark.
Note: The lower the omega result the better the technique.

Programs #TL
Tarantula with predicate-merge-sep analysis Tarantula with symbolic execution
Rank #WC Ω CPU Wall Rank #WC Ω CPU Wall

MinmaxKO 50 3 of 8 3 0.060 9.05 7.40 3 of 5 4 0.080 6.98 7.16
middleNumber 95 2 of 8 4 0.042 8.01 9.58 2 of 6 5 0.053 7.47 7.66
middleNumber1 95 3 of 8 5 0.053 7.70 9.75 2 of 5 3 0.032 7.09 8.76
middleNumber2 95 5 of 5 27 0.284 7.14 9.83 5 of 5 27 0.284 7.11 9.34
maxLoop1 52 6 of 7 7 0.135 271 291 9 of 10 23 0.442 16.3 16.5
maxLoop2 52 4 of 6 5 0.096 11.9 16.3 5 of 5 20 0.385 8.66 9.41
maxLoop3 52 4 of 4 19 0.365 8.55 13.8 6 of 6 17 0.327 7.93 13.0
AbsMinusKO 48 3 of 6 3 0.063 7.85 9.68 4 of 4 4 0.083 7.39 8.38
AbsMinusKO2 48 6 of 6 14 0.292 7.57 8.57 4 of 4 13 0.271 7.10 7.38
AbsMinusKO3 46 5 of 7 5 0.109 7.28 9.45 2 of 3 4 0.087 6.71 8.427
AbsMinusKO4 48 5of 7 4 0.083 7.16 10.1 2 of 3 5 0.104 6.78 9.20
sanfoundary_24-1 50 2 of 4 5 0.100 8.63 13.5 54 of 6 3 0.060 8.12 8.25
array-1 30 3 of 5 3 0.100 6.65 9.65 2 of 3 3 0.100 5.93 6.07
insertion_sort-1 28 3 of 6 6 0.214 6.43 9.46 3 of 5 5 0.179 9.14 9.28
gj2007b 26 3 of 7 8 0.308 7.26 7.75 6 of 9 14 0.538 8.36 8.94
jm2006 28 3 of 6 5 0.179 6.22 6.38 6 of 6 15 0.536 5.99 6.11
while_infinite_loop_1 20 2 of 2 8 0.400 6.02 8.77 no safe paths no safe paths - 6.29 6.74
sum01_bug02 20 3 of 6 4 0.200 7.58 8.07 no safe paths no safe paths - 7.18 7.33
brs.c 51 3 of 6 3 0.059 7.28 8.21 - - - timeout timeout
partial_lesser_bound-1 31 3 of 5 4 0.129 7.12 10.7 no safe paths no safe paths - 7.90 8.14
array_mul_init 33 3 of 6 6 0.182 7.84 8.26 4 of 4 18 0.545 11.2 11.4
TritypeKO 101 - - timeout timeout 1 of 8 4 0.040 9.23 9.71
TritypeKO2 101 - - timeout timeout 3 of 8 8 0.079 9.33 9.75
TritypeKO2V2 98 - - timeout timeout 5 of 8 6 0.061 9.59 11.4
TritypeKO3 99 - - timeout timeout 3 of 12 3 0.030 9.39 9.61
TritypeKO4 100 - - timeout timeout 3 of 6 6 0.060 9.06 9.23
TritypeKO5 100 - - timeout timeout 4 of 6 6 0.060 8.32 8.51
TriPerimetreKO 104 - - timeout timeout 1 of 7 4 0.038 8.81 8.99
TriPerimetreKOV2 106 - - timeout timeout 3 of 9 7 0.066 9.59 9.78
TriPerimetreKO2 104 - - timeout timeout 3 of 8 8 0.077 9.14 9.32
TriPerimetreKO3 102 - - timeout timeout 2 of 11 3 0.029 9.65 9.85
Maxmin6varKO 195 - - timeout timeout 4 of 9 5 0.026 195 196
Maxmin6varKO2 196 - - timeout timeout 5 of 11 5 0.026 97.8 98.2
Maxmin6varKO3 200 - - timeout timeout 5 of 11 5 0.025 98.8 99.6
Maxmin6varKO4 195 - - timeout timeout 3 of 5 5 0.026 199 200.

Table 6.3 lists the results obtained by running Tarantula in CPAchecker on each
benchmark program. The first column of each technique of the table shows the
program name. The column #TL shows the total number of lines of code that each
program has, while the column #Rank shows the rank of the error position within all
possible error positions in the corresponding program from all possible ranks, of which

37

6 Experimental Evaluation

each program contains. The #CPU column presented with three significant digits is
the amount of time for which the CPU was used for processing in second. The #Wall
column presented with three significant digits and is the actual time consumed in
second. Important to mention that the cell “no safe paths“ means that the technique
has been done and despite the discovery of the counterexample but it did not provide
any safe paths, and therefore the algorithm is not efficient because Tarantula needs
at least one failed and one safe path to provide suspicious. The #WC and Ω columns
show the worst-case steps and Ω measures and are defined as in the Section 6.2

Figure 6.5: Results of running Tarantula on CPAchecker using symbolic execution and
predicate abstraction with merge=SEP command line on our benchmark.
Note: the lower the column the better the technique

Figure 6.5 reports an overview of the comparison between symbolic execution and
predicate-merge-sep from the Table 6.3. The bars of the histogram in blue represent
the omega Ω results of predicate-merge-sep on our benchmarks, while the red bars
represent omega Ω of symbolic execution. we can easily deduce that both techniques
are equally efficient in the first three programs. After that, symbolic execution begins
to produce poor results with two programs maxLoop2 and maxLoop3, in contrast to
predicate analysis, which has remained stable. After that, the two techniques maintain
their effectiveness in finding bugs. Symbolic execution suddenly stops because the
analysis does not provide any safe paths but returns a long vertical graph with a

38

6 Experimental Evaluation

single counterexample, unlike predicate analysis. In the large programs, the symbolic
execution continues and the predicate analysis stops due to the high calculation of the
separation of the paths.

39

6 Experimental Evaluation

6.4.2 Tarantula vs other Ranking Metrics with Symbolic Execution

This subsection explains the results of running Tarantula against Dstar and Ochiai on
CPAchecker using symbolic execution without CEGAR.

In the following experiments, we did not measure the CPU and wall times at all,
because DStar and Ochiai use the same technical structure as Tarantula, so we assumed
that we did not see any differences.

The only thing we found interesting to measure is the omega percent to know which
technique can work better in fault localization with ranking metrics principle.

Table 6.4: Results of running Tarantula against DStar and Ochiai ranking metrics using
the CPAchecker configuration: Symbolic Execution

Programs #TL
Tarantula DStar Ochiai

#WC Ω #WC Ω #WC Ω

MinmaxKO 50 4 0.080 2 0.04 3 0.06
middleNumber 95 5 0.053 3 0.032 5 0.053
middleNumber1 95 3 0.032 2 0.021 3 0.032
middleNumber2 95 27 0.284 25 0.263 26 0.274
maxLoop1 52 23 0.442 24 0.462 23 0.442
maxLoop2 52 20 0.385 21 0.404 21 0.404
maxLoop3 52 17 0.327 20 0.385 21 0.404
AbsMinusKO 48 4 0.083 2 0.042 4 0.083
AbsMinusKO2 48 13 0.271 9 0.188 13 0.271
AbsMinusKO3 46 4 0.087 2 0.043 4 0.087
AbsMinusKO4 48 5 0.104 3 0.063 5 0.104
sanfoundary_24-1 50 3 0.060 5 0.100 5 0.100
array-1 30 3 0.100 1 0.033 3 0.100
insertion_sort-1 28 5 0.179 3 0.107 4 0.143
gj2007b 26 14 0.538 14 0.538 15 0.577
jm2006 28 15 0.536 14 0.500 16 0.571
while_infinite_loop_1 20 no safe paths no safe paths no safe paths no safe paths 8 0.400
sum01_bug02 20 no safe paths no safe paths 3 0.15
brs.c 51 timeout timeout timeout timeout timeout timeout
partial_lesser_bound-1 31 no safe paths no safe paths no safe paths 3 0.097
array_mul_init 33 18 0.545 18 0.545 18 0.545
TritypeKO 101 4 0.040 sus = 0 4 0.040
TritypeKO2 101 8 0.079 6 0.059 8 0.079
TritypeKO2V2 98 6 0.061 6 0.061 8 0.082
TritypeKO3 99 3 0.030 1 0.010 3 0.030
TritypeKO4 100 6 0.060 6 0.060 6 0.060
TritypeKO5 100 6 0.060 6 0.060 6 0.060
TriPerimetreKO 104 4 0.038 sus = 0 4 0.038
TriPerimetreKOV2 106 7 0.066 5 0.047 10 0.094
TriPerimetreKO2 104 8 0.077 6 0.058 8 0.077
TriPerimetreKO3 102 3 0.029 1 0.010 4 0.039
Maxmin6varKO 195 5 0.026 5 0.026 5 0.026
Maxmin6varKO2 196 5 0.026 19 0.097 6 0.031
Maxmin6varKO3 200 5 0.025 19 0.095 6 0.030
Maxmin6varKO4 195 5 0.026 4 0.021 5 0.026

40

6 Experimental Evaluation

Figure 6.7: Comparison of the effectiveness of Tarantula Algorithm against other Rank-
ing Metrics techniques, such as DStar and Ochiai using Symbolic Execution

Table 6.4 lists the results obtained by running Tarantula, DStar, and Ochiai in
CPAchecker on each benchmark program. The tables contain only omega Ω per-
centage for the three techniques. The Cell "no safe paths" means that the CPAchecker
using the configuration of Symbolic Execution was not able to generate any safe path
so that the Tarantula and DStar can work better, but that does not affect Ochiai. The
Cell sus=0 means the Symbolic Execution analyzed well and the bug was also on the
counterexample trace, but this technique assigned a suspicious of 0 to the code line.

Figure 6.7 reports an overview of the comparison between Tarantula, Ochiai, and
DStar. The bars of the histogram in blue represent the omega Ω results from Tarantula,
while the bars in green represent the omega Ω results of Ochiai and the red bars the
results of DStar.

41

6 Experimental Evaluation

6.4.3 Formal Verification Tarantula vs Test-based Tarantula

This subsection explains the results of running Tarantula on test-suites generated
by Klee and VeriFuzz and then comparing these to the obtained result of symbolic
execution from Section 6.4.

Table 6.5: Results of running Tarantula on test suites generated by Verifuzz and Klee
in TestCov on our benchmark. Note: The lower the omega result in Ω the
better the technique

Programs #TL
Verifuzz Klee

Rank #WC Ω CPU Wall Rank #WC Ω CPU Wall

MinmaxKO 50 2 of 4 9 0.180 902 902 1 of 3 9 0.180 0.870 1.59
middleNumber 95 1 of 5 9 0.095 901 902 1 of 3 11 0.116 1.17 1.39
middleNumber1 95 1 of 3 22 0.232 901 901 1 of 3 21 0.221 1.44 1.95
middleNumber2 95 3 of 4 36 0.379 901 901 - no failing cases 1.30 1.83
maxLoop1 52 - not in ranking 902 902 - not in ranking 0.421 0.950
maxLoop2 52 1 of 3 7 0.135 902 902 - not in ranking 0.883 1.45
maxLoop3 52 1 of 3 6 0.115 902 902 - no safe cases 0.884 1.10
AbsMinusKO 48 1 of 4 6 0.125 901 901 - no failing cases 0.957 1.17
AbsMinusKO2 48 - no safe cases 901 901 - no safe cases 0.793 1.00
AbsMinusKO3 46 3 of 4 19 0.413 901 901 - no failing cases 1.07 1.31
AbsMinusKO4 48 2 of 4 19 0.396 901 901 2 of 3 16 0.333 0.863 1.40
sanfoundary_24-1 50 - no failing cases 6.01 6.62 - not in ranking 2.24 3.01
array-1 30 - no failing cases 900. 901 - no failing cases 0.788 0.981
insertion_sort-1 28 - no failing cases 901 901 - no failing cases 0.629 0.847
gj2007b 26 2 of 3 23 0.885 903 903 2 of 4 19 0.731 520. 525
jm2006 28 - no test cases 902 903 - no test cases 1.14 1.45
while_infinite_loop_1 20 - no test cases 5.59 5.69 - no test cases 0.513 1.18
sum01_bug02 20 - no test cases 6.62 7.64 - no test cases 1.16 1.97
brs.c 51 - no safe cases 6.53 6.85 - no safe cases 0.627 1.21
partial_lesser_bound-1 31 - no test cases 5.39 7.40 - no test cases 0.561 1.24
array_mul_init 33 - no test cases 6.40 6.57 2 of 4 7 0.212 1.39 2.74
TritypeKO 101 6 of 6 last element rank 902 902 5 of 5 last element rank 1.74 2.27
TritypeKO2 101 7 of 7 last element rank 902 902 9 of 9 last element rank 1.89 2.74
TritypeKO2V2 98 8 of 8 last element rank 902 902 8 of 8 last element rank 1.86 2.12
TritypeKO3 99 - not in ranking 902 902 - not in ranking 1.90 2.32
TritypeKO4 100 7 of 7 last element rank 901 902 7 of 7 last element rank 1.71 2.49
TritypeKO5 100 1 of 7 15 0.150 901 901 5 of 6 63 0.630 1.71 2.29
TriPerimetreKO 104 - not in ranking 902 902 - not in ranking 1.77 2.04
TriPerimetreKOV2 106 7 of 7 last element rank 902 902 7 of 7 last element rank 1.76 2.00
TriPerimetreKO2 104 7 of 7 not in ranking 902 902 9 of 9 not in ranking 1.84 1.97
TriPerimetreKO3 102 - not in ranking 902 902 - not in ranking 1.92 2.47
Maxmin6varKO 195 1 of 5 10 0.051 904 905 - no failing cases 10.4 11.4
Maxmin6varKO2 196 10 of 10 not in ranking 904 904 - no failing cases 5.08 5.85
Maxmin6varKO3 200 12 of 12 not in ranking 904 905 - no failing cases 5.35 5.46
Maxmin6varKO4 195 1 of 7 9 0.046 904 905 - no failing cases 10.5 10.9

Table 6.5 shows the results obtained for each benchmark program by running Taran-
tula on generated test suites from Klee and Verifuzz. The column is already explained
in subsection Section 6.4. However, it is important to note that the “not in the ranking“
cell means that the technique provided a ranking of the possible error position, but the
actual error position we were looking for was not shown in the ranking. The cell “no
test cases“ means that the technique could not generate test suites for this particular

42

6 Experimental Evaluation

program and therefore Tarantula cannot provide a ranking. The cells “no failing cases“
and “no safe cases“ mean that the technique could not provide any faulty/safe cases and
therefore the Tarantula is not efficient, as previously mentioned.

The cell “last element rank“ means that the technique has found the fault position
as a sure case and gives this position the suspicious 0.0, which is considered the last
element in the ranking.

Finally, the cell “timeout“ means the technique could not be terminated within the set
time, namely 900 sec/15 min

Figure 6.9: Comparison of the effectiveness of each technique: Symbolic execution
against Klee and VeriFuzz

Figure 6.9 reports an overview of the comparison between symbolic execution and the
test-based techniques Klee and VeriFuzz. The bars of the histogram in blue represent
the omega Ω results of symbolic execution, while the bars in green represent the omega
Ω results of Klee and the red bars the results of VeriFuzz.

In the first three programs, we can see that the three techniques have detected bugs
but with different results of omega. After that, Klee and VeriFuzz start to deteriorate.
But symbolic execution remains effective and continues to find bugs.

43

6 Experimental Evaluation

6.5 Threats to Validity

There are a few threats to validity about generalizing the results presented in this paper.
First, all techniques were evaluated using only the Tarantula metric as the basis

of a probability distribution. The use of other error localization measures may have
different results. Similarly, using other configurations of CPAchecker or other test
generators could lead to other interesting results which we did not expect, so only
further research can prove the efficiency of formal verification as a better approach to
test suites generation.

Second, in our evaluation, we introduced the measure Ω in Section 6.2 measure
as the basis for evaluating all of the techniques against each other. However, other
evaluation measures can also affect the performance of the results, so we get other
unexpected results.

Finally, different faults or subject programs may affect the performance of our tech-
niques. We have tried to include various types of faults across multiple versions of
subject programs, but only additional studies can further reduce this threat. Addi-
tionally, the used benchmark set contains only C programs because this is the only
language supported by all the evaluated tools. Therefore, there is no guarantee that
our results can be transferred to programs written in other programming languages,
for example, software written in functional programming languages.

Another limitation of the experiment is that the results presented in this experiment
apply only to the case where the subjects used in the study each contain a single fault.
We cannot generalize these results to these or any programs that have multiple faults.

6.6 Discussion

In this section, we summarize and provide some observations about the results that we
obtained.

Our fault localization algorithm depends on the application of the test-based algo-
rithm on ARG. In most cases, a single incorrect entry was sufficient to localize the exact
location of the fault.

The effectiveness of the algorithm is much better when using symbolic execution,
since this technique gave results, regardless of the size of the programs, on the contrary
to predicate analysis without merge where it failed due to large programs and ran out
of time. Especially effective were both techniques, if the fault is within the block of
the conditional statement unlike when it is in the conditional statement itself or the
for-loop, the fault suspicious is then often very small, and the reason behind this is that
the bug-position can be belonged to the safe part more than its affiliation to the wrong

44

6 Experimental Evaluation

part thus it is considered more safe than dangerous.
We have concluded through experience that Symbolic execution is better than Klee

and VeriFuzz. The three techniques were especially effective when the fault was within
the block of the conditional statement, but less so when it was in the conditional
statement itself or in the for-loop, the same conclusion as mentioned before. Klee and
VeriFuzz very often generated bad analyse through the whole program, so the bug
sometimes suspected 0.0. Quite often both techniques delivered only counterexamples
but no safe cases, so Tarantula can work perfectly well, thus the suspicious is 1.

Klee always generated test suites very quickly as it’s shown in the columns “Wall
time” and “CPU time” of Table 6.5, we thought it was because of the configuration of
the coverage branch, then we tried other properties, but no better results were found.

VeriFuzz almost always took a long time to generate test suites, no wonder, since
this works with genetic algorithms and takes a lot of time to mutate and generate new
generations that are stronger than the previous one, see Section 3.1.2. However, the
results were again not very good, and often fail to deliver good results.

The second weakness that we found in this algorithm is when the error is in the
definition of a local variable in the function its self as in the second absMinusKO4,
then the error suspicious is very small and the reason for this is that the number of
error paths is always equal to the number of safe paths and therefore we get an error
suspicious of 0.5 in most cases.

The last weakness is in the case of predicate analysis when analyzing large programs
then the algorithm is not able to finish its analysis because is too complicated for
predicate analysis without merge. There are extremely many paths through the many
branches.

From these results, we can find out that symbolic execution is much better and faster
to analyze the program. That’s why we choose symbolic execution to compare with
Klee and VeriFuzz.

We can also see that the DStar technique performed better than the other techniques,
namely Tarantula and Ochiai. The reason for this is that DStar does not take TotalPaths
into account in its suspicious form, which has the advantage that the fault location is
more often on the fault path than on the safe path, which increases the suspicion of
the fault position. We found it particularly interesting that Ochiai’s Ω percentage was
almost the same as Tarantula’s, but Ochiai analyzed more test programs than Tarantula.
The reason for this is that Ochiai does not need at least one failure path and at least
one safe path in contrast to Tarantula.

To improve the usability of our tool, we need to create an Eclipse plugin to use
our algorithm interactively during the development process. The plugin highlights
potential bugs in the code that is under development.

45

7 Future Work

Future work should include the use of more advanced fault localization analysis on
CPAchecker for the look-ahead method, with an emphasis on reducing the suspicious-
ness to choose the best fault localization technique or to design a new ranking method
and use it as a default feature in CPAchecker. Besides, in our experiment, we compared
just three ranking metrics against each other, but the work on more ranking metrics,
such as Barinel and Op2 is still open and can be analyzed. Moreover, we plan to improve
CPAchecker to be able to not only analyze C-programs but also java and JavaScript
programs.

46

8 Conclusion

Techniques such as model checking and data flow analysis can find subtle bugs in
programs. However, the problem of finding the cause of the error is referred to as the
user.

In this work, we have shown how to apply the test-based tarantula algorithm to
model checking using ARG. The key idea is to find transitions in the error trace that do
not appear in a correct trace and show that techniques based on model checking can be
effective in locating bugs (and identifying potential fixes).

Regarding the experimental results, ranking algorithms, DStar and Ochiai are improve-
ments and work better than Tarantula as expected due to the reasons which mentioned
before. The proposed algorithm with Tarantula in CPAchecker using symbolic execution
was able to identify potential faults, 88.57% of the chosen benchmarks with a very good
percentage of Ω, while the same algorithm using predicate-merge-set found 60% of the
total benchmarks with very good results from Ω, and failed to obtain useful faulty lines
for fourteen of the adopted benchmarks due to the height calculation of the separating
the paths from merge which led the algorithm to timeout.

Our approach has also shown that it delivers better results than test-based approaches.
We compared symbolic searches to Klee and VeriFuzz test generators and found that
Klee was only successful in 17.14% of all benchmarks used, while VeriFuzz was better
than Klee but not CPAchecker in 37.14%.

We have found that our Tarantula technique works best with more error paths as well
as more safe paths. With our technique, we can observe its results with any subset of
the ARG as long as you have at least one error path and at least one safe path. We have
discovered that using the information from multiple error paths allows the technique
to take advantage of the richest information base.

Several interesting research questions remain open:

1. Is it possible (in some cases) to suggest a fix for a buggy program?

2. What other types of information can be used to locate the cause of the error?
Algorithmic debugging provides information in the form of dynamic data depen-
dencies and user input. Dynamic data dependencies from error tracking track
the flow of values between statements and can be very helpful in returning from
an assertion error to the variable definitions that caused it. Likewise, user input

47

8 Conclusion

about which functions in a program can be “trusted“ (e.g. library functions) could
be used to guide the search for a cause.

48

Bibliography

[90] “IEEE Standard Glossary of Software Engineering Terminology.” In: (1990).

[Ali12] M. A. Alipour. “Automated fault localization techniques: a survey.” In:
(2012), pp. 6–7.

[Avi+04] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. “Basic concepts
and taxonomy of dependable and secure computing.” In: (2004), pp. 11–33.

[BDW17] D. Beyer, M. Dangl, and P. Wendler. “A Unifying View on SMT-Based
Software Verification.” In: (2017), pp. 305–309.

[Bey+09] D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Sebastiani.
“Software Model Checking via Large-Block Encoding.” In: (2009), pp. 1, 11.

[BGS] D. Beyer, S. Gulwani, and D. A. Schmidt. “Combining Model Checking and
Data-Flow Analysis.” In: (), pp. 515, 516.

[BH13] R. Baker and I. Habli. “An Empirical Evaluation of Mutation Testing for
Improving the Test Quality of Safety-Critical Software.” In: (2013), 2, 23,
and 24.

[BHT07] D. Beyer, T. A. Henzinger, and G. Théoduloz. “Configurable Software
Verification: Concretizing the Convergence of Model Checking and Program
Analysis.” In: (2007), pp. 504–518.

[BHT08] D. Beyer, T. A. Henzinger, and G. Théoduloz. “Program Analysis with
Dynamic Precision Adjustment.” In: (2008), pp. 29–38.

[BK11] D. Beyer and E. Keremoglu. CPAchecker: A Tool for Configurable Software
Verification. 2011, pp. 184–190.

[BL18] D. Beyer and T. Lemberger. “CPA-SymExec: Efficient Symbolic Execution
in CPAchecker.” In: (2018).

[BL19] D. Beyer and T. Lemberger. “TESTCOV: Robust Test-Suite Execution and
Coverage Measurement.” In: (2019).

[BLW15] D. Beyer, S. Löwe, and P. Wendler. “Sliced Path Prefixes: An Effective
Method to Enable Refinement Selection.” In: (2015), pp. 228–243.

49

Bibliography

[BMV19] A. Basak Chowdhury, R. Medicherla, and R. Venkatesh. “VeriFuzz: Program
Aware Fuzzing: (Competition Contribution).” In: Apr. 2019, pp. 244–249.
isbn: 978-1-4939-9100-6. doi: 10.1007/978-3-030-17502-3_22.

[BNR03] T. Ball, M. Naik, and S. K. Rajamani. “From symptomto cause: localizing
errors in counterexample traces.” In: (2003), pp. 97–105.

[BWK12] D. Beyer, P. Wendler, and M. Keremoglu. “Predicate Abstraction with
Adjustable-Block Encoding.” In: (2012).

[CDE08] C. Cadar, D. Dunbar, and D. Engler. “KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs.” In:
(2008).

[CGL83] E. M. CLARKE, O. GRUMBERG, and D. E. LONG. “Model checking and
abstraction.” In: (1983), pp. 1, 23.

[Cla+03] E. Clarke, O. Grumberg, S. K. Jha, S. Jha, Y. Lu, and H. Veith. “Counterexample-
guided abstraction refinement for symbolic model checking.” In: (2003),
pp. 752–794.

[Cla08] E. M. Clarke. “The birth of model checking.” In: (2008), pp. 3–4.

[CW09] M. Chechik and M. Wirsing. Fundamental Approaches to Software Engineering:
12th International Conference, FASE 2009, Held as Part of the Joint European
Conferences on Theory and Practice of Software. ETAPS 2009, York, UK, 2009,
pp. 485–487.

[Gen+18] J. Gennari, A. Gurfinkel, T. Kahsai, J. A. Navas, and E. J. Schwartz1. “Exe-
cutable Counterexamples in Software Model Checking.” In: (2018), pp. 504–
518.

[GS97] S. Graf and H. Saidi. “Construction of Abstract State Graphs with PVS.” In:
(1997), pp. 72–83.

[GSB07] A. Griesmayer, S. Staber, and R. Bloem. “Automated Fault Localization for
C Programs.” In: (2007), pp. 95–111.

[JH05] J. A. Jones and M. J. Harrold. “Empirical Evaluation of the Tarantula
Automatic Fault-Loc alization Technique.” In: (2005).

[JM02] M. Jose and R. Majumdar. “Cause Clue Clauses: Error Localization using
Maximum Satisfiability.” In: (2002), pp. 49, 76.

[JM07] R. JHALA and R. MAJUMDAR. “Software Model Checking.” In: (2007).

[Ket20] M. Kettl. Fault Localization for Formal Verification. An Implementation and
Evaluation of Algorithms based on Error Invariants and UNSAT-cores. Bachelor’s
Thesis, LMU Munich, Software Systems Lab. 2020.

50

https://doi.org/10.1007/978-3-030-17502-3_22

Bibliography

[Kus+14] S. Kusumoto, A. Nishimatsu, K. Aishie, and K. Inoue. “Experimental Eval-
uation of Program Slicing for Fault Localization, Empirical Software Engi-
neering.” In: (2014), pp. 49, 76.

[LS08] M. H. Liffiton and K. A. Sakallah. “Algorithms for Computing Minimal
Unsatisfiable Subsets of Constraints.” In: (2008), pp. 75, 86.

[PBG05] M. P. Prasad, A. Biere, and A. Gupta. “A survey of recent advances in
SAT-based formal verification.” In: (2005), pp. 156, 173.

[Rei87] R. Reiter. “A Theory of Diagnosis from First Principles.” In: (1987), pp. 57,
95.

[Rot+01] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. “Prioritizing Test
Cases For Regression Testing.” In: (2001), pp. 929–948.

[Saf+07] S. Safarpour, H. Mangassarian, A. Veneris, M. H. Liffiton, and K. A. Sakallah.
“Improved Design Debugging using Maximum Satisfiability.” In: (2007),
pp. 13, 19.

[SCK17] H. A. de Souza, M. L. Chaim, and F. Kon. “Spectrum-based Software
Fault Localization: A Survey of Techniques, Advances, and Challenges.” In:
(2017), pp. 2–3.

[Wei] M. Weiser. “Programmers Use Slices When Debugging.” In: (), pp. 521, 531.

[Won+14] W. E. Wong, V. Debroy, R. Gao, and Y. Li. “The DStar Method for Effective
Software Fault Localization.” In: IEEE Transactions on Reliability 63.1 (2014),
pp. 290–308.

[Woo+09] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald. Formal Methods:
Practice and Experience. ACM, 2009, pp. 2, 3.

[Zel02] A. Zeller. “Isolating cause effect chains from computer programs.” In:
(2002), pp. 1–10.

51

	Contents
	List of Figures
	List of Tables
	Introduction
	Related Work
	Background
	Automated Software Testing
	Klee
	VeriFuzz
	TestCov

	Automated Software Model Checking
	Simple Programs and Control Flow Automata (CFA)
	Concrete State
	Abstract State and Abstract Domain
	Symbolic Execution
	Predicate Abstraction and Predicate CPA
	Abstract Reachability Graph (ARG)
	Counterexample
	CPAchecker

	Fault Localization
	Preliminaries
	Ranking Metrics

	Theoretical Contributions
	Contribution in CPAchecker
	Example of Ranking Metric on ARG with Tarantula

	Implementation of Tarantula Algorithm
	Implementation in CPAchecker
	All Possible Paths
	Coverage Information
	Options

	Implementation in TestCov

	Experimental Evaluation
	Benchmark
	Evaluation Metric
	Example

	Experimental Setup
	Results
	Symbolic Execution vs Predicate-merge-sep
	Tarantula vs other Ranking Metrics with Symbolic Execution
	Formal Verification Tarantula vs Test-based Tarantula

	Threats to Validity
	Discussion

	Future Work
	Conclusion
	Bibliography

