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Abstract

A very often occurrence in the world of software developers are faulty programs. The
definition of a faulty program is a program that entails an error in its code. It is the
developer’s job to search, locate, and fix the fault that caused the error. However, this
process can be extremely time-consuming. Model checking is a method that can be
used to find out whether a program is faulty or not. This work discusses the use of
distance metrics for automatic fault-localization in model checking. When a program
doesn’t fulfill its specification, the model checker produces a counterexample that
represents an instance of an undesirable behavior of the program. We take the generated
counterexample of a failed program and we compared it with a program execution that
is as close as possible to the counterexample and does not lead to an error. The difference
between the failed run and the closest to it successful run, should be the fault. However,
how close two program executions can be with each other depends on what kind of
metric is used. The metrics that are discussed in this work belong to the category of
distance functions that work with predicate abstraction, which makes the states of a
program abstract instead of concrete, and that makes the techniques more scalable and
enables a more detailed and understandable explanation of why the error occurred. To
compare the considered techniques, we implemented them in an unifying framework.
We conducted an experimental evaluation using 34 benchmarks and compared the three
fault-localization techniques with each other in regards to their time and efficiency. The
results of the evaluation show that using an automated method for fault-localization
purposes can be very promising and can save for the developer a lot of time.
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1 Introduction

Debugging can be notoriously difficult and is one of the most time-consuming processes
in software development [13]. The average developer spends 75 % of their time
debugging [1]. Usually, developers have to go manually through the code searching for
the faulty statement that caused the violation of the specification. Researchers have used
model checking for fault-localization purposes. The application of the model checking
technology to isolate and understand errors has been vastly used in the past years.
Model-checking is a method, through which a program is checked to make sure that a
given specification is fulfilled. If the specification is not fulfilled, then a counterexample
will be generated. The counterexample is an instance of a flow of the input program that
ends up violating the specification.

An example is the following minmax.c program. The specification that must not be
violated is in line 13, assert(least<= most);. This program currently doesn’t fulfill
this specification. The reason is the assignment on line 10, most = input2;.

1 int main (){
2 int input1, input2, input3;
3 int least = input1;
4 int most = input1;
5 if (most < input2)
6 most = input2;
7 if (most < input3)
8 most = input3;
9 if (least > input2)

10 most = input2; // ERROR
11 if (least > input3)
12 least = input3;
13 assert (least <= most);
14 }

Listing 1.1: minmax.c with the error in the 10-th line
In this work, we used fault-localization techniques based on distance functions to
localize the source of the fault. In other words, instead of going line to line through the
code, trying to find out what caused the error, this method allows someone to apply a
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1 Introduction

fault-localization technique and either point out the exact location of the bug or eliminate
most lines that are not important for the error, having at the end only a few suspicious
lines to investigate. We used various distance metrics to achieve that. The basic concept
is, first to find all the program executions that do not lead to an error. Afterwards, the
already generated counterexample is being compared with each successful execution.
This comparison happens through a distance function. The function calculates how
close the successful execution is to the counterexample. The goal is to find a successful
execution that is as close as possible to the counterexample. After finding the closest to
the counterexample successful run, then the fault should be the difference.

ERROR
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Figure 1.1: The red control flow path is the counterexample and the green path is the
closest successful execution. At node @N23 the two paths take separate ways
and the red path executes the line 10 while the green path does not. This is
the only difference between the successful execution and the counterexample,
which is exactly the fault.

Looking at the figure 1.1 we observe that the difference between the counterexample
and the closest successful execution is exactly the line 10, which is the faulty code that
caused the error.
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2 Related Work

Tarantula [16], [10] This fault localization technique utilizes coverage information
of passed and failed test suites to find the location of the faulty statement. After the
successful execution of the algorithm, the result will be in the shape of a table, which
ranks in descending order the statements based on their suspiciousness score (%). The
developer has to go through that table and examine the source code based on their level
of suspiciousness, in contrast to our technique in which the developer has to review
the differences between the failed program execution and the closest to its successful
execution.

Delta Debugging [10] Delta debugging is a divide and conquer method by which our
original debugging task is simplified by minimizing the input. It accepts two different
inputs, one which provides a correct result and another which causes a failure. The
algorithm is minimizing the difference between the two inputs while trying to look
for the most successful outcome. The goal is to approach systematically a large failing
input, simplify and reduce it into its minimum form. This technique is quite different
from the ones that we applied in our work but the result that is being delivered to the
developer is quite similar. In both cases, the result is a set of the most suspicious for the
error-lines of code. In our case are the differences between the failed execution and its
closest successful run while the result of the Delta debugging is the minimum form of
the original failing input that was calculated.

Similar Distance Metrics [5], [8] Distance metrics that examine concrete error expla-
nations are related to our metrics. In both cases, a distance function, which calculates the
distance between two program executions, is defined, but the calculation is completely
different. The metrics in this paper make alignments between parts of the two program
executions to calculate how different the two executions are from each other. However,
the related metrics make use of the SSA Index (a table, which enumerates all the variables
of a node and their assigned values), and then compare each variable between the two
executions and the sum is the number of differences.

SSA-based vs Alignment-based Metrics [5], [8] The biggest downside of the SSA is
that the distance metric uses values from all possible control flow paths. This could
lead to false explanation of the error, because program executions with similar values in
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2 Related Work

portions of the control flow may not be executed in either successful program execution
or the counterexample. Nevertheless, the process of alignments has its drawbacks. Most
of the time, the process of alignments leads to some serious performance problems as a
result of the time needed to define the aligned states between the two executions.
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3 Background

3.1 Formal Verification

3.1.1 Data Flow Analysis

The control-flow automaton (CFA) [2, 4], is an illustration of a program as a directed
graph. The CFA nodes represent program locations. The first node is the entry of the
program. The nodes with no children are the ones that represent the program exits.
Furthermore, CFA edges connect two nodes, if transfer control can be executed from one
location to the next. The control-flow edges are labeled based on their action that transfer
control. There are the assume edges that represent all the statements that depending on
their value can change the flow of the program (For example "if ()" can be true or false)
and there are also the statement edges that represent an assignment of a statement (For
example "a = 0"). Those types of edges are a simpler form of programs written in C.

3.1.2 Abstract Reachability Graph

Abstract Reachability Graph (ARG) [11] is a formal representation of the unrolled
analyzed program. The program is portrayed as a directed acyclic graph. An ARG for
a control-flow automaton and a specified abstraction is a graph that consists of ARG
Nodes (representing the abstract program states, e.g., including control-flow location
and call stack) and edges which connect those nodes and model the transfer that leads
from one abstract state to the next one [12]. The nodes of an ARG are called ARG states
and the edges are the edges of a control-flow automaton.

3.1.3 Predicate Abstraction

Predicate Abstraction [7] is an abstract interpretation technique, which unwinds the CFA
in an Abstract Reachability Graph until a certain point is reached. The representation
of the abstract states is constructed through a given set of predicates over program
variables.

3.1.4 Counterexample-Guided Abstraction Refinement

Counterexample-guided abstraction refinement (CEGAR) [6] is a methodology in which,
the primary abstract model is generated through the automatic analysis of the control
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3 Background

structures in the program to be verified. The analysis creates an abstract model based on
some precision, which is an approximation of the program. In case a state of the abstract
model which is affiliated to the error location is found, the initial non-approximated
program path that ends up in this state is reconstructed from the abstract reachability
graph and checked for feasibility. Thereupon, providing that the error (target) path is
feasible, the program is marked as unsafe and the analysis is terminated. On the other
hand, if the error path is not feasible, then the precision of the analysis has to be refined
for it to become precise enough for the successful elimination of the error path from the
abstract reachability graph.

3.1.5 CPAchecker

CPAchecker [3, 4] is an open-source framework for software verification that implements
the configurable program analysis concept (CPA). CPA specifies the abstract domain
that is used for the analysis of the program. CPAchecker supports the verification of
C programs (GNU C and C 11). The first step of an analysis with CPAchecker is the
creation of a CFA for the given program. The core of CPAchecker is the CPA algorithm.
This algorithm is a reachability analysis algorithm that uses a CPA to analyze the given
program. Furthermore, the CPA algorithm can be wrapped inside further algorithms that
implement approaches such as CEGAR or conditional model checking. The verification
result typically consists of the set of all reachable abstract states as determined by the
CPA algorithm.

3.2 Fault-Localization with Distance Metrics

A distance metric [14] for program executions is a function d(a, b) (where a and b are
executions of the same program) that satisfies certain properties:

1. Nonnegative property: ∀a. ∀b. d(a, b) ≥ 0
2. Zero property: ∀a. ∀b. d(a,b) = 0⇐⇒ a = b
3. Symmetry: ∀a. ∀b. d(a,b) = d(b,a)
4. Triangle inequality: ∀a. ∀b. ∀c. d(a,b) + d(b,c) ≥ d(a, c)

3.2.1 Distance Metrics in the Context Of Fault-Localization

The use of distance functions to find faulty code makes it easier for the developer to
understand what went wrong. The idea behind the metrics, Abstract Distance Metric
and Control Flow Distance Metric, in this work consists of five steps:
The first step is to find a feasible counterexample that ends up to the violation of the
specification. Then, we have to find all the successful program executions that are going
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Figure 3.1: Five Step Process of Distance Metrics in fault-localization

through the same cfa nodes as the counterexample does. Once this step is completed,
then we continue to make alignments between the nodes of the counterexample and
the nodes of each successful execution. After the alignments have been done, we have
to measure how different the counterexample from each successful execution is using
a chosen distance metric. After the comparison of paths is completed, we proceed in
finding the successful execution, which is closer to the counterexample than the others.
For the final step, we compare the closest to the counterexample successful run that was
found in the previous step and we present to the user, what changes have to be made in
the counterexample to become this successful execution.

3.2.2 Alignments

In fault-localization, a distance function is used to find the differences between two
program executions. For this purpose, it must first be defined which parts of the two
executions have to be compared with each other for the distance to be accurate. This
step can be done using a mapping function, called alignment. This function maps the
CFA nodes of an execution a with the CFA nodes of an execution b that are most fit for
each other.

Each node has a control location number c. Furthermore, each node is represented
through the statements s that it contains. Control-location number c(sa

i ) is the i-th
statement of the program execution a.

7



3 Background

Figure 3.2: Example alignment of two generic runs a and b [5]

Definition 1 (ALIGNMENT, align(i,j))

align(i, j) =



1, i f c(sa
i ) = c(sb

j)

∧ ∀k. , j. align(i, k) = 0
∧ ∀l , i. align(l, j) = 0
∧ ∀m > i, n < j. align(m, n) = 0
∧∀m < i, n > j. align(m, n) = 0

0, otherwise

where i, l, m < |a| and j, k, n < |b|.

For the successful alignment of two Nodes there are some requirements that have to be
fulfilled.

– Two CFA nodes can be aligned, if and only if the have the same control location.

– Alignments are unique, meaning that each Node at a can be aligned with maximum
one Node in b, and in reverse.

– Alignments preserve ordering: for instance, if i is aligned with j, then no earlier
Node than i in a is allowed to be aligned with a later than Node in b than j.

Preservation of ordering: See Figure 3.1: It is not allowed for two lines two cross each
other.

Another important information for the metric is the number of the CFA nodes of the
program executions which aren’t paired with another CFA node from the other execution.
Definition 2 describes formally, when two different program segments, from two different
program executions, are not aligned with each other (unaligned).

8



3 Background

Definition 2 (UNALIGNED, unalign(a/b)(i/j))

unaligna(i) =
{

1, i f ∀ j. ¬align(i, j)
0, otherwise

unalignb( j) =
{

1, i f ∀i. ¬align(i, j)
0, otherwise

where i < |a| and j < |b|.

3.2.3 Abstract Distance Metric

In fault-localization is easier to spot a faulty code by seeing:

Predicate changed:
was: var1 < var2
now: var1 <= var2

instead of seeing an actual concrete value of a variable that was changed, for instance:

Value of var1 changed:
from 2147483615 to 2340552562

This technique aims to find the fault using abstract states in order to produce a better
explanation to the developer about the source of the fault. Once a counterexample
has been found and all the successful executions have been calculated, we have
to define our distance function to find a successful execution with the minimum
distance from the counterexample. The closest to the counterexample successful
execution is going to be determined using the distance metric which is defined as follows.

Given an unsuccessful execution a and a successful execution b, we define the
distance d(a, b) [5] through the calculation of the atomic changes needed to turn a into b.
The atomic changes are to be found gradually. In general we have to compute:

1. Changes in predicates

2. Changes in actions

3. Number of unaligned states of the executions

We define here the i-th predicate of a state s of the execution a, as p(sa
i ) and respectively

for the execution b as p(sb
i )

9



3 Background

Definition 3 (∆p(i,j,v) ∆p(a,b) ) Predicate Distance

∆p(i, j, v) =

1, i f align(i, j)∧ pv(sa
i ) , pv(sb

j)

0, otherwise

where i < |a|, j < |b| and v < |pv(sa
i )|

The predicate distance is defined :

∆p(a, b) =
|a|−1∑
i=0

|b|−1∑
j=0

|p(sa
i )|−1∑

v=0

∆p(i, j, v)

Definition 4 (∆α(i, j), ∆α(a, b)) Changes in actions of the execution
Changes in actions are defined in a similar alignment-based manner:

∆α(i, j) =

1, i f align(i, j)∧ αa
i , α

b
j

0, otherwise

where i < |a|, and j < |b|.

∆α(a, b) =
|a|−1∑
i=0

|b|−1∑
j=0

∆α(i, j)

Definition 5 (∆c(a, b)) Number of Unaligned States of the Execution
This equation describes in mathematical form the operations needed to be executed for the
calculation of the number of unaligned states.

∆c(a, b) =
|a|−1∑
i=0

unaligna(i) +
|b|−1∑
j=0

unalignb( j)

Definition 6 (d(a,b)) Distance
Combining the predicate distance, the number of changes in actions of the execution and the
number of unaligned states we get the final distance metric (d(a,b)):

d(a, b) = minalign(Wp · ∆p(a, b) + Wa · ∆α(a, b) + Wc · ∆c(a, b))

Wp and Wc are the weights for the distance between the predicates and the distance
between the number of unaligned states. (In our case, the weights Wp and Wc are
initialized with values 1 and 2 respectively.)
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3 Background

Right after the alignment process is complete and the closest to the counterexample
successful program execution has been found, we proceed to the presentation of the
differences between the closest to the counterexample successful execution and the
counterexample.

1 int main () {
2 int input1, input2, input3;

3 int least = input1;

4 int most = input1;

5 if (most < input2)

6 most = input2;

7 if (most < input3)

8 most = input3;

9 if (least > input2)

10 most = input2; //ERROR!

11 if (least > input3)

12 least = input3;

13 assert (least <= most);

14 }

Figure 2: minmax.c

Value changed: input3#0 from 2147483615 to 0

Value changed: most#4 from 2147483615 to 0

line 8 function c::main

Value changed: least#2 from 2147483615 to 0

line 12 function c::main

Value changed: least#3 from 2147483615 to 0

Figure 3: Concrete ∆ values for minmax.c.

5. Present the differences (∆s) between the successful ex-
ecution and the counterexample as explanation and lo-
calization for the error.

The notion that these minimal differences serve to explain
(in a causal sense) the error is justified by an adaptation of
David Lewis’ counterfactual notion of causality [21]. For
Lewis, an effect e is dependent on a cause c at a world w iff
at all worlds most similar to w in which ¬c, it is also the
case that ¬e. Causality depends not on the impossibility of
¬c and e being simultaneously true in any possible world,
but on what happens when we alter w as little as possi-
ble to remove the (possible) cause c. When considering the
question “Was Larry slipping on the banana peel causally
dependent on Curly dropping it?” we do not, intuitively,
take into account worlds in which another alteration (such
as Moe dropping a banana peel) is introduced. That is to
say, in evaluating causal claims (whether in programming
or in everyday life) we do not introduce arbitrary unrelated
changes to conditions other than the potential cause. The
method for error explanation used in this paper is derived
[14] by:

• Replacing Lewis’ metrics for possible worlds with dis-
tance metrics for program executions.

• Finding a maximally similar execution in which the
effect e does not hold, in order to automatically produce
causes for an error.

Previously [14], the counterexample and successful execu-
tion were both concrete executions produced by the bounded
model checker CBMC [20] and the explain tool [15]. ∆s be-
tween successful and failing runs were presented as changes
at the level of the C type system, e.g. x = 2147483615 vs.
x = 255.

Many successful software model checking projects, such as
SLAM, BLAST, and MAGIC [6, 17, 8] have been based on

Control location deleted (step #5):

10: most = input2

{most = [ $0 == input2 ]}
------------------------

Predicate changed (step #5):

was: most < least

now: least <= most

Predicate changed (step #5):

was: most < input3

now: input3 <= most

------------------------

Predicate changed (step #6):

was: most < least

now: least <= most

Action changed (step #6):

was: assertion failure

------------------------

Figure 4: Abstract ∆ values for minmax.c.

predicate abstraction [13] and counterexample-guided ab-
straction refinement (CEGAR) [10]. Rather than model
checking a representation of the concrete state-space of a
system, these tools check properties of conservative abstrac-
tions of programs, and refine the abstractions until either the
program is shown to satisfy its specification or a counterex-
ample is generated. The CEGAR framework for verifying a
program P with specification Spec consists of three steps:

1. Abstract: Create a (finite-state) abstraction A(P )
which safely abstracts P by construction.

2. Verify: Check if A(P ) |= Spec holds. That is, de-
termine whether the abstracted program satisfies the
specification of P . If it does, P must also satisfy the
specification, and the program is successfully verified.
If A(P ) does not satisfy the specification, a counterex-
ample C is generated. C may be spurious: not a valid
execution of the concrete program P . If C is not spu-
rious, P does not satisfy its specification.

3. Refine: If C is spurious, refine A(P ) in order to elimi-
nate C, which represents behavior that does not agree
with the actual program P . Return to step 12.

SLAM, BLAST, and MAGIC use abstraction because con-
crete state-spaces are often intractably large (or infinite).
The reduced state-spaces produced by predicate abstraction
have not, typically, been viewed as useful objects for human
examination. They are artifacts of the verification process,
used for refuting or proving a property of a system and then
discarded. These automatically generated abstractions are
usually more complex and less intuitive than those produced
by humans, and the state-spaces are still generally too large
to be presented directly to users.

Abstract error explanation, described in detail in Sections
3, 4, and 5 is a selective use of automatically generated pred-
icate abstractions. Even though the abstracted program
may not be useful or interesting to a user, the differences
in predicate values between successful and faulty executions
of a program may be very useful and interesting.

2This process may not terminate, as the problem is in gen-
eral undecidable.

Figure 3.3: Presentation of the Differences between the counterexample of the program 1
and the closest to the counterexample successful run [5]

Figure 3.3 shows which statements were and which statements weren’t executed in the
successful execution. We observe that line 10 wasn’t executed in the successful execution,
which leads us to conclude that it is possibly the faulty code that we are looking for.

3.2.4 Control Flow Distance Metric

Equally this metric follows the same process that we saw in figure 3.1. However, this
distance function is slightly different from the previous one, as it focuses more on the
control flow of the program execution. The process remains the same, the only difference
is the way of calculating the distance between executions. This distance function [9] is
defined as follows.

Let π and π’ be two executions of a program. We define the differences between π
and π’ as follows:

di f f (π,π′) = < eπi1 , ...., eπik >

1. each event e in di f f (π,π′) is a branch event occurrence drawn from run π.

11



3 Background

2. the events in di f f (π,π′) appear in the same order as in π, that is, for all
1 ≤ j < k, i j < i j+1(event eπi j

appears be f ore event eπi j+1
in π)

3. for each e in di f f (π,π′), there exists another branch occurrence e’ in run π’ such
that align(e,e’)=true. Furthermore, the outcome of e in π is different from the
outcome of e’ in π’.

4. all events in π satisfying criteria (1) and (2) are included in di f f (π,π′).

As a special case, if execution runs π and π’ have the same control flow, then we define
di f f (π,π′) = < eπ0 >

Definition 7 (Comparison Of Differences)
Let π,π′,π′′ be three execution runs of a program. Let

di f f (π,π′) =< eπi1 , eπi2 , ...., eπin > and di f f (π,π′′) =< eπj1 , eπj2 , ...., eπjm >

We define di f f (π,π′) < diff(π,π”) iff there exists an integer K ≥ 0 s.t.

1. K ≤ m and K ≤ n

2. the last K events in di f f (π,π′) and diff(π,π”) are the same, that is, ∀0 ≤ x < K:
in−x = jm−x

3. one of the following two conditions holds

– either di f f (π,π′) is a suffix of diff(π,π”), that is K = n < m

– or the (K+1)th event from the end in di f f (π,π′) appears later in π as compared to
the (K+1)th event from the end in diff(π,π”), that is in−K > jm−K

Given a failing run π and two successful runs π′ and π′′ we say that
di f f (π,π′) < di f f (π,π′′) based on a combination of the following criteria:

– Fewer branches of π need to be evaluated differently to get π′ as compared to the
number of branches of π that need to be evaluated differently to get π′′. This is
reflected in the condition K = n < m of Definition 7 (Comparison of Differences)

– The branches of π that need to be evaluated differently to get π′ appear closer to
the end (see Figure 3.4) of π (where the error is observed), as compared to the
branches of π that need to be evaluated differently to get π′′. This is reflected in
the condition in−K > jm−K of Definition 7.

12



3 Background

Figure 3.4 shows an example of a comparison of which execution, π′ or π′′, is closer
to the counterexample π. The first column has the CFA nodes of the three executions.
The second column shows the alignments between the execution π′ and π as well as
the alignments between the run π′′ and the counterexample π. If two nodes are aligned
with each other, then the line remains vertical (i.e. |). If not, then we use diagonal bars (/
or \) to symbolize that two nodes are not aligned with each other. The third and final
column shows the differences of the executions to the counterexample. Each difference
is symbolized with a dot. We notice that the two executions have both exactly two
differences to the counterexample. Execution π′ is not going through the CFA nodes 44
and 55. Thus, we see that the difference between the two executions lies in the CFA node
33, because the outgoing edge of this node that is part of the run π′ is not the same as
the outgoing edge of this node that belongs to the run π. Finally, we conclude that the
execution π′′ is closer to the counterexample π than the execution π′ is. This happens
because the branches of π that need to be evaluated differently to get π” are closer to the
end (to the error) than the ones to get π’.

π
11
22
33
44
55
76
87
98

19
210
311
412
513
714
815
916

1417

π'
11
22
33

74
85
96

17
28
39
410
511
712

1213
1414

π''
11
22
33
44
55
76

127
18
29
310
411
512
713

1214
1415

Execution Run
π   π' π   π''

Alignment
diff(π, π') diff(π, π'')

•

•

•

•

Difference

Fig. 2. Example to illustrate alignments and difference metrics. The first three columns
show the event sequences of three execution runs π, π′ and π′′ of the program fragment
in Figure 1 (page 2). Next two columns show alignments of (π, π′) and (π, π′′), where
solid lines indicate aligned statement instances and dashed lines indicate unaligned
statement instances. The last two columns show the difference between execution runs.

such that

1. each event e in diff(π, π′) is a branch event occurrence drawn from run π.
2. the events in diff(π, π′) appear in the same order as in π, that is, for all

1 ≤ j < k, ij < ij+1 (event eπ
ij

appears before event eπ
ij+1

in π).
3. for each e in diff(π, π′), there exists another branch occurrence e′ in run π′

such that align(e, e′)=true (i.e. e and e′ can be aligned). Furthermore, the
outcome of e in π is different from the outcome of e′ in π′ 2.

4. all events in π satisfying criteria (1) and (2) are included in diff(π, π′).

As a special case, if execution runs π and π′ have the same control flow, then
we define diff(π, π′) = 〈eπ

0 〉.

Clearly we can see that in general diff(π, π′) 6= diff(π′, π). The reason for
making a special case for π and π′ having the same control flow will be explained
later in the section when we discuss comparison of differences.

Consider the example in Figure 2. The difference between execution runs
π and π′ is: diff(π, π′) = 〈33, 714〉, as indicated in Figure 2. This is because
branch instances 33, 714 are aligned in runs π and π′ and their outcomes are
different in π, π′. If the branches at lines 33, 714 are evaluated differently, we
get π′ from π. Similarly, the difference between execution runs π and π′′ is:
diff(π, π′′) = 〈76, 714〉.

Why do we capture branch event occurrences of π which evaluate differently
in π′ in the difference diff(π, π′) ? Recall that we want to choose a successful

2 Since e, e′ can be aligned, they denote occurrences of the same branch statement.

5

Figure 3.4: Example of two different executions being compared to the counterexample
[9]

13



3 Background

After calculating correctly the aligned nodes and finding the closest to the counterexample
successful execution, we present to the developer the differences that have to be made in
order for the counterexample to become the closest successful execution that was found.

3.2.5 Path Generation Technique

Automated Path generation [15] is a fault-localization technique that produces auto-
matically the closest, to the error, successful execution and it is based on the process
of Control Flow Distance Metric. This technique has a slightly different approach
than the two we defined before. When the number of successful executions is huge,
then the computation of all the distances between every successful execution from the
counterexample is going to take a lot of time and very likely lead to performance issues.
The Path Generation technique helps us overcome this problem in case of a big amount
of successful executions. Instead of computing for every safe path the aligned nodes
and the distance to the counterexample, it builds the closest to the target path successful
execution.
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Figure 3.5: Searching for the last branch

In more detail, the algorithm starts from the target state (the control location that the
error occurred) and goes backwards until it finds the first branch 3.5. When the branch
changes its control flow, it is led to a feasible successful execution 3.6. Although this
technique doesn’t require either to compute all the successful runs or measure their
distance form the counterexample, the presentation of the differences step remains the
same.
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Figure 3.6: Search for possible successful runs
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4 Theoretic Contributions

Adaptations of Abstract Distance Metric

In order to compute the final distance we have to compute:

1. Changes in predicates

2. Number of unaligned states of the executions

We define a new function, containsa(i, j, v), which controls for every alignment
of the i-th state (from a) with j-th state (from b), if the v-th predicate of the state
j is contained in the set of predicates that are part of the state i and equally containsb( j, i, v).

containsa : N×N×N −→ {0, 1}

containsb : N×N×N −→ {0, 1}

Furthermore, we define as Θ(ai) and Θ(b j) the set of predicates of the i-th state of the
execution a and respectively, the set of predicates of the j-th state of the execution b.

Definition 8 (∆p’(i,j,v) ∆p’(a,b) ) Predicate Distance

containsa(i, j, v) =

1 i f align(i, j)∧ pv(b j) < Θ(ai)

0 otherwise

containsb( j, i, v) =

1 i f align(i, j)∧ pv(ai) < Θ(b j)

0 otherwise

where i < |a|, j < |b| and v < |pv(sa
i )|

∆p(a, b) =
|a|−1∑
i=0

|b|−1∑
j=0

|p(sa
i )|−1∑

v=0

containsb(i, j, v) +
|b|−1∑
j=0

|a|−1∑
i=0

|p(sb
j )|−1∑

v=0

containsa( j, i, v)
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We notice that the definition above is slightly different from Definition 3 in section
Abstract Distance Metric. Definition 3 checks if the v-th predicate of the i-th CFA node
of the execution a is equal to the v-th predicate of the j-th CFA node of the execution b.
Definition 8 has a slightly different approach to the calculation of the predicate distance.
It checks for each execution if the v-th predicate of the i-th CFA node of execution a is
contained in the set of predicates that were used in the j-th CFA node of the execution b
and vice versa.

The equation below describes in mathematical form the operations needed to be executed
for the calculation of the number of unaligned states.

Definition 9 (∆c(a, b)) Number of Unaligned Nodes

∆c(a, b) =
|a|−1∑
i=0

unaligna(i) +
|b|−1∑
j=0

unalignb( j)

Combining the two distances that we defined above, we get the final distance metric
(d(a,b)):

Definition 10 (DISTANCE, d(a,b))

d(a, b) = minalign(Wp · ∆p(a, b) + Wc · ∆c(a, b))

Wp and Wc are the weights for the distance between the predicates and the distance
between the number of unaligned states.
Finally, notice that the changes in actions of the execution are not a part of our final
distance d(a,b). The changes in actions of an execution means that two aligned CFA
nodes have different outgoing edges, which is already covered in the ∆c(a,b), because if
two CFA nodes have different outgoing edges then they are unaligned.
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5 Implementation

This chapter describes in detail the implementation (in Java 11) of the three distance
metrics that were implemented in CPAchecker.

5.1 Running Example

 

extern int __VERIFIER_nondet_uint(); 

extern void __VERIFIER_error(); 

 

 

void __VERIFIER_assert(int cond) { 

  if (!(cond)) { 

    ERROR: __VERIFIER_error(); 

  } 

  return; 

} 

 

/* returns |i-j|, the absolute value of i minus j */ 

int foo (int i, int j) { 

    int result; 

    int k = 0; 

    if (i <= j) { 

        k = k+1; 

    } 

    if (k == 1 && i != j) { 

        result = i-j; // error in the assignment : result = i-j instead 

of result = j-i 

    } 

    else { 

        result = i-j; 

    } 

    __VERIFIER_assert( (i<j && result==j-i) || (i>=j && result==i-j)); 

} 

 

 

int main()  

{  

   

  foo(__VERIFIER_nondet_int(),__VERIFIER_nondet_int()); 

    return 0;  

}  

Figure 5.1: Example of an input program with a typical structure (6.1)

The program showed in Figure 5.1 consists of 3 methods:

1. __VERIFIER_assert(int cond)

2. int f oo(inti, int j)

3. int main()

The first method checks if the specification holds. If not, then it throws an error. The
second method is where the code that needs to be evaluated stands. The last one just
calls the method foo.
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5 Implementation

Figure 5.2: Counterexample in Abstract Reachability Graph
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5 Implementation

We notice that in Figure 5.2 the CFAEdge which represents line 39, between Nodes
N28 and N1, the method __VERIFIER_assert(int cond) is being called. The relevant
information for the computation of the distance between two program executions lies
before this control flow edge. For this purpose we have implemented an algorithm,
cleanPath(ARGPath) as part of the class DistanceCalculationHelper, which takes as
input a path and filters it so that only the relevant information remains in it. In other
words, we go the path down, starting from the root, until we find the first CFA edge that
is in the same line with the __VERIFIER_assert. We keep all the nodes and CFA edges
from the root until that point and we then get rid of the rest because they are irrelevant
for the localization of the fault.

Background Concept Class Name

ARG state ARGState

ARG path ARGPath

CFA edge CFAEdge

CFA node CFANode

Assume edge AssumeEdge

Statement edge StatementEdge

Event Event

Wp predicateWeight

Wc unalignedStatesWeight

Table 5.1: Assignment of Background Concepts to Class Names

5.2 Explainer

The Explainer is the main class of all three techniques. It implements the Interface
Algorithm and is a subclass of the class NestingAlgorithm. Firstly it creates an instance
of the CEGAR Algorithm. Then, CEGAR performs predicate analysis on the input
program. After the successful execution of the predicate analysis we get a set with all
the ARGStates that were reached during the analysis (i.e. reachedSet). The reachedSet is
examined for any possible target states. If no target state is found then the explainer
reports that the program does not violate the specification.
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Find a Feasible Counterexample

If a target state is indeed found, then the explainer proceeds to find the complete
ARGPath from the entry state until the state where the error (Target State) occurred.
Thereupon, we retrieve the complete ARGPath (see Section 3.1.3) that leads to the target
state, which we use as a counterexample.

Find all Successful Executions

The next step is to find all the feasible safe paths (the ARGPath’s that do not end up to
an Error state). This is achieved through the following process. First, we have to find
all reached ARGStates that are not target states. Then, we implemented an algorithm
createPath which accepts as input a set with all the safe ARGStates and builds a list
with ARGPaths, which are all the successful program executions that could be built from
the set of the reached states.

private List<ARGPath> createPath(StatesOnPathTo,root)

The idea behind this algorithm is that we create a list in which we are going to save all
the safe paths that we build and we also create a wait-list that contains different lists
with ARGStates (<List<ARGState>>) (see Algorithm 1). The purpose of this wait-list
is to put inside all the not-expanded paths (In this particular algorithm we represent a
path as a list of ARGStates) to get examined later. In the beginning, the wait-list contains
only the entry state of the program, which is then expanded. By expanding a state we
mean that the state has been searched for possible children. If the state has a single child,
then the child is added in the to-be-built path as the last element and it is the next in
line state to be examined. In case that an expanded state has more than one children, a
new path (List<ARGState>) is created which contains the same states that the current
expanded path contains but now the next child is added at the end of the new path and
the whole path is added in the wait-list.

Algorithm 1: Case that the expanded Node has more than one children that need
to be expanded

if children.size() > 1 then
for every child in children do

newPath = copyO f (currentPath);
newPath.addAtTheEnd(child);
waitList.add(newPath);

end for
end if
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The current expanded path just adds at the end the other children and continues until a
state is found with no children (end state). The algorithm terminates when the wait-list
is empty and there are no other paths to be processed.
When all the safe paths have been found, the explainer forwards the counterexample
and the list of the safe paths to the distance function for the closest to the target path
successful path to be found. The configuration option the user chooses is going to
determine which distance function is going to get forwarded to.
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Figure 5.3: Flow of the fault-localization process using distance metrics in CPAchecker
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5.3 Abstract Distance Metric (ADM)

This metric is a weighted distance function that consists of 2 sub-functions (see section
3.2.3 and chapter 4), the predicate distance, and the unaligned function (the number of
unaligned states).

Once the list of the safe paths and the counterexample are passed to the distance metric,
all of them go through the filter function (see Section 5.2). Once this process is complete,
we shift our focus to the construction of the distance metric as described in chapter 4. We
initialize the two weights, predicateWeight and unalignedStatesWeight here with values
1 and 2 respectively. After testing all the possible values for the weight, we found out
that the optimal weights are 1 for predicateWeight and 2 for unalignedStatesWeight.

Create Alignments

However, the computation of the distance is not possible if there are no aligned states
(section 3.2.2), so the next step is to find out which states from the successful executions
are aligned with which states from the counterexample. For this purpose we have
implemented a generic class called Alignment. We are going to use this class for both
CFAEdges and later for ARGStates. It contains two different Lists of the same Type, one
for the aligned elements of counterexample and the other for the aligned elements of the
safe path.

Two edges are aligned with each other when those 2 conditions hold:

1. The predecessor CFANode of the first CFAEdge is the same with the predecessor
CFANode of the second CFAEdge.

2. The successor CFANode of the first CFAEdge is different than the successor
CFANode of the second CFAEdge.

When two CFAEdges can be aligned (see Definition 1) with each other we add them in
the Alignment class as pair:

alignment.addPair(counterexampleEdge, safePathEdge)

The Alignment class guaranties that the size of the two lists in it, the aligned nodes of the
counterexample and the aligned nodes of the successful execution, is always the same.
For the calculation of the predicate distance, another alignment process has to take place
but this time for ARGStates. It is almost the same as before, the only difference is that
here we check only if the predecessor CFANode is the same for both CFAEdges.
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Find the successful execution with the minimum distance

When the alignments are available, we proceed to calculate the distance between the safe
path and the counterexample. First, we have to compute the predicate distance, then the
number of the CFAEdges that are not aligned with any other CFAEdge, and put them
together to construct the final distance (see 3.2.3 and 4).

Predicate Distance

We need to find all the predicates that are in the counterexample and all the predicates
that are in the safe path. The predicates of the program execution, which are represented
as a BooleanFormula, are coupled with AND and OR operators. To split this formula
into the individual predicates, we implemented in the DistanceCalculatorHelper
class a method, splitPredicates(BooleanFormula), which takes as input the
coupled BooleanFormula, uncouples it and returns a set with all the predicates
that are in the program execution. This happens through iterative checking if the
coupled BooleanFormula is coupled with an AND or an OR operator. For the first
case, it calls the function isConj(BooleanFormula) and for the second the function
isDisj(BooleanFormula). If the formula is coupled with a conjunction in the front,
then we call the toConjunctionArgs(BooleanFormula, flatten=true), which is
an internal method of the BooleanFormulaManager class. Correspondingly, if there
is a disjunction in the front of the coupled BooleanFormula then we call the other
method of the BooleanFormulaManager, called toDisjunctionArgs(BooleanFormula,
flatten=true). Those two methods unroll the predicate. When the predicate is
completely uncoupled, a set with every single predicate is returned.

Finally, we are now able to calculate the predicate distance between the two executions
the same way that we described in Theoretic Contribution, Definition 8.

Unaligned Edges

The second essential component that we need for the construction of the final distance
is the number of CFAEdges that are not aligned. To compute this number we need to
calculate the absolute of the subtraction of the aligned CFAEdges from the total number
of CFAEdges.

Final Distance

At this point, we have calculated everything that we need to get the final distance. We
put together the predicate distance multiplied by its weight and we add it with the
number of unaligned edges multiplied by its weight also and we get our final result.

24



5 Implementation

We do this process iteratively for every single safe path and we save our distances in
a List called distances. After all the distances are computed we check the distances
List for the smallest distance. However, we need to do one more step to get an accurate
result.

Elimination of the zero distances

The elimination of the distances with value 0 is essential to the accuracy of the result.
Safe paths that have zero differences from the counterexample are useless to us because
the step no. 5 (Present the differences, Section 3.1) is going to give back nothing. As a
result of that, if there are no differences to be evaluated, we are not in a position to find
out, what went wrong in the failed program execution. For this reason, we erase all the
safe paths that have distance 0 and then we search for the successful execution with the
minimum distance from the counterexample and return it to the Explainer.

5.4 Control Flow Distance Metric (CFDM)

This distance function, as we already saw in Section 3.2.4, does not return a distance as
an integer like the previous metric but as a List of Events (branches that were evaluated
differently). Branches here are the CFAEdges of AssumeEdge Type.

The first step this algorithm does is the same as the previous one, i.e. filter the program
executions so that we keep only the relevant information (Section 5.2). When this step is
completed we proceed at the next one, which is to find all the branches of the program
executions (counterexample and all the safe paths). Once this is done, the branches of
each program execution are CFAEdges. For this distance function, we implemented
a new Type, called Event. An Event consists of all the important information that is
needed for the successful calculation of a distance between two program executions. In
more detail, it has stored the CFAEdge (as execution) that was originally, the path that
the CFAEdge belongs to, because we need it to calculate how far the CFAEdge from the
end is (Definition 7) and the executions outgoing CFANode.

Create Alignments

Now we need to specify which events are going to be compared with which Event from
the opposite path. This happens by comparing the CFANode of the two Events. Have
they the same node number then they can be aligned to each other, otherwise not.
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Find the successful execution with the minimum distance

As mentioned earlier the result of this metric is not a number but a list of Events. The
next task in line is to calculate this list for all the successful program executions. For
this purpose two things are controlled between the two aligned Events that need to be
compared:

• Does the line of the execution of the first Event equals to the line of of the execution
of the second ?

• Is the statement of the execution of the first Event unequal to the statement of the
execution of the second ?

If both answers are yes, then the Event of the counterexample is added in the list of the
events (i.e. the distance). This process is repeated for all the successful executions until
we have a list of all the distances.

Elimination of zero distances

Before we proceed to compare the distances with each other to find the smallest, we
have to eliminate all the zero-distances (see Section 5.4, Elimination of Zero Distances).
The only difference here is that instead of looking for a distance with value 0, we are
searching for a distance-list of Events with length 0.

Now, for finding out which distance is the smallest, we have implemented a function
called closestSuccessfulRun that represents the definition of the distance metric as
written in Section 3.2.4. It goes through the final list with all the distances and we
compare each distance (i.e. list of Events) with each other. The comparison that takes
place between two distances consists of checking (i) whether the Events of the first
distance are closer to the end (target state) than the Events of the second distance and (ii)
comparing the number of Events in the distance-list (Definition 7). When this process is
over and we have successfully calculated the closest to the counterexample successful
execution, the result is being returned to the Explainer.

5.5 Path Generation (PG)

For the implementation of this technique we used the ControlFlowDistanceMetric
class, which is the class that also contains the previous metric, Control
Flow Distance Metric, but it gets triggered with a different method -
generateClosestSuccessfulExecution. However, unlike the previous two techniques,
here we do not need all the successful executions but only the counterexample. The
reason for this is that we are going to generate the successful execution which is closest
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to the counterexample. This means that we skip in Explainer the process of finding all
the safe paths.

After finding all the control flow branches, like at the beginning of the previous section,
we are going backwards through those branches, searching for the first branch that when
evaluated differently it leads to an error-free end node. This is achieved by calling the
createPaths (5.2) method that was also used in the Explainer to find all safe paths. The
difference here is that we give as starting point the branch that we changed its flow. Thus,
here we have to construct much fewer paths than for the ADM and CFDM in Explainer.
It is possible that the method returns more than one successful execution. After the
construction of the safe paths is complete, we return those paths in a list. If, however, no
successful execution can be found from that control-flow branch, then we repeat the same
process using the next control-flow branch that is closer to the error of the counterexample

If more than one successful execution was generated, then we use the Control Flow
Distance Metric to examine which one of those paths is closest to the counterexample.
On the other hand, if there is only one generated successful execution, then we forward
the constructed safe path and the counterexample to the ExplainTool to present the
differences to the user.
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5.6 Presentation Of The Differences

When the final successful execution has been found and returned to the explainer,
the explainer uses the ExplainTool to find the differences between the failed and the
successful program execution. The ExplainTool examines if an execution that has
been made in the successful run has also been made in the failed run. If not, then it
is a difference and a possible bug. The same process is repeated for the executions
of the counterexample. Once this procedure is complete, we use an already existing
infrastructure, FaultLocalizationInfo, to forward the information to the graphical
user interface of the CPAchecker.

First, the developer has a brief overview of all the suspicious statements that are marked
with red (5.4). Pressing the "Change View" button shows a table with all the changes that
had to be made in the counterexample to become a successful execution. The changes
look like Figure 3.3 that we saw in the Background. The developer scrolls down the table
and investigates each suspicious statement.

Rank Scope
-V- INIT GLOBAL VARS
-V- int __VERIFIER_nondet_uint();
-V- void __VERIFIER_error();
-V- void __VERIFIER_assert(int cond);
-V- void foo(int in1, int in2, int in3);
-V- int main();
-V-    int __CPAchecker_TMP_0;
-V-    __CPAchecker_TMP_0 = __VERIFIER_nondet_int();
-V-    int __CPAchecker_TMP_1;
-V-    __CPAchecker_TMP_1 = __VERIFIER_nondet_int();
-V-    int __CPAchecker_TMP_2;
-V-    __CPAchecker_TMP_2 = __VERIFIER_nondet_int();
-V-    foo(__CPAchecker_TMP_0, __CPAchecker_TMP_1, __CPAchecker_TMP_2)
-V-       int least;
-V-       int most;
-V-       least = in1;
-V-       most = in1;
-V- 1       [!(most < in2)]
-V- 1       [most < in3]
-V- 1       most = in3;
-V- 1       [least > in2]
-V- 1       most = in2;
-V- 1       [!(least > in3)]
-V-       __VERIFIER_assert(least <= most)
-V-          [cond == 0]
-V-          Label: ERROR

Figure 5.4: Overview of the possible faults (marked with red) of the minmax.c (1)
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Figure 5.5 shows a list Hints that are useful for tracking the faulty code of the minmax.c
algorithm. We observe that the 6th Hint in our result says that this piece of code was
executed in the counterexample but not in the successful execution. This code is the
faulty statement that we are looking for.

1. 0 Details:

Error suspected on line(s): 31, 32, 34, 35, 37, 38, 40 and 41

8 hints are available:
LINE 31 WAS: !(most < in2), CHANGED TO: most < in2
LINE 34 WAS: most < in3, CHANGED TO: !(most < in3)
LINE 37 WAS: least > in2, CHANGED TO: !(least > in2)
LINE 40 WAS: !(least > in3), CHANGED TO: least > in3
LINE 35, DELETED: most = in3;
LINE 38, DELETED: most = in2;
LINE 32, WAS EXECUTED: most = in2;
LINE 41, WAS EXECUTED: least = in3;

Relevant lines:
31 [!(most < in2)]
34 [most < in3]
35 most = in3;
37 [least > in2]
38 most = in2;
40 [!(least > in3)

Figure 5.5: Successful localization of the bug
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5.7 Options

The implemented in CPAchecker techniques that we researched are executable, if when
starting the CPAchecker the following configuration is been set:

-explainer

The above configuration lets the CPAchecker know that the tool will be using the
Explainer class to analyze the inputted program. Furthermore, we also have to declare
what distance metric we would like to use for the localization of the fault. We do
that by adding in our command line -setprop following by the metric that we want to use.

-setprop explainer.distanceMetric=ADM
-setprop explainer.distanceMetric=CFDM
-setprop explainer.distanceMetric=PG
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6.1 Experimental Setup

In this chapter, the three techniques are evaluated for speed and accuracy. For the
evaluation, we used a computer with 8 GB RAM DDR4, and an Intel Core i7 7-th
Generation CPU. The operating system that was used is Linux Ubuntu 20.04 LTS.
34 different test programs, benchmark and a part of sv-benchmark 1 provided by
Bekkouche 2, were used to test each technique in detail and the same hardware and
operating system were used for all verification runs to make sure that the results are as
precise as possible. Furthermore, the CPU-time limit was 900 seconds and no memory
limit was set. For a reliable benchmarking we used BenchExec 2.3. Benchexec allows the
individual isolation of each verification run, and thus reduces the risk of measurement
errors. Furthermore, the test programs that we used contain two types of different faults.
Assignment errors (y = y-3; should be y = y-1;) and Conditional Errors (if (y %
2 == 1) should be if (y % 2 == 0)).

Table 6.1: Explanation of the errors based on their type

Conditional Error Assignment Error

wrong check if block wrong method assignment

wrong number of iterations in for-loop wrong assignment in nested if

wrong nested if in for-loop wrong array assignment in for-loop

wrong check of arrays index in for-loop array assignment in method

unnecessary assignment in while-loop

wrong assignment in while-loop

We notice in the table 6.1 that there are conditional and assignment errors inside and
outside of loops, as part of extra called methods and inside of nested if blocks.

1https://github.com/sosy-lab/sv-benchmarks
2http://capv.toile-libre.org/Benchs_Mohammed.html
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6.2 Ranking Function

In this section, we introduce a ranking function which we are going to use to compare
the accuracy of those three techniques with each other.

The ranking function Rank accepts as input the lines of code that the program has, the
number of differences that were reported back as a result of the used technique, and the
overall success rate of the technique which we will see in the next section.

Our ranking function is defined as follows:

Rank : [0,1]×N×N −→ R

Rank(successRate,Hotlines,Differences) = successRate ∗
Hotlines

Differences

The three input parameters of this function are all equally important for the successful
comparison of the three techniques with each other. successRate is the overall success
rate of the technique, Hotlines is the number of lines of code that the input program has
and finally the Differences is the number of differences that the counterexample has
from the closest successful execution. The main characteristic of those three techniques
is that the result is a set of differences between the counterexample and the closest
successful execution. This is directly related to the number of lines of code that the input
program is. The more lines of code that the input program has, the more increases the
number of differences between the successful and failed execution. Finally, the overall
success rate of each technique plays also a major role, because it indicates the possibility
of finding the location of the bug.

The result of the function is a real number. The higher the result, the more successful the
technique. The lower the result, the less effective the technique. For example, a technique
with Rank 999 is better than another technique with Rank 100 for the same input program.
This is because the technique with 999 rank has a higher Hotlines/Differences ratio,
which means that for the same program this technique has fewer differences than the
other, thus the developer is going to investigate fewer suspicious statements which is
better explanation.
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6.3 Quantitative Analysis

Overall Results

73.52Abstract Distance Metric

61.76Control Flow Distance Metric

47.06Path Generation
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Percentage of Correct Results

In this subsection, we see a brief overview of the results of the three techniques that we
implemented into CPAChecker. In the above chart, we can see that the Abstract Distance
Metric is the most promising with 73.52 % of the faults found. The next most efficient
technique is the Control Flow Distance Metric with an overall result of 61.76 %. Last
comes the Path Generation Technique, which has a significant difference in the results
comparing with the other two. The Path Generation technique has located correctly the
47.06% of the faults, ruffly 14% less than the control flow distance metric.
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Listing 6.1: Percentage bar chart of the success rate of each technique based on the type
of error

The chart 6.1 illustrates how many conditional and how many assignment errors were
located correctly by the three techniques. We observe that the Control Flow Distance
Metric is the most promising for the localization of conditional errors and the Abstract
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Distance Metric for the localization of the assignment errors. Abstract Distance Metric
located 73.3 % of the conditional errors in a code, a success rate 6,67 % less than the
Control Flow Distance Metric. The path generation technique comes last finding 60 % of
the conditional errors.

On the right side of the chart, we notice that the Abstract Distance Metric has the lead
with 72.22 % of the assignment errors found. We notice that the Control Flow Distance
Metric has a success rate of 50 % here. It is 30 % less efficient than with the conditional
errors. This result was expected as the main focus of this technique is the control flow of
the program. This difference is much bigger than the one in Abstract Distance Metric,
which is only 1.1 %. Finally, the path generation technique is the less promising technique
out of all three, locating 60 % of the conditional errors and 38.88 % of the assignment
errors.

6.4 Ranking

In this section, we compare the results of the three techniques with each other. For this
purpose we are going to use the Rank function which we defined in Section 6.1.
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Figure 6.1: Ranking value of the three techniques

To compare, we used different programs with various number of lines. As we can see in
the plot 6.1 the Path Generation technique has the highest-ranking out of all three of
the programs with more than 100 hotlines. Taking a look at table 6.3 we observe that
the Path Generation Technique has only 2 differences for all programs, regardless of
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Table 6.2: Rank of Technique per No. of Hotlines

Hotlines ADM CFDM PG

48 8.82 14.82 11.3

105 9.65 5.9 24.7

197 36.21 17.39 47

the number of lines of code. This means that the bug is exactly the difference between
the counterexample and the successful run. On the other hand, we notice in table 6.2
that the Abstract Distance Metric for a program with 197 Hotlines ranks at 36.21, which
is much better than the 17.39 that ranks the Control Flow Distance Metric. However,
it is less than the 47 that ranks the Path Generation technique. This is due to that the
Abstract Distance Metrics (see Figure 6.2) reports 4 possible differences, which requires
the developer to investigate double as much suspicious lines of code than with the
(see Figure 6.3) Path Generation technique. Furthermore, we observe that the Control
Flow Distance Metric for programs with more than 100 lines of code ranks less than the
rest. This lies in the fact that the Control Distance Metric reports the biggest number
of differences between the successful execution and the error path. However, for a
program with fewer than 50 lines of code, the Control Flow Distance Metric has the lead
with 14.82, following by the Path Generation and Abstract Distance Metric with 11.3
and 8.82 respectively.

Figure 6.2: Possible faults using ADM Figure 6.3: Possible faults using PG
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Hotlines ADM CFDM PG

48 4 2 2

105 8 11 2

197 4 7 2

Table 6.3: Average number of differences based on No. of hotlines

6.5 Runtime

Speed is also relevant for the evaluation of these three techniques. In the table below we
can see the CPU time needed for each technique until a result is delivered.

0 50 100 150 200 250 300

8

10

12

14

16

Number Of Safe Paths

Ti
m

e
in

Se
co

nd
s

ADM
CFDM

PG

Figure 6.4: Runtime in seconds per Technique until a result has been found with maxi-
mum 300 safe paths

The plot 6.4 illustrates the seconds needed for each technique to complete an execution
based on the number of possible candidates for the result. We observe that all three
techniques need almost the same amount of time to find a result. For a small number of
successful runs, 16-50, the path generation technique is the slowest of all. The Control
Flow distance Metric is faster out of all three for that amount of safe paths. Furthermore,
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for 256 different successful executions, the Abstract Distance Metric is only 0.25 seconds
slower than the Control Flow Distance Metric, while the Path Generation technique has
the lead, needing only 11.70 seconds to locate the error. Finally, the gap is getting bigger
between the Path Generation technique and the two distance metrics as the number of
safe paths grows. For 288 safe paths, the Path Generation located the error in almost 1
second faster than the Control Flow Distance Metric and the Abstract Distance Metric.

In the plot 6.5, we continue the time comparison between the three techniques but only
this time with a much larger number of successful executions. We notice the difference
that makes the alignment and the computation of all safe paths in the time needed to
find a result.
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Figure 6.5: Runtime in seconds per Technique until a result has been found with at least
300 safe paths

The Path Generation technique maintains its runtime between 7-16 seconds. On the
other hand, for more than 275470 possible for the solution candidates (safe paths) the
Abstract Distance Metric and the Control Flow Distance Metric are much slower than
the Path Generation technique. The Abstract Distance Metric is the slowest out of
all three, requiring 42.95 and 110.27 for a program execution with 275470 and 544420
safe paths respectively. We notice that the Control Flow Distance Metric is a bit faster
than the Abstract Distance Metric for a large number of safe paths. Finally, the Path
Generation technique is the fastest out of all three. The reason is that the Path Generation
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technique doesn’t require to find all the successful executions and then make alignments
between them and the counterexample. This gives to the Path Generation technique a
big advantage in the time needed to find the closest successful execution.

Table 6.4: Average Time in Seconds needed based on the number of safe paths, exact
values of the plots 6.4 and 6.5

No. of Safe Paths ADM CFDM PG

16 7.38 7.32 7.41

42 7.50 7.46 7.56

256 12.22 11.96 11.70

288 16.59 16.50 15.59

275470 42.95 37.12 9.37

544420 110.27 90.61 16.02

Tables 6.5 and 6.6 in the next page contain in detail how many seconds does each
technique need to find a result based on the number of successful executions.
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6 Evaluation

Table 6.5: CPU Time in Seconds per Benchmark task based on the number of safe paths,
1st Part

Benchmark Name ADM CFDM PG No. of safe paths

Minmax 7.38 7.33 7.41 16

AbsMinus1 7.52 7.56 7.28 42

AbsMinus2 7.41 7.49 7.78 42

AbsMinus3 7.56 7.54 7.64 42

AbsMinus4 7.53 7.29 7.60 42

MaxLoop 16.82 15.84 15.34 256

MaxLoop2 10.08 10.12 10.09 256

MaxLoop3 9.80 9.93 9.68 256

MaxMin 38.07 36.61 9.05 275470

MaxMin2 44.360 36.21 9.10 275470

MaxMin3 45.87 35.97 9.18 275470

MaxMin4 43.53 39.74 10.17 275470

MiddleNumber 9.49 8.10 7.85 36

MiddleNumber1 8.00 8.01 8.21 36

MiddleNumber2 7.92 8.03 7.98 36

TriPerimetreKO 100.55 86.07 10.59 544420

TriPerimetreKO2 114.55 87.19 10.95 544420

TriPerimetreKO3 115.40 84.31 10.36 544420

TriPerimetreKOV2 123.61 88.22 10.84 544420
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6 Evaluation

Table 6.6: CPU Time in Seconds per Benchmark task based on the number of safe paths
2nd Part

Benchmark Name ADM CFDM PG No. of safe paths

TriTypeKO 102.50 95.82 10.46 544420

TriTypeKO2 126.06 86.02 11.75 544420

TriTypeKO2V2 106.79 88.70 10.66 544420

TriTypeKO3 108.24 99.03 10.53 544420

TriTypeKO4 105.45 88.52 15.54 544420

TriTypeKO5 112.66 85.66 15.03 544420

arrays_mul_init 20.15 19.35 19.30 8

brs 19.24 19.47 19.33 2

partial_lesser_bound 9.10 9.06 9.89 1

sanfoundary_24-1 21.91 21.36 22.14 4

while_infinite_loop_1 6.54 7.17 7.31 0

array-1 8.02 7.97 7.83 4

sum01_gub02 8.62 8.16 8.58 32

gj2007b 16.59 16.51 15.60 288

jm2006 8.26 8.05 7.91 2
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7 Future Work and Conclusion

Future Work

There are numerous interesting avenues for future research. In this work, we conducted
our research on distance metrics that use alignments and predicate abstraction. However,
other metrics exist that are SSA-Index oriented. A combination of an alignment oriented
and a SSA-Index oriented metric would be an interesting topic for research. Each metric
has its pros and cons, however, combined they could produce a better explanation
for the error. Furthermore, combining distance metrics with another fault-localization
technique would be an interesting topic. The distance metric would be passing to the
other fault-localization technique the closest to the counterexample successful execution
and the other technique would investigate the path for the faulty statement and reporting
back which line of code is more likely spurious.

Conclusion

This research aimed to identify how effective can distance metrics be for fault-localization
purposes. Based on a qualitative and run-time analysis of the two different distance
metrics and the path generation technique, it can be concluded that using a distance
function to track down the faulty statement can be a great help to the developer. It may
not always report the exact location of the bug, however, it proposes changes that when
they are made, the code may not lead to an error anymore. The results indicate that the
faulty code is often in the set of changes that the fault-localization technique suggests
being made. The results of the Path Generation technique show that when the fault is
contained in the set of differences between the closest to the counterexample successful
execution and the error path, then the set of differences is exactly the fault. However,
most of the time the Abstract Distance Metric and the Control Flow Distance Metric
are more likely to contain in the set of differences the fault than the Path Generation
technique. According to the results, the predicates of the CFA nodes and the control-flow
edges of the program play a major role in finding the successful execution that will
provide us with the correct information about the fault.
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