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Abstract

Debugging is a very time intensive aspect of software development. To find
the root cause of a bug earlier, techniques like fault localization are used.
Speeding up the detection of faults and improving the correctness of fixes
saves valuable time. The reduction of programs to a few error-prone state-
ments minimizes the locations to look at. Such a minimal subset of locations
in the program indicates where fixes are necessary. Therefore, we implement
and improve three fault localization algorithms based on error invariants and
UNSAT-cores in the CPAchecker-framework. These algorithms reduce
the number of locations to look at and search for explanations why the faults
arise. At the beginning, we let CPAchecker compute a counterexample and
build a trace formula which is a Boolean formula representing a failing exe-
cution through a program. With its help the algorithms enclose error-prone
locations in the source code of the program. Since the algorithms need to call
a SMT-solver several times during the computation of the fault, the run time
is bad. Hence, we apply improvements such as memoization to reduce the
number of calls to the solver. Moreover, we extend the standard algorithms
with useful options, which yields more freedom in influencing and guiding the
results towards the desired direction. We attach additional information to
the found locations either based on the computations of the algorithm or on
patterns and schemes. We evaluate the run time, effectiveness and the usabil-
ity of the mentioned techniques. Additionally, we implement a data structure
for arbitrary fault localization algorithms in the CPAchecker-framework
including a generic and interactive visualization. Our user study shows that
fault localization boosts the performance of programmers in debugging on
unknown and faulty tasks. Furthermore, the visual report improves the cor-
rectness and the needed time to solve a task. The qualitative analysis shows
that fault localization sensibly reduces locations to look at although there
exist cases where the results are misleading.
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1 Introduction

Debugging is an essential part of a programmers everyday life. It takes a
considerable amount of the overall time spent on a project [14]. Therefore
many techniques for finding bugs developed over the recent years. Currently,
most of the programmers use a debugger with breakpoints and watches to
go through the program step by step and analyze the current states of the
program. This requires the developer to analyze every position and to decide
whether a certain statement can cause an error. Additionally, the program-
mer must know for what inputs and edge-cases the program will fail eventu-
ally. In small and simple programs the developer might be able to observe
all states and work out all edge-cases, but in larger projects this is difficult.

Formal verification can help to tackle this problem as it analyzes the
whole program and its reachable states with all possible variable assignments.
CPAchecker [2] is an excellent tool for formal verification of ANSI-C pro-
grams [1]. It has a variety of already implemented analysis methods such as
symbolic execution [17] or predicate analysis [11]. Furthermore, it can han-
dle non-deterministic variables. This is especially handy for finding specific
cases with faulty behavior. Moreover, the tool can create counterexamples
consisting of edges along the control flow automaton (CFA). The obtained
list of edges describes an error path through the program which already limits
the selection of edges to track.

To create an error path we need a post-condition that should never be vi-
olated. Program 1 reaches the error label for x := 2. Now we let CPAchecker
generate the counterexample. The result is a list of edges and a failing vari-
able assignment. The counterexample is a subset of all possible transitions.
Program statements that do not operate on x have no impact on the fault
and can be discarded. We are left with the observation of lines 5, 8, 9 and
13. In line 13, the if-statement checks if the resulting x has an valid value.
Whenever this last assertion - the post-condition - is violated the program
fails. The precondition, in this case, equals x := 2 because for all other as-
signments the program calculates a correct index x. The precondition is
either the initial variable assignment or a failing variable assignment for all

9



1 int array [ 3 ] = {1 ,2 , 3} ;
2
3 int f i nd ( int x ) {
4 /** many opera t i ons */
5 i f ( x < 0) {
6 x = 0 ;
7 /** many opera t i ons */
8 } else i f ( x >= 2) {
9 x = x + 1 ;
10 /** many opera t i ons */
11 }
12 /** many opera t i ons */
13 i f ( x > 2 | | x < 0)
14 e r r o r ( ) ;
15 return array [ x ] ;
16 }

Program 1: Index Calculation

non deterministic variables, like x here. Now that we have a small selection of
edges that can potentially fix the error we either want to find an abstraction
of the error trace which simultaneously provides an explanation of the arising
fault or reduce the selection by a significant amount. The SingleUnsat-
Core algorithm calculates a single, not necessarily minimal set of edges that
is unsatisfiable when conjuncted with the pre- and post-condition whereas
our adaption of the MaxSat algorithm [16] detects all minimal subsets of
edges for which the precondition conjugated with the minimal set and the
post-condition is unsatisfiable. Lastly, the ErrInv algorithm [9] produces
an alternating sequence of interpolants and edges, called abstract error trace.
The interpolants abstract the error path because they cover the execution
of multiple edges with one formula that summarizes the semantics of all the
covered edges.

This thesis covers the implementation of these three algorithms that ab-
stract or refine the selection of edges provided by the counterexample. We
compare the performance and evaluate the usability of the visual report and
effectiveness of the results. Finally, we apply optimizations to improve the
run time and add useful options such as an alternative precondition.
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2 Related Work

Tarantula [15]. Test suites provide data about the source code, inter alia
the coverage of executed parts of the code. Never reached code indicates the
need of new test cases. The inputs for the algorithm are several test cases
with a flag stating whether the test case failed and a list of covered lines dur-
ing their execution. After running the algorithm, lines are colored according
to their meaning based on the overall coverage in the test cases. Discrete
coloring, for example, colors statements that are exclusively executed during
failing tests in red. However, the continuous approach yields much better
results by adding a brightness component and a continuous function for col-
oring lines. The computation now relies not only on simple conditions but
involves the relative frequency of certain locations in failed and succeeding
test cases.

Dynamic slicing [19, 22]. There exist two types of dynamic slices, back-
ward dynamic slices and forward dynamic slicing. A backward slice of a
variable maintains a sequence of executed statements that influenced the
value of the variable at a certain position in the execution trace whereas a
forward slice maintains a sequence of statements that are influenced by this
variable at this position. In general, a dynamic slice describes a faulty subset
of all executed statements. Presented are three slicing algorithms, whose goal
it is to find a subset of executed program statements that had an impact on
the faulty value. The three algorithms data slicing, full slicing and relevant
slicing pursue different approaches in obtaining such subsets.

Distance metrics [12, 13]. In few steps this technique acquires descriptive
information about the error. The algorithm relies on loop unrolling. First,
a bounded model checker transforms a buggy program to a Boolean satisfia-
bility problem with correct static single assignment indices (c.f. Section 3.5)
and calculates a counterexample. The target is to obtain a satisfying assign-
ment for the program that does not reach an ERROR-label while simulta-
neously producing an execution as close to the counterexample as possible.
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A distance metric ∆d calculates the difference between the executions of the
failing and the satisfying algorithm. After a slicing step which reduces ∆d
the differences are returned to the user as promising locations to look at. As
the metric must comply to the four properties of a distance metric, a unique
representation of such executions has to be found.

Delta debugging [21]. A different approach compared to the previous
techniques is called “Delta Debugging”. Finding minimal failing test cases
is often desirable to detect the root cause of a bug. Usually this is done
manually. Delta debugging describes the process of automating the search
for minimal test cases. Based on a failing test case, program statements are
systematically removed and readded, depending on the error still occurring
or not. This method easily can be applied to arbitrary programs of different
programming languages. The technique requires a minimizing delta debug-
ging function that finds a minimal failing test case from a given failing test
case. An extension of this algorithms computes the difference between failing
and passing tests.

12



3 Background

3.1 UNSAT Cores and Models

SMT solvers [18] resolve Boolean satisfiablity problems of first-order logic.
CPAchecker has access to multiple SMT solvers and an integrated prover.
The solver is able to generate UNSAT cores and to check whether a formula
is unsatisfiable whereas the prover calculates models of formulas.

A formula is unsatisfiable if there does not exist any variable assignment
that makes the formula true. For instance, we cannot find a valid value
for x in x > 0 ∧ x < 0 because no number is smaller and greater than
0 at the same time. In this work we mainly focus on Boolean formulas
in CNF (conjunctive normal form), meaning that clauses are separated by
logical ands (∧). We are especially interested in minimal UNSAT cores (MIN-
UNSAT cores). Consider an unsatisfiable Boolean formula fB with n clauses.
A UNSAT core is a selection of m ≤ n clauses of fB where their conjunction
remains unsatisfiable. Consequently, a MIN-UNSAT core is an UNSAT core
with a minimal number of clauses meaning, that an UNSAT core with fewer
clauses does not exist. Concomitant a MAX-SAT set includes the maximal
number of clauses that are simultaneously satisfiable. For example the clauses
{(x < 0), (y > 3), (x > 0)} of the formula

fB ⇔ x < 0 ∧ y = 5 ∧ y > 3 ∧ x > 0 ∧ y < 4

are an UNSAT core of fB and the only two MIN-UNSAT cores are given by
the clauses {(x < 0), (x > 0)} and {(y = 5), (y < 4)}. A MAX-SAT set is,
for example, given by {(x < 0), (y = 5), (y > 3)}. Note that all elements of
the complement of this set are elements of MIN-UNSAT cores, too.

The prover used by CPAchecker can also calculate a model of a for-
mula. A model M assigns concrete values to each occurring variable in a
Boolean formula fB in a way that M |= fB (M satisfies fB)[4].

13



3.2 Control Flow Automaton

Before the analysis starts, CPAchecker parses the program to a control
flow automaton (CFA). The CFA is a directed, not necessarily circular graph
from the first executed program statement to the exit point. The children of
every node are all reachable states from the current state.

Formally, a CFA is a triple (L, l0, G) where L is the set of all reachable
locations, G ⊆ L × O × L and l0 denotes the start location. An element
g ∈ G is called a transition. O is the set of operations. A path Π =
(l0, o0, l1), (l1, o1, l2), . . . , (ln−1, on−1, ln) (n ∈ N) through the CFA is expressed
as a sequence of transitions.

After processing a program we obtain a graph showing all possible execu-
tions starting at l0. The nodes symbolize the current location and the edges
represent a transition, i.e., a program statement that leads from one node to
one of its child nodes.

We now extend the definition of a CFA by error locations and we get a
quadruple CFAE = (L, l0, G,E). E ⊆ L contains all reachable error loca-
tions. An error path ΠE can now be defined as path from l0 to an e ∈ E.
With Π[i] we refer to the i-th (i ∈ [0;n]) transition of path Π. A subpath
containing all transitions form position i to j − 1 is indicated as Π[i, j] with
0 ≤ i < j ≤ n. The path Π is called feasible if there exists an execution that
covers all of the transitions in the path in the correct order.

3.3 Counterexample

A counterexample is found by the CEGAR algorithm [6] whenever a program
has a reachable error location. CPAchecker generates a counterexample
which can be understood as a minimized proof of incorrectness of a program.
The proof consists of a sequence of edges along the CFA ending in an error
state. All of the three fault localization algorithms are based on the resulting
counterexample.

3.4 Trace

Every edge can be represented as a Boolean formula. For simplicity we reduce
the possible operations to declarations (int x = 5;), statements (x = x + 1;)
and assumes (x ≥ 6) in this chapter. Constructs like arrays, structs and
pointer are handled by the implementation. Every edge g ∈ G can be trans-
formed to a Boolean formula based on its operation o ∈ O. Furthermore
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the last edge before reaching e ∈ E is guaranteed to be an assume edge. Of
course, in reality this is not applicable for every program. The handling of
these cases will be discussed in Chapter 6.

1 int t e s t ( int x , int b) {
2 i f ( x == 0) {
3 x = x + 1 ;
4 } else {
5 b = b = 1 ;
6 }
7 x = 5 + b ;
8 i f ( x == 14) {
9 e r r o r ( ) ;
10 }
11 return 0 ;
12 }

Program 2: Simple Example

We define the trace formula based on [9, 16]. The trace τ = (ψ, π, φ) of an
error path ΠE with n+ 1 transitions consists of the triple (ψ, π, φ). The first
part ψ is a failing variable assignment or more generally a model of π ∧ ¬φ.
In Program 2 the execution calls error() in line 9 if x := 1 and b := 10 so
consequently ψ ⇔ (x = 1) ∧ (b = 10). Secondly, π describes the executed
path to the error location. Hence, it consists of the first n transitions of ΠE.
The last transition becomes the post-condition φ by φ = ¬ΠE[n + 1]. This
is the reason why the last edge has to be an assume edge. The trace τ has
length n. The trace formula TF of a trace τ is expressed as

TF(τ)⇔ ψ ∧
n−1∧
i=0

π[i] ∧ φ

and therefore, the trace formula for Program 2 equals

TF(τ)⇔ (x = 1) ∧ (b = 10)︸ ︷︷ ︸
ψ

∧ ¬(x == 0) ∧ (b′ = b− 1) ∧ (x′ = 5 + b′)︸ ︷︷ ︸
“π”

∧ ¬(x′ == 14)︸ ︷︷ ︸
φ

.

From now on, we use TF(π) = TF(π[0; n]) = TF((>, π,>)) as a shortened
notation for the conjunction of the actual execution path π.

As mentioned above the post-condition of a feasible error path is the
negation of the last assume operation before reaching the error label. This
implies that TF(τ) has to be unsatisfiable by construction.
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3.5 SSA-Map

After updating a variable we add a prime to the variable to keep track of
which changes may be error-prone. Let X be the set of variables, then for
every x ∈ X : x〈j〉 denotes the variable at time j of the path π of length n
with 0 ≤ j ≤ n. Static single assignment maps (SSA-maps) store the current
static single assignment index (SSA-index) of all variables in X. The index
is equal to the number of primes added to a variable. We represent such a
map by extending the notation to sets. Therefore, X〈j〉 contains all variables
at time j. For Program 2, X〈2〉 = {x〈2〉, b〈2〉} = {x, b′}. It follows, that the
SSA-index of x equals 0 and the SSA-index of b equals 1. In addition, for
a Boolean formula fB, f

〈j〉
B replaces all its occurrences of a variable x ∈ X

by the corresponding x ∈ X〈j〉. For instance, if fB ⇔ x = 0 ∧ b = 3, then
f
〈2〉
B ⇔ x = 0 ∧ b′ = 3 with X〈2〉 = {x, b′} as above. Until now we implicitly

assumed that the SSA-indices are correctly assigned when creating the trace
formula but for the algorithms it is important to explicitly indicate them.
Thus, the correct formulation of the trace formula is expressed as:

TF(τ) = ψ ∧
n−1∧
i=0

π[i]〈i〉 ∧ φ〈n〉.

3.6 Single-UNSAT-Core Algorithm

Algorithm 1 depicts the core concept of the following algorithms: MaxSat
and ErrInv. They will later extend and refine (SingleUnsatCore) to
achieve better results and to give better explanations.

Algorithm 1: SingleUnsatCore

Input: ψ, π, φ: Boolean Formula
Output: C: candidate set of Boolean Formulas
Result: Subset of clauses of π where adapting the corresponding

lines/locations in the program can fix the bug.

1 tf = ψ ∧
n−1∧
i=0

π[i]〈i〉 ∧ φ〈n〉;

2 C = solver.unsatCore(tf);
3 return C;

Algorithm 1 shows the basic implementation for calculating a single UNSAT

core. We obtain a subset C ⊆ {ψ, φ〈n〉} ∪
n−1⋃
i=0

{π[i]〈i〉} of clauses where ψ ∧

16



1 int s imple ( int input ) {
2 int x = input ;
3 i f ( x > 0) {
4 i f ( x < 5) {
5 i f ( x > 1) {
6 i f ( x != =1 && x != 6) {
7 e r r o r ( ) ;
8 }
9 }
10 }
11 }
12 }

Program 3: Simple checks

( ∧
c∈C

c

)
∧ φ〈n〉 already is unsatisfiable. C can be interpreted as a reduction

of possible bug locations.
To explain the behavior of SingleUnsatCore, we start with Program 3.

Setting input := 2 forces the program to call the function error() which
means the program has a bug. To figure out promising locations where
changes fix the program, we run Algorithm 1 with the inputs:

ψ: input = 2

π: {x = input, x > 0, x < 5, x > 1}

φ: ¬(x 6= −1 ∧ x 6= 6)⇔ (x = −1 ∨ x = 6).

The trace formula tf is equivalent to the conjunction of ψ, all elements of π
and φ (Algorithm 1, line 1). We do not need SSA-indices here since the values
of x or input are never updated. Next, we let the solver calculate one of the
possible UNSAT cores of tf and return it to the user. For Program 3 the
set C = {(x < 5), (x > 1)} is returned. With this two constraints the possible
values for x are 2, 3 and 4 which contradicts the post-condition that x either
must have the value −1 or 6. Now, the task for the developer is to make
the correct adaptions to the given and reduced result set. Replacing line 4
with if(x < 2) resolves the bug which, in this constructed example is a valid
fix but in real world programs it, of course, might not be suitable because
we ignore the semantics. This particular problem will be part of Chapter 6.
Calculating MIN-UNSAT cores only works if ψ∧φ〈n〉 is satisfiable. Otherwise,
the MIN-UNSAT core in terms of clauses of π would result in the empty set.
The algorithm exactly determined the error-causing clauses. Additionally,
we gained the information that, whenever the program reaches line 6 there
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is no way to satisfy the post-condition and therefore an adaption of either
line 4 or line 5 or both lines is needed. Here, the proposed solution for line
4 fixes the bug.

3.7 MAX-SAT Algorithm

3.7.1 Selector

For calculating maximal satisfiable subsets (MSS) we introduce the concept
of selector variables labeled λi for every clause in π [16]. Hence, we enhance
the construction of the trace formula as follows:

TFΛ(τ)⇔ ψ ∧
n−1∧
i=0

(λi ⇒ π[i]〈i〉) ∧ φ〈n〉,

offering the opportunity to switch on and off specific clauses of π. This can
be done by assigning either true or false to a selector variable λi.

If λi is true, then (λi ⇒ π[i]) ⇔ (true ⇒ π[i]) ⇔ π[i] and in conse-
quence π[i] must be considered when the solver runs the satisfiability check.
Otherwise, if λi is false, (λi ⇒ π[i]) ⇔ (¬false ∨ π[i]) ⇔ (true ∨ π[i])
simplifies to true and π[i] will be ignored. As long as no concrete value is
assigned to a selector, we call it “free”. Trace formulas using selectors are in-
dicated by adding Λ as an index to TFΛ. Every selector can be mapped to the
line and location of the clause it implies. For proofing a formula satisfiable
the solver tries to find a proper assignment of all free variables. Thus, the
absence of such an assignment states that the formula is unsatisfiable. Note
that TFΛ always is satisfiable if ψ∧φ〈n〉 is satisfiable, whereas TFΛ(τ)∧

∧
λ∈M λ

is unsatisfiable if M is an UNSAT core. The problem we want to solve now
is to find a MSS of selectors to which we can assign the value true, i.e.,
TFΛ(τ) ∧

∧
λ∈MSS λ is satisfiable.

3.7.2 Soft and Hard Clauses

The clause λi ⇒ π[i] automatically becomes satisfiable because - while check-
ing for satisfiability - the solver only needs to assign false to the free selec-
tor. This works every time since a selector only appears once in TFΛ and will
therefore not inflict problems somewhere else. Clauses with free selectors are
called soft clauses because the solver can choose the fitting assignment for
this clause.
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Clauses that should be regarded are labeled as hard clauses. For instance
the precondition as well as the post-condition do not get selectors and con-
sequently are always marked as hard. To mark free selectors of the index
set I as hard, it is sufficient to append “

∧
i∈I λi” to the trace formula TFΛ.

The solver now has no other choice than setting all λi, i ∈ I to true because
otherwise the formula TFΛ ∧ λi ⇔ TFΛ ∧ false ⇔ false becomes unsatisfi-
able. Hence, the solver requires the selector to have the value true which is
because of the implication equivalent to mark the clause as hard.

In summary we now have a extended trace formula TFΛ where the pre-
and the post-condition are marked as hard and the selectors are marked as
soft initially.

3.7.3 The Algorithm

Algorithm 2: MaxSat (adapted from [16])

Input: ψ, π, φ: Boolean Formula
Output: H: Set of sets of Boolean Formulas
Result: Subsets of clauses of π where adapting the corresponding

lines/locations in one of the sets can fix the bug.
1 S = {λ0, · · · , λn−1} ; // soft set

2 H = {} ; // stores all found CoMSS

3 tf = ψ ∧
n−1∧
i=0

(λi ⇒ π[i]〈i〉) ∧ φ〈n〉;

4 while true do
5 M = CoMMS(tf, S);

6 if M == ∅ then
7 break;

8 h =
∨
m∈M m;

9 tf = tf ∧ h;

10 H = H ∪ {M};
11 S = S \M ;

12 return H ;

MaxSat [16] calculates every possible MSS of selectors of TFΛ starting with
the largest set and ending with the smallest one. All found sets share one
common property: the complement of the MSS, namely M = S \MSS is a
subset of an UNSAT core. The advantage of finding all possible M lies in
the fact that the user has access to several promising and minimal sets of
locations. The complements M are minimal because MSS is maximal [16].
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Every set provides locations where changes can fix the bug although some of
them might not be suitable for a proper fix, e.g, if the programmer does not
want to change this line. Thus, having multiple selections of locations gives
access to other possible approaches on fixing the bug. Algorithm 2 shows
the basic implementation of MaxSat using a p-MAX-SAT-solver. Such a
solver allows to pass hard and soft clauses as arguments and it returns a MSS
of soft clauses. The letter p abbreviates the word partial as it only returns
subsets of soft set clauses and no hard clauses. In this setting this means, we
search for a MSS with maximal cardinality such that TFΛ∧

∧
m∈MSS m remains

satisfiable. The complement M of MSS has to be a subset of an UNSAT core
otherwise elements of M could have been added to the satisfiable set MSS.
M is calculated by a CoMSS solver which implements a p-MAX-SAT-solver
and returns the complement. CoMSS translates to “complement of maximal
satisfiability subset”.

Now we take a look at the algorithm itself. First, we create all selectors
and store them in the set S. We proceed to calculate the first part (tf) of
the trace formula, which exactly matches TFΛ and pass it together with the
conjunct of all available selectors S to the CoMSS-solver. The selectors are
marked as soft. Note that tf ∧

∧
s∈S s is unsatisfiable. The while-loop ends as

soon as the newly returned minimal set M is empty. In line 5 we compute the
first MSS with respect to the selectors S and the already found complements
contained in H. We do not pass H as argument as the subsets are also
added to the trace formula in line 9. Appending h to the trace formula
ensures that we cannot compute the same complement with elements of S
twice. To proof the correctness of this we take a look at the functionality of
the CoMSS-solver. Assume we have an arbitrary program where λ0, λ1 and
λ3 are elements of M in the first iteration. We update tf with h resulting
in tf′ = tf ∧ (λ0 ∨ λ1 ∨ λ3). Together with the soft clauses this formula is
passed to the CoMSS-solver which tries to calculate the next MSS. We see
that the solver now has to set at least one of the three selectors to true to
ensure satisfiability. The next found MSS now contains a non empty subset
of {λ0, λ1, λ3} together with other selectors and thus the complement of the
set can never again be equal to {λ0, λ1, λ3}. In line 11 we remove all selectors
in M from the set of selectors S because otherwise we produce an endless
loop. If we remove line 11, then every selectors is always marked as soft.
After we added all possible M to the formula we might be at an point where
the formula is unsatisfiable no matter which Boolean values are assigned to
the selectors. The complement of the empty set would always be S. Thus,
we would add the clause

∨
s∈S s infinitely many times to tf and never exit

the loop.
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3.8 Error Invariants Algorithm

3.8.1 Error Invariants and Craig Interpolants

We define error invariants based on the idea of Craig interpolants [7]. To
obtain an error invariant, we firstly specify a Craig interpolant I for an
unsatisfiable formula fC ⇔ fA ∧ fB by the following three properties:

1) fA ⇒ I is valid, meaning ¬(fA ⇒ I) is unsatisfiable,

2) I ∧ fB is unsatisfiable,

3) free variables in I are also free in fA and fB.

We know that TF(τ) of length n of an error path is unsatisfiable, enabling us
to set fC = TF(τ). Splitting the trace formula on position i ∈ [0;n]∩N yields
the formulas for fA and fB by fA ⇔ ψ∧TF(π[0; i]) and fB ⇔ TF(π[i; n])∧φ〈n〉.
If Ii is a Craig interpolant on position i with this definition of fA and fB, the
interpolant is considered to be an error invariant [9]. In this work we often
refer to error invariants with inductive interpolants.

For example, the trivial interpolant for position i = 0 directly emerges
from the precondition ψ. Let i = 0, then I0 ⇔ ψ because consequently
fA ⇔ ψ ∧ TF(π[0; 0]) ⇔ ψ and fB ⇔ TF(π[0; n]) ∧ φ〈n〉. The implication
fA ⇒ I0 holds because ψ ⇒ ψ and I0 ∧ fB being, in this case, equivalent to
TF(τ) is unsatisfiable by construction. We can always find an interpolant for
unsatisfiable first-order logical formulas.

3.8.2 Abstract Error Trace

A big advantage of the error invariants algorithm (ErrInv) [9] compared
to the other presented algorithms is, that it produces explanations for every
location in the program on the fly by computing an abstract error trace. We
first sketch the idea to then formalize the process.

In a first step, the algorithm asks the solver to return an interpolant for
every π[i], 0 ≤ i < n in the trace τ of length n. The interpolants can be
understood as reasons of why this certain location eventually leads to the
error. We will see that some interpolants hold for multiple locations in the
trace. The traget is to find the maximal interval where the interpolant holds,
i.e., is inductive. For instance, if I is an interpolant for position i and the
last time for position k ≥ i, I is an inductive interpolant in the interval [i; k].
I now abstracts all locations from i to k. In an informal way we can simply
express whatever happens between locations i and k as I. This leads to
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an alternating sequence of interpolants and actual locations of the program
building the abstract error trace τ#.

We adopt the following definition of τ# from [9]. Formally, the abstract
error trace τ# = (ψ, π#, φ) is an abstraction of τ = (ψ, π, φ) where π#

precisely explains why π is failing in combination with the pre- and the post-
condition. It must hold that for every n-step execution σ of τ we can find
an m-step execution σ# of τ# such that σ#[0] = σ[0], σ#[m] = σ[n] and
σ# 4 σ. The operator 4 denotes the subsequence ordering of two sequences
defined as:

(ai)i∈[0;m]∩N0
4 (bj)j∈[0;n]∩N0

⇔ a0 = bi0 , . . . , am = bim

for some indices 0 ≤ i0 < · · · < im ≤ n.

Algorithm 3: ErrInv (adapted from [9])

Input: ψ, π, φ: Boolean Formula
Output: π#: Abstract error trace of τ = (ψ, π, φ)
Result: Alternating sequence of elements of π and interpolants

concisley explaining the cause of the error.
1 I = interpolate(TF(τ)) ; // interpolant for every position

2 intervalmax = {(l� searchL(0, j, Ij), r�
searchR(j, n, Ij), errinv� Ij)|Ij ∈ I};

3 intervalmax.sort((a, b)→ a.l ≤ b.l) ; // sort ascending by l

4 π# = [];
5 maxInterval = intervalmax[0];
6 prevEnd = 0;
7 for currInt : intervalmax do
8 if currInt.l > prevEnd then
9 π#.next = maxInterval.errinv;

10 if maxInterval.r < n then
11 π#.next = π[maxInterval.r];

12 prevEnd = maxInterval.r;
13 maxInterval = currInt;

14 else if currInt.r > maxInterval.r then
15 maxInterval = currInt;

16 return π# ;

With “x � y” we denote the assignment of value y to a variable named
x. Algorithm 3 computes an abstraction π# = I0, T1, I1, . . . , Tk, Ik (Tl ∈ π)
where an interpolant Ij can be understood as transitions that summarize the
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meaning between the surrounding two transitions Tj and Tj+1. Note that the
SSA-indices have to be compliant. The details of ErrInv are described in
the next section.

3.8.3 The Algorithm

Algorithm 3 shows a basic version for a procedure to find the abstract er-
ror trace. Based on the calculated interpolants in line 1 we try to find the
ones that are inductive for many positions in π. In line 2 we calculate the
borders of every interpolant, i.e., the region where it is inductive. We pro-
ceed by sorting the intervals ascending by their attribute l, representing the
left border. Afterwards we initialize maxInterval with the interval starting
at position 0. Now we loop through every interval to yield the actual ab-
stract error trace as follows: If the current interval starts right of prevEnd
we add it as an interpolant to the abstract trace. Furthermore, if the end is
within the boundaries of the actual trace, we add the corresponding transi-
tion of π to π#. This is always the case if the interpolant has a r-value less
than n. In this way we produce the alternating sequence of interpolants and
transitions. If the r-value of the interpolant equals n it finishes the trace.
An interval with boundaries l = i < r = j is inductive from i to j − 1.
Next, prevEnd is updated to the value of the end of maxInterval since the
variable is overridden by currInt in the following line. As a summary the
then-block produces the alternating sequence of transitions and interpolants
if the current interval starts right of the maximal interval. Otherwise, if the
interval starts before and ends after the end of the current maximal interval,
we override it by the current processed interval because it represents more
clauses. As we can see the most important part of the algorithm is to find the
boundaries of the interval, implemented with the methods searchL(0, j, Ij)
and searchR(j, n, Ij). Indeed, these two functions are the most expensive
ones in terms of run time in Algorithm 3. In a naive approach searchL im-
plements a for-loop through every position returning the position i for which
Ik is an interpolant for the first time. Analogous, searchR loops backwards
from n − 1 to 0 and returns the position for which Ik is an interpolant for
the first time. For large programs this means that we have many calls to the
solver for determining the boundaries of the interpolants. Therefore, prior
work [9] proposes an implementation of these two methods as a fast binary
search reducing the run time in terms of calls to the solver to O(log(n)).
The better the implementation of the boundary search for interpolants the
better the algorithm performs. Thus, the search for start and end of an in-
terval are implemented as a guided binary search based on the interpolant.
The algorithm takes a minimal number start and a maximal number end to
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Algorithm 4: Binary search for inductive interpolants [9].

Input: start, end: Integer, incLow: Boolean Function
Output: position: Integer
Result: Find boundaries of the interval.

1 if end < start then
2 return start;

3 mid = bstart+end
2
c;

4 if incLow(mid) then
5 return search(mid + 1, end, incLow) ; // recursive call

6 else
7 return search(start, mid− 1, incLow) ; // recursive call

calculate the actual boundaries of the interpolant. The current interpolant
is contained in the function incLow, which guides the search in the correct
direction by either increasing the start-variable or decreasing the value of
end. If end is smaller than start we return the value of start, otherwise we
calculate the mid and let incLow decide where to look next. Algorithm 4
shows an implementation of the binary search.

The method incLow takes an interpolant Ij and a time stamp i to deter-
mine if the interpolant of position j is an error invariant (c.f. Section 3.8.1) for
position i, too. In Algorithm 3 we used the functions searchL and searchR

to determine the boundaries. Now we can define them by using the search
method. Hence,

� searchL(0, j, Ij) = search(0, j, i→ ¬incLow(Ij, i))

� searchR(j, n, Ij) = search(j, n, i→ incLow(Ij, i))− 1

for a trace of length n. The expression i → func(. . . ) symbolizes a lambda
expression known from several programming languages, including Java. We
will now discuss the correctness of searchL and searchR. To find the left
bound of the interval we apply the binary search together with the negation
of the Boolean function incLow(Ij, i). If Ij turns out to be an interpolant
on position mid as well, the function incLow returns true. As its negation
is false, we execute line 7 in Algorithm 4 and therefore let the value start

unchanged. The search moves from right to left. Since the initial call of
searchL has the lowest possible value 0 as argument for start the search
ends on the left border. Otherwise, if Ij is not an interpolant, we restart
the search from the midpoint of the beginning and the actual position of
the interpolant. If an interpolant happens to be inductive up to mid we can
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1 int main (void ) {
2 int x = 5 ;
3 x = x + 5 ;
4 x = x + 1 ;
5 x = x = 1 ;
6 i f ( x == 10) {
7 goto ERROR;
8 }
9 EXIT :
10 return 0 ;
11 ERROR:
12 return 1 ;
13 }

Program 4: Error Invariants Example

restart the search for values between mid and end, as we know it is already
inductive at mid. Searching the right border with searchR works analogous.
Finally, we run through the algorithm with Program 4 as input and obtain
following values for the trace τ :

ψ: x = 5

π: x′ = x+ 5 ∧ x′′ = x′ + 1 ∧ x′′′ = x′′ − 1

φ: x′′′ 6= 10.

Table 1: Interpolants and boundaries of Program 4

line interpolant borders

2 x = 5 [2;2]
3 x = 10 [3;3]
4 x = 11 [4;4]
5 x = 10 [3;5]

First, the interpolants for each position are calculated and then are extended
by the inductive boundaries as seen in Table 1. The algorithm proceeds
to sort the intervals ascending by their left boundary to then calculate the
abstract error trace. Applying Algorithm 3 yields the abstract error trace
shown in Table 2.

The algorithm abstracts the error trace by summarizing lines 4 and 5 to
x = 10 since we effectively do not change the value of x within these two lines.
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Table 2: Abstract error trace of Program 4

Abstract trace

Interval[2;2]: x = 5
Statement[3]: x = x+ 5
Interval[3;5]: x = 10

This means that the error condition is already violated at line 3. We can
now either change line 3 or the behavior within the interval [3; 5]. For better
readability we used line numbers to indicate the boundaries. Of course, the
algorithm uses indices instead of line numbers.
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4 Theoretic Contributions

4.1 Adaptions for MAX-SAT

Algorithm 5: Adapted MaxSat (original [16])

Input: ψ, π, φ: Boolean Formula
Output: H: Set of sets of Boolean Formulas
Result: Subsets of clauses of π where adapting the corresponding

lines/locations in one of the sets can fix the bug.
1 S = {λ0, · · · , λn−1} ; // soft set

2 tf1 = ψ ∧
n−1∧
i=0

(λi ⇒ π[i]〈i〉) ∧ φ〈n〉;

3 H = {} ; // set of all found cores

4 M = {} ; // current MIN-UNSAT core

5 while |M | 6= |S| do
6 M = minUnsatCore(S, tf1, H);
7 if |M | == 1 then
8 S = S \M ;

9 if |M | 6= n then
10 H = H ∪ {M};

11 return H ;

In Chapter 3 we worked with the CoMSS-solver which is not available in
the CPAchecker-framework. As a consequence we adapted the presented
algorithm with a few changes and implemented an own method based on
the existing solver which guarantees to return all MIN-UNSAT cores as a
set of selectors instead. We already mentioned that every element of the
complement M of a MSS is a subset of a MIN-UNSAT core. That is the
reason why we are interested in the MIN-UNSAT cores from now on. The
advantage of MIN-UNSAT cores compared to the complements of MSS is
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that the MIN-UNSAT cores directly display the contradicting locations in
the program instead of just indicating locations. The goal is to calculate and
return every MIN-UNSAT core of selectors. Note that this ensures that we
do not lose any information compared to the presented approach in 3.7 since
every complement of any MSS will be element of an UNSAT core. However,
the combination of the selectors in the resulting sets may differ. Algorithm 5
shows the adaptations.

The first two lines remain the same. Now we introduce two new sets, the
hard set H and the set M containing the MIN-UNSAT core of the current
iteration. In this section, when we refer to MIN-UNSAT core or a minimal
set we mean that no nonempty, real subset of the core or set forms an UNSAT
core, too. Next, we enter the while-loop as long as the size of the current
UNSAT core M does not equal the number of selectors in S. Afterwards, we
calculate the next MIN-UNSAT core based on the already calculated sets in
H and the remaining selectors S. In case the returned set M has size 1, we
remove the selector from S in line 8. To understand why this is important,
we have to define the function minUnsatCore(S, tf1, H). Its task is to find
a minimal subset of selectors L ⊆ S such that the following two conditions
hold:

a)

tf 2(L)︷ ︸︸ ︷
tf 1 ∧

(∧
λ∈L

λ

)
︸ ︷︷ ︸

soft-set-formula SSF(L)

is unsatisfiable,

b) ∀H ∈ H : H * L ∧ L * H.

To find the smallest set L of selectors, the algorithm iterates over every
possible non empty subset of S and checks if tf2 with the current subset L is
unsatisfiable. Whenever this is the case and no other selector can be removed
from the set, still guaranteeing unsatisfiability, we acquired a new UNSAT
core. If we conjunct the soft-set-formula to TFΛ we automatically mark all
elements of L as hard while all other selectors must not be regarded. As seen
above SSF is defined as SSF(L) =

(∧
λ∈L λ

)
for any subset L of selectors.

On condition that tf2 is unsatisfiable and L is minimal, it can be returned
(condition a)).

To prevent returning an already found set M ∈ H, we store them in the
hard set, as seen in Algorithm 5, line 10. Checking if the size of M does
not equal n in line 9 is optional but returning all inputted transitions to the
user yields no information because he already knows that there is a fault
somewhere in the whole program. An important side note is that we do not
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prevent appending cores of the size of S, we only prohibit appending sets
of size equal to the initial number of selectors. Now, the modified hard-set

Algorithm 6: MIN-UNSAT core computation

Input: S: Set of selectors, tf1: trace formula, H: all found cores
Output: M : new minimal set of UNSAT cores.
Result: Returns a new minimal set of selectors that makes the trace

formula unsatisfiable.
1 result = S;
2 do
3 changed = false;
4 for λ in result do
5 currCore = S \ {λ};
6 if check(currCore, H) then
7 if isUnsat(TFΛ ∧ SSF(currCore)) then
8 changed = true;
9 result = result \ {λ};

10 break;

11 while changed ;
12 return result;

is passed as argument to the function minUnsatCore in the next iteration.
After finding a new potential subset L of selectors, the function first checks
if this set is contained by another set of H or if it contains another set of
H (condition b)). If this is the case we do not return the subset because it
either is not minimal or already found. Algorithm 6 sketches the calculation
of MIN-UNSAT cores. We systematically remove selectors from the set of
all remaining selectors S. Under the assumption that tf2 (S ) is unsatisfiable
we remove selectors from S as long as tf2 (S ′) remains unsatisfiable where S ′

denotes the reduced selector set originating from S. Therefore, every selector
whose removal does not make tf2 satisfiable has no impact on the root cause of
the bug and hence is not needed. This does not mean that the same selector
cannot be part of another UNSAT core, it only states that this selector is
not needed in the current combination of selectors to yield unsatisfiability. In
order to compute a new MIN-UNSAT core we create a copy of the remaining
selectors and initialize the Boolean variable changed with false. Since we
use a do-while construct we ensure entering the iteration-body at least once.
Now after entering the for-loop in line 4, we remove one selector after another
and check if the formula is still unsatisfiable. If so, we remove the selector
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from the result set, assign true to changed and restart the procedure with
a smaller result set. Otherwise, if we cannot remove anything from result

anymore, we return it as a new MIN-UNSAT core. The function check in
line 6 checks if condition b) from above holds and returns true whenever
currCore is neither a subset nor a superset of any set in H. As soon as
a subset of L is contained in H we can skip the calculation of L and all
its subset. We illustrate the idea with the help of an example. Let the
set H = {λ0, λ1} ∈ H be an element of H and the set L = {λ0, λ1, λ2, λ4}
the currently checked candidate for a new MIN-UNSAT core. Condition b)
is violated as L is a superset of H and therefore will be skipped. Since L
obviously is not minimal MaxSat is able to remove further selectors and will
eventually end up with H either way. In a few cases the set {λ2, λ4} might
be an undetected UNSAT core which we seemingly will skip and ignore now.
However, this core will also be found in latter iterations. In some point of
the execution the algorithm will remove selector 1 first and thus the whole
set cannot be a superset of element in H. However, this set still contains the
selectors 2 and 4 and thus will return the MIN-UNSAT core {λ2, λ4}.

We can now see the improvement that removing cores of size 1 yields (line
7 and 8 in Algorithm 5). Removing just one element from the set of selectors
reduces the number of possible subsets by half. A set with n elements has
2n subsets, removing just one element leads to 2n−1 subsets. The difference
of both values equals 2n−1 = 2n/2. Furthermore, we spot the reason, why
this method does not return the cores in correct order: Imagine the singleton
set of selector {λ0} is one of the UNSAT cores but the only one of size 1.
Now, after entering the for-loop for the first time, we immediately remove
λ0 in line 5 from the set of considered selectors. The methods check and
isUnsat will return true since other UNSAT cores with a combination of the
still available selectors are possible and we have not found another core yet.
Algorithm 6 will proceed and return a set not containing λ0 as first UNSAT
core, although it is not the smallest one.

The original algorithm handles this differently. The usage of a partial
maximum satisfiability solver (p-MAX-SAT-solver) allows to directly mark
clauses as hard and soft to then obtain a maximum set P of selectors such
that tf2 is satisfiable. Instead of checking for sub- and super-sets as we
proposed in b), they append a new hard clause h given by h(H) =

∨
µ∈H µ to

the hard clauses and modify the soft set accordingly [16]. This prevents the
p-MAX-SAT solver to return identical cores twice.
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Table 3: Run of Algorithm 5 on Program 3

Run M H S.size

#0 {} {} 4
#1 {λ2,λ3} {{λ2, λ3}} 4
#2 {λ0} {{λ0}, {λ2, λ3}} 3
#3 {λ1,λ2} {{λ0}, {λ1, λ2}, {λ2, λ3}} 3
#4 {λ1, λ2,λ3} {{λ0}, {λ1, λ2}, {λ2, λ3}, {λ1, λ2, λ3}} 3

To conclude this section, we let Algorithm 5 analyze Program 3. The inputs
are:

ψ: input = 2

π: {x = input, x > 0, x < 5, x > 1}

φ: ¬(x 6= −1 ∧ x 6= 6).

Table 3 shows the results after each iteration in the while-loop. At the
beginning all sets but the selector set are empty. S has a size of 4 because
we have 4 transitions before we reach the error label. In run #1 we find the
UNSAT core {λ2, λ3} that was found by SingleUnsatCore, too. We just
have to add the set to H and continue to calculate all remaining cores, if
available. The second iteration returns an UNSAT core of size 1 containing
the selector λ0. The reason is that ψ ∧ (λ0 ⇒ (x = input)) ∧ φ〈4〉 ∧ λ0

is unsatisfiable since (input = 2) ∧ (x = input) ∧ ¬(x 6= −1 ∧ x 6= 6) is
not feasible. We now remove λ0 from S to reduce the possible subsets of S
in the next iteration. None of the following UNSAT cores can contain λ0.
Next, the solver finds another different UNSAT core of size 2. As stated
above returning the same UNSAT core twice is prevented by checking for
sub- and super-sets (Algorithm 6, line 6). Finally, the algorithm returns all
left selectors as the new UNSAT core, which means that we break out of the
while loop and return H to the user.

Table 4: Possible fixes for each found set

Set Fix

{λ0} line 2: int x = −|input|
{λ1, λ2} line 4: if (x < 2) {
{λ2, λ3} line 4: if (x < 2) {
{λ1, λ2, λ3} line 4: if (x < 2) {
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Adjustments to any of the found sets can fix the bug. See Table 4 for possible
fixes. Once again, not every change in Table 4 might be appropriate for the
situation.

Whenever we write MaxSat in the following chapters and sections, we
refer to our adaption presented here (Algorithm 5).

4.2 Memoization of Error-Invariants

Before we start the search for inductive interpolants we first obtain a list
of interpolants for every element of π. In our benchmarks we noticed that
many interpolants occur multiple times in this list. Subsequently, the method
incLow repeatably checks if equal interpolants hold on the same position
i. We achieved improvements by adding memoization. Before we check if
an interpolant holds on position i we look it up in a table, which maps
an interpolant to all already processed positions. If the interpolant has a
mapping to i it is inductive on position i. If the interpolant has a mapping
to −i it is not inductive on position i. If there exist neither a mapping
to i nor −i the interpolant has not been proven inductive or not inductive
on position i. This means that we only have to call the solver for every
interpolant together with a certain position once.

4.3 Information Extraction

For additional information we further process the found faults and look for
common error patterns like faulty handling of iteration variables. In our
implementation, the methods of class InformationProvider search for it-
eration variables and calculations within the array brackets. CPAchecker
allows to access the actual program statement of a CFAEdge which gives us
the chance to look for such patterns on string basis. To find out which vari-
ables are iteration variables we look for multiple occurrences of the pattern
“varname = varname <operator> 1” or “varname<operator><operator>”
with + and - as operators. The method marks all variables matching this
pattern more than 3 times. Even if it is not part of a loop, manually and
frequently subtracting or adding one to a variable acts like an iteration vari-
able, too. Afterwards, we tell the user that an iteration variable is involved in
causing the bug. Secondly, we search for the pattern “name[a op b]”, which
matches operations within the array subscript. If we find faults containing a
line with such a pattern, we notify the user with the message that there may
be a suspicious calculation within the array subscript.
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Moreover, our data structure (c.f. Chapter 5) provides the interface
FaultExplanation to map a fault to an explanation. Furthermore, it al-
lows to append additional information (called appendables) to every found
subset of error-prone transitions (called fault). Whenever appendables are
added, the constructor of them demands a descriptive text which is meant
to be generated by FaultExplanations. The advantage lies in the option of
a uniformed way to create explanations or descriptions for possible fixes. We
implemented the class NoContentExplanation using this interface. If the
passed fault has a size of 1, it creates a description of a possible fix based on
the contained edge. The proposed fix relies only on the edge type without
the context of what happened before or will happen afterwards. For instance,
the proposed fix for assume edges (e.g., if (x < 5)) is to replace the used
operator by any of the other Boolean operators like “<,>,≤,≥,=, 6=”. For
more implementation details see Chapter 5.

4.4 Rankings for Faults

MaxSat tends to compute many different faults as it returns every pos-
sible MIN-UNSAT core. With the rankings we want to highlight especially
promising faults by displaying them at the top of the visual report (c.f. Chap-
ter 5). By default, every ranking assigns a normalized score to each fault in
the obtained set. The score attribute of faults is implemented as a double
value. Our rankings assign scores from 0 to 1 to each of the faults with the
restriction that the sum of the assigned scores equals 1. This allows different
rankings to be more comparable to others. If for example a ranking scores
faults based on their set size, faults with a minimal set size get a higher score.
Formally, we create a scoring function h(F , F ) and a normalization function
n(x, F ) with F ∈ F and x ∈ R. F equals the obtained set of faults. For
ranking r the following properties hold for h and n:

1. h(r) : (F, 2F ) 7→ R

2. n(r) : (R, 2F ) 7→ [0; 1]

3.
∑
F∈F n

(r)(h(r)(F , F ), F ) = 1

4. ∀F ,F ′ ∈ F : h1 = h(r)(F , F ) > h(r)(F ′, F ) = h2 ⇒ n(r)(h1) > n(r)(h2)

5. ∀F ,F ′ ∈ F : h1 = h(r)(F , F ) = h(r)(F ′, F ) = h2 ⇒ n(r)(h1) = n(r)(h2)

Setting n(x, F ) = x∑
F∈F h(F ,F )

is applicable most of the time. The function

h maps a fault of the set F to a numerical score. The properties ensure
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that n maintains the monotony of h. As n is a normalization function it has
to map all possible values to the same range of values from 0 to 1. To set
the values into a comparable relation the normalized values have to sum up
to 1 for each applied ranking. A higher value of h results in a higher value
after normalization. Additionally, if two faults get exactly the same score the
normalization function has to yield the same score, too. As a result every
ranking assigns a weighted score between 0 and 1 to every fault making
it more comparable to other rankings. As already explained it is possible
and useful to concatenate different rankings for better results. For the final
arrangement based on all the already applied rankings it is necessary to have
normalized values. However, our implementation does not limit the scoring
system to the presented one. One can assign arbitrary scores to every fault
but the weighting and final ranking must then be manually adapted. Still,
the scoring system above works for every future ranking without the need
to adapt anything. If the ranking follows the convention the newly created
ranking can be concatenated to the existing ones without further steps. The
final scoring to yield the ordered list of faults averages the previously assigned
scores of all used rankings. Let R be the set of used rankings, then

sf =

∑
r∈R n

(r)(h(r)(F , F ), F )

|R|

equals the final score for fault F . We will now discuss the most important
rankings and their functionality as well as fitting scenarios. The concatena-
tion and concrete implementation of the Rankings will be covered in Chap-
ter 5.

Identity Ranking. The simplest of all rankings assigns an equal score
to every fault and sorts them in the order the set-iterator returns them. The
ranking is useful for testing and achieving fast results without additional
steps. It should not be used in cooperation with other rankings because it
decreases the differences of the scores of the faults. Let F = {F1,F2} the

Table 5: Average values without identity ranking

n(1) n(2) ∅

F1 0.3 0.4 0.35
F2 0.7 0.6 0.65

set of found faults. Table 5 shows the normalized values of two rankings
for each fault in F and their mean values which are used to rank the faults.
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Table 6: Average values with identity ranking

n(1) n(2) n(id) ∅

F1 0.3 0.4 0.5 0.4
F2 0.7 0.6 0.5 0.6

Currently, F2 leads by 0.3 points. If we now apply the identity ranking as
seen in Table 6 we notice that the lead of F2 decreases by 0.1 points. The
identity ranking will not disturb the order of the faults but it will assimilate
the scores although meaningful rankings actually calculated a more notice-
able gap between the two faults. Note that the sum of each column equals
1.

� h(F , F ) = 1

� n(x, F ) = x/|F |

Line Distance Rankings. We now present two rankings that evaluate the
score based on the absolute line-distance to the error location. The first
ranking assigns a higher score to faults with a minimal distance to the error
locations whereas the second ranking assigns a higher score to faults further
away. Both rankings make sense in different applications. Usually, declara-
tion of variables takes place in the upper part of the program. Assuming
that the declarations are correct, sorting the faults by minimal distance to
the error locations yields better results because less error prone steps will
be executed earlier. However, standard C programs require a strict ordering
of functions. If function a calls function b, b has to be declared above a,
meaning that important execution steps are far away from the error location
when referring to the line numbers. Let l be the line number of the error
location, then for the second ranking the function h and n can be defined as
(remember that a fault F ∈ F is, general speaking, a set of edges):

� h(F , F ) = |l −min
e∈F

(e.lineNumber)|

� n(x, F ) = x/
∑

F∈F
h(F ,F )

We use a different procedure to calculate the score in our implementation
but the idea remains the same.

Overall Occurrence Ranking. Taking MaxSat as an example, we see
that same selectors can be included in multiple subsets (c.f. Table 4). Many
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of them contain the same selector, indicating that this selector maps to an
important location in the program that might be very likely to cause the
bug. If one set contains many of the frequently appearing selectors it should
be ranked higher than other sets.

� h(F , F ) =
∑

F ′∈(F\{F})
|F ∩ F ′|

� n(x, F ) = x/
∑

F∈F
h(F ,F )

Set Size Ranking. The ranking above ignores that selectors contained in
singleton sets only appear once overall because no subset of higher cardinality
containing the singleton can be minimal. These sets indicate that the bug
can be fixed within one line although they would get a lower score. Adapting
a minimal number of locations in the program is desirable. Therefore, we
propose a ranking based on the set size. It can be used in combination with
the overall occurrence ranking to neutralize the weakness from the latter.

� h(F , F ) = max
F ′∈F

(|F ′|)− |F|+ 1

� n(x, F ) = x/
∑

F∈F
h(F ,F )

Call Hierarchy Ranking. We already discussed the advantages and disad-
vantages of the line distance rankings. The call hierarchy ranking represents
a optimization to the problems of the line distance rankings. Whereas these
rankings measure the distance to the error in lines this ranking returns the
number of execution steps between the corresponding edge and reaching the
error label. We now surely obtain the location closest to the error label in
terms of the execution order. The function indexOf(F) returns the position
of an element of F in the execution order closest to the error label.

� h(F , F ) = max
F ′∈F

(indexOf(F ′))− indexOf(F) + 1

� n(x, F ) = x/ ∑
F∈F

h(F ,F )

Edge Type Ranking. The last ranking differs from the others because it is
based on an experimental heuristic. In our benchmarks we figured that some
types of edges are more likely to fix a bug than others. We can determine
the type of an edge easily because every selector in the implementation maps
to exactly one CFAEdge with an assigned type calculated by CPAchecker
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before running our algorithm. The heuristic H(e), e ∈ F is defined as:

H(e) =



1 if e is an assume edge

0.5 if e is a statement edge

0.25 if e is a return statement edge

0.125 if e is a function-return/-call or call-to-return edge

0 otherwise

Using the heuristic we can define h and n as:

� h(F , F ) =
∑
e∈F

H(e)

� n(x, F ) = x/ ∑
F∈F

h(F ,F )

4.5 Options

We added 9 options that can be set to refine and improve the results of the
algorithms. All available options will be explained now.

faultlocalization.type
The option accepts three inputs: “UNSAT”, “MAXSAT” and “ERRINV”.
Via this option the algorithm for the further analysis is set. “UNSAT”
executes SingleUnsatCore, “MAXSAT” executes MaxSat and lastly
“ERRINV” executes ErrInv. The results of every algorithm are ranked
by the individually best combination of rankings based on experimental re-
sults. If this option is not set, we run SingleUnsatCore by default.

faultlocalization.maintainhierarchy
Enable this option to maintain the original ordering in the execution path,
i.e., the resulting faults are not sorted by the average score received by the
application of multiple rankings. Whenever we run ErrInv the option is
recommended to be enabled since the algorithm produces an alternating se-
quence of interpolants and transitions in an predefined order. Sorting by the
highest score destroys the ordering.

faultlocalization.memoization
This option also only affects ErrInv. If enabled, the algorithm stores
already processed interpolants at a certain position and maps them to a
Boolean value depending on whether the interpolant is inductive on that po-
sition or not.
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traceformula.altpre and traceformula.filter
Enable the alternative precondition to make use of the filter. The filter is a
comma-separated string that should contain function names of the underly-
ing program. The alternative precondition then adds every initial variable
assignment of the form int x = 5; to the precondition. It will only regard
variables that are initialized in one of the functions contained in filter . Note
that we do not add statements like int y = x + c with x ∈ X and c ∈ N∪X
because the line already might cause the bug. The same rule applies for other
data types. Arrays with an initialization like int a[] = {1,2} are part of
the alternative precondition, too. By default, filter only filters variables of
the main function. We enable the alternative precondition automatically as
soon as the model equals true, i.e., there are no nondeterministic variables
used.

traceformula.ignore
This is also a comma-separated string variable that takes variable names of
the form function::variable or just the variable. If no prefix with a
function name is given for a variable the program ignores all variables with
the same name regardless of the scope. Ignored variables will not be part of
the alternative precondition. The option is mainly useful to ignore iteration
variables in for-loops.

faultlocalization.ban
This option is another comma-separated string for variables, either with
a function as prefix like function::variable or without. If a variable is
banned all faults that contain an edge using the variable will not be printed.
This is especially useful to filter sets containing important variables for the
post-condition. This option is not available when running ErrInv as every
transition is important for the abstract error trace.

traceformula.uniqueselectors
If enabled, duplicate lines received by loop enrolling get the same selector.
The advantage is that we drastically reduce the amount of selectors and
therefore the amount of subsets we have to check. The drawback is that the
result is not that precise anymore. Seeing that, for instance, only the first
three iterations are part of the minimal subset yields more information than
just seeing that the iteration variable is of interest. In the original MaxSat
algorithm [16] the option is enabled. Due to a reasonable improvement of
the obtained results we disabled it by default.
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exprconv.niceexpr
If enabled, formulas obtained by the solver are transformed from prefix to
infix notation for better readability. The amount of brackets is reduced but
not minimal. We implemented the class ExpressionConverter to transform
Boolean formulas of arbitrary length to infix notation as long as all opera-
tions are unary or binary. Problems arise whenever arrays are part of the
formula. This has to be fixed. This is also the reason why this options is
disabled by default. Because of the CPAchecker-internal implementation
of Boolean formulas the ExpressionConverter works on the string represen-
tation of them and thus is not perfect yet. Nevertheless, for small programs
the readability of the reports is highly increased.

Example Configurations:
Finally, we give example configurations for each of the implemented algo-
rithms. The option alwaysStoreCounterexample is required to run fault
localization. Activate options by appending “-setprop <name as in the

descriptions above>=<possible values>”. The following commands al-
low to run fault localization with the implemented algorithms:

MAXSAT:
-preprocess

-predicateAnalysis

-setprop analysis.algorithm.FaultLocalization=true

-setprop analysis.alwaysStoreCounterexamples=true

-setprop faultlocalization.type=MAXSAT

-setprop traceformula.altpre=true

<path to program>

ERRINV:
-preprocess

-predicateAnalysis

-setprop analysis.algorithm.FaultLocalization=true

-setprop analysis.alwaysStoreCounterexamples=true

-setprop faultlocalization.type=ERRINV

-setprop faultlocalization.maintainhierarchy=true

-setprop traceformula.altpre=true

<path to program>

UNSAT:
-preprocess

-predicateAnalysis
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-setprop analysis.algorithm.FaultLocalization=true

-setprop analysis.alwaysStoreCounterexamples=true

-setprop faultlocalization.type=UNSAT

<path to program>
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5 Data Structure for Fault Lo-
calization

5.1 Concept of the Data Structure

The algorithms are embedded in a data structure explicitly created for any
fault localization algorithm. We designed the structure to be easily usable
and extendable in every possible way granting a simple adaptation to all
kinds of fault localization algorithms. Whenever a counterexample is found,
CPAchecker creates a visual report using HTML, JavaScript and CSS.
More details on the graphical report can be found in the upcoming section
(c.f. 5.2). The report already contains a visual representation of the CFA,
gives access to the source code and lists all relevant edges from the coun-
terexample in the correct order from the beginning of the program to the
error.

The class CounterexampleInfo is the interface for counterexamples and
their visualization as HTML-report. FaultLocalizationInfo extends this
class and enhances the existing report by an additional view for the Faults

and adds a rank to each edge. FaultLocalizationInfo is a simple class
that either takes an already sorted list of Faults or a set of Faults and
a FaultRanking. The purpose of FaultLocalizationInfo is to transform
the list to a JSON-format applicable for the report and to transform the
attached descriptions to HTML-format. For the transformation of them the
class FaultReportWriter is used.

The FaultReportWriter implements methods for transforming objects
into HTML-format that fits for most fault localization algorithms. If one
wants to change the HTML-output this class can simply be extended and
designed by need. An instance of this extended class can then replace
the default FaultReportWriter in the class FaultLocalizationInfo. A
FaultRanking is an interface that transforms a set of Faults to a sorted
list. Usually, the Faults are sorted descending by their score. Faults are
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ReportGenerator

FaultReportWriter
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List<Fault>
JSON, 
HTML
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Figure 1: Flow chart for the fault localization data structure

a set of FaultContributions. Every FaultContribution maps to exactly
one CFAEdge and extends it with the possibility to assign a score and to at-
tach explanations, called “appendables”, for why this edge is part of a Fault.
Faults have a score as well as the possibility to attach explanations, too.
Figure 1 shows the simple linear steps to get a visual representation with-
out further modifications. Input and outputs are outlined in orange and the
classes that handle them are colored in blue. As seen in the figure, any fault
localization algorithm returning a set of Faults can use the data structure.
Subsequently, we have to rank the faults, i.e., transform the set into a list
that determines which Fault will be printed on first place in the resulting
HTML-page. This can be done by one of many provided and useful rankings
(c.f. Section 4.4) or by an own arbitrary implementation. It is recommended
to implement the interface FaultRanking for own rankings because it opens
up an easy way to concatenate multiple of them. The list can be passed along
with an instance of the class CounterexampleInfo to an instance of the class
FaultLocalizationInfo. With the help of the FaultReportWriter the list
is translated to JSON and HTML such that the ReportGenerator can write
the information to an interactive HTML-page. As already mentioned the
FaultReportWriter can be adapted by need and replace the default report
writer. To sum up the process, the user needs to go through four steps:

� obtain an instance of CounterexampleInfo from a target state in the
ARG (Abstract Reachability Graph),

� run a fault localization algorithm that returns a set of Faults,

� transform the set to a list and create the FaultLocalizationInfo-
object flInfo by calling the constructor with the CounterexampleInfo
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and the list as arguments,

� call the method apply() on flInfo.

We will now explain more details to the most important classes of the data
structure:

FaultInfo. The class FaultInfo gives access to four types of additional
information that can be printed to the user. The four types are listed below:

Reason: Whenever a fault localization algorithm finds a candidate set of
possibly error-prone CFAEdges it can justify the decision by attaching
the reason for choosing this set to the created Fault. For example, in
our implementation, ErrInv adds the describing interpolant as reason
to the Fault. There is no obligation to add a reason to a Fault but it
will help the user to better understand the results.

Potential Fix: A potential fix suggests an adaptation that might fix the
bug. We implemented two classes producing potential fixes, e.g., based
on the edge-type. Assume that a Fault contains a return edge, then we
can draw attention to the function probably returning a wrong value
by stating that the function might have an unwanted return value.

Rank Info: FaultRankings rank the Faults and add a FaultInfo with
a likelihood and a description why it assigned this score. Each of the
implemented FaultRankings adds this information.

Hint: A hint adds additional information that does not belong to any of
the previous category as for instance the failing variable assignment.

In Figure 1 we refer to them as “appendables”. On demand, chosen cate-
gories are hidden in the final report by calling the method hideTypes of the
FaultReportWriter. As parameters the method expects types of the enum
InfoType, namely: REASON, FIX, HINT and RANK INFO. All passed types
will not be shown in the final report.

FaultContribution. A FaultContribution has to be initialized with a
CFAEdge as argument. For every edge in the counterexample, exactly one
instance of this class should be created. The class allows to add a score
to all instances, indicating how likely adapting the operation of the edge
will fix the bug. It is recommended to calculate the score by averaging all
likelihoods of the attached FaultInfos. We implemented the helper class
FaultRankingImpl to give access to the methods assignScoreTo(Fault)
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and assignScoreTo(FaultContribution) which implement a default way
for scoring Faults and FaultContributions. The methods average all
scores of FaultInfos of the type RankInfo.

Fault. The class Fault represents a set of FaultContributions. Faults

have a score and maintain a list of additional FaultInfos. The final report
displays all of these information in a readable way to the user sorted by their
category.

FaultRanking. This interface offers a method that simply transforms a
set of Faults to a list. There is no directive on how to create the list but
we recommend to sort the list by likelihood. For instance, we implemented a
FaultRanking that assigns a higher score to Faults with less elements and
consequently sorts it ascending by the size of the Faults.

FaultRankingUtils. While creating FaultRankings we repeatably needed
the same bits of functionality, like assigning scores to Faults, concatenate
different FaultRankings, accessing standard rankings and obtaining a fault-
to-score map. Therefore, we decided to make them publicly accessible in
this class. It may be useful to rank the same set of Faults by the average
value of different FaultRankings. The concatenation of multiple rankings is
handled by the method concatHeuristicsWithDefaultFinalScoring. The
concatenation of multiple rankings works by applying every ranking on the
set of faults and returning a list sorted by the average ranking-score. The
method assignScoreTo has already been covered.

FaultLocalizationInfo. This class has two constructors. The first one only
expects a list of Faults and an instance of CounterexampleInfo whereas
the second one awaits a set of Faults combined with a ranking and the
CounterexampleInfo. Both constructors lead to same result if the passed
ranking equals the ranking used to obtain the list for the first constructor.
The second one applies the ranking on the set of Faults and proceeds to
prepare it for the HTML-page. Furthermore, we implemented a method that
transforms a set of CFAEdges to a set of FaultContributions. This enables
the possibility to use the report at minimal cost.

In our implementation the class Selector extends FaultContribution be-
cause a selector maps to exactly one element of π, too. This property becomes
convenient when we have to map the obtained sets of Boolean formulas back
to the original edges. A Selector stores the formula and the corresponding
CFAEdge and is uniquely identifiable. Therefore, we let ErrInv and Sin-

44



gleUnsatCore return instances of the class Selector. The uniqueness of
the selectors allows to maintain a hashed map that yields the corresponding
edge of an clause in an expected run time of O(1).

5.2 Visualization

Figure 2: Counterexample report

We enhanced the existing graphical report shown in Figure 2 for counterex-
amples in CPAchecker by adding a fault localization section and ranks in
front of the edges. Figure 2 shows the computed counterexample on the left
hand side. A click on an entry marks the corresponding edge in the CFA,
ARG and the corresponding line in the source code depending on the selected
view. To toggle the views the navigation bar on top can be used. The source
code or the graphs are then shown next to the counterexample. On the left
hand side, Figure 3 shows the enhanced counterexample after fault localiza-
tion was used. It shows all relevant edges and marks the important edges for
the counterexample in yellow. We inserted an additional column rank. Every
edge of the counterexample that is also part of one or multiple faults has its
best rank written in the new column. Clicking on the rank shows all the
information the algorithm gathered for this edge. Remember that attaching
information is possible not only for faults but for fault contributions, too.
The user can access this additional information here. The button “Change
view” is the second addition. On click, the counterexample is replaced by the
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(a) Counterexample (b) Fault

Figure 3: Counterexample and fault description

ranked HTML-representation of every fault. This view gives an interactive
overview about all important edges. A click on the faults marks the edges of
the graphs or the lines in the source code.

On the right hand side, Figure 3 shows the description of a fault obtained
by running MaxSat. The first line shows all related lines in the source code.
The second block provides potential fixes for each of the lines. All potential
fixes are created with an instance of the class “NoContextExplanation”. The
hint-section here has only one hint showing the precondition, i.e., a failing
variable assignment. The fourth block shows the rankings and their score.
Since the algorithm found just one fault all scores are equal to 100. The
yellow cell on the top left represents the overall score, i.e., the average of all
scores listed in the fourth block. Next to it, in the green cell, we can see the
resulting rank. The last block shows the relevant lines and statements in the
order of execution. A click on the arrow next to “Current values” shows a
table with every variable and its value. Variables of high importance to the
fault are marked red. The table depicts the values after the execution of the
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most recent line shown in the section “relevant lines”.
Whenever the ErrInv algorithm is used, there will be an additional

block of information in Figure 3 b) labeled “reason”. This section contains
the previous inductive interpolant, i.e., the interpolant before the displayed
transition in the abstract error trace

Currently, we encounter one problem: Some edges are excluded from the
counterexample section because they are not important for the understand-
ing. However, these edges can be part of a fault. Whenever this is the case,
we neither can map the relevant lines nor query the current values of the
edge(s). Consequently, theses 2 blocks will be empty in the report for faults
containing such edges.
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6 Implementation

We integrated the algorithms SingleUnsatCore, MaxSat and ErrInv
in the CPAchecker-framework, which is written in Java. For some expla-
nations we use existent data structures of the Java-API. This chapter gives
an insight into the implementation of each algorithm and describes the most
important functionalities of CPAchecker we used.

6.1 Overview

The implementation of the fault localization techniques provides a variety of
options and enhancements to the original algorithms. As already discussed,
we achieved improvements in the run time with respect to the number of
calls to a solver and found ways to alleviate some of the weaknesses. The
process of generating faults can be described in 6 steps:

1) Choose the algorithm

2) Generate counterexamples for every e ∈ E (error labels)

3) Build the trace formula for the current error path based on the coun-
terexample

4) Execute the chosen algorithm on the trace formula

5) Rank the obtained locations and provide additional information

6) Output the results as an interactive error report embedded in the ex-
isting counterexample report of CPAchecker

We already covered the theoretic background of all these steps. This chap-
ter focuses on the implementation of the algorithms in the CPAchecker-
framework.
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6.2 External Functions for CPAchecker

To simulate nondeterministic variables within the C program we want to
analyze, we have to add an external function to the inputted program. In-
sert extern <datatype> VERIFIER nondet <datatype>(); at the top of
it to use declarations like int x = VERIFIER nondet int(); for assign-
ing a value to x that is not known at compile time. As stated in Chap-
ter 3, we need a failing variable assignment for the precondition which can,
for instance, be computed with a model. Afterwards, we have to assign
this value to the nondeterministic variable and make sure that we can iden-
tify this value. Therefore, CPAchecker creates, for example the formulas
VERIFIER nondet int!2 = 5, VERIFIER nondet int!3 = 0, . . . where

the number after the exclamation mark equals the unique ID.
Semantic faults have to be indicated by an ERROR-label as seen in Pro-

gram 5 on the next page. Whenever the analysis of CPAchecker reaches
such a label it concludes that the program is buggy and hence creates the
counterexample which we use for further analysis.

6.3 Counterexamples in CPAchecker and Pre-

processing

In Chapter 3 we assumed that every error path ends with an assume state-
ment that becomes the post-condition φ. In real world programs this is not
applicable because there may be statements or logging before the program
reaches the error label. The counterexample contains these statements be-
cause they have to be executed before reaching the ERROR-label. Thus, we
have to make sure to take the last known assume edge as post-condition.
CPAchecker produces a list of CFAEdges representing the error path from
l0 ∈ L to e ∈ E. The class CFAEdge provides several useful methods and at-
tributes like the line number in the original input file or the type of the edge.
Possible edge types are return edge, assume edge, statement edge, declaration
edge, blank edge or function return edge. Every type indicates the kind of
transition. On a blank edge nothing happens, a declaration edge indicates a
variable declaration, a statement edge indicates an operation on a variable
and the assume edge is equal to a condition like x > 2. The different return
edges refer to the return value of a function.

A peculiarity of CPAchecker is the handling of if-statements when-
ever it consists of a sequence of Boolean expressions (e.g., if(x > 0 ∧ y >
10){. . . }). CPAchecker will generate two CFAEdges ((Node 1: x > 0) and
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(Node 2: y > 10)) for this if-statement. To determine that they are compo-
nents of the same if-statement we have to compare the type and their starting
line in the original file. The generated counterexample is the foundation to
the trace formula.

6.4 Trace Formula

The trace formula is the core component of all three algorithms. It computes
the precondition, TF(π), TFΛ(π) and the post-condition. In a preprocessing
step we remove all unnecessary edges like blank edges and store the line of
the last assume edge in lastAssume for the post-condition.

First, we want to compute a Boolean formula for each edge including the
creation of its selector and its SSA-map for this point of execution. After-
wards, we extract the SSA-map and the formula for the edge in each step
and create a unique selector. The post-condition is created on the fly. We
iterate over the list of CFAEdges and conjunct edge by edge to an instance of
the class PathFormula, an existing class for creating Boolean formulas with
correct SSA-maps based on CFAEdges. The correctly initialized formulas are
added to a list called atoms. The list contains the Boolean formula for all
edges such that TF(π) =

∧
a∈atoms a. If an edge has the type assume edge and

additionally the starting line in the origin is equal to lastAssume we instead

add it to the list negated. Therefore, φ = ¬
(∧

p∈negated p
)

.

The selectors are stored in a HashMap as a key pair value of a Boolean
formula mapping to its selector. The class Selector has the static method
of(BooleanFormula formula) to query the selector for a given formula if
present.

1 extern int VERIFIER nondet int ( ) ;
2
3 int main (void ) {
4 int x = VERIFIER nondet int ( ) ;
5 int y = 0 ;
6 i f ( x == y) {
7 goto ERROR;
8 }
9 EXIT :
10 return 0 ;
11 ERROR:
12 return 1 ;
13 }

Program 5: Model
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Via a prover we calculate the precondition as a model of TF(π)∧¬φ and
extract the non deterministic variables. As mentioned before the model can
be understood as a variable assignment that satisfies TF(π)∧¬φ. The model
for Program 5 equals m ⇔ VERIFIER nondet int!2 = 0 ∧ x = 0 ∧ y = 0.
Thus, our precondition evaluates to ψ ⇔ VERIFIER nondet int!2 = 0
whereas TF(π) ⇔ x = VERIFIER nondet int!2 ∧ y = 0 and φ ⇔ x 6=
y. We compute TFΛ analogously to the calculation of TF(π) by TFΛ(π) ⇔∧

a∈atoms (selector(a)⇒ a).

6.5 Single-UNSAT-Core Algorithm

We start with the implementation of SingleUnsatCore (Algorithm 1).
With the help of the included tools of CPAchecker and the TraceFormula
object we were able to translate the pseudo code nearly one-to-one into
the CPAchecker-framework. With the use of the solver we compute a
list of clauses whose conjunct is an UNSAT core. Afterwards, we map
each element of the list to the previously created selector and return one
Fault containing the Selectors. Remember that they inherit from the
class FaultContributions.

Figure 4: Mapping of UNSAT core to selectors

Figure 4 illustrates the mapping of Boolean formulas (BF) to selectors (λ).
We obtain a list of clauses whose conjunct is an UNSAT core. The indices
l and k must not be element of the interval [1, . . . , n]. In a next step we
look up if a Boolean formula of the list maps to a known selector, i.e., a
location in the program. Whenever this is the case we print the location to
the user, otherwise we discard the entry. This only happens on condition
that the precondition or the post-condition is part of the UNSAT core. In
our implementation we do not add the precondition beforehand to avoid the
precondition being part of the UNSAT-core. We only add the precondition
if the trace formula would be satisfiable otherwise.
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6.6 MAX-SAT Algorithm

Since we have no access to a CoMSS-solver we had to modify the algorithm
that slightly differs from the theoretic aspects presented in [16]. In our im-
plementation we successfully used Algorithm 5 and Algorithm 6 to replace
the CoMSS-solver and obtain MIN-UNSAT cores. Once again, we were able
to translate the pseudo code with minor changes to Java. To check for super-
and subsets we used the method containsAll provided by the HashMaps of
the standard Java library. In conclusion MaxSat enhances SingleUnsat-
Core by computing all possible cores. As already mentioned, some cores
might not contain the positions where the programmer is willing to make
adaptations but now he has access to a whole set of possible minimal sets of
locations where adaptations might be suitable.

6.7 Error Invariants Algorithm

The algorithm demands using the correct SSA-maps on interpolants to find
an interpolant inductive at several positions in the trace formula. Therefore,
we maintain a list of SSA-maps for every position, i.e., for every time stamp
in the trace formula. This eases the correct shifting of interpolants. The
original algorithm [9] requires many shifts of the interpolants and the post-
condition. Our implementation reduced this to just a single shift of the
interpolant. Instead of restarting with the SSA-indices set to 0 for every new
conjunct of formulas we just shift the interpolant once.

To store the boundaries we implemented the hashable class Interval

with the attributes start, end and interpolant. This class together with
the class Selector implement the marker interface AbstractTraceElement,
allowing us to maintain an alternating list of interpolants and transitions
(selectors). Since the interpolants are unreadable and the resulting abstract
error trace cannot be depicted in the visual report for fault localization al-
gorithms we had to make minor adaptions. We had to introduce a new
option (maintainhierarchy), post process the intervals to improve read-
ability and find a way to represent the abstract error trace. We realized
the last point by appending the formula of the previous and the following
interval to the description of the fault. Every Fault consists of exactly one
FaultContribution which maps to an edge simultaneously contained in π
and π#.

Apart from this, the implementation equals an one to one translation
of the pseudo code which we presented earlier. We combined Algorithm 3
with the suggested binary search in Algorithm 4 and enhanced the checks
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of incLow with the memoization. This is realized with a hash map, so the
expected run time for a lookup is element of O(1). We store every processed
interpolant on a certain position together with the result of its validity check.
Whenever we find an entry in the hash map, we must not shift formulas and
call the solver again. We can skip calculating an already solved problem.
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7 Evaluation

7.1 Comparison of the Algorithms

In this section we compare all three algorithms and outline their strengths
and weaknesses on specific tasks. We evaluate the precision and the needed
time of each algorithm. We consider an algorithm to be precise if it sensibly
reduces the selection of lines to look at.

7.1.1 Qualitative Analysis

Implementing and running benchmarks pointed to flaws of the implemented
algorithms, on the one hand limited by CPAchecker and on the other hand
by the used techniques itself.

Neither does CPAchecker currently support proof splitting nor recur-
sion. Hence, it cannot analyze every program. In a few cases this holds
true even for simple programs, for example the recursive factorial-function.
Once these features enrich CPAchecker our implementation should work
without any changes since it exclusively relies on the correct translation of
the list of CFAEdges to Boolean formulas. Under special circumstances the
verification process may time out, does not terminate or the creation of the
counterexample is not possible. In case of this happening we cannot con-
tinue to run fault localization. Another problem emerges from the automatic
simplification of Boolean formulas through the solver. Too simple programs
cannot be analyzed because the solver will simplify the formula to true or
false. Imagine a program that consists of 2 transitions, the declaration int

x = 0 and the if-statement “if (x == 0)” enabling the reachability of the
ERRRO-label. Based on the assumption that the post-condition never is
faulty, changing the initial value of x fixes the program but our analysis will
not return this fix. The simplification of x = 0 ∧ x 6= 0 to false causes
loss of information. Even though the formula is unsatisfiable the result will
be empty. Note that enabling the option “traceformula.altpre” also yields
the same problem without the simplification because x = 0 will be part of
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1 int main (void ) {
2 int x = 0 ;
3 x++;
4 i f ( x == 1) {
5 x==;
6 goto ERROR;
7 }
8 EXIT : return 0 ;
9 ERROR: return 1 ;
10 }

Program 6: Problem with post-condition I

the precondition and x 6= 0 will become the post-condition. In this case no
algorithm can return transitions because π does not contain any transitions.

As already discussed, our implementation takes the last assume edge as
the post-condition, so we recommend to deliberately place a if-statement
containing the post-condition before the execution reaches the ERROR-label
otherwise this can cause problems and unwanted behavior. For that consider
Program 6 above. Although, the statement x-- in line 5 has no effect at all to
the error, it will be part of the trace formula and get a selector. This means
that we have more selectors to loop through and more subsets to check for
unsatisfiability when we run MaxSat. Switching line 5 and line 6 has no
semantic effect but will reduce the amount of selectors. Using MaxSat, it
is worth looking for this kind of optimizations to reduce computation time.
Nevertheless, the calculated results will remain valid since the algorithm
ignores all latter changes of x because the post-condition has a lower SSA-
index and thus is not connected to changes after the if-statement.

1 int main (void ) {
2 int x = 0 ;
3 x++;
4 i f ( x == 1) {
5 int i = 0 ;
6 int j = 2 ;
7 while ( i != j )
8 i++;
9 goto ERROR;
10 }
11 EXIT : return 0 ;
12 ERROR: return 1 ;
13 }

Program 7: Problem with post-condition II
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Nonetheless, we can adapt Program 6 with a seemingly uninteresting change
and obtain a completely different result. We replace x++ with a meaningless
while-loop and obtain Program 7. We can see that the while-loop in line 7
- not even using the variable x - has no impact on the reachability of the
ERROR-label in line 12 through the goto statement in line 9. However, the
computed post-condition equals φ ⇔ (i 6= j) ∧ (i′ 6= j) ∧ (i′′ = j) since
the post-condition always consists of all previous and nearest assumes on the
same line. The analysis now returns the set {i′ = i+1, i′′ = i′+1} as possible
locations for fixes which has nothing to do with the root cause of the bug.
In fact these locations are only reachable because the bug occurred. To solve
this problem we need to find out which assume edge is the direct parent of
the goto ERROR call instead of always taking the last assume edge. For now
the user should avoid the execution of irrelevant assumes before reaching the
ERROR-label.

1 /** . . . code . . . */
2 i f ( a ) { i f (b && c ) {
3 goto ERROR;
4 }}
5 /** . . . code . . . */

Program 8: Problem with post-condition III

A related problem arises by the computation of post-conditions if many if-
statements are in the same line, like in Program 8. Although, the program has
two separate if-statements the post-condition φ will read φ1 ⇔ ¬(a∧ (b∧ c)).
Under certain circumstances this might not equal the intended post-condition
φ2 ⇔ ¬(b∧c) since φ1 does not allow changes on the first if-statement during
the analysis. Lastly, we will discuss the problems of the algorithms them-
selves. Calling functions for important computations within the function that
contains an ERROR-label leads to weaker results when we use MaxSat.

1 extern int VERIFIER nondet int ( ) ;
2
3 int i sE r r ( int x ) {
4 i f ( x != =1 && x != 6) {
5 return 1 ;
6 }
7 return 0 ;
8 }
9
10 int main (void ) {
11 int x = VERIFIER nondet int ( ) ;
12 i f ( x > 0) {
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13 i f ( x < 5) {
14 i f ( x > 1) {
15 int e r r o r = i sE r r ( x ) ;
16 i f ( e r r o r == 1) {
17 goto ERROR;
18 }
19 }
20 }
21 }
22 EXIT :
23 return 0 ;
24 ERROR:
25 return 1 ;
26 }

Program 9: Problem with function calls

Program 9 is an adaption of Program 3 transformed into the syntax of
CPAchecker. Without the external post-condition check in function isErr,
our implementation returns exactly the expected sets of selectors shown in
Table 3. Instead of checking if “x != -1 && x != 6” directly before we call
“goto ERROR” in line 16, we outsource the computation in to the function
isErr. Since the post-condition now reads main::error != 1 instead of
main:x == -1 || main:x == 6 we will not find any of the sets in Table 3.
Analyzing Program 9 yields the following formulas for ψ, TFΛ(π) and φ:

ψ: VERIFIER nondet int!2 = 2

TFΛ(π):

(λ0 ⇒ (main :: x = VERIFIER nondet int!2))∧
(λ1 ⇒ (main :: x > 0))∧
(λ2 ⇒ (main :: x < 5))∧
(λ3 ⇒ (main :: x > 1))∧

(λ4 ⇒ (isErr :: x = main :: x))∧
(λ5 ⇒ (isErr :: x 6= 1))∧
(λ6 ⇒ (isErr :: x 6= 6))∧

(λ7 ⇒ (isErr :: retval = 1))∧
(λ8 ⇒ (main :: error = isErr : retval))

φ: main :: error 6= 1

CPAchecker uniquely identifies variables by putting the function name in
front of them. To make the trace formula TFΛ((ψ, π, φ)) unsatisfiable the
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1 /** . . . code . . . */
2 int input = VERIFIER nondet int ( ) ;
3 int copy = input ;
4 int t e s t = 1 ;
5 i f ( input <= 0)
6 goto EXIT ;
7 for ( int i = 2 ; i < input ; i++) {
8 i f ( i sP r ime f a c t o r ( i , input ) ) {
9 t e s t = t e s t * i ;

10 input = input / i ;
11 i = 2 ;
12 }
13 }
14 i f ( t e s t != copy ) {
15 goto ERROR;
16 }
17 /** . . . code . . . */

Program 10: Problems with understanding the semantics

set {λ7, λ8} suffices. The analysis will now state that we have to change the
return value of the function isErr but since it represents the outsourced post-
condition we do not want to make changes there. Note that every possible
UNSAT-core has to contain selector 7 and selector 8 because otherwise we
have no connection to the variable main :: error. This means that at least
these two selectors are always part of the UNSAT-cores. In addition we
see that they already make the formula unsatisfiable when marked as hard
so in fact we only obtain one result set containing these two selectors. We
frequently encountered this problem in our tests. ErrInv performs better
in these situations because we have access to the describing interpolants.

So that the algorithms understand the meaning of the program we need
to define the pre- and the post-condition accordingly. In some cases this is
not sufficient to guarantee a reliable and satisfying analysis. That becomes
clear in case of the wrong handling of the variable i in Program 10. From line
7 to line 13 we want to calculate all prime factors of the number input if it
belongs to the natural numbers. The implementation of isPrimefactor(int
factor, int number) is bug-free. The faulty behavior can be observed if
we input the number 4. We will find the first prime factor 2 in the first
iteration. Since we reset i to 2 instead of 1 in line 11 we cannot find the
second factor 2 as the loop starts with i = 3 because we increment i after
resetting. Changing line 11 to i = 1 fixes the bug. However, the analysis
states that we should fix the program using lines 2, 3 and 9. Semantically
this makes no sense since it only contains inputs and the test variable test
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but actually changing these lines can indeed prevent reaching line 15. For
instance, replacing line 9 with the statement test = copy fixes the program
for all possible inputs in terms of making the ERROR-label unreachable. In
this case ErrInv exclusively contains exactly the same edges in the abstract
error trace π#. Hence, all algorithms have weaknesses in case of usage of such
actually useful test variables. Every time a program uses such variables the
algorithms will at least suggest at one point to change the value of the test
variable to the correct one in the post-condition. Thus, designing the post-
condition has a massive impact on the quality of the result. We experienced
that replacing the nondeterministic variables with a concrete failing input
yields slightly better results. On condition that the inputted program has
no assume edges the analysis will return nothing and log an error message
explaining that no relevant edges could be found.

7.1.2 Limits of the Algorithms

1 /**
2 * Check i f f 1 and f2 are prime f a c t o r s o f number
3 * @param f1 : f a c t o r 1
4 * @param f2 : f a c t o r 2
5 * @return : are f1 and f2 prime f a c t o r s o f number?
6 **/
7 int t e s t ( int f1 , int f2 , int number ) {
8 // isPrimeFactor i s implemented c o r r e c t l y .
9 i f ( i sPr imeFactor ( f1 , number ) ) {
10 return 1 ; // t rue
11 }
12 return 0 ; // f a l s e
13 }

Program 11: Problems with missing method-calls

In this subsection we want to outline problems of the algorithms that are not
connected to the implementation per se.

None of the algorithms is capable of determining missing method calls.
Program 11 illustrates this problem. The developer forgot to also check if
f2 is a prime factor of number. The inputs 3, 5, 12 let the program return
1 instead of 0 as 5 is not a prime factor of 12. All of the algorithms will
now mark locations in the correct implementation of isPrimeFactor as they
cannot conclude that the user forgot another check and operate on the trace
formula only.

Furthermore, all algorithms tend to mark to the root cause of the error
unimportant variables. The initial variable assignment has, of course, a great
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impact on the verification result. Variables that are not part of the precon-
dition can be marked as potential bug sources. Hence, such variables will be
marked more often when they are used frequently, even if the cause of the
error is located elsewhere. The participants of the survey also confirmed this
assumption and found the marking of these variables distracting. Disabling
the option altpre only allows nondeterministic variables to be part of the
precondition. Meaning, that variables with known values will most certainly
be part of faults which decreases the efficiency.

7.1.3 Run Time and Precision

Unsurprisingly, SingleUnsatCore turns out to be the weakest but the
fastest one. Calculating only a single UNSAT-core of arbitrary length is
not precise enough. ErrInv outperforms MaxSat. On average the run
time is lower because the binary search for the interval boundaries reduces
the costly calls to the solver whereas MaxSat loops through many possible
subsets. Additionally, the abstraction of error traces is more powerful than
returning a selection of locations. Looking at Program 4 illustrates this.
Whereas ErrInv is able to abstract the error trace stating that lines 4 and
5 do not add anything to the code, MaxSat returns nothing. MaxSat
cannot find a MIN-UNSAT core since all edges are relevant to satisfy the
post-condition and it will not return all locations as an UNSAT-core. The
big advantage of ErrInv over MaxSat lies in the adequate shifting of the
interpolant depending on its position. MaxSat uses the trace formula and
does not adapt the SSA-maps which means, for example, in Program 4 every
transition must be considered.

To evaluate the precision and the run time we created 17 faulty programs
of varying length and executed the benchmark with the BenchExec tool
[3]. We run the benchmark on a Intel Quad Core N4200 1.1GHz processor
with 8 gigabyte DDR3 RAM to measure the CPU-time until the creation of
the final report finished. Hence, the parsing and the analysis is part of the
measured time.

The tasks cover different types of bugs and test edge cases. CPAchecker
can create a counterexample for all tasks and verifies the programs correctly.
Additionally, we activated the option altpre for all algorithms.

All benchmarks were executed with revision 34003 of the CPAchecker
repository1.

1Repository: https://svn.sosy-lab.org/software/cpachecker/!svn/bc/34003/
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Figure 5: CPU-time per task

Figure 5 shows the results for each task on the x-axis. The y-axis, show-
ing the CPU-time in seconds, has a logarithmic scale. On average the Sin-
gleUnsatCore (red line) has the best run time over all tasks followed by
ErrInv with memoization (orange line). MaxSat and ErrInv (without
memoization) have the worst run time. On long counterexamples the run
time of ErrInv is better than on smaller counterexamples compared to
MaxSat. Both algorithms often call the solver. Whereas MaxSat loops
through every possible and promising subset of selectors, ErrInv has to
make 2 · log2(n) calls per interpolant to the solver, so 2n · log2(n) calls in
total. For every UNSAT-core MaxSat has to call the solver n+n|m|− |m|2
times where n denotes the number of selectors and |m| denotes the size of
the found UNSAT-cores. In total

∑
m∈M (n+ n|m| − |m|2) calls to the solver

are needed where M is the set of all available UNSAT-cores. We sketch the
proof with an example. Let S be the set of n selectors and |m| the size of
the first UNSAT-core U = {λ0, . . . , λ|m|}, consisting of the first |m| selec-
tors in the set S. Remember that we remove selector by selector from S to
determine if the reduced set still is unsatisfiable. In our example the first
time unsatisfiability is guaranteed when we remove a selector that is not an
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element of U . For this we need |m| + 1 calls to the solver. After removing
this selector, we rerun the procedure with the reduced set. This will be re-
peated n − |m| times until we cannot remove another selector anymore. In
conclusion we have (n− |m|)(|m|+ 1) calls to the solver. If we now add the
missing |m| calls to verify that the current core is minimal, we need to make
(n−|m|)(|m|+1)+|m| = n+n|m|−|m|2 calls for each possible core. The run
time of MaxSat improves if the cardinality of M is small. The presented
run times are rough estimates of the worst case run times. These factors
are the reason why both algorithm intersect several times in the graph of
Figure 5.

Figure 6: Comparison of ErrInv with and without
memoization

Figure 6 shows that the addition of memoization improves the run time in our
benchmark-set. Depending on the task and the size of the inductive intervals
the run time decreases. The more interpolants are stored and reused while
computing the error trace, the higher is the benefit of memoization. Finally,
we have to look at the precision of the algorithms and set the needed time
into perspective with the effectiveness.
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Figure 7: Precision of the algorithms

Figure 7 shows the number of unmarked lines relative to the number of to-
tal lines in percent on the y-axis. We only count lines that are part of the
actual source code. Comments and empty lines are not counted. SingleUn-
satCore tends to return larger subsets where the other algorithms ensure
a minimal result. Logically, it always is a lower bound of MaxSat. The
results of ErrInv with memoization matches the results of the standard al-
gorithm. We see that the abstraction of ErrInv not only provides additional
information and an explanation but also yields a higher precision. Combined
with a reasonable run time ErrInv provides the most useful information.

7.1.4 Fitting Scenarios

SinleUnsatCore only requires to create the trace formula and call the
solver once. Thus, the run time in terms of the cost-intensive solver calls
will always be the best compared to the other algorithms. The usage of
this algorithm becomes especially handy for getting first clues on the root
cause of the error. The algorithm noticeably reduces the selection of error
prone locations. However, only one core is returned. Possibly, this single core
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exclusively contains locations where adaptions are unwanted. Still, for small
programs the results are sufficient to make first observations on important
variables.

Consequently, MaxSat is the better choice for larger programs. It shows
all possible UNSAT-cores. Since the user often has an intuition which part of
the program is particularly prone to errors he knows what UNSAT-cores are
more important to look at than others. Additionally, the newly introduced
options allow to easily filter relevant information. Contrary to ErrInv it
guarantees to return locations where fixes can be made. Nevertheless, the
locations might not be suitable places to make adaptions in terms of semantic
correctness.

ErrInv yields the most information. Instead of returning subsets of
locations it explains the faulty behavior through an abstract error trace.
Understanding the reduced abstract error trace allows conclusions on why
the program is failing. Thus, the algorithm is very useful for large programs,
too. In addition, the programmer does not have to know or understand the
program to debug in advance. Unnecessary variables are removed and in the
best case complicated code is expressed as a single error invariant. Through
the abstraction the faulty behavior can be detected without knowing the
whole program.

In the next section we evaluate our survey that simulated this setting. We
created reports with the results of ErrInv and gave it to 18 participants.
Their task was to find and fix a bug in a to them unknown program.

7.2 Results of the Survey

7.2.1 Setting

Process of the survey. At the beginning, we gave a very detailed introduc-
tion on how to use the visual report. Every participant then had the chance
to try out the new knowledge and test the report on an example task. This
task was designed similar to the upcoming tasks but we told them that we
will not evaluate it to make sure that they take their time to experiment with
the report. After the introduction we split the participants into two groups.
Every group had to find and fix a semantic bug in 2 programs with and 2
programs without the support of fault localization (FL). On condition that
fault localization was disabled the contenders still had access to the standard
report of CPAchecker (c.f. Figure 2). In every task they had to select the
line(s) in which the participants suspected the error and add a description
on what to change. Finally, they had to type in the needed time in seconds.
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Before submitting the survey we asked them to grade all features and give
feedback on the report and their experience. In our benchmarks and qual-
itative analysis above we discovered that ErrInv yields the best results so
we used it to generate the reports for the survey.

Table 7: Usage of fault localization

Group Task 1 Task 2 Task 3 Task 4

1 no FL no FL FL FL
2 FL FL no FL no FL

Table 7 shows which group was supported by fault localization on the differ-
ent tasks. The survey was anonymous. We appended all tasks of the survey
at the end as appendix together with a possible bug fix for each task.

Participants. We sent the survey to a variety of people with knowledge
in computer science. In total 18 participants consisting of students (fifth
semester or higher), scientists, junior and senior developers took part. The
junior and senior developers are employed in a company for embedded soft-
ware engineering in C. We collected 10 data samples for group 1 and 8 data
samples for group 2.

Rules. We gave a small ruleset to every participant shown below:

1. All programs were able to be compiled and they terminated with no
run time errors.

2. All programs had a bug (the calculated result does not match the ex-
pected result) and reached the ERROR-label (i.e., the line “goto ER-
ROR;” was called eventually).

3. Swapping or deleting lines was prohibited.

4. Changing one or multiple lines could fix the bug.

5. A program is considered to be correct if it never reaches the ERROR-
label. This means that the line: “goto ERROR” must never be exe-
cuted. Any changes to any lines preserving the semantics are allowed.
The participants were asked to ensure this.

6. All lines below the comment //POST-CONDITION were not allowed
to be changed.
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7. Checking/validating the answers with external tools beforehand was
prohibited.

7.2.2 Practical Performance of Fault Localization

Figure 8: Estimated benefit of fault localization

After finishing all 4 tasks, we asked the participants to estimate how munch
they think they benefited from fault localization. Figure 8 shows the re-
sults where the x-axis shows the estimates and the y-axis shows the number
of votes. A first analysis shows that the mean equals 6.4 and the median
7.5. In conclusion most participants felt an improvement when using fault
localization.

We now want to evaluate if the estimates coincide with the actual results.
Therefore, we analyzed the two key features needed time for and correctness
of the fix. We compare the needed time with and without fault localization
and put it into context with the correctness.
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Figure 9: Time and correctness with and without fault localization

Figure 9 shows the performance of the participants with and without help on
every task. The y-axis describes the needed time. The red and green points
represent the participants where a green point means that the suggested
fix of the participant indeed fixes the bug. Red points denote incorrect
fixes. The cross (×) indicates the average time needed to find a correct
solution. General speaking: the lower the cross on the y-axis the better the
performance on the task on average. Note that the cross ignores incorrect
fixes. Looking at the position of the crosses shows big improvements on task
3 and 4. Fault localization on tasks 1 and 2 seems to be not useful at first
glance but regarding the correctness fault localization increased the quality
of the fixes. Without fault localization people did not fix the bug twice as
often. In fact, not using fault localization caused 67% of all wrong answers.

Table 8: Correctness with and without fault localization

no FL FL Σ

Incorrect 12 (16.7%) 6 (8.3%) 18 (25.0%)
Correct 24 (33.3%) 30 (41.7%) 54 (75.0%)

Σ 36 (50.0%) 36 (50.0%) 72 (100.0%)

Table 8 contrasts the correctness with the usage of fault localization. In
sum, 72 fixes, 18 for each tasks, were submitted. With fault localization,
30 out of 36 people made correct fixes which are 6 more than without its
usage. Especially task 1 seems difficult to solve without help. Only 30%
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Figure 10: Connection between time and correctness
with and without using fault localization

of all participants without help could solve the problem while 87.5% of all
partakers using fault localization found a fix. Back to Figure 9 we adhere
that fault localization improved the needed time in nearly all tasks. Still, if
fault localization did not improve the time, it still improved the correctness of
the fixes. Task 3 remains the only task where the percentage of correct fixes
is less with than without fault localization. However, looking at the boxplot
[20] in Figure 10 gives reason to assume a connection between improved
correctness and needed time. The horizontal line within the boxes is the
median of the needed time of all tasks. The rectangular box encapsulates
the central 50% of the data points separated by the horizontal line. The
so called whiskers reach to the last data point that is at max 1.5 times the
size of the box away from it. The dots reassemble the outliers, i.e., data
points that are not within the underlying indicated distribution. A first
observation shows that people without support came faster to the incorrect
answer because they had less clues where to look at. Furthermore the lack
of support increased the needed time to find a correct solution for most of
the participants as seen in the left subplot of Figure 10. The distribution
of needed time for the middle 50% decreases when using fault localization.
As seen in the right subplot, the box for correct fixes is smaller and lower
than the box in the left subplot. Hence, over 50% of supported people have
already fixed the program correctly at a time where most of the unsupported
people are still busy figuring out the problem. All but 4 correct fixes of
the supported participants are made before about 30% of the unsupported
will submit an answer. The boxes for incorrect answers are similar to each
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Figure 11: Normalized time and correctness with and
without fault localization

other. However, a majority of people without help tend to quit working on
the problems earlier. Until now we exclusively considered the raw data and
ignored that different participants have different strengths and approaches
to solve these kind of tasks. A participant who takes exactly 2000 seconds
for each task does not benefit from fault localization but will distort the
mean values. To make the data less prone to such cases we normalized the
performance of each participant individually by calculating the percentage of
time spent on a specific task compared to the summed time of all tasks. The
results can be seen in Figure 11. The two axis and the labels are equal to the
plots before. We see that the normalization does not have an effect on the
end result, fault localization still helps. In fact the average, normalized time
spent per task without help now always is higher than the mean values with
fault localization for each task (c.f. the crosses “×” in Figure 11). Generally,
people saved up to 12% of their overall debugging time on a single task to
find a correct solution using fault localization. Additionally, the number of
correct fixes increases.

7.2.3 Grading of the Features

The fault localization report contains a lot of information, like the score,
hints, fixes, reasons, current values and relevant lines (c.f. Figure 3 b)). We
asked the participants to grade them from “not useful at all” (0 points) to
“very useful” (4 points). The results can be seen in Table 9.

As expected, current values and relevant lines are the most liked features
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Table 9: Grades of the features

Feature Mean Median

Values 3.2 3
Lines 3.2 3

Reason 2.6 3
Hints 2.5 3
Fix 2.4 3

Score 1.6 2

with an average score of 3.2. They replace the long search for the crucial and
faulty state including the current variable assignment when using a casual
debugger. Instead of figuring out the faulty state step by step fault local-
ization immediately displays it. The partakers consider hints and reasons
to be useful in general. In our survey hints disclosed the precondition and
the following invariant to the user whereas the reasons revealed the invariant
that holds up to the current time point. In other words, the user knows what
is responsible for the error up to this point, what happens now and what will
happen from now on. Tracing these information allows to precisely detect
important variables.

Potential fixes are, in the opinion of the contenders not absolutely neces-
sary but looking at the median most people still found it useful. For the first
task (Appendix A) the proposed fix stated that there is a fishy calculation
within the array index using the variable k and indeed, adapting the for-loop
iterating over variable k fixes the bug. The fix for the third task (Appendix
C) explained that the function isSorted may have a wrong return value or
unwanted side effects which was correct. The variables TRUE and FALSE were
declared wrongly. Since fault localization cannot connect a variable name to
its implied value (TRUE = 1 and FALSE = 0 in this case) it comes to the result
that the return values are wrong. Hence, either swapping the initialization
of the two variables or removing the exclamation mark (negation) in front
of the function-call removes the faulty behavior. We see that the potential
fixes are not directly connected to the root cause of the errors which might
have caused confusion and therefore reduced the usefulness.

As expected the scores received the worst grading because the strength of
ErrInv lies in the abstraction. The scores did not even have an impact on
the ordering of the faults in the final report because we activated the option
faultlocalization.maintainhierarchy=true. Perhaps the grading would
have been better if the reports were generated after executing MaxSat.

Finally we asked the partakers to describe their feeling about the amount,
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the accessibility and the clearness of the additional information compared to
the standard report of CPAchecker. They agreed that the additional infor-
mation neither is misleading nor too much. Furthermore they acknowledged
the accessibility of the information. Overall the clearness of the complete
report with a mean score of 7.9 out of 10 has been highly appreciated.

7.2.4 Feedback

In total we asked 5 free text answer questions. In this section we will discuss
the most outstanding opinions. Right before the first real free text answer,
we asked how the participants would proceed when they have to fix a bug
and access to fault localization. 11 out of 18 people said that they would
use it if they could not find the bug easily. Another 3 people would use fault
localization immediately after noticing a bug in their program. However, 2
people would not use fault localization at all. The remaining 2 participants
gave own answers indicating that they still want to use a casual debugger
and switch to fault localization as a last resort.

In the feedback section we gave the participants the opportunity to sug-
gest features and improvements. The answers can be reduced to two key
statements. First, the representation of the data within the fault descrip-
tion should be reorganized and redundant information should be avoided.
Additionally, some participants were confused by the visualization of the in-
terpolants and formulas and found them to be unreadable. Improving and
extending the class ExpressionConverter enables us to tackle this problem
in the future. Secondly, most participants preferred seeing the actual values
over the textual descriptions. This interpretation can be proven with regard
to Table 9 as the values were graded as (very) useful with a mean value of
3.2. Instead of the current description, people wished for a description of the
causality chain, for example: “If x = 5 on line 13 then x will get the value
10 on line 13 which eventually causes the error”. In conclusion the report
should become more consistent in the reasoning. Enabling the user to make
changes to the source code within the report has been a suggested feature
which will indeed increase the usability. Another suggestion was to avoid
marking input variables as possible sources of bugs. For MaxSat we would
have been able to activate the option “ban” to accomplish this but we used
ErrInv which does not have access to this option instead. Unfortunately,
this will remain a weakness of this technique.

However, looking at the average score of 7.9 in clearness these suggestions
are useful improvements for even more convenience and proves us to be on the
right way in terms of visualizing the results. The most liked features of the
report were the interactivity and the simple access to relevant information
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and important scenarios.

7.2.5 Threads to Validity

External Validity

Since the participants did not write the programs by themselves the de-
bugging time increases. We do not know which percentage of the time a
participant spent on understanding the program and which percentage were
spent on the actual debugging process. Improvements in debugging may be
more significant if the user wrote the program because the user can bring the
additional information into context much faster.

Furthermore, the tasks were especially created for this survey, meaning
that they are not part of real world applications. The usefulness of fault
localization for real world applications may differ from the usefulness on our
synthethic tasks.

Another thread to validity is given by the tasks themselves. We designed
the tasks to be solvable in a reasonable amount of time and hence they are
not too complex. In other words, experienced programmers may rapidly fix
the bug just by looking and trying to understand the task supported by
the fact that we implemented well known algorithms like sorting and prime
number detection. Additionally, 18 participants in total forms just a small
group of people. The central message may change with more participants.
Still, a trend is recognizable.

Internal Validity

Unfortunately, the software used for the creation of the survey does not sup-
port time measurement. The participants were asked to input and measure
the used time on their own which leaves doubts about the validity of the data,
for example because of typos. Moreover, the participants could have double
checked their answers with external tools like online compilers although it
was prohibited.

The different tasks are based on widely known problems. This means that
participants were able to solve tasks without looking at the report. People
believing that they did not benefit from fault localization might actually not
even have used it.

To not confuse the participants we used the best options for each task,
e.g., we maintained the hierarchy to not mix up the abstract error trace.
Knowing what which option does, the users can easily figure out the best
options by themselves, too. As seen in the first subsection of this chapter,
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the run time of the algorithms can be bad. We did not add the time needed
to create the report to the time needed to solve a task with enabled fault
localization. However, the needed time for task 2, 3 and 4 is less than 3
seconds. We can only find a measurable difference in task 1, since fault
localization needed 50 seconds.
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8 Future Work

There are multiple possible extensions and improvements for the algorithms.
MaxSat returns different sets of possible error-prone locations. Based on
the edge type that has to be executed to reach these locations we can pro-
pose actual fixes for the most common mistakes programmers make, as,
for example, off-by-one errors or wrong indexing. Wrong indexing occurs
whenever a program uses iteration variables that additionally are used to
get access to an entry of an array or some other kind of collection. Off-
by-one errors are mistakes where the programmer missed to add or sub-
tract 1 of a variable, for instance in a conditional statement. Looping
through a list of size n can lead to an error if one forgets that indexing
starts at 0. The for-loop for(int i = 1; i ≤ n; i = i + 1) in a sense contains
two off-by-one errors because we can fix the bug by adapting the loop to
for(int i = 1− 1; i ≤ n− 1; i = i + 1). The process of figuring out the ex-
istence of an off-by-one error in a program can be automized [16]. Assume
that MAX-SAT found an UNSAT-core containing {(z′ = z+1), (x <= y)} as
subset and {x, y, z} ⊆ X. To check if this fault is an off-by-one error we can
simply rerun the verification algorithm on the same program but before we
change X to (X \ {x})∪{x±1}. We repeat this for every variable in {x, y, z}
and track the behavior. If the program is now feasible without reaching an
error label e ∈ E we successfully fixed an off-by-one error and we output this
to the user. This extension would not be applicable for ErrInv since the
actual locations in the abstract error trace are not necessarily the locations
where changes have to be made in practice. In a latter step we can even
output the corrected file to the user.

Nevertheless, there is an extension that is especially useful for ErrInv,
called flow sensitive trace formula (FSTF) [5]. Until now all algorithms relied
on a a trace formula based on the CNF of ψ, π and φ. The idea behind FSTF

is to alter the construction of π: instead of a conjunction of all statements,
assertions of if-statements imply all the statements that are part of the if-
block. The FSTF is implemented but cannot used for now because we are
missing one important part. Although there exists a dependence graph [8,
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10], CPAchecker does not provide sufficient information about edges to
tell whether the edge is part of an if-block especially when it comes to nested
ifs. As soon as determining the end of an if-block is possible the FSTF can
be integrated and tested. For Program 1 with the failing input x = 2, the
flow-sensitive trace formula equals (x = 2) ∧ (¬(x < 0) ⇒ (x ≥ 2 ⇒ (x′ =
x+ 1))) ∧ φ〈3〉. Flow-sensitive trace formulas can determine whether certain
if-statements are important for an error because of the implications, which
is just one of their advantages.

The evaluation of the survey showed, that the usability of the report can
be improved in terms of the representation of the data. In fact the used
rankings can be optimized and adapted to special cases and the combina-
tion of them may be changed, too. The InformationProvider only knows
a few patterns. Adding new ones is another target for future work. At the
moment NoContextExplanation is the most used class for providing fixes.
As the name indicates, the fixes are exclusively based on the edge type.
For an assume edge the class advises to replace the operator (e.g., <) with
any of the other possible operators (>,≤, 6=,= . . . ). This is good for giv-
ing the user a first idea but not helpful in fixing the bug. In the future
this can be refined if we, for example, think of the extension of MaxSat
to fix off-by-one errors. Internally, CPAchecker handles arrays in a cryp-
tic - for new user - not readable way. Currently this is bypassed by just
telling the user that the values of a certain array are responsible for an er-
ror instead of the detailed information. We began to implement the class
ExpressionConverter that converts Boolean formulas from the unreadable
prefix notation in infix notation while replacing unimportant information.
Still, the ExpressionConverter is not able to deal with all kinds of formulas
yet and hence should not be used by default.

Also suggested by the participants of the survey, another convenient fea-
ture to improve the usability would be the addition of a selection of possible
fixes to every computed and promising location, implemented as a drop down
menu. The fixes can be proposed based on the edge type or a more complex
analysis in a latter step. This complies our goal of making the report more
interactive. By clicking a marked line the report will show a selection of fixes
and apply it on a copy of the analyzed program. The user can proceed to
rerun the analysis with the copy and after a successful rerun he can adopt
the fix to the original file. After an unsuccessful run he can look at other
potential fixes or figure out the fix by himself. For this scenario, allowing
modifications of the program within the report are mandatory. Consequently,
the user does not have to leave the report until he found the bug.

Lastly, we want to implement another approach for calculating the al-
ternative precondition. Instead of removing declaration edges and directly
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adding it to the precondition we want to replace the value of the statement
by a new variable and add the new one to the precondition. This complies
the concept of the nondeterministic variables. For example we would change
a = 5 to int a = newVariable and add newVariable = 5 to the precondi-
tion. This means that the variables still get a selector and either are part
of the fault or not relevant which automatically means that we gain more
information.
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9 Conclusion

We implemented three fault localization algorithms based on error invariants
and UNSAT-cores and optimized them in their run time. Moreover, we cre-
ated an interactive and clear presentation as a HTML-report. Additionally,
we boosted the quality of the results and the report by describing potential
fixes and the addendum of related hints. Instead of printing the formulas
in the string representation of the implemented solver, we optionally present
a clear and readable version in the final report. We even look for common
faulty patterns, like calculation within the array subscript and the suspicious
use of iteration variables. After noticing that ErrInv often runs checks on
equal interpolants on the same splitting location, we extended ErrInv by
using memoization. The benchmarks showed improvements in the run time,
i.e., the calls to the solver are noticeably reduced. In larger programs the
time reduction will be more significant. Of course, the algorithms are lim-
ited to the strength of CPAchecker and its analysis. We saw that the
algorithm fail on spurious counterexamples and recursion is not supported
by now. The usage of arrays and character can lead to inconsistencies, too.

We let 18 participants fix bugs in 4 programs with and without the as-
sistance of fault localization. The results of the survey indicate that most
people rapidly got used to the graphical report. Apart from that, fault lo-
calization improved the needed time and the correctness of the participants
on several programs with different types of bugs. In a next step, we evalu-
ated the effectiveness of three algorithms in a qualitative analysis and showed
their strengths and weaknesses. SingleUnsatCore gives us quick access to
a reduced set of locations whereas MaxSat calculates all minimal positions
in the program but with increased run time. We think seeking the assistance
of fault localization decreases the time for the localization of challenging bugs
since we have access to the current variable assignment without further in-
vestigation. In addition we obtain a limitation of possible locations. Even if
ErrInv is not necessarily on point in terms of finding the exact bug loca-
tions the abstract error trace gives a concise and helpful explanation. The
results of the survey underline this statement. Most participants felt that
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they benefited from fault localization and the comparison of time needed per
task with and without using fault localization verifies this.

In summary the algorithms turn out to be a useful alternative to clas-
sic debugging although it has drawbacks. For most of the disadvantages
we at least added helpful features to overcome the issues. Test variables
containing the expected result are often marked as potential fault locations
because changing their value would indeed make the ERROR-label unreach-
able. However, it would not fix the bug by any means because of semantic
incorrectness. For MaxSat we introduced the option ban to prevent taking
the variable into account. As a result we only show less confusing faults with-
out this variable in the report. By exactly specifying variables that should
be contained in the precondition we can refine the results, too. Most of the
time, the user will have an intuition on which variables may be important.
Our options then provide some degree of freedom and the programmer may
optimize the results by giving the algorithms additional information that are
not obvious to them.

We successfully implemented three fault localization algorithms based on
error invariants and UNSAT cores. We evaluated the effectiveness and the
usability and helpfulness of the visual report embedded in a specially devel-
oped data structure. The results show that fault localization significantly
supports finding bugs in programs by minimizing the locations and provid-
ing additional information. Additionally, we enhanced the algorithms with
different options and introduced memoization of interpolants for ErrInv to
decrease the run time.

78



10 Bibliography

[1] D. Beyer. Advances in automatic software verification: Sv-comp 2020.
In A. Biere and D. Parker, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 347–367, Cham, 2020. Springer
International Publishing.

[2] D. Beyer and M. E. Keremoglu. Cpachecker: A tool for configurable
software verification. In International Conference on Computer Aided
Verification, pages 184–190. Springer, 2011.
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A Survey Task I

1 /**
2 * Ca l cu l a t e the maximum scor ing sequence .
3 * The input i s an array o f i n t e g e r s .
4 * The output i s the h i g h e s t sum of consecu t i v e

e lements in the array .
5 * Example : f o r array = [2 , =1, 7 , =5, 2 ] the

output i s 8 because 2 + (=1) + 7 = 8
6 * There i s no o ther p a r t i a l sequence wich sums up

to a h i gher va lue .
7 */
8 int main ( ) {
9
10 // The r e s u l t i s 8 because 5 + (=2) + 5 = 8
11 int a [ ] = {=2, 5 , =2, 5} ;
12 // Wil l s t o r e the o v e r a l l maxscore
13 int t e s t = 0 ;
14
15 // 4 = l en g t h o f array
16 // Loop through every p o s s i b l e consecu t i v e

sequence
17 for ( int i = 1 ; i <= 4 ; i++) {
18 for ( int j = i = 1 ; j < 4 ; j++) {
19 int s = 0 ;
20 // Ca l cu l a t e the sum in the g iven i n t e r v a l
21 for ( int k = i ; k <= j ; k++) {
22 s = s + a [ k = 1 ] ;
23 }
24 // I s the sum grea t e r than the curren t

maxscore?
25 i f ( s > t e s t ) {
26 t e s t = s ;
27 }
28 }
29 }
30
31 //POST=CONDITION check i f the r e s u l t i s equa l to

8
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32 i f ( t e s t != 8) {
33 goto ERROR;
34 }
35
36 EXIT : return 0 ;
37 ERROR: return 1 ;
38 }

Program 12: Maximal Scoring Subsequence

Possible fix: change line 21 to for (int k = i; k <= j + 1; k++)
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B Survey Task II

1 int VERIFIER nondet int ( ) ;
2
3 int i sPr ime ( int check ) {
4 i f ( check <= 1) {
5 return 0 ;
6 }
7 // check /2 + 1 fo r fewer checks .
8 for ( int i = 2 ; i <= check /2+1; i++){
9 i f ( check % i == 0) {
10 return 0 ;
11 }
12 }
13 return 1 ;
14 }
15
16 /** Check i f a number i s a prime number */
17 int main ( ) {
18
19 int input = VERIFIER nondet int ( ) ;
20 int check = input % 10 ;
21 int r e s u l t = isPrime ( check ) ;
22
23 /* POST=CONDITION check i f the program was ab l e

to i d e n t i f y a l l primes
24 from 0 to 10. The checks be low are co r r e c t !

*/
25 i f ( ( r e s u l t == 0 && check <= 0) | | ( r e s u l t

== 0 && check == 1)
26 | | ( r e s u l t == 1 && check == 2) | | ( r e s u l t ==

1 && check == 3)
27 | | ( r e s u l t == 0 && check == 4) | | ( r e s u l t ==

1 && check == 5)
28 | | ( r e s u l t == 0 && check == 6) | | ( r e s u l t ==

1 && check == 7)
29 | | ( r e s u l t == 0 && check == 8) | | ( r e s u l t ==

0 && check == 9) ) {
30 goto EXIT ;
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31 } else {
32 goto ERROR;
33 }
34
35 EXIT : return 0 ;
36 ERROR: return 1 ;
37 }

Program 13: Identifying Prime Numbers

Possible fix: change line 8 to for (int i = 2; i < check/2 + 1 ; i++)
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C Survey Task III

1 extern int VERIFIER nondet int ( ) ;
2
3 #define TRUE 0
4 #define FALSE 1
5
6 int i s S o r t ed ( int a [ ] , int l en ) {
7 // check i f the array i s so r t ed
8 for ( int i = 0 ; i < len =1; i++) {
9 i f ( a [ i ] > a [ i +1]) {
10 return FALSE;
11 }
12 }
13 return TRUE;
14 }
15
16 /** Sort any 3=dimensiona l array ascending */
17 int main ( ) {
18 // so r t any array o f s i z e 3 in ascending order
19 // l e t the user input 3 numbers t ha t shou ld be

so r t ed .
20 int f i r s t = VERIFIER nondet int ( ) ;
21 int second = VERIFIER nondet int ( ) ;
22 int th i rd = VERIFIER nondet int ( ) ;
23 int a [ ] = { f i r s t , second , th i rd } ;
24
25 // l en g t h o f array
26 int l en = 3 ;
27
28 // current p o s i t i o n .
29 int i = 0 ;
30
31 while ( ! i s S o r t ed (a , l en ) ) {
32 // swap en t r i e s i f not so r t ed
33 int bu f f = a [ i ] ;
34 a [ i ] = a [ i +1] ;
35 a [ i +1] = bu f f ;
36 i++;
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37 i f ( i == len =1) {
38 i = 0 ;
39 }
40 }
41
42 //POST=CONDITION check i f the array i s so r t ed ?
43 i f ( a [ 0 ] <= a [ 1 ] && a [ 1 ] <= a [ 2 ] ) {
44 goto EXIT ;
45 } else {
46 goto ERROR;
47 }
48
49
50 EXIT : return 0 ;
51 ERROR: return 1 ;
52
53 }

Program 14: Sorting

Possible fix: change line 31 to while(isSorted(a, len)) since TRUE and
FALSE are initialized incorrectly in lines 3 and 4.
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D Survey Task IV

1 extern int VERIFIER nondet int ( ) ;
2
3 int i sPr ime ( int n) {
4 for ( int i = 2 ; i < n/2 + 1 ; i++){
5 i f (n % i == 0) return 0 ;
6 }
7 return 1 ;
8 }
9
10 /**
11 Ca l cu l a t e a l l prime f a c t o r s o f a g iven number .
12 Example : prime f a c t o r s o f 420 are {2 , 2 , 3 , 5 , 7}

because
13 2 * 2 * 3 * 5 * 7 = 420 and 2 ,3 ,5 ,7 are

prime .
14 */
15 int main ( ) {
16
17 // Ca l cu l a t e prime f a c t o r s o f number ;
18 int number = VERIFIER nondet int ( ) ;
19 int copyForCheck = number ;
20 i f ( number <= 0) {
21 // Te l l user t ha t a p o s i t i v e number i s

r e qu i r ed .
22 // This i s not cons idered to be an error .
23 goto EXIT ;
24 }
25
26 int t e s t = 1 ;
27 for ( int i = 2 ; i <= number ; i++){
28 i f ( number % i == 0 && isPrime ( i ) ) {
29 // Mu l t i p l y a l l prime f a c t o r s to t e s t
30 t e s t *= i ;
31 // Reset i to r e s t a r t computation wi th new

number
32 number = number / i ;
33 i = 2 ;
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34 }
35 }
36
37 // POST=CONDITION check i f t e s t e qua l s number
38 // ( t e s t shou ld equa l the product o f a l l found

prime f a c t o r s )
39 i f ( t e s t != copyForCheck ) {
40 goto ERROR;
41 }
42
43 EXIT : return 0 ;
44 ERROR: return 1 ;
45 }

Program 15: Prime Factors

Possible fix: change line 33 to i = 1
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E Survey Data

The data can be found on the following pages. On this page we describe the
meaning of the column names. (X represents the number of the task.)

TaskX Min: This column indicates if the participant fixed the bug with
changing a minimal number of lines. Since most people were able to
find the minimal fix, we did not include it in the evaluation. Possible
values are 1 for true and 0 for false.

TaskX Correct: Indicates if the participant was able to fix the bug. Pos-
sible values are 1 for true and 0 for false.

TaskX Time: This column contains the needed time in seconds per partic-
ipant.

TaskX Help: If the value equals 1, the participant had to use fault local-
ization. Otherwise, the participant had only access to the standard
report.

Benefit FL: We asked the participants to estimate how well they benefited
from fault localization. Possible values are 1 to 10 where 10 is the
highest score.

Clearness: The participants had to grade the clearness of the report with
a value between 1 and 10 (best score).

Additional Information: The next 3 columns starting with “Info ” repre-
sent the data collected about the additional information compared to
the standard report. Possible values lie between 0 for “not agree at all”
and 4 for “totally agree”.

Grading of the features: All columns starting with “Ben ” symbolize the
felt benefit of all available features: hints, potential fixes, justifications
of the algorithm, score in the yellow cell, relevant lines and current
values (sorted by appearance).
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ID Task1_Min Task1_Correct Task1_Time Task1_Help Task2_Min Task2_Correct Task2_Time

1 1 0 259 0 1 0 537

2 1 1 310 0 0 0 322

3 1 1 870 0 1 1 720

4 1 1 430 0 1 1 149

5 1 0 1267 0 1 1 928

6 1 0 791 0 1 1 631

7 1 0 934 0 1 1 792

8 0 0 300 0 1 1 280

9 1 0 1010 0 1 1 385

10 1 0 500 0 1 1 360

11 1 1 550 1 1 1 330

12 1 1 524 1 1 0 365

13 1 1 1367 1 1 1 1048

14 1 1 490 1 1 1 295

15 1 1 512 1 1 1 336

16 1 1 551 1 1 1 389

17 1 0 780 1 1 1 600

18 1 1 550 1 1 1 490
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Task2_Help Task3_Min Task3_Correct Task3_Time Task3_Help Task4_Min Task4_Correct

0 1 1 492 1 1 1

0 0 1 228 1 1 1

0 1 1 280 1 1 1

0 1 0 308 1 1 1

0 1 0 922 1 1 1

0 1 1 512 1 1 1

0 1 1 596 1 1 1

0 1 0 560 1 1 1

0 0 1 1031 1 0 0

0 1 1 550 1 1 1

1 0 1 870 0 1 1

1 1 0 458 0 1 0

1 1 0 772 0 1 1

1 1 1 932 0 1 1

1 0 1 1104 0 1 1

1 0 1 548 0 1 1

1 0 1 630 0 1 1

1 1 1 598 0 1 1
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Task4_Time Task4_Help Benefit_FL Clearness Info_Misleading Info_Accessible Info_TooMuch

422 1 8 9 0 4 1

304 1 7 9 1 4 3

480 1 9 10 0 3 0

182 1 8 8 1 3 0

936 1 3 8 3 4 2

587 1 8 8 1 4 0

726 1 3 8 1 3 1

720 1 6 8 0 3 1

633 1 2 3 1 2 2

1000 1 9 7 1 3 1

1110 0 10 10 0 3 0

532 0 3 8 3 1 0

1224 0 3 8 3 2 0

1203 0 8 9 0 3 0

1054 0 8 10 1 4 1

1021 0 6 4 1 1 2

1050 0 8 6 2 3 2

378 0 6 9 1 3 0
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Ben_Hints Ben_Fix Ben_Reason Ben_Score Ben_Lines Ben_Values Group

3 3 2 3 3 4 1

4 1 0 2 4 2 1

3 4 3 2 4 3 1

4 3 3 2 3 4 1

1 2 1 2 3 4 1

2 4 4 0 3 3 1

3 1 3 1 3 3 1

4 3 3 1 4 4 1

1 1 1 3 2 2 1

3 2 3 2 3 4 1

4 3 4 2 4 4 2

1 1 1 3 3 2 2

1 1 1 0 4 4 2

3 3 4 1 2 3 2

2 3 4 1 2 3 2

1 3 3 1 4 3 2

3 3 3 1 2 3 2

2 3 3 2 4 2 2
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