
Ludwig Maximilian University of Munich
Institute of Informatics

Software and Computational Systems Lab

Bachelor’s Thesis
in Computer Science plus Mathematics

SMT-based Model Checking of
Concurrent Programs

Vladyslav Kolesnykov

Supervisor: Prof. Dr. Dirk Beyer
Mentor: Karlheinz Friedberger
Date: 26.11.2020
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Abstract

Nowadays, modern software applications are complex concurrent and
distributed software systems that should be highly reliable and efficient,
without data races, deadlocks, and other program bugs. Thus, the auto-
mated verification of concurrent programs is becoming increasingly impor-
tant in order to benefit from the potential of advanced multi-core hard-
ware and distributed infrastructure. However, this process can be chal-
lenging even for modern verification software due to the non-deterministic
behavior of multithreaded programs. Several successful automated soft-
ware verification approaches are based on the Satisfiability Modulo Theo-
ries (SMT), solving first-order-logic formulas over predicates. This thesis
studies two SMT-based software verification techniques, Bounded Model
Checking and Predicate Abstraction, as well as a configurable verification
framework CPAchecker for C programs. Our framework implements these
approaches in a single configurable component for predicate-based analy-
ses, representing Bounded Model Checking and Predicate Abstraction in a
single setting. In addition to the theoretical contribution, we present our
implementation that extends the existing components of CPAchecker to use
Bounded Model Checking and Predicate Abstraction for concurrent pro-
grams. The predicate-based analyses component is used with the underly-
ing reachability analysis that explores the program’s state-space analyzing
all possible thread interleavings. We evaluate the performance of imple-
mented verification techniques and some optimizations on the broad set of
concurrent benchmark tasks, comparing them with other existing analyses
in the same framework CPAchecker. We also present a combination of our
techniques with explicit value-analysis to solve the state-space explosion
problem and achieve even better verification performance. Finally, the im-
plemented changes are applied as part of CPAchecker to participate in the
International Competition on Software Verification 2021.
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Chapter 1

Introduction

Considerable progress in the development of techniques for automatic for-
mal verification in recent decades has increased interest in software verifi-
cation of complex industrial systems. Therefore, leading hardware and soft-
ware companies have started to integrate them into their products’ quality
assurance processes. Model Checking is one of the most widely used ap-
proaches, which attempts to verify whether a finite-state model of a system
satisfies a provided specification formalized by temporal logic. Generally,
there are two types of specification properties: safety properties (indicates
what should not happen) and liveness properties (indicates what should
finally happen). The process of proving or disproving the model’s correct-
ness involves exploring its all reachable states and transitions. If no program
state that violates property is found, the model is proven to be correct. Oth-
erwise, a sequence of the model’s states called counterexample is generated
to confirm the property contradiction.

In order to prove whether the finite-state model meets a given specifica-
tion, the first model checking algorithms explicitly enumerated the reachable
states. Therefore, the performance of such approaches was limited since the
state-space can grow exponentially. The first model checkers could only
verify models with a few million states, which prevented scaling up to the
industrial complex. However, the introduction of symbolic model checking
led to wide usage of this technique that allows representing a state space of a
model implicitly using Boolean functions. Thus, the model can be traversed
more efficiently by manipulating Boolean functions that enables handling
the large numbers of states in a single step. The first symbolic methods used
binary decision diagrams (BDDs), a data-structure for the representation
of Boolean functions. The symbolic model checking with BDDs allowed
verifying the system with an even larger set of states. Still, it required a
considerable amount of memory for storing and manipulating BDDs. In
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CHAPTER 1. INTRODUCTION

addition, the variable ordering in the BDD directly affected the execution
time of the model checker.

Due to impressive progress in the field of satisfiability theories (SAT)
and satisfiability modulo theories (SMT) in recent decades, symbolic model
checking has achieved considerable success. The state-space reachability
problem can be reduced to propositional satisfiability (SAT) or generaliza-
tions thereof (SMT) and be solved by SAT or SMT solvers rather than BDDs.
Consequently, the significant improvement in performance and scalability
of Boolean satisfiability solvers resulted in their wide usage in symbolic
model checking. The new generation of satisfiability solvers is able to
handle propositional satisfiability problems with hundreds of thousands
of variables[BCC+03].

This thesis focuses on the two Symbolic Model Checking approaches,
Bounded Model Checking (BMC) and Predicate Abstraction, which are both
based on SMT solving as the back-end technology. BMC unrolls all pro-
gram paths in an SMT formula and attempts to prove whether it contains
a feasible program path leading to a violation of the specification. Another
widely used technique is Predicate Abstraction, which simplifies and proves
the properties of the system. It is usually applied with counterexample
guided abstraction refinement (CEGAR) that refines the abstracted models
iteratively using information obtained from counterexamples. This process
continues until either property contradiction is found or proven that the
model satisfies the given specification. The Bounded Model Checking and
Predicate Abstraction methods are already implemented in the configurable
software verification framework CPAchecker and competitive in verifying
a large benchmark set of sequential programs.

Due to the increasing importance in the verification of concurrent pro-
grams, the main goal of this work is to extend the configurable verifica-
tion framework CPAchecker with the support of Bounded Model Checking
(BMC) and Predicate Abstraction for multithreaded programs and compare
them with other existing software verification approaches. However, the
analysis of multithreaded programs has a higher level of complexity. Mul-
tithreading enables the execution of multiple program tasks simultaneously
and switching between the running processes. The number of program
paths to be explored can grow exponentially with the program’s length due
to all possible interleaving of threads. This behavior causes the path ex-
plosion problem of symbolic execution and prevents verification techniques
from scaling to be able to handle complex systems. However, by extending
and optimizing some existing components of the CPAckecker, we achieved
sound and efficient model checking of multithreaded programs.

The rest of the thesis is structured as follows. The next section gives a tech-
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CHAPTER 1. INTRODUCTION

nical introduction to the verification framework CPAckecker and symbolic
SMT-based verification approaches. Section 3 describes the implemented
changes and optimizations in components of CPAchekcer for verification
of multithreaded programs. In Section 4, we present the Bounded Model
Checking and Predicate Abstraction evaluation and compare them with
other existing software verification approaches for concurrent programs.
Finally, the paper’s results and possible directions for future work are dis-
cussed in the conclusion.

5



Chapter 2

Background

The following section provides an overview of some fundamental concepts
and definitions used for SMT-based verification of concurrent programs.
Additionally, we describe the main components of the software verification
framework CPAchecker and details of configurable program analysis.

2.1 CPAchecker

CPAchecker is an open-source framework for configurable software veri-
fication and program analysis of C programs, which has been developed
by the members of the chair for Software and Computational Systems at
the Ludwig Maximilian University of Munich. CPAchecker has proven to
be a successful tool for automatic software verification, annually winning a
series of medals in different categories at the International Competition on
Software Verification[Bey20].

CPAchecker is based on the concept of configurable program analy-
sis (CPA), which provides the expressing different verification approaches
using a single formal setting. It enables flexible and customizable pro-
gram verification combining two major techniques of program analysis
and model checking. The main design principle of CPAchecker is the
separation of concerns that allows to separate various tasks, which are re-
quired for program verification, into independent components (CPAs). For
instance, LocationCPA tracks program counter, CallstackCPA represents
a program call stack, ThreadingCPA handles multiple program threads,
etc. The concept of separation of concern also is applied to the different
approaches of program analysis. Thus, the predicate and value analy-
ses are implemented as individual CPAs: PredicateCPA and ValueCPA.
In addition, CPAchecker offers interfaces to various SMT solvers such as
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CHAPTER 2. BACKGROUND

MathSAT5[CGSS13] and SMTInterpol[CJA12] for solving and interpolating
over SMT formulas [BEK11, Löw17]. Figure 2.1 illustrates the coarse archi-
tecture of CPAchecker, displaying its most relevant components.

Figure 2.1: Architecture of the CPAchecker framework.

CPAchekcer accepts a program source code written in C and the speci-
fication, which contains specific properties that the program should fulfill.
Firstly, the framework uses the C parser to transform the program into
a control-flow automaton (CFA), an intermediate program representation.
Then CPAchecker runs the CPA algorithm to perform reachability analysis,
which accepts a constructed CFA and a set of CPAs required for a specific
program analysis type. Finally, other algorithms, like CEGAR or BMC al-
gorithm, use the program’s state-space explored by the underlying CPA
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CHAPTER 2. BACKGROUND

algorithm and provide the program verification. If a state, which violates a
given specification, can be reached during a specific analysis, CPAchecker
generates a counterexample and reports the program unsafe. Otherwise, the
program meets the given specification.

In the following section, we describe each component of the CPAchecker
in more detail.

2.2 Control Flow Automaton

Before the CPAchecker runs a specific program analysis, it parses the source
code and constructs a control-flow automaton (CFA). CFA is a directed graph
in which nodes denote a current program location that models the program
counter. Its edges represent program statements that perform a transition
from one program state to another. This program representation allows the
traversal of all possible paths during the execution of verification analysis.

Formally, a CFA is a triple (L, l0,G) that consists of the finite set L of all
program locations, the start location l0 ∈ L, and set G ⊆ L ×Ops × L of edges
between program locations. Each edge g ∈ G is denoted li

op
−→ l j with an

operation executed when the control flows from a predecessor location li to
a successor location l j. An operation op ∈ Ops can be an assignment of from
v := e where v ∈ V is a variable and e is an arithmetic expression, or an
assume operation [p] with a predicate p over a set V.

The sequence p = (l0, op0, l1), (l1, op1, l2), ..., (ln, opn, ln+1) of successive edges
from G that starts at initial location l0 is called a program path. The path p
is feasible if there exists an execution order of program statements (edges)
that leads to a specific program location. If there is a feasible program path
p from location l0 to ln, a location ln is called reachable.

Let lerr ∈ L be an error location in CFA A = (L, l0,G). The primary purpose
of software verification is either to prove that lerr is unreachable in A or to
find a feasible program path to the error location.[BDW17]

2.3 Configurable Program Analysis

CPAchecker fulfills the principle of configurable program analysis, where
various components (denoted as CPAs) are responsible for analyzing dif-
ferent program aspects. Later, CPAchecker was extended with the concept
of dynamic precision adjustment that was introduced by Beyer, Henzinger,
and Théoduloz in [BHT07]. This extension allows CPAchecker to adjust the
precision of its components (CPAs) on the fly-way during the program ver-
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CHAPTER 2. BACKGROUND

ification. Thus, the component program analysis during execution can be
configured either to be more abstract or precise and efficient or more precise
but expensive.

According to the definition taken from [BHT08], a CPA D = (D,Π, 
,merge, stop, prec) consists of an abstract domain D, a set Π of precisions, a
transfer relation , a merge operator merge, a termination check operator
stop, and a precision adjustment function prec.

Let V denote the finite set of program variables. A concrete state (s, l) :
(V → Z) × L is a tuple of a program location l ∈ L and a concrete data state
s ∈ (V → Z) that assigns an integer value to each variable from the set V.

The abstract domain D = (C,E, ~·�) consists of a set C of concrete states,
a semilattice E = (E,v) and a concretization function ~·�. A semilattice
E = (E,v) is a set E of abstract states with a partial order v. A concretization
function ~·� assigns to each abstract state e ∈ E the set of concrete states that
it represents.

The set Π of precisions defines the precisions of the abstract domain. The
program analysis keeps track of different precisions for different abstract
states using the precisions from Π.

The transfer relation ⊆ E×G×E×Π computes all successor e′ ∈ E for
abstract state e ∈ E under a precision Π. We denote e 

g

e′ if there exists the
edge g ∈ G in the CFA between abstract states e and e′.

The merge operator Emerge :⊆ E ⊆ Π E combines the information of
two abstract states when the control flow meets under a given precision.

The stop operator stop : E × 2E
× Π  B is also called termination

check and used for coverage checks. It determines whether an abstract state
e ∈ E is already covered by a given set of abstract states R ∈ 2E. If it is
the case, then the stop operator returns true, and the CPA algorithm does
not process the successor states of abstract state e. Merging abstract states
and coverage checks significantly reduces the number of abstract states and
program paths, avoiding state space explosion.

The precision-adjustment operator prec : E×Π× 2E
×Π→ E×Π allows

adjusting the analysis precision dynamically, increasing or decreasing the
precision of abstract states. It computes a new abstract state and precision
depending on the current set of reachable abstract states.

The concept of configurable program analysis also allows us to separate
common analysis components into different CPAs. Thus, they should not be
redefined for every analysis and can be efficiently reused. Several CPAs can
be combined by CompositeCPA and used together for eliminating infeasible
paths during the program analysis. The abstract state and precisions of the
CompositeCPA are tuples of abstract states and precisions from each compo-
nent of CompositeCPA. The operators merge, stop, prec of the CompositeCPA
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CHAPTER 2. BACKGROUND

delegate the execution to the corresponding operators of component CPAs.
Different CPAs analyze different program aspects and thus might be

able to prove and eliminate different program paths. The program analysis
finds a specific path feasible if all components of the CompositeCPA agree
with its feasibility. CPAs do not necessarily have to know about each other.
However, the precision adjustment operator of the CompositeCPA supports
the exchange of information between the component CPAs to achieve higher
precision. The composite precision adjustment operator can adjust the preci-
sion of the component CPAs individually. Thus, it can increase the precision
of one component analysis and decrease the precision of another simultane-
ously.

2.3.1 ThreadingCPA

For the analysis of single-threaded programs, the CPAchecker uses the Lo-
cationCPA and the CallstackCPA in order to track the program location
and call stacks containing function calls with respective return location in
the CFA. Unfortunately, those CPAs do not support the analysis of mul-
tithreaded programs. Thus, the ThreadingCPA was created to be able to
explore the state space of the multithreaded program. The ThreadingCPA
is a replacement for the LocationCPA and the CallstackCPA that can handle
multiple program locations per abstract state with their call stacks.

The definition of the ThreadingCPA was taken from [BF16]. The Thread-
ingCPA T = (DT, T,mergeT, stopT) conforms to the structure of config-
urable program analysis.

The abstract domain D = (C,J , ~·�) consists of the set C of concrete
states, the flat semi-lattice J = (E,v,t,⊥), and the concretization function
~·� : J → 2C . Let I be the set of all possible thread identifiers. Each abstract
threading state e ∈ E consists of assignments {t1 → lt1 , t2 → lt2 , ..., tn → ltn} of
thread identifier t ∈ I to current program location lt j ∈ L∪{>L}. >L represents
an unknown program location. A semilattice J = (E,v,t,⊥) is a set E of
abstract states with a partial order v. The join operator t yields the least
upper bound of given abstract states. ⊥ = tE is the top element of the
semi-lattice J .

The merge operator mergesep of the ThreadingCPA does not combine
different threading abstract states.

The stop operator stopsep of the ThreadingCPA determines coverage only
if both threading abstract states are equal.

The precision adjustment operator prec never changes the precision of
threading abstract state.

The transfer relation T of ThreadingCPA computes all possible suc-
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cessors for all active threads in the current abstract state. It uses the trans-
fer relation of the LocationCPA for each active thread. Moreover, transfer
relation is able to handle thread-related function calls (pthread create and
pthread join) that change either the number of threads or the progress of
thread executions. For example, the transfer relation  T processes the
CFA edge g = (lt j , op, lt′j) between two abstract states e  

g

e′, where e =

{t1 → lt1 , ..., t j → lt j , ..., tn → ltn} and e’ = {t1 → lt1 , ..., i j → lt′j , ..., tn → ltn}.
If the operation op contains the pthread create statement for thread ti, the

transfer realtion addes a new thread tnew with the location linew ∈ L to the
abstract state e′:

e′ = e \ {t j → lt j} ∪ {t j → lt′j} ∪ {tnew → ltnew}.

If the operation op contains the pthread join(tjoin) statement for thread t j,
the transfer realtion waits for a thread tjoin to exit at program location ltjoin :

e′ = e \ {ijoin → ltjoin} \ {t j → lt j} ∪ {t j → lt′j}.

All other operations are not related to the thread management. The
thread t j simply moves from location lt j to location lt′j :

e′ = e \ {t j → lt j} ∪ {t j → lt′j}.

2.3.2 PredicateCPA

PredicateCPA P is the core component of CPAchecker for predicate-based
analysis that was defined in [BDW17]. Its primary purpose is to construct
SMT formulas representing all program paths leading to error location,
which can later be checked with an SMT Solver for feasibility. The Predicate-
CPA P = (DP,ΠP, P,mergeP, stopP, precP) also conforms to the structure
of configurable program analysis.

The abstract domain D = (C,EP, ~·�P) consists of the set C of concrete
states, the semilattice EP over abstract states, and the concretization func-
tion ~·�P. The semilattice EP = (EP,v P) is a partial order set of abstract
states EP. An abstract state e ∈ E of PredicateCPA is a triple (ψ, lψ, φ) of an
abstraction formula ψ, the abstraction location lψ (the program location of
computed abstraction formula), and a path formula φ from the last abstrac-
tion state to the current abstract state. Both formulas are first-order formulas
over predicates over the program variables represented as SMT formulas.
Abstract states where abstraction is computed (path formula φ = true) are
denoted as abstraction states, otherwise intermediate states. The following
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implication (ψ1, lψ1 , φ1) v P(ψ2, lψ2 , φ2) = ((ψ1 ∧ φ1) =⇒ (ψ2 ∧ φ2)) defines a
partial order v P, meaning an abstract state e1 is less than or equal to another
state e2.

A precision π ∈ Π of the PredicateCPA maps program locations to sets
of predicates over the program variables. It allows using an appropriate set
of predicates at any program location for abstraction computation. Addi-
tionally, some predicates may be used for all program locations or within a
specific function.

If there exists a CFA edge g = (li, opi, l j), the transfer relation (ψ, lψ, φ) 
((ψ, lψ, φ′), π) computes an abstract successor e′ ∈ E, which is an interme-
diate state. Comparing to the predecessor abstract state e ∈ E, the abstract
successor’s abstraction formula ψ and the abstraction computation location
lψ stay the same. The transfer relation changes only the path formula of a
successor by constructing the conjunction of the predecessor’s path formula
φ and the operation opi of the current CFA edge: φ′ = φ ∧ opi

The merge operator mergeP combines only intermediate states that are
located in the same block. It means that these abstract states have the
same abstraction formula ψ and abstraction computation location lψ. Merge
operator mergeP is defined as:

mergeP((ψ1, lψ1, φ1), (ψ2, lψ2, φ2), π) =(ψ2, lψ2, φ1 ∨ φ2) if (ψ1 = ψ2) ∧ (lψ1 = lψ2)
(ψ2, lψ2, φ2), otherwise

(2.1)

The coverage checks for predicate-based analysis require solving SMT
queries that influence the performance of program analysis. Thus, the stop
operator stop was restricted to check coverage only for abstraction states
and return false for intermediate states. The stop operator checks if there
exists an abstraction state (ψ′, lψ′ , φ′) in the set of abstract states R whose
abstraction formula φ′ is implied by the abstraction formula φ of the current
abstraction state (ψ, lψ, φ).

stopP((ψ, lψ, φ),R, π) =∃(ψ′, lψ′ , φ′) ∈ R : φ′ = true ∧ (ψ, lψ, φ) v P(ψ′, lψ′ , φ′) if φ = true
f alse otherwise

(2.2)

The precision-adjustment operator prec is combined with a technique
called adjustable-block encoding (ABE) [BKW10] that decides whether the
abstraction should be computed at the current abstract state. If the op-
erator blk returns true (current block ends), the operator prec converts an
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intermediate state into an abstraction state by computing the new abstrac-
tion. Otherwise, it returns the inputted abstract state with precision. In
the first case, the precision-adjustment operator takes an intermediate state
(ψ, lψ, φ) at program location l and computes the boolean predicate abstrac-
tion (ψ∧φ)π(l)

B = (ψ∧φ)∧
∧

pi∈π(l)
(vi ⇔ pi) for the abstraction formula ψ, path

formula φ, and the set of predicates π(l) from the precision π. We also assign
a new variable vi to each predicate pi ∈ π(l).

precP((ψ, lψ, φ),R, π) =

(((ψ ∧ φ)π(l)
B, l, true), π) if blk(ψ, lψ, φ), l)

(ψ, lψ, φ), π) otherwise
(2.3)

2.3.3 CPA Algorithm

The CPA algorithm is a reachability algorithm that performs a simple state-
space exploration. Its main purpose is to compute a set of all abstract states
that can be reached from an initial state. The CPA algorithm’s significant
advantage is that it can be used with the composition of any CPAs. This flex-
ibility allows for combining the CPA algorithm with different approaches
like data-flow analysis and model checking. This paragraph describes the
extended CPA+ algorithm 2.1 for configurable program analysis with the
dynamic precision adjustment[BHT08]. The CPA Algorithm was extended
to support the counterexample-guided abstraction refinement with a lazy
abstraction and features of the PredicateCPA. These changes allow termi-
nating the algorithm as soon as it reaches an abstract error state, to perform
a refinement step and restart the algorithm from the same point. So we can
expand further the set of abstract states without restarting from scratch.

The CPA+ algorithm takes as input a CPA D, sets reached and waitlist of
abstract states with precision and function abort. The reached set contains
all abstract states with precisions that have already been processed. All
abstract states, whose successor states should be explored, are stored in the
waitlist set. The algorithm keeps updating two sets by looping until either
all abstract states have been fully processed (waitlist is empty) or function
abort determines that the algorithm should terminate earlier. The abort(e)
function typically checks if e ∈ E is an abstract state at error location lerr

and returns true to stop the algorithm. After the CPA+ algorithm aborts, it
returns an updated version of both reached and waitlist sets.

13
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1 Input: a CPA D = (D,Π, ,merge, stop, prec),
where E denotes the set of elements of the semilattice of D,
a set reached ∈ E ×Π of reachable abstract states,

a set waitlist ∈ E ×Π of frontier abstract states,

a function abort : E→ B that defines whether the algorithm
should abort early

Output: the updated sets reached and waitlist

2 while waitlist , Ø do
3 pop (e,π) from waitlist
4 if (e,π) < reached then
5 continue
6 for all e′ with e  (e′,π) do
7 (e,π) := prec(e′, π, reached)
8 for all (e′′, π′′) ∈ reached do
9 enew := merge(e,e′′,π)

10 if enew , e′′ then
11 waitlist := waitlist ∪ {(enew,π)}\{(e′′, π′′)}
12 reached := reached ∪ {(enew,π)}\{(e′′, π′′)}
13 if not stop(e,{e | (e, ·) ∈ reached},π) then
14 waitlist := waitlist ∪ {(e,π)}
15 reached := reached ∪ {(e,π)}
16 if abort(e) then
17 return (reached, waitlist)
18 return (reached, waitlist)

Listing 2.1: CPA+ algorithm

In each iteration, the algorithm takes an abstract state e with precision
from the waitlist and computes all abstract successors e′ according to the
transfer relation  of the CPA D. If the state exploration started from
scratch, the waitlist and reached sets contain only an initial abstract state e0

with precision Π0. The algorithm adjusts the precision of each successor
using the precision adjustment function prec. Next, all abstract successors
e′ are merged with each of the existing abstract state e′′ in reached by using
the given merge operator of CPA D. As a result, a new abstract state enew is
created that may differ from e′′. If enew contains additional information, such
that the old information is strictly subsumed, then the old abstract state e′′

with precision Π′′ in the reached and waitlist sets is replaced by the abstract
state enew with precision Πnew. After the merge step, the algorithm checks
using the stop operator of D if the current abstract state is already covered
by the set reached. If it is the case, the exploration of this abstract state is
stopped. Otherwise, the abstract state and its precision are added to the sets
reached and waitlist. In case the waitlist is not empty, the algorithm continues
to process another abstract state form waitlist in the next iteration. If all
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abstract states have been explored, the algorithm terminates and returns the
reached with all processed states.

CPA Algorithm unrolls the program lazily into an abstract reachabil-
ity graph (ARG). ARG is a directed acyclic graph representing all program
paths that can be traversed during program execution, starting from the
entry point. Its nodes are program abstract states and edges represent the
transfer relation that leads from one abstract state to the next one. In or-
der to construct the abstract reachability graph during program analysis
CPAchecker uses the ARG CPA that stores the predecessor – successor rela-
tionship between abstract states. It allows then to reconstruct abstract paths
from the ARG, which is a sequence 〈e0, ..., en〉 of abstract states.

2.4 Example

The following example shows how CPAchecker performs the state-space
exploration of the program (Listing 2.2). The program contains two global
variables i and j, which are both initialized to 1. Then an additional thread
is created that reads and modifies the values of global variables. In line 15,
the main method checks the assignment of global variables. If either i or j is
equal to 8, the program reaches the error state in line 16.

1 int i=1, j=1;
2 void *t1(void* arg)
3 {

4 i+=j;

5 i+=j;

6 }

8 int main(int argc, char **argv)
9 {

10 pthread_t id1;

11 pthread_create(&id1, ((void *)0), t1, ((void *)0));
12 j+=i;

13 j+=i;

14 pthread_join(id1, ((void *)0));
15 if (i == 8 || j == 8) {
16 ERROR: {reach_error();abort();}

17 }

18 return 0;
19 }

Listing 2.2: Program with concurrent threads

Firstly, CPAchecker parses the program and constructs the corresponding
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CFA represented in Fig. 2.2, where each function is represented as a separate
CFA. Every subsequent location is connected with the predecessor by an
edge labeled with a program statement. The starting state l0 is the initial
location of the program. The corresponding error state is represented as an
error location lerr = l8.

Figure 2.2: CFA for the functions of program 2.2

After constructing the program’s CFA, CPAchecker explores the state-
space of the program using the CPA Algorithm and ThreadingCPA. This
example is simplified, and most program analyses require combining the
ThreadingCPA with other CPAs. For example, in order to track predicates
or variable assignments. The program analysis starts at the initial location
l0 of the main function and analyzes all possible thread interleavings. After
the control flow reaches the statement pthread create in location l2 of the
main function, ThreadingCPA tracks an additional thread with its program
location. The diamond-like structure in the ARG results from merging two
interleaving threads when reaching the same program location via different
execution paths. When the control flow executes the statement pthread join
in location l5, the program location of the existing thread is removed from
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the abstract state.
The result of the program state-space exploration is the ARG in Fig.

that represents all program paths traversed during the program execution.
Each abstract state is labeled with the indices of the program locations of all
currently active threads.

Figure 2.3: ARG of the interleaved threads of the program 2.2

2.5 SMT-Based Approaches for Software Verifica-
tion of concurrent programs

Bounded Model Checking with adjustable-block encoding, Predicate Ab-
straction with counterexample-guided abstraction refinement, and lazy ab-
straction are the techniques that scaled software verification from simple
programs to complex industrial software[BDW17]. This section provides
an overview of these widely used predicate-based software verification ap-
proaches that are based on SMT solving as the back-end technology. The
core component for predicate-based analysis is the PredicateCPA that en-
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ables the expression of various techniques within one framework. The im-
plementation of these verification approaches within a CPAchecker requires
combining an appropriately configured instance of the PredicateCPA with
other relevant CPAs using CompositeCPA. In addition, we use an underly-
ing CPA+ algorithm, which is wrapped inside each analysis, to explore the
state-space of the program and construct corresponding ARG.

2.5.1 Bounded Model Checking

The main idea of Bounded Model Checking (BMC) is to check whether a
property violation can occur in k steps during the program execution. This
approach is able to verify a large state-space of different program types in
a short time without expensive abstraction computations, coverage checks,
and refinements. Instead, BMC performs bounded unrolling of all program
paths in an SMT formula that is checked later with SMT Solver for feasibility.
If the satisfiable SMT formula encodes a program path leading from the
program entry to an error location, the property violation of specification is
detected. Otherwise, we can increase the bound k until either any feasible
program path to the error location is finally found, or all possible violations
have been excluded.

To verify concurrent programs, BMC takes as input the CompositeCPA
that consists of ThreadingCPA, PredicateCPA, and the LoopBoundCPA.
Each abstract state is a tuple of threading abstract state (containing current
active threads with locations), predicate abstract state (tuple of an abstrac-
tion formula, an abstraction location, and a path formula), and loop-bound
abstract state (maps loop heads to loop counters). The LoopBoundCPA is
used to track a loop counter in its abstract states for every program loop.
By determining how many times the loop body has already been traversed
on the current program path, LoopBoundCPA prevents exploring any loop
after k iterations. The transfer relation of the LoopBoundCPA does not com-
pute a successor for abstract states, which contains a loop counter equal to
loop bound k.

Bounded Model Checking starts with the program state-space explo-
ration performed by the CPA+ algorithm. In order to avoid abstraction
computation at program block ends, the ABE block size is set to infinite that
enables whole program encoding. Thus, a path formula of each abstract
state in PredicateCPA encodes exactly the path from the initial location to
the current abstract state. After the CPA+ algorithm has computed the set of
all reachable abstract states, BMC constructs a single SMT formula contain-
ing a disjunction of all path formulas leading to error locations. If at least
one path formula is satisfiable, a feasible path to the error location is found
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that violates the specification.

1 Input: the initial value kINIT ≥ 1 for the bound k,
an upper limit kMAX for the bound k,
a function inc :N→N with ∀n ∈N : inc(n) > n for increasing the

bound k,

a CompositeCPA D with the ThreadingCPA T, the PredicateCPA P,
and the LoopBoundCPA LB as components ,

for which E denotes the set of composite abstract states and Π
the set of precisions.

Output: f alse if lerr is reachable , true otherwise
Variables: the current loop bound k ∈ N,
two abstract states eINIT ∈ E and a precision πINIT ∈ Π,
two sets reached and waitlist of elements of E ×Π, and
a function abort : E→ true, f alse

2 k := kINIT
3 eINIT := (lINIT, (true, lINIT, true))
4 abortNEVER := · → f alse
5 while k ≤ kMAX do
6 πINIT := {(∅, {· → ∅}, k)}
7 reached := waitlist := {(eINIT, πINIT)}
8 (reached, waitlist) := CPA++(D, reached, waitlist , abortNEVER)
9 base case :=

∨
{ϕ |((lerr, (·, ·, ϕ), ·), ·) ∈ reached}

10 if sat(base case) then
11 return false

13 k := inc(k)

14 retrun unknown;

Listing 2.3: Bounded Model Checking

2.5.2 Lazy Predicate Abstraction

Abstraction is the unbounded model checking technique that attempts to
compute an overapproximating abstract model of the program in order to
avoid the state-space explosion. This approach simplifies a program by
excluding the program semantics that is irrelevant to prove or disprove its
safety. On the one hand, the abstraction should be coarse enough to keep the
state space small. On the other hand, too coarse abstraction may cause the
incorrect result of the program analysis. An overapproximation usually does
not satisfy the same properties as the original program. Thus the refinement
is performed to adjust the precision of analysis. The computation of the state
space’s overapproximation is usually combined with the counterexample-
guided abstraction refinement.

19



CHAPTER 2. BACKGROUND

Figure 2.4: The workflow of counterexample-guided abstraction refinement
(CEGAR).

Counterexample-guided abstraction refinement (CEGAR) is an approach
that uses counterexamples to refine an abstract model iteratively. A coun-
terexample is a program path that leads to an error location and proves
property violation. Starting with the coarse abstraction (empty set of pred-
icates), CEGAR uses a CPA+ algorithm to explore the state-space of the
program and create the abstract model. If the algorithm finds an abstract
state at error location lerr, further the state-space exploration is paused, and
the refinement is started. The operator re f ine reconstructs the error path us-
ing the predecessor – successor relationship between abstract states stored in
ARG CPA and checks the feasibility of the path by solving an SMT formula.
If the error path is feasible, the CEGAR terminates and reports that the pro-
gram is unsafe, containing a counterexample. Otherwise, the error path is
infeasible, which indicates that the violation is detected due to a too coarse
abstract model. Then the infeasible error path is used to refine the abstract
model. In addition, we remove the subgraph of the ARG with abstract states
at locations for which new predicates were computed. Due to new precision,
more predicates will be used in the abstraction computation that would lead
to more accurate program analysis. After the refinement step, the analysis
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is restarted with adjusted sets reached and waitlist and more strong precision
to eliminate the infeasible error path in further state-space exploration. CE-
GAR repeats these steps iteratively until either a counterexample is found
or the abstract model is proven to be safe. [BL12]

CEGAR usually is combined with the concept of lazy abstraction that re-
fines only abstract states along infeasible error paths. Thus, the precision is
increased selectively in specific parts of ARG to prevent further discovering
of infeasible error paths, making the state-space exploration much more effi-
cient. In addition, CEGAR uses the coverage checks that reduce the number
of abstract states by determining whether any other abstract state covers a
new abstract state. The abstraction formula of an abstract state is computed,
and the coverage check is performed only if the CPA+ algorithm reaches the
block end. The abstraction formula (represented as SMT formula) is boolean
conjunction of predicates from precision π that overapproximates concrete
program states. [BDW17]

1 Input: a CompositeCPA D that is composed of the ThreadingCPA T,
the ARG CPA A, and the PredicateCPA P, for which E denotes the
set of composite abstract states and π the set of precisions ,
with additional operator re f ine, and an initial abstract state

eINIT = (lINIT, ...) ∈ E with initial precision πINIT ∈ Π
Output: f alse if lerr is reachable , true otherwise
Variables: two sets reached and waitlist of elements of E ×Π and a

function abort : E→ true, f alse

2 reached := {(eINIT, πINIT)}
3 waitlist := {(eINIT, πINIT)}
4 loop

5 (reached, waitlist) := CPA++(D, reached, waitlist , abort)
6 if ∃((lerr, ...), .) ∈ reached then
7 (reached, waitlist) := refine(reached, waitlist)

8 if ∃((lerr, ...), .) ∈ reached then
9 return false //refine has detected a feasible error path.

10 else
11 return true

Listing 2.4: Counterexample-guided abstraction refinement (CEGAR)
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Implementation

The following section describes the implemented extensions of existing com-
ponents that allow us to verify multithreaded programs using Bounded
Model Checking and Predicate Abstraction approaches. We also implement
some optimizations to increase program analysis efficiency and use the full
potential of our framework.

3.1 PredicateCPA

Firstly, we extend the core component for predicate-based analyses Predi-
cateCPA to be compatible with ThreadingCPA, which is able to track multi-
ple program locations simultaneously. As outlined in the previous section,
an abstract state e ∈ E of the PredicateCPA is a triple (ψ, l, φ) of an abstraction
formula ψ, the abstraction location l, and a path formula φ. We extend an
abstract state of PredicateCPA to a triple (ψ,L, φ), which now contains a set L
of program locations instead of a single location l. These program locations
determine where the abstraction ψ was computed.

We should also extend the precision-adjustment operator prec of Predi-
cateCPA, which either transforms an intermediate state into an abstraction
state by computing predicate abstraction or returns the given intermedi-
ate state and precision. Whether an abstraction has to be computed at the
current abstract state depends on the block-adjustment operator blk, which
decision is based on information about the current program location and
abstract state. The abstraction is necessary for detecting whether an abstract
state is reachable by performing the satisfiability check. In our case, the
block operator should be able to consider multiple locations per abstract
state. Thus, we use the existing block operator and compute abstractions if
any of the available locations reaches a block-end. For example, the block
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operator blklf behaves similarly to large-block encoding (LBE) and returns
true at loop-heads, function calls/returns, and at the error location lerr. It
has been shown that in practice, boolean abstraction is too expensive for
single-block encoding (SBE). Suppose we apply the block operator blklf to
the program 2.2. In that case, a precision-adjustment operator will compute
the abstraction at states with locations t1 → A (t1 function call), t1 → C (t1
function return), and main → 8 (error location). The abstract states with a
computed abstraction are presented at the following ARG (Figure 3.1) as the
highlighted nodes.

Figure 3.1: ARG of the interleaved threads of the program 2.2 with high-
lighted abstraction states

Let L be a set of all program locations that are tracked by the Thread-
ingCPA for an abstract state. To create an abstraction state from an interme-
diate state (ψ,L, φ) at program locations L, the precision-adjustment operator
should compute a predicate abstraction (ψ∧φ)π(L)

B with respect to multiple
program locations from set L. Newly computed predicate abstraction is a
conjunction of the abstraction formula ψ, path formula φ, and the conjunc-
tion of all predicates pi from the precision π for all program locations from
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set L.

(ψ ∧ φ)π(L)
B = (ψ ∧ φ) ∧

∧
l∈L

(
∧

pi∈π(l)

(vi ⇔ pi)) (3.1)

Therefore, we redefine precision-adjustment operator prec of Predicate-
CPA, which is now able to handle multiple program locations from set L
while computing new abstraction:

precP((ψ,Lψ, φ),R, π) =

(((ψ ∧ φ)π(L)
B,L, true), π) if blk(ψ,Lψ, φ),L)

(ψ,Lψ, φ), π) otherwise
(3.2)

3.2 Refinement

Counterexample-guided abstraction refinement (CEGAR) is an approach
that iteratively finds an analysis precision that should be precise and coarse
enough to provide an efficient and correct analysis. The refinement process
of the analysis precision is started when the CEGAR finds a spurious pro-
gram path, which leads to an abstract state at an error location. New analysis
precision, which maps program locations to sets of predicates, ensures that
the same error path will not be encountered after the analysis is restarted
after refinement. Since we want to extend the CEGAR approach to support
the verification of concurrent programs, the underlying reachability analysis
should be stopped as soon as any thread reaches an error location.

Predicate refinement is a common refinement strategy for lazy Pred-
icate Abstraction that computes a Craig interpolant for each location on
the path and extends the previous precision with new predicates extracted
from interpolants.[BDW17] The refinement operator re f ine uses an infeasible
program path 〈e0, ..., en〉 with abstraction states ei ∈ E at program locations
〈l0, ..., lm〉 to extract a sequence 〈ρ0, ..., ρn〉 of sets of predicates. The extraction
of the atoms from the interpolants as predicates is performed concerning
multiple program location pro abstract state. Each predicate is added to the
precision for the corresponding program location.

πnew(l) =


n⋃

i=0
ρi l ∈ 〈l0, ..., lm〉

∅ otherwise
(3.3)

Finally, we combine the newly computed precision πnew with the already
existing one πold for each program location in the spurious error path.

∀l ∈ 〈l0, ..., lm〉 : π(l) = πnew(l) ∪ πold(l) (3.4)
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After the refinement process, the CEGAR continues building the abstract
model with adjusted sets reached and waitlist and more strong precision.

3.3 Simplification of SMT formula

Bounded Model Checking and Predicate Abstraction are techniques that
rely on SMT solving. A satisfiability modulo theories (SMT) problem is
a generalization of a boolean satisfiability (SAT) problem in which sets of
variables are replaced by predicates from underlying theories. Moreover,
the SAT is the first problem proven to be NP-complete, so no algorithm
efficiently solves this problem. In order to determine whether the program
state is reachable, the corresponding SMT formula should be checked for
satisfiability. This problem requires determining whether there exist such
variable assignments that satisfy a given SMT formula. Analyzing all possi-
ble paths of a single program demands a large amount of computation time
for solving corresponding SMT formulas. It can make the analysis not to be
able to verify the program due to time or resource constraints.

This section introduces an algorithm for simplifying boolean formulas
(Listing 3.1) that we apply to the SMT formula constructed by Bounded
Model Checking. The final SMT formula is represented as a disjunction
of all path formulas leading to error locations reachable during state-space
exploration. If some path formulas encode the same part of the program,
they contain some common predicates that make the final SAT check more
complicated and time-consuming. Our algorithm applies standard algebraic
reduction rules such as the distributive law of ∧ over ∨ to a given boolean
formula. Its basic idea is to split the formula containing a disjunction into
a set of boolean subformulas. Then it iterates through all subformulas,
which are conjunctions of predicates, and factors out all common predi-
cates. Furthermore, each subformula may contain additional disjunctions
of predicates that also should be simplified recursively. Finally, the simpli-
fied boolean formula is equivalent to the original one but contains fewer
predicates that enables to reduce the time required for SMT solver to check
the given formula. In section 4, we evaluate the Bounded Model Checking
combined with the simplification technique for boolean formulas on the set
of benchmarks.
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1 Function: simplifyBooleanFormulaRecursively

Input: boolean formula to be simplified ,

a function toDisjunction() that splits a given boolean formula

containing a disjunction into a set of boolean subformulas ,

a function toConjunction() that splits a given boolean formula

containing a conjunction into a set of boolean subformulas ,

a function isSinglePredicate() that returns true if a given
boolean formula is a single predicate.

Output: simplified formula

2 cachedBooleanFormulas = {}

3 listOfOperandsSets := []

4 disjunctionSet := toDisjunction(formula)

5 for each subformula ∈ disjunctionSet do
6 conjunctionSet := toConjunction(subformula)

7 operandsOfSubformula := {}

8 listOfOperandsSets := listOfOperandsSets ∪ {operandsOfSubformula

}

9 for each subformulaInConjunctionSet ∈ conjunctionSet do
10 if isSinglePredicate(subformulaInConjunctionSet)
11 operandsOfSubformula := operandsOfSubformula ∪ {

subformulaInConjunctionSet}

12 else
13 operandsOfSubformula := operandsOfSubformula ∪ {

simplifyBooleanFormulaRecursively(

subformulaInConjunctionSet)}

15 mutualOperandsSet := listOfOperandsSets[0]

16 for each operandsOfSubformula ∈ listOfOperandsSets \
listOfOperandsSets[0] do

17 mutualOperandsSet := mutualOperandsSet ∩ operandsOfSubformula

19 transformedSubformulas := []

20 for each operandsSet ∈ listOfOperandsSets do
21 operandsSet := operandsSet \ mutualOperandsSet

22 transformedSubformulas := transformedSubformulas ∪ {
∧

op∈operandsSet
op}

24 return (
∧

op∈mutualOperandsSet
op)
∧

(
∨

f∈trans f ormedSub f ormulas
f )

Listing 3.1: Algorithm for simplification of SMT formula

The algorithm takes as input a boolean formula that has to be simpli-
fied, functions toDisjunction() and toConjunction() that split a given boolean
formula into a set of boolean subformulas, and a function isSinglePredicate()
that returns true if a given boolean formula is a single predicate and not a
combination of predicates. The first step is to split a given boolean formula
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into a set of subformulas using the function toDisjunction(). Also, we ini-
tialize an empty list listO f OperandsSets where each element will be a set of
all operands in a single subformula needed for finding common predicates.
Then we split each subformula using a function toConjunction() into a set
containing all operands of current conjunction. In addition, we create an
empty set operandsO f Sub f ormula for operands of current subformula and
add it to listO f OperandsSets. Then we iterate through all operands of cur-
rent conjunction and check whether it is a single predicate. If it is a case, we
add the predicate to the set operandsO f Sub f ormula. Otherwise, the operand
is a boolean formula containing a disjunction that can be simplified. Thus,
we apply our algorithm recursively to the operand and add it to the set
operandsO f Sub f ormula. Additionally, we cache all processed subformulas
to avoid the redundant simplification of equal subformulas. Then we build
an intersection of all sets in a listO f OperandsSets containing operands of
each subformula and store all common operands in a set mutualOperandsSet.
The next step is to remove all mutual operands from each operandsSet
of a listO f OperandsSets and store the conjunctions of operands from each
operandsSet in a set trans f ormedSub f ormulas. Finally, we construct the sim-
plified formula by putting out of disjunction of trans f ormedSub f ormulas a
conjunction of all operands from mutualOperandsSet.

The following example displays a simplification of the boolean formula
that represents a simple program. Let A,B,C,D,E be predicates over pro-
gram variables and the boolean formula:

(A ∧ B ∧ C) ∨ (A ∧ B ∧D ∧ E) (3.5)

Firstly, the algorithm splits a disjunction and iterates through subformu-
las (A ∧ B ∧ C) and (A ∧ B ∧ D ∧ E) to split each conjunction and store all
predicates in listO f OperandsSets.

listO f OperandsSets = {{A,B,C}, {A,B,D,E}} (3.6)

Then the algorithm computes the set of common predicates mutualOperandsSet
and remove them from each set stored in listO f OperandsSets.

mutualOperandsSet = {A,B} (3.7)
listO f OperandsSets = {{C}, {D,E}} (3.8)

The remaining operands in listO f OperandsSets are used to construct a
set trans f ormedSub f ormulas, which contains subformulas without mutual
operands.

trans f ormedSub f ormulas = {C,D ∧ E} (3.9)
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The final step is to build a conjunction of operands from mutualOperandsSet
and disjunction of trans f ormedSub f ormulas. Thus, we obtain the simplified
boolean formula:

(A ∧ B) ∧ (C ∨ (D ∧ E)) (3.10)
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Evaluation

In this section, we estimate the capabilities of Bounded Model Checking
and Predicate Abstraction on a large set of benchmarks and compare them
with other existing verification approaches that are implemented in the same
framework. This section concludes with a discussion of the obtained results
and lessons learned based on our implementation.

4.1 Benchmarks

To evaluate the effectiveness and performance of our verification approaches,
we use the collection of verification tasks from the sv-benchmarks reposi-
tory1 in revision f86649d that were developed for the International Competi-
tion on Software Verification2. From the wide variety of available benchmark
tasks that intend to test the potential of modern verification software, we
focus only on 1082 tasks taken from the category of concurrent programs.
Each program from the benchmark set is a multithread C program where
the safety property is to be verified, meaning reaching a specific program lo-
cation is considered as property violation. For example, some tasks contain
concurrent access to shared variables, leading to data races and inappropri-
ate program behavior.

1https://github.com/sosy-lab/sv-benchmarks/
2https://sv-comp.sosy-lab.org/2021/
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4.2 Setup

The evaluation is performed on a computer cluster where each machine is
equipped with a single Intel Xeon E3-1230 v5 8-core CPUs with 3.40 GHz, 33
GB of RAM, and runs Ubuntu (Linux 5.4.0-52) as an operating system. Re-
source usage is limited by the benchmarking framework BenchExec[BLW15],
which enables reliable benchmarking and resource measurement for the
comparative evaluation of tools and algorithms. Each verification task is
executed on two CPU cores and is limited to 15 min of CPU run time and
15 GB of memory usage. For our experiments, we use the CPAchecker in
version 1.9.2 in revision 35617 and the SMTInterpol[CJA12] as a standard
SMT solver, which can be replaced by MathSAT5[CGSS13] to support the
theories of bit-vectors and floats.

4.3 Configuration

The software-verification framework CPAchecker provides a wide variety
of configurations and options for program analysis. It allows us to examine
the actual performance of different verification approaches rather than com-
paring several tools that could influence the fair results due to differences in
the implementation unrelated to the actual algorithms. To evaluate our im-
plementations on the broad set of multithreaded programs, we created two
configurations named -bmc-concurrency and -predicateAnalysis-
concurrency. Furthermore, we run two additional configurations
-bddAnalysis-concurrency and -valueAnalysis-concurrency to
compare these techniques with Bounded Model Checking and Predicate
Abstraction.

For the underlying reachability algorithm, we configured the CPAchecker
to use the breadth-first traversing order (BFS), which turned out to be a more
efficient strategy than depth-first order (DFS) for multithreaded programs.
For the ThreadingCPA, we use the option that enables cloning functions by
copying function names and inserting an index if the same function is called
in different threads. It ensures all function-local variables to be unique for
different threads in the later program analysis.

For Bounded Model Checking, we set a max loop bound to ten iterations
for Loop-BoundCPA that prevents exploring any loop infinitely. We com-
binate the BMC approach with an explicit value analysis using ValueCPA
that explicitly tracks the current value for each program variable. It allows
us to prevent the exploration of unreachable program paths and increase
the performance of the Bounded Model Checking. Besides, to evaluate the
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implemented optimization described in section 3.3, we run the second in-
stance of the BMC algorithm with an additional option that simplifies the
final SMT formula.

For Predicate Abstraction, an optimal ABE block size must to be set
to perform the Predicate Abstraction computation and coverage checks at
appropriate locations. Thus, based on the benchmark results, we choose the
block operator blkl as the most efficient approach that forces the abstraction
computation only at loop heads. Also, we run an additional configuration of
Predicate Abstraction combined with an explicit-value analysis to evaluate
the performance of this approach applied to concurrent programs.

4.4 Results

The table 4.1 summarizes the experimental result of benchmark execution,
displaying the number of both correctly and wrongly solved benchmark
tasks, as well as the overall CPU time spent performing program analysis
for each verification approach. Additionally, the table shows the number of
tasks that terminated inconclusively because of the occurred error, memory
overflow, timelimit, or reached loop bound. The uncertain results caused by
an error occur if the specific program analysis encounters some unsupported
operations or data structures.

The bdd and value analysis demonstrate the best results in reporting the
most number of correct results and the lowest total CPU time. In contrast
to the SMT-based verification approaches, they can eliminate the infeasi-
ble paths on the fly-way during the program analysis that gives them a
significant performance. The explicit value analysis solved 946 out of the
1082 verification tasks correctly, making this technique the most successful
among selected approaches for concurrent programs. The drawback of the
value analysis is that it reports the most incorrect ’false’ results due to its
over-approximating nature[Löw17], alerting a specification violation for 57
correct verification tasks. According to the benchmark results, the bdd anal-
ysis is the second-best verification approach, which managed to solve 944
tasks. However, it has the most number of errors that happened during
program analysis due to unsupported arrays and thread assignments.

The Bounded Model Checking also showed great benchmark results,
solving 702 verification tasks and reporting the lowest amount of incorrect
decisions. Therefore, BMC confirms its reputation as a straightforward and
reliable technique for finding program bugs. In parallel, we execute the
value analysis as an optimization for BMC, preventing unrolling unreach-
able program paths, reducing the program’s state-space and time for its
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Algorithm BMC BMC
with

formula
simplifi-

cation

Predicate
Abstrac-

tion

Predicate
Abstrac-

tion
with
value

analysis

BDD Value
analysis

correct results 702 687 204 896 944 946

correct ’true’ 152 152 168 178 167 162

correct ’false’ 550 535 36 718 777 784

incorrect
results

7 7 9 15 21 57

incorrect ’true’ 1 1 2 2 0 0

incorrect ’false’ 6 6 7 13 21 57

error 84 84 88 86 96 38

out of memory 165 201 1 2 0 9

timeouts 87 66 780 82 21 32

loop bound
reached

37 37 0 0 0 0

total CPU time
(s)

258000 266000 717000 224000 76600 84100

Table 4.1: Benchmark results for 1082 verification tasks from the category of
concurrent programs.

exploration. Otherwise, the plain BMC algorithm would blindly discover
all program paths that would make this approach inefficient because of the
state-space explosion.

The main weakness of the BMC is the amount of time required for the
final SAT check to prove whether the SMT-formula is feasible. The set of
encountered program’s paths and its length directly affects the size and
complexity of the final SMT-formula, increasing the computation time of an
SMT-solver. The implemented algorithm for boolean formula simplification
intends to shorten the constructed SMT-formula by factoring out all common
predicates. The BMC with formula simplification reported the same amount
of incorrect results as the standard BMC configuration that indicates the
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correctness of our algorithm. The efficiency of the formula simplification we
can see on pthread-wmm/mix012 tso.opt.c program, which contains
various shared boolean variables and complex conditions checks. For this
verification task, the final SAT check took only 17 seconds instead of 616
seconds after formula simplification that demonstrates the strengths of our
approach. However, in some cases, the formula simplification may also
increase the time for the final SAT check. In general, the Bounded Model
Checking with formula simplification managed to solve 15 tasks less than the
standard one due to the memory overflow. Based on benchmark results, the
implementation of BMC turned out to be the most memory-consuming that
caused the failure of 165 verification tasks for BMC and 201 for BMC with
formula simplification. Nevertheless, the formula simplification algorithm
can be further optimized to be more memory efficient, improving the general
performance of the Bounded Model Checking approach.

From the resulting table, we can see that the Predicate Abstraction could
not solve 780 verification tasks within the given time limit, providing only
204 correct decisions and showing the worst results among all approaches.
The prime reason why the Predicate Abstraction fails to provide a verdict
for a majority of verification tasks is a state-space explosion. This approach
spends much time exploring all reachable program states, computing expen-
sive abstractions, and performing refinements. Due to all possible thread
interleavings, concurrent programs have a high branching rate, meaning
there can exist a wide variety of different paths leading to an abstract error
state. For such a verification task, precision must be computed for every
error path found during the analysis. As a result, the process of finding a
strong precision for program analysis is usually too expensive, and the ver-
ification runs out of time. During the verification of concurrent programs,
Predicate Abstraction reaches a timeout after hundreds of refinements that
do not produce a suitable precision. However, Predicate Abstraction com-
bined with the value analysis is much more effective and outperforms even
Bounded Model Checking. The additional value analysis helps to keep the
discovered state-space narrow, reducing the number of required refinements
and abstraction computations.

The following quantile plot (Figure 4.1) demonstrates the number of suc-
cessfully solved tasks by a specific verification technique in the given amount
of time. A data point (x, y) of a graph indicates that an individual approach
was able to solve x verification tasks within y seconds of a CPU run time,
showing the performance of each technique. The plot demonstrates only the
data points for correct verification results, meaning the x-value corresponds
to the number of correctly solved tasks. The monotonical growth of the
graph is directly related to the performance of the verification technique.
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The slower the corresponding graph grows, stretching to the right, the more
efficient the verification technique is with the corresponding configuration.
Moreover, a graph’s slope may indicate the ability of the technique to scale
for more complex tasks.
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Figure 4.1: Quantile plot for all correct proofs of various verification ap-
proaches applied to concurrent programs.
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Related Work

The efficient verification and analysis of concurrent programs is challeng-
ing and offers a wide range of exciting research topics. Our SMT-based
verification approaches explore all possible interleavings of different thread
executions on-the-fly during the program analysis. It is possible due to
the underlying core component ThreadingCPA that is independent of the
applied analysis. Thus, we can combine the state-space exploration of mul-
tithreaded programs with various abstract domains for a specific program
analysis type[BF16].

An alternative approach for Bounded Model Checking of multithreaded
programs uses a specific sequentialization technique to transform the pro-
gram on the sourcecode level before starting the analysis. Sequentialization
extends SAT-based BMC to handle concurrent programs by reconstructing
the initial program into a sequential one that preserves all the feasible exe-
cution paths. The Lazy-CSeq[ITF+14] tool implements the sequentialization
of the concurrent programs, which can be later analyzed by the C bounded
model-checker CBMC1 using the MiniSat[ES03] propositional solver as the
default decision procedure. Technically, this technique decomposes the set
of execution traces of the concurrent program into symbolic subsets, sep-
arately explored by multiple instances of the decision procedure running
simultaneously. Each constructed path formula can be handled by a sep-
arate solver, terminating the whole analysis once one of them detects a
satisfiable error path. Thus, each BMC instance for the non-parallel analysis
can operate with different partitions of the program’s state-space indepen-
dently, using the computational capability of modern multi-core hardware
and clusters[IT20].

1https://www.cprover.org/cbmc/
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Chapter 6

Conclusion

This thesis aimed to present the implemented changes and optimizations
in the software verification framework CPAchecker that allow us to verify
concurrent programs using Bounded Model Checking and Predicate Ab-
straction approaches. Firstly, we studied the fundamental concepts of con-
figurable program analysis that enable flexible and customizable program
verification, combining two primary techniques such as program analysis
and model checking. This architectural principle splits different program
domains into independent components that can be adjusted and efficiently
used for our verification approaches. Then we discussed the main com-
ponents of CPAchecker’s architecture and algorithms for Bounded Model
Checking and Predicate Abstraction.

Secondly, we described the implementations in the core component for
predicate-based analyses, as well as in the refinement strategy for Predi-
cate Abstraction, required for verification of concurrent programs. These
components are used to configure the underlying reachability analysis that
explores the program’s state-space analyzing all possible thread interleav-
ings. We also implemented an additional optimization for Bounded Model
Checking that factors out all common predicates in the final SMT formula. It
showed a significant improvement in individual verification tasks, reducing
the CPU time required for verification several times.

Finally, we presented the evaluation of our verification techniques and
implemented optimizations on the broad set of concurrent verification tasks,
comparing them with BDD and explicit-value analysis. Based on the bench-
mark results, SMT-based verification approaches suffer from the state-space
explosion problem during the exploration of all reachable program states.
Thus, to avoid this problem and improve the scalability of Bounded Model
Checking and Predicate Abstraction, we presented a combination of our ver-
ification techniques with an explicit value-analysis. The value domain tracks
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each program variable’s current value, eliminating the infeasible paths on
the fly-way during the program analysis. This combination significantly
reduces the number of SMT formulas representing corresponding program
paths that have to be checked for feasibility.

6.1 Future work

There are various potential topics for future research, improving the per-
formance and scalability of our SMT-based verification approaches. For in-
stance, CPAchecker implements an adjustable-block encoding (ABE)[BKW10]
that provides the flexibility to compute the abstraction after some config-
urable number of operations. For Predicate Abstraction, we use the block
operator blkl to force the abstraction computation and coverage checks if
any of the available locations reach a loop head. Based on the ARG at Fig.
3.1, we see that this strategy computes the abstraction for each abstract state
along one path, where one of the available locations reaches the block end.
The computation of the predicate abstractions after every single program
operation is expensive. Thus, the one possible topic could be to determine
the most efficient strategy of the block operator, as well as the block size for
the verification of concurrent programs.

For Predicate Abstraction to achieve the successful and scalable verifica-
tion of complex programs, the interpolation procedure could be improved
that extracts interpolants from infeasible counterexamples. Generated in-
terpolants for infeasible error paths are used to refine the precision of the
state-space exploration algorithm.

The way of encoding program semantics into formulas and choice of the
SMT solver can have a significant influence on the performance of the SMT-
based analysis[Wen17]. The algorithm for simplification of SMT-formula
could be further optimized to convert the formula into a specific form,
which is easier to check for a particular SMT-solver. Based on the Bounded
Model Checking benchmark results, the formula simplification can signifi-
cantly reduce the CPU time required for the final SAT check. An alternative
approach could be to simplify the SMT formula for each merge operation
in PredicateCPA. In this case, we do not need to apply our algorithm re-
cursive, which worst-case time complexity would be quadratic instead of
exponential. However, it can be inefficient for complex programs with heavy
branching because the simplification would be performed for every single
merge operation. Moreover, the formula simplification could be used not
only for Bounded Model Checking but also for Predicate Abstraction.
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