
Institute of Informatics

Ludwig-Maximilians-Universität München

A Language Server and IDE
Plugin for CPAchecker

Bachelor Thesis
Adrian Leimeister

Supervisor Prof. Dr. Dirk Beyer
Mentor Thomas Lemberger

Submission Date March 30th 2020

Declaration of Authorship

I hereby confirm that I have written the accompanying thesis by myself,
without contributions from any sources other than those cited in the text.

Eidesstattliche Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig ver-
fasst habe und keine anderen als die angegebenen Quellen und Hilfsmittel
verwendet habe.

Ort, Datum Unterschrift

1

Abstract

Formal verification of software is an useful addition to testing
when trying to eliminate unwanted behavior and errors. Multiple
approaches for formal verification exist, such as model checking or
program analysis, for which a multitude of different tools exist.

CPAchecker is a tool that makes it possible to combine advantages
of both model checking and program analysis, and can be extended to
include new verification ideas. With modern powerful, feature rich In-
tegrated Development Environments (IDEs), most development tools
are easy to integrated into a development workflow, but most verifi-
cation tools are only available as commandline tools or via web inter-
faces.

The solution proposed is an implementation of formal verification
into IDEs with the help of the Language Server Protocol (LSP). This
is realized by implementing the interfacing with CPAchecker as a LSP
server, with accompanying plug-in for an IDE, for which Eclipse CDT
for C/C++ Developers was chosen. The implementation is based on
the Microsoft LSP, which means it can be used to implement the func-
tionality for other IDEs with less effort. Feedback from an evaluation
of the resulting tool, which was done by conducting a survey among
potential users, was included in the final tool. In conclusion, the re-
sulting language server and IDE plug-in are sufficient for basic use of
formal verification.

2

Contents

1 Introduction 4

2 Related Work 5

3 Used Technology 6
3.1 Microsoft Language Server Protocol 7
3.2 CPAchecker . 10
3.3 Eclipse IDE . 10

4 Implementation 12
4.1 Language Server . 12

4.1.1 Interfacing with the VerifierCloud 12
4.1.2 Interfacing with CPAchecker locally 13
4.1.3 Interaction with the Language Server Protocol 15
4.1.4 Sequence of Operations 17

4.2 Client for Eclipse IDE . 18
4.2.1 Description of the Language Client 19
4.2.2 Implementation of the Language Client 19
4.2.3 Build Process . 22

5 Evaluation 26
5.1 Analysis of the Results . 26

5.1.1 Installation . 26
5.1.2 Configuration . 26
5.1.3 Usage . 27
5.1.4 Presentation of Results 27
5.1.5 Ideas for Improvement and Comments 28

5.2 Implementation of Feedback 28

6 Future Work and Conclusion 30

List of Figures 32

References 32

Appendix A CPAchecker LSP User Study 34

3

1 Introduction

Modern society is always changing, and software is integrated into everyday
life. This leads to always changing or new usecases and requirements for
modern software. To accommodate this, software developers constantly have
to implement new features or change existing ones, resulting in a larger and
more complex codebase. As the complexity increases, programming errors
become unavoidable, and can lead to undesired behavior. Especially in safety
related applications like self-driving cars or medical equipment, this can lead
to catastrophic results and has to be prevented.

Testing is a common way for developers to find errors and wrong behavior.
Large collections of tests are run against the software during development,
testing a components behavior with different inputs in varying situations.
Based on the results of the tests, errors can be found and removed, but
testing cannot find every error, nor guarantee correctness of the program.

As concluded by Beyer and Lemberger in ”Software Verification: Testing
vs. Model Checking” [BL17], formal verification can and should be employed
in addition to testing. For using formal verification, desired behavior must
be specified, and a verification tool or verifier tries to proof that the pro-
gram is fulfilling the specification. The specification describes properties of
the program, like liveness or unreachability of certain code locations (error
labels), that must hold for the program to be verified as correct regarding the
specification. If a property is violated, the verification tool may also output
a violation witness, describing the program path that led to the violation.
With this information, the developer can trace the violation in the program,
fix the issue, and verify again the program against the witness.

One such verifier is CPAchecker, a tool for configurable program analy-
sis, developed by Software and Configurable Systems Lab at the Institute of
Informatics at the Ludwig Maximilian University of Munich. CPAchecker al-
lows the use of different approaches on model checking and verification within
a single framework. It is written in Java and can be used as a commandline
tool or via a web service called VerifierCloud.

The objective of this thesis is to make CPAchecker, and thus formal
verification, easier to integrate into developers workflow by integrating it into
an Integrated Development Environment (IDE) plugin. By implementing the
functionality in form of a Language Server Protocol (LSP) server and Eclipse
IDE LSP client plug-in, it can be ported to other IDEs with less effort. This
way, CPAchecker can be executed from within the IDE, and the results can
be displayed within the editor of the IDE as well, eliminating the need to
leave the workflow of IDE to run CPAchecker in a commandline oder upload
source files with a web interface.

4

This thesis will first give a short overview and brief comparison of other
projects and works that allow for integration of formal verification into a
development workflow. The following chapter will introduce and explain the
software components selected and used to aid in fulfilling the objective of this
thesis. After that, the software architecture will be explained, in conjunction
with explaining the issues that were encountered while implementing it. Be-
fore coming to a conclusion, the feedback received from a survey, conducted
to evaluate the result of this thesis, will be analysed.

2 Related Work

The objective of this thesis is the integration of CPAchecker into a LSP
server, and provide a corresponding client plug-in for the Eclipse IDE. There
are multiple tools and/or toolchains for formal verification, which also strive
to provide integration into a development workflow.

One such tool is CBMC [CKL04], developed by the System Verification
Group, consisting, among others, of Members of the University of Oxford.
CBMC is model checker for C and C++ programs, and employs bounded
model checking to verify memory safety, user specified assertions, pointer
safety, and other common pitfalls of programming with C and C++. CBMC
is available for a wide variety of operating systems, including Linux, MacOS
X and Windows. For integration into an IDE, CMBC is providing an Eclipse
CDT plugin called CProver1, which can be installed from the update site
linked on its web page. The plug-in makes use of the Eclipse debugger
to navigate counter examples, and uses launch configurations to configure
CMBC. It uses a local installation of CMBC, which needs to be installed
explicitly before being able to be used. The Eclipse version which it is based
on, Eclipse Luna2, is not up to date, as well as the plug-in itself, which
has seen no changes since late 2014. In contrast, the Eclipse IDE plug-in
implemented in this thesis relies on the latest Eclipse Features, and already
includes an installation of the used verification tool, CPAchecker3.

Predator [DPV11] is another tool for formal verification, and is developed
by the VeriFIT Research Group of Brno University of Technology. Preda-
tor is specialized on the verification of sequential C programs working with
low-level memory manipulation operations, using algorithms based on graph
theory. Predator supports analysis of operations such as pointer arithmetic,
handling of invalid pointers and reinterpretation of memory, and aims to be

1https://www.cprover.org/eclipse-plugin/
2https://www.eclipse.org/downloads/packages/release/luna/sr2/eclipse-ide-cc-developers
3http://cpachecker.sosy-lab.org/

5

https://www.cprover.org/eclipse-plugin/
https://www.eclipse.org/downloads/packages/release/luna/sr2/eclipse-ide-cc-developers
http://cpachecker.sosy-lab.org/

able to handle complicated techniques and tricks commonly used in system-
level code. Predator aims to be usable for large projects like the Linux kernel,
but is not ready for this task yet4. Predator can be used as a GCC5 or LLVM
plugin6, both being actively maintained, providing easy integration of anal-
ysis within existing build processes, but is not as compatible as those two
toolchains, supporting only Linux and Darwin. As the integration is at the
level of a compiler toolchain, presentation of results depends on the level of
integration of said compiler into the used IDE. The interfacing with GCC
and LLVM is realized with the help of Code Listener7, an API for building
analysis tools which require code parsing, which was presented in [DPV12].

Ultimate8 is a program analysis framework that is developed by a Divi-
sion of the Department of Computer Science of Albert-Ludwigs-University
Freiburg. Ultimates architecture is split into multiple plugins. Each Plu-
gin is responsible for specific steps of program analysis, and the plugins
can be linked together to form toolchains capable of complex tasks. Ulti-
mate Automizer [HCD+13] is one such toolchain, capable of verifying certain
properties of a program written in C . Ultimate is available for Linux and
Windows, and there is a Eclipse IDE plugin available for integrating into
the development workflow, with plans to eventually giving access to all Ulti-
mate toolchains. The Eclipse plug-in relies on the Eclipse CDT feature, and
its configuration supports choosing from the available Ultimate toolchains,
with views for results provided in an Ultimate specific Eclipse perspective.
Development of the plug-in seems to have slowed down to only updates for
supporting newer Ultimate versions, and it seems that no online update site
for simple installation into the Eclipse IDE is available. A release version of
Ultimate Automizer has to be downloaded, unpacked and added as a local
update site in order to install the plug-in.

3 Used Technology

The following chapter is focused on introducing and describing the protocols
used, and explaining the major software components of this thesis.

4”The analysis itself is, however, not ready for complex projects yet.” http://www.fit.

vutbr.cz/research/groups/verifit/tools/predator/, visited on 24.03.2020
5https://gcc.gnu.org/
6https://llvm.org/
7http://www.fit.vutbr.cz/research/groups/verifit/tools/code-listener/
8https://monteverdi.informatik.uni-freiburg.de/tomcat/Website/

6

http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/
http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/
https://gcc.gnu.org/
https://llvm.org/
http://www.fit.vutbr.cz/research/groups/verifit/tools/code-listener/
https://monteverdi.informatik.uni-freiburg.de/tomcat/Website/

The Problem: a Matrix

Go Java TypeScript . . . Language N

Emacs Plugin 1 Plugin 2 Plugin 3 . . . Plugin N

Vim
Plugin
1+N

Plugin
2+N

. Plugin N*2

VSCode . . .
. . .
IDE M Plugin N*M

Figure 1: Illustration of the complexity of language support without LSP.9

3.1 Microsoft Language Server Protocol

IDEs offer a lot of convenience and useful features for writing code: refactor-
ing, jumping to a definition, linting, auto complete, just to name a few. The
implementation of these features usually differs for every supported program-
ming language, and requires a deep language specific knowledge. Even worse,
most implementation are specific to an IDE in addition to being specific for
a programming language. This means that providing language support for N
languages to M IDEs requires N times M different, language and IDE specific
implementations, as illustrated on the left side of figure 1.

The LSP10 tries to solve this issue. Although originally created by Mi-
crosoft for their Visual Studio Code editor, it since has become an open
standard for providing language support to IDEs. The core concept of the
LSP is to separate the code into two parts, called ”language server” and
”language client”, which then communicate using the LSP .

The ”language server” part contains the code that is specific for the lan-
guage that the server is providing features for, like finding a declaration,
renaming/refactoring an object or calculating suggestions for auto comple-
tion. These functionalities are then made available via the interfaces specified
by the LSP . The ”language client” contains the code that is responsible for
adapting user requests, for example for an auto completion suggestions, from
the IDE specific format, to the interfaces specified by the LSP .

The communication protocol used by LSP is based on JSON-RPC11,
which is transport agnostic and thus enables different transport options be-
tween server and client, like sockets, pipes or via HTTP. Transport agnostic

9https://langserver.org/. Visited on 08.03.2020
10https://microsoft.github.io/language-server-protocol/
11https://www.jsonrpc.org/specification

7

https://langserver.org/
https://microsoft.github.io/language-server-protocol/
https://www.jsonrpc.org/specification

The Solution: Clients and Servers

Language Server

Go Server 1
Java Server 2
TypeScript . . .
. . .
Language N Server N

IDE Client

Emacs Client 1
Vim Client 2
VSCode . . .
. . .
IDE M Client M

Figure 2: Illustration of the best case complexity of language support with
LSP.15

communication enables running language server and language client in dif-
ferent processes, which in turn enables the use of a different programming
language for each of them. A language server for C++ might be also written
in C++, but can provide its features to an IDE or Editor with a language
client written in Java.

With this concept, in theory, it is possible to reduce the aforementioned
complexity for supporting N languages in M IDEs to N plus M different im-
plementations, as illustrated in figure 2. In reality, while many generic (as in
”not specific to a certain language server”) language client implementations,
such as LSP4E12 for the Eclipse IDE, can connect to any language server,
they may not be able to use all features of every language servers. Features
such as custom settings that are sent to or requested by the server, addi-
tional user interface elements or commands, require the development of a
language client specific to a language server. While this means that the com-
plexity is still N times M implementations, the work required for the specific
language client implementations are still greatly reduced. Many generic lan-
guage clients such as LSP4E for the Eclipse IDE or vscode-languageclient13

for Visual Studio Code are made to be a base for extension. By using them
as a base, only these specific features need to be implemented.

Nonetheless, this dramatically reduces the amount of work required, as
the language server part can be reused, and the generic language clients
simplify the language client implementation.

Figure 3 describes a possible communication sequence between language
client and language server. The first type of communication are simple no-
tifications. When the user opens a document associated with a language

12https://projects.eclipse.org/projects/technology.lsp4e
13https://github.com/microsoft/vscode-languageserver-node
15https://langserver.org/. Visited on 08.03.2020

8

https://projects.eclipse.org/projects/technology.lsp4e
https://github.com/microsoft/vscode-languageserver-node
https://langserver.org/

Language
Server

Development
Tool

Notification:	textDocument/didOpen;	Params:	document

Language Server Protocol
(JSON-RPC)

Notification:	textDocument/didChange;	Params:	{documentURI,	changes}

Request:	textDocument/definition;	Params:	{documentURI,	position}

Notification:	textDocument/didClose;	Params:	documentURI

Notification:	textDocument/publishDiagnostics;	Params:	Diagnostic[]

Response:	textDocument/definition;	Result:	Location

Server	publishes
errors	and	warnings

User	opens	document

User	edits	document

User	executes
"Goto	definition"

User	closes	document

Figure 3: Example communication between language client and language
server.17

server, the client sends a ”textDocument/didOpen” notification with infor-
mation about the document to the server. The server may then already
start actions, like processing the document to find errors. Assuming that
the document did not contain any errors, the server does not need to send
information to the client. The user now edits the document, adds an error
to his source code. As a result of the editing, the client sends a ”textDoc-
ument/didChange” notification to the client. Again, the server now process
the document, and finds the error. The server now prepares diagnostics infor-
mation, like a description and the location of the error, and sends a ”textDoc-
ument/publishDiagnostics” notification to the client. The client adapts the
information contained in the notification, to display an error marker in the
editor of the document.

The second type of communication are requests. When the user issues
a command, e.g. ”Goto definition”, a ”textDocument/definition” request is
send to the server. The request contains the URI of the document, and the
position inside the document for which the user requested the definition. The
server now, as it posses the necessary information about the language, will
search for the definition, and will return the location as the return value of
the request. The client can now make the editor display this location.

17https://microsoft.github.io/language-server-protocol/overviews/lsp/img/

language-server-sequence.png. Visited on 02.03.2020

9

https://microsoft.github.io/language-server-protocol/overviews/lsp/img/language-server-sequence.png
https://microsoft.github.io/language-server-protocol/overviews/lsp/img/language-server-sequence.png

3.2 CPAchecker

CPAchecker18 is an extensible framework, and new verification approaches
can be added by implementing the configurable program analysis interface, or
CPA for short, and its required component interfaces, as defined in ”Config-
urable Software Verification: Concretizing the Convergence of Model Check-
ing and Program Analysis” from 2007 [BHT07]. The operation of CPAchecker
revolves around the CPA algorithm. Figure 4 shows a simplified version of
the CPAchecker architecture. The program code to be verified first needs
to be converted into control flow automata, or CFA for short. The CPA
algorithm uses a CPA interface, which depending on the configuration, may
be a composite of multiple CPAs, to check this CFA against the specifica-
tion. This allows the combination of two of the main approaches in formal
verification, program analysis and model checking. Additionally, techniques
such as CEGAR [BL13], short for counterexample guided abstraction refine-
ment, or k-induction [BDW15] can be used to further mitigate disadvantages
of certain approaches and contribute to a more accurate verification result
and faster verification. It can verify different properties depending on the
configuration, like unreachability of certain code locations, absence of null
pointer dereferencing, memory safety and deadlocks, to just name a few. If
CPAchecker is started by issuing ”scripts/cpa.sh -preprocess -setprop anal-
ysis.machineModel=Linux64 -default example.c”, it will report a property
violation if the program in example.c can reach an ERROR label.

3.3 Eclipse IDE

The Eclipse IDE20 is an IDE, written in Java. Eclipse is very extensible,
almost every component included by default is implemented as one or mul-
tiple plug-ins. Adding support for a programming language to Eclipse is
normally done by developing a Eclipse Feature, which is an aggregation of
plug-ins. Eclipse Features for some programming languages, like Eclipse
CDT for C/C++ or Eclipse JDT for Java, are officially developed under the
umbrella of the Eclipse Foundation, and a lot of other languages and tools
are supported by plug-ins developed by 3rd parties. These Eclipse Features
need to implement convenience features on a very deep level, specific to the
language in question. Fortunately, there is a language client implementation
already available for the Eclipse IDE .

18https://cpachecker.sosy-lab.org/index.php
19https://www.sosy-lab.org/research/prs/Current_CPAchecker.pdf, page 22. Visited on

08.03.2020
20https://www.eclipse.org/eclipseide/

10

https://cpachecker.sosy-lab.org/index.php
https://www.sosy-lab.org/research/prs/Current_CPAchecker.pdf
https://www.eclipse.org/eclipseide/

Figure 4: Simplified illustration of the CPAchecker architecture.19

As mentioned in chapter 3.1, most generic language client implementa-
tions are not meant for standalone use, but as a base for extending. In
general, this is also true for LSP4E21, the language client implementation for
the Eclipse IDE. Associating a language server to an editor other than the
generic editor, or making preferences available to language server requires a
plugin extending LSP4E . However, basic usage, i.e. associating a language
server with a file extension and the generic editor so that the server is started
and connected to when a file with this file extension is opened, is possible.
This means that Eclipse with LSP4E can be used as a development tool for
testing a language server during early development, when no specialized plu-
gin is existing yet. Later in the development process, LSP4E can be used as
a base for a specialized language server plug-in, that is associated with the
right editor and allows for more features. CPAchecker is mainly used for an-
alyzing source code written in C, and are mentioned above, a fully featured
Eclipse Feature for C/C++ development exists. With extensibility, a base
plug-in for the LSP, and support for C development, and developed in Java,
the Eclipse IDE is a good match for the requirements for the implementation
of this thesis.

21https://projects.eclipse.org/projects/technology.lsp4e

11

https://projects.eclipse.org/projects/technology.lsp4e

4 Implementation

This chapter is focused on elaborating the details of the implementation of
the tool that is the result of this thesis, called cpachecker-lsp. Both a lan-
guage server and language client for integrating CPAchecker into the Eclipse
IDE . Starting with describing the interfaces required for using the LSP on
the server side, to integrating CPAchecker. The issues encountered will be
described, as well as the solutions that were found to solve or work around
said issues.

4.1 Language Server

This section will describe the implementation of the language server part of
cpachecker-lsp. The language server for cpachecker-lsp is written in Java,
and is thus able to interface directly with CPAchecker. In addition, it is
also able to submit verification tasks to the VerifierCloud22, an online service
for running verification task on a computing cluster, provided SoSy-Lab of
the Chair for Software and Computational Systems at Ludwig-Maximilians-
University of Munich. Apache Maven23is used as the build and dependency
management tool for this thesis, the reasons as to why are explained in
section 4.2.3.

4.1.1 Interfacing with the VerifierCloud

As mentioned, one of the configuration possibilities of the cpachecker-lsp lan-
guage server is making use of the VerifierCloud for running verification jobs.
The provided API is available via HTTP requests, and is described on the
VerifierCloud help page24. Figure 5 shows a simplified UML Diagram for the
classes used to interface with the VerifierCloud. CpaCheckerRunnerCloud is
the main class of this component, and is initialized with an URI of the docu-
ment to be tested, an URI of the destination for the result of the verification
task. It also receives a Configuration object, containing the settings to use,
which are injected into the corresponding member variables. It is responsible
for coordinating the steps needed to submit a task, and getting the results,
with the help of specialized classes for each request type.

The first step is uploading the document to the VerifierCloud. This job is
handled by the FileUploadRequest class, which sends it to the file upload end-
point as HTTP POST request with content type ”application/octet-stream”.

22https://vcloud.sosy-lab.org/cpachecker/webclient/run/
23https://maven.apache.org/
24https://vcloud.sosy-lab.org/cpachecker/webclient/help/

12

https://vcloud.sosy-lab.org/cpachecker/webclient/run/
https://maven.apache.org/
https://vcloud.sosy-lab.org/cpachecker/webclient/help/

CpaCheckerRunnerCloud

- String: configFileName
- String: specificationFileName
- URI: document
- URI: testResultDestination

+run(void): boolean

Use

FileUploadRequest

- URL: url
- int: response

+ upload(File): boolean

Use

Use CheckStateCallable

- String: id

+ call(): StateRequest.State

StateRequest

- URL: url
- int: responseCode
- String: responseSttring

+ submit(String id): String

Use

Use

ResultDownloadRequest

- URL: url
- int: responseCode
- String: responseSttring

+ download(String id, File destination): void

SubmitRunRequest

- URL: url
- int: responseCode
- String: responseSttring

+ submit(Map<String,String> data): String id

Figure 5: Simplified UML Diagram for the Interface with the VerifierCloud.

Next, the SubmitRunRequest class is used to submit the run to the run
endpoint as HTTP POST request, with content type ”application/x-www-
form-urlencoded”. This request contains the settings that the VerifierCloud
should use, and document to test, which is the previously uploaded docu-
ment, referenced by its sha256-hash value. The response string of this request
is the unique ID of this verification task on the VerifierCloud.

An instance of the CheckStateCallable class is submitted to a Thread-
PoolExecutor. It uses the StateRequest class to check the result endpoint
if the verification task with this unique ID is finished, cyclically, until the
result is available for download.

The archive containing the results is then downloaded to a temporary
directory by the ResultDownloadRequest class. After that, the results are
extracted from the archive and copied to the location received during initial-
ization of CpaCheckerRunnerCloud.

4.1.2 Interfacing with CPAchecker locally

There are two different possible approaches for running CPAchecker locally.

13

1. Starting CPAchecker by using the classes directly:

In this approach, the main CPAchecker class is directly used to perform
the verification task. This makes it possible to integrate CPAchecker
more seamlessly, and possibly having a greater amount of detail in the
presentation of the results, being able to access to output messages and
results directly.

2. Starting CPAchecker in a new process:

This approach makes use of CPAchecker by creating a new process,
and starting CPAchecker using the provided shell scripts. Options
like configuration file, specification file or processor architecture will
be configured via parameters given to the shell script. This allows for
integration with less effort.

The cpachecker-lsp language server uses the first approach, starting CPA-
checker by using the classes directly. In order to seamlessly integrate CPA-
checker into the language server, three main issues have to be solved:

1. Handling of the CPAchecker configuration

2. Handling of messages which are normally sent to the stdout stream

3. Processing of CPAchecker results

CPAchecker uses the configuration system provided by the SoSy-Lab
Java common library25. It works by building a Configuration object con-
taining a key-value map of options and an instance of an implementation of
the org.sosy lab.common.log.LogManager interface. When using CPAchecker
normally, via commandline and the provided shell scripts, the entry point is
the org.sosy lab.cpachecker.cmdline.CPAMain class. Parsing of command-
line parameters into a Configuration object is then done with help of the
other classes in the org.sosy lab.cpachecker.cmdline package. The goal was
to reuse as much code as possible, to avoid introduction of new bugs when
translating from commandline options to options in the Configuration object,
and to avoid duplicating code.

This proved to be difficult, as the required classes are not public and thus
only available to other classes in their own package. This problem was worked
around by implementing a new factory class, called ConfigurationFactory,
to be also a member of the org.sosy lab.cpachecker.cmdline package. Only
half of the problem was solved by this though, as a lot of code needed was

25https://github.com/sosy-lab/java-common-lib

14

https://github.com/sosy-lab/java-common-lib

implemented in private methods of the CPAMain class, which could neither
be accessed by inheritance, nor could the CPAMain class be configured to
work as needed. In the end, parts of the CPAMain class had to be copied to
the new factory class. Adaptions where only made when necessary, the input
of the create method of the factory is received in a commandline argument
string style. The produced Configuration object can then be used as input for
creating an instance of the org.sosy lab.cpachecker.core.CPAchecker class.

CPAchecker uses an implementation of the LogManager interface for out-
putting messages to stdout stream and/or a log file. As mentioned above, this
is added to the Configuration object before instantiating a CPAchecker class.
The SoSy-Lab Java common library provides a few different implementations
of the LogManager interface, e.g. org.sosy lab.common.log.BasicLogManager,
which is the one normally used by CPAchecker. This implementation uses
a java.util.logging.Logger instance. The destination of logged messages can
be changed by supplying a class inheriting from java.util.logging.Handler.
The org.sosy lab.cpacheckerlsp.logging.MessageHandler class inherits from
java.util.logging.Handler , and sends log messages to the language client via
the API defined by the LSP. The instance of BasicLogManager is created,
and configured to use the MessageHandler class that is using the LSP pro-
tocol, during creation of the Configuration object by the ConfigurationFac-
tory.create method mentioned above.

Because the org.sosy lab.cpachecker.core.CPAchecker class is used directly,
processing of the results is simple. Verification is started by calling the
CPAchecker.run method, which returns a CPAcheckerResult object, contain-
ing the verification result and information about the violated properties.

CpaCheckerRunnerLocal is the main class of this component, which is
responsible for executing CPAchecker locally, with the help of the classes
described before.

4.1.3 Interaction with the Language Server Protocol

Implementation of the Language Sever Protocol is done by implementing
interfaces provided by the LSP4J26 library, a java implementation of the
LSP.

Figure 6 illustrates the structure of the language server. The main class
for the cpachecker-lsp language server is CPAcheckerLSP in the org.sosy lab-
.cpacheckerlsp package. It is responsible for creating the CPAcheckerLan-
guageServer instance and connecting to a language client. CPAcheckerLan-
guageServer implements the LanguageServer interface provided and required

26https://github.com/eclipse/lsp4j

15

https://github.com/eclipse/lsp4j

CPAcheckerLanguageServer

+ cpacheckerServices: CPAcheckerServices

+ initialize(InitializeParams): InitializeResult
+ getTextDocumentService(void): TextDocumentService
...

<<Interface>>
LanguageServer

+ initialize(InitializeParams): InitializeResult
+ getTextDocumentService(void): TextDocumentService
...

<<Interface>>
TextDocumentService

+ didSave(DidSaveTextDocumentParams): void
...

<<Interface>>
LanguageClient

+ publishDiagnostics(PublishDiagnosticsParams): void
+ configuration(ConfigurationParams): List<Object>
+ logMessage(MessageParams): void
...

1
1

CPAcheckerLSP

- server: CPAcheckerLanguageServer
- client: LanguageClient

+ main(String[] args): void

CPAcheckerServices

+ didSave(DidSaveTextDocumentParams): void

1

CPAcheckerManager

- localRunner: CpaCheckerRunnerLocal
- cloudRunner: CpaCheckerRunnerCloud

+ run(): CpaLspResults
...

CPAcheckerRunnerLocal

 + run(): CPAcheckerResult
 ...

Use

1

CPAcheckerRunnerCloud

+ run(): boolean
...

1

Figure 6: Simplified UML Diagram for the cpachecker-lsp language server.

by LSP4J, containing the initialize method which is used to negotiate the
capabilities and initial settings between language server and client. Capa-
bilities are features that are supported by either client or server, like code
completion, which obviously both sides need to know if the other side sup-
ports it. Settings are for example that the client should notify the server
when a document is changed or saved, which is one of the settings that the
cpachecker-lsp languageserver uses.

CPAcheckerLanguageServer.getTextDocumentService returns an instance
of CPAcheckerServices, which implements the TextDocumentService inter-
face provided by LSP4J. The methods of this interface get called via JSON-
RPC by the language client. Verification tasks are started from the CPAcheck-

16

erServices didSave method, which is called when the language client notifies
the cpachecker-lsp language server that a C source document was saved.
CPAcheckerManager is responsible for getting the configuration via the Lan-
guageClient interface configuration method, and dispatching it to either the
CPAcheckerRunnerLocal or CPAcheckerRunnerCloud classes, which were al-
ready described.

4.1.4 Sequence of Operations

The components described before in this section 4.1 together form the cpachecker-
lsp language server. Figure 7 shows a simplified overview of the sequence of
operations. The cpachecker-lsp language server is started by a language client
when the user opens a C source document. The language client issues a ini-
tialize request to the server, telling the server its capabilities. The server
answers this request by providing a list of its own capabilities.

After changing the configuration as to use CPAchecker locally, the user
edits and saves the document. The client now send a didSave notification
to the server, which now requests the configuration from the client. Af-
ter receiving the configuration, the server uses the component for running
CPAchecker locally. The main class of this component, CPAcheckerRunner-
Local, now creates a configuration that can be passed to the CPAchecker
classes, mostly in the same way that using CPAchecker via commandline
does. The LogManager interface provided to this configuration is configured
to output to the language client via logMessage notifications. The verifica-
tion result is processed and returned. The server now sends the processed
result to the client via the publishDiagnostics notification, after which the
client displays the results in the editor of the document.

If the user configures the usage of the VerifierCloud, the process is the
same, but now the component for cloud verification is used. The main class
of this component, CPAcheckerRunnerCloud, now uploads the document to
the VerifierCloud. The verification request to the VerifierCloud contains
the chosen configuration values, and a hash value identifying the previously
uploaded document. After cyclic checking of the job state until it reports that
it has finished, the result is downloaded, processed and returned. Same as
before, the server now sends the results to the client via a publishDiagnostics
to the client for displaying. When the user closes the document the language
server is stopped.

17

cpachecker-lsp
server

Component	for
local	CPAchecker

Component	for
VerifierCloud

Language
client

User
opens document

initialize request
initialize results

configures local
verification

edits the document
and saves

configuration request
configuration

start verification

verification results

didSave notification

logMessage notification

publishDiagnostics
notification

configures cloud
verification

edits the document
and saves

configuration request
configuration

didSave notification

VerifierCloud

start verification

verification results
publishDiagnostics

notification

closes document

upload document

request verification

wait for result

download result

logMessage notification

message displayed
in IDE console

errors get marked
with red underline

errors get marked
with red underline

message displayed
in IDE console

Figure 7: Simplified illustration of the sequence of operations for the
cpachecker-lsp language server.

4.2 Client for Eclipse IDE

This section will first describe the issues that were faced during the develop-
ment of the build process of the Eclipse IDE client, and then explain the im-
plementation of said client. The Eclipse IDE language client for cpachecker-
lsp is implemented as a plug-in. As mentioned in chapter 3.3, almost every
component of the Eclipse IDE is a plug-in. The platform runtime core, which
is the base of the Eclipse IDE, finds and loads plug-ins. The plug-in system
is based on an implementation of the OSGi framework specification27, the
OSGi specification describes a system for modular platforms. An Eclipse

27https://www.osgi.org/developer/specifications/

18

https://www.osgi.org/developer/specifications/

plug-in is thus also an OSGi Bundle.

4.2.1 Description of the Language Client

The Eclipse plug-in for cpachecker-lsp is based on the generic language client
LSP4E. It supports running CPAchecker either locally, or by making use of
the VerifierCloud, with results displayed in the editor and console output. It
can be easily installed by adding the update site28, which is a result of the
build process described in section 4.2.3, in the ”Install New Software..” Dialog
in the Eclipse IDE, and selecting it from the list for installation as shown
in Figure 8. This installation also includes the files for running CPAchecker
locally, no separate installation is required. Settings, like local execution
or verification with the help of the VerifierCloud, can be changed in the
settings section of Eclipse, as shown in Figure 9. Available settings are
also the configuration and specification that will be used by CPAchecker,
and in case of local execution, additional commandline parameters can be
added as well. Execution of the verification task is triggered after a C source
code document is edited and saved, described in more detail in section 4.1.4.
The result of the verification is then shown on the console view of Eclipse,
and as diagnostics information as seen in Figure 10. A directory containing
CPAchecker output files is also created.

Figure 8: Installing via update site

4.2.2 Implementation of the Language Client

As mentioned before, the implementation of the Eclipse IDE language client
for cpachecker-lsp relies on LSP4E, but also needs to use extension points

28https://sosy-lab.gitlab.io/software/cpachecker-lsp/

19

https://sosy-lab.gitlab.io/software/cpachecker-lsp/

Figure 9: CPAchecker LSP configuration

Figure 10: Property violation information hover

from other plug-ins. Extension points are used for registering functionality
with other plug-ins, e.g. registering classes that are then used by those plug-
ins.

The following extension points are needed:

1. org.eclipse.core.contenttype.contentTypes

� content-type:

This extension point is needed to register a new content type for
CPAchecker, with the id ”org.sosy lab.lsp4e.cpa”. It is a type de-

20

rived from ”org.eclipse.cdt.core.cSource”, and thus binds to com-
mon C file extensions.

2. org.eclipse.ui.editors

� editorContentTypeBinding:

This extension point is needed to associate the new con-
tent type ”org.sosy lab.lsp4e.cpa” with the editor plug-ins.
This means that files with this content type will now be
opened with the associated editors. The ids of those are
”org.eclipse.cdt.ui.editor.CEditor” for the C/C++ editor provided
by Eclipse CDT, and ”org.eclipse.ui.genericeditor.GenericEditor”
for the generic text editor.

3. org.eclipse.lsp4e.languageServer

� server:

This extension point is for registering an implementation of the
StreamConnectionProvider interface, which is used to start the
actual cpachecker-lsp language server, and connect the input and
output streams for communication. Also, a specialized language
client class is registered, for handling of the cpachecker-lsp lan-
guage server configuration.

� contentTypeMapping:

This extension point is used to associate the content type
”org.sosy lab.lsp4e.cpa” with the cpachecker-lsp language server,
so that it gets started when a document of this type is opened.

4. org.eclipse.ui.preferencePage

� page:

This extension point is used to register the preferences page, an
implementation of the ”IWorkbenchPreferencePage” class, to the
Eclipse IDE.

5. org.eclipse.cdt.ui.textHovers

� hover:

This extension point is used to register a class that can be used
to display information when hovering over a code location, and is
needed for displaying LSP based hover information inside the C
editor.

21

The Eclipse IDE has a concept for getting and setting configuration values
in form of a key-value store, called preference store, where plug-ins can store
values in different scopes, e.g. different settings for each workspace or project.
The preference page registered contains several field editors to set values in
the preference store. The configuration values are wrapped in setters and
getters by the ConfigurationAdapter class.

As mentioned beforehand, a specialized language client class is necessary.
It inherits from the language client class provided by LSP4E, and implements
the ”workspace/configuration” request29 specified in the LSP. It returns the
list of values requested by the cpachecker-lsp language server, using the get-
ters provided by the ConfigurationAdapter.

The implementation of the StreamConnectionProvider interface mentioned
above is actually using the proxy design pattern, which is also accessing the
configuration via the ConfigurationAdapter class. Depending on how it is
configured to start the cpachecker-lsp language server in a new process or
not, a different class is used.

CEditorTextHover, the class registered to the org.eclipse.cdt.ui.textHovers
hover extension point, is an adapter class extending the LSBasedHover class
provided by LSP4E by implementing the ICEditorTextHover interface re-
quired by Eclipse CDT.

4.2.3 Build Process

The cpachecker-lsp language server and Eclipse IDE plug-in builds are man-
aged with the help of a build tool. The description of the build process, the
issues that occurred, as well as the solutions to these issues will be described
in this section. Before explaining the issues that occurred during the setup of
the build process, additional information regarding details about the struc-
ture of Eclipse plug-ins, how dependencies are specified and how they can be
build by an automated process, is required.

In order to be found and loaded by the platform runtime core, a plug-in
has to provide an OSGi manifest file and a plug-in manifest file. This plug-in
manifest file contains information about extensions points defined by other
plug-ins that this plug-in uses, as well as extension points that this plug-in
provides for others. The OSGi manifest contains information about the plug-
in, such as the name, version, a class file which to execute upon loading the
plug-in, required Java Runtime Environment, and a list of additional paths to
be added to the Java Classpath. It also specifies the required dependencies,
which in turn must also be OSGi Bundles.

29https://microsoft.github.io/language-server-protocol/specifications/

specification-current/#workspace_configuration

22

https://microsoft.github.io/language-server-protocol/specifications/specification-current/#workspace_configuration
https://microsoft.github.io/language-server-protocol/specifications/specification-current/#workspace_configuration

There are two ways to build an Eclipse plug-in. The first way is to build
from within the Eclipse IDE, with the Eclipse Feature for RCP and RAP
Developers. This is obviously not a solution that allows for automated builds,
and is thus not suitable. The second way is to build with Apache Maven30,
a software project management tool that can manage builds, dependencies
and more. Although plug-ins can be build with Maven, they have to be
build by using a Maven plug-in called Eclipse Tycho31. There are some
pitfalls regarding Maven projects using Tycho.

Maven projects are defined by a POM, short for ”Project Object Model”,
which is stored in XML format. The POM normally contains all information
on how to build the project, like dependencies, but dependencies for Eclipse
plug-ins are also defined in the OSGi manifest. Tycho is using both the
dependencies specified in the POM, and the dependencies specified in the
OSGi manifest, during compilation. Dependencies specified in the OSGi
manifest are expected to be in repositories that use ”p2” repository format,
which is are also used by the Eclipse IDE when installing Eclipse Features
and plug-ins. This type of Maven project is called ”Manifest-first”.

The issue with this is that the dependencies that specified in the POM
are not specified in the OSGi manifest, so they are not automatically discov-
ered and loaded by the Eclipse IDE platform runtime core later, and thus
not available during runtime. This issue occurs with cpachecker-lsp language
server from chapter 4.1. The cpachecker-lsp eclipse plug-in has a POM de-
pendency on the cpachecker-lsp language server, as the language server is not
a OSGi bundle.

There are two possible solutions to this problem:

1. Configure Maven to just add the dependencies to the build output of
the Eclipse plug-in before packaging the artifact:

For this approach, the cpachecker-lsp language server is added as a
POM dependency, and is thus used during to resolve dependencies dur-
ing compilation, but not during runtime. By using the Apache Maven
Dependency Plugin 32, Maven can be configured to copy dependencies
to specified locations during the build. This can be used to add the
cpachecker-lsp language server to the build output of the Eclipse plug-
in before it is packaged. To work around the problem which is that the
dependencies are still not loaded automatically by the Eclipse platform
runtime core, the paths of the dependencies have to be added manually

30https://maven.apache.org/
31https://www.eclipse.org/tycho/
32https://maven.apache.org/plugins/maven-dependency-plugin/

23

https://maven.apache.org/
https://www.eclipse.org/tycho/
https://maven.apache.org/plugins/maven-dependency-plugin/

to the ”Bundle-ClassPath” section of the OSGi manifest, so they will
be available on the Java Classpath during runtime.

2. Change the project type of the cpachecker-lsp language server to a
”POM-first” Maven project:

By using another Maven plug-in, Apache Felix Maven Bundle Plugin33,
it is possible to generate an OSGi manifest from the POM . A Maven
project where an OSGi manifest is generated from the POM is called
a ”POM-first” project, and the resulting project build artifact is an
OSGi Bundle. There are some restrictions though.

If a Maven project has sub-projects, it is called a ”multi-module project”,
and the sub-projects are called modules. It is impossible to have ”POM-
first” and ”Manifest-first” modules in multi-module project, because
the OSGi manifest for the ”POM-first” projects are only generated dur-
ing the actual build step. Dependency resolution happens very early
in the build process, and during this process, Tycho needs to read the
OSGi manifests of all dependencies, which are not existing yet, result-
ing in a failed build. With this approach, cpachecker-lsp can not be
build in a single step in a multi-module project.

Moreover, Maven Bundle Plugin is not associated with Eclipse Tycho,
and does not provide any Tycho or ”p2”-repository specific informa-
tion. As mentioned before, Tycho tries to resolve dependencies from
the OSGi manifest from ”p2” repositories. Tycho can be configured
to consider Maven repositories for resolving dependencies. For this to
work, the ”POM-first” Maven project needs to be added as a depen-
dency to both the POM, and the OSGi manifest, of the Eclipse plug-in
Maven project. Tycho then generates ”p2”-repository metadata, but
only for OSGi Bundle dependencies, so non-OSGi Bundle dependen-
cies of the ”POM-first” Maven Project, like CPAchecker, are still not
resolved.

As solution number 2 still does not fully solve the problem, and has additional
drawbacks, the decision was made for solution number 1.

To make easy installation of the Eclipse cpachecker-lsp language client
plug-in to an Eclipse IDE installation possible, some additional projects are
necessary. Firstly, an Eclipse Feature project is needed, which defines which
plug-ins are included. It also specifies the software license that it is released
under, the URL of a repository or update site from where it can be obtained

33https://felix.apache.org/documentation/subprojects/apache-felix-maven-bundle-plugin-bnd.

html

24

https://felix.apache.org/documentation/subprojects/apache-felix-maven-bundle-plugin-bnd.html
https://felix.apache.org/documentation/subprojects/apache-felix-maven-bundle-plugin-bnd.html

from, and, again, also contains information about other Eclipse plug-ins that
are required for operation. Secondly, an Eclipse Update Site project, from
where aforementioned Eclipse Feature project can be obtained from, is re-
quired. Both Feature project and Update Site project can also be build with
the help of Tycho.

Manifest-first Project

Eclipse plug-in

OSGi Dependency

org.eclipse.lsp4e

Project

language server

Maven dependency

LSP4J

Maven dependency

CPAchecker

OSGi Dependency

org.eclipse.cdt

OSGi Dependency

...

Dependency

...

Manifest-first Project

Eclipse feature

Manifest-first Project

Eclipse update site

Figure 11: Illustration of dependencies and project types

In the end, the 4 projects were aggregated into a multi-module Maven
project, as illustrated in Figure 11:

� Language server:

A normal Maven project, described by its POM.

� Language client plug-in:

”Manifest-first” project, build with Tycho, with dependency to the
language server project defined in its POM, configured to be added
during build and manually added to the classpath.

� CPAchecker LSP Eclipse Feature:

Build with Tycho, containing a reference to the language client plug-in
project.

� CPAchecker LSP Eclipse Update Site:

Build with Tycho, containing a reference to the Eclipse Feature.

The final build artifact of this multi-module Maven project is an Eclipse
Update site that can be either added as a local update site, or hosted on a
web server, and can be used to install the cpachecker-lsp Eclipse plug-in.

25

5 Evaluation

For evaluating the result of this thesis, an online survey among potential
users was conducted. The questions that were asked, the additional informa-
tion that was given to the participants, as well as their answers are available
in appendix A. During the survey, the participants were asked to install the
CPAchecker LSP Eclipse Feature into their Eclipse IDE installation. After
an explanation of the configuration options, they were asked to follow in-
structions for a basic usage scenario, and to try the tool on their own. The
questions inquired about the participants experiences.

The survey included questions about the installation process, configura-
tion, general usage and presentation of results. This section will list the
feedback refined from the questions, and the changes that were implemented
as a result.

5.1 Analysis of the Results

This section will guide through the results and the analysis of the survey.
”Question 1: Installation and Known Issues” served as a an introduction to
the survey, and to assure that the participants did read the given instructions
beforehand.

5.1.1 Installation

The first part of the survey were questions regarding the installation process.
Out of the six participants, five answered ”Question 2: Did the installa-
tion process work without problems?” with a ”yes”. The participant that
answered with ”no” was asked two additional questions, question 3 and 4,
which served the purpose of finding the issue and possible workarounds. The
answers given pointed to an issue with the version of the Java Runtime Envi-
ronment (JRE) that is used to start the Eclipse IDE and the cpachecker-lsp
language server, which could be worked around by switching the system de-
fault JRE to version 11.

5.1.2 Configuration

”Question 6: Are the configuration options enough to cover your use case?”
asked the participants to rate the available configuration options on a scale
from 0, meaning ”Totally unusable”, to 10, meaning ”Everything covered”.
This question was asked to asses if the provided configuration options were
sufficient. Three of the participants answered with the maximum of 10,

26

and the other three answered with 5, 7 and 8, for an average of 8.33. The
participants were given the opportunity to state their usecase and additional
configuration options that they would like to see, in question 7. The options
requested were:

� options regarding handling of witnesses

� selection of the machine model used for testing

� configuration of conditions for when to run the verification

� configuration of output files

� configuration of resource limits

The last question of the the configuration section was ”Question 8: Did
you encounter any bugs within the configuration process?”. The answers
indicated issues with verification with the VerifierCloud and the validation
of configuration input.

5.1.3 Usage

”Question 9: Did the plugin do its job for you?” asked the participants if they
could use CPAchecker LSP to start verification jobs, and get a visual repre-
sentation of results, which all participants answered with ”yes”. The answers
to the followup, ”Question 10: Did you encounter any bugs or unexpected
behaviour?”, raised the following issues:

� starting a verification task is signaled by a ”DidSave” notification in-
stead of something more descriptive

� error markers do not disappear after fixing the problem

� manual starting and canceling a verification task is not possible

� no notification if an invalid configuration is used

� a not reproducible situation where CPAchecker LSP stopped working

5.1.4 Presentation of Results

The answers to question 12 and 14 showed that the visual error markers and
output files appeared for all participants. In ”Question 13: Are you satisfied
with the presentation of the results?”, the participants were asked to rate
their satisfaction on a scale from 0, meaning ”Unusable”, to 10, meaning
”Totally satisfied”. Two of the participants answered with 3, the other four
answered with 4, 7, 9 and 10, for an average of 5.83.

27

5.1.5 Ideas for Improvement and Comments

The last question of the survey gave the participants the option to voice
suggestions, which were as follows:

� improvements to the error marker position

� better presentation of counterexamples

� per file configuration and specification

� manual starting of a verification task

5.2 Implementation of Feedback

This section will cover the issues that were fixed as a result of the feedback,
as well as why specific suggestions were not implemented.

1. Wrong Java Runtime Environment (JRE) version:

CPAchecker LSP requires the Eclipse IDE to run with at least JRE
version 11, but if the participants configured only Eclipse to be run
with the required version, the plug-in might still not work. The cause
of this issue was that the cpachecker-lsp language server was started
with the system default JRE, which might have been still, for example,
JRE version 8. This issue could be worked around by changing the
default JRE to version 11. The feedback was implemented by using
the JRE used by the running Eclipse IDE to start the cpachecker-lsp
language server. This way, as long as Eclipse is using the right JRE,
the language server will also work.

2. More configuration options:

Selection of the machine model used for verification was only possible
to be selected for local execution, via the additional commandline pa-
rameters. An additional option to select the machine model was added
to the configuration options.

3. Input sanitation:

It was possible to enter line breaks in the string input fields, which
resulted in a corrupted configuration. This issue was fixed by sanitizing
the input.

28

4. Different configuration for each file, possibly via drop-down menu in
the toolbar:

As different files can need different specifications or configurations, a
different configuration for each file would be useful. Implementing this
feedback was not possible due to time constraints of this thesis.

5. Configuration of output files:

Configuration of output files while keeping the handling of cloud and
local verification the same from the user point of view was not possible
due to time constraints of this thesis.

6. Configuration of resource limits:

The resource limit concept that CPAchecker uses is not easily applicable
to the cpachecker-lsp server, as it sets these limits on the process exe-
cuting the verification task. This would possibly include the resources
used by the Eclipse IDE, which would render the limits useless. Further
investigation of this problem was not possible due to time constraints.

7. Manual starting of verification tasks:

Manual starting of verification tasks would be useful to be able to start
verification with a different configuration or specification, without the
need to change and save the program. This would require a lot of
work on the language client side, which was not possible due to time
constraints of this thesis.

8. Handling of witnesses:

Testing against a witness is cumbersome and only possible with local
verification. Additional configuration options for easier handling and
cloud verification would be helpful. Implementing this feedback was
not possible due to time constraints of this thesis.

9. Notifications:

Some confusing log messages were removed or renamed.

10. Cloud verification:

There are cases where submitting a run to the VerifierCloud resulted
in a timeout. This is a shortcoming of the API used to communicate
with the VerifierCloud, where it does not give a response in time when
CPAchecker needs to be build on the VerifierCloud before starting a
run.

29

11. Error marker:

The squiggly underline that marks the line with a property violation
was starting at the beginning of the line, and was too short. It now
marks the actual content in the line. The issue of error markers not
disappearing after fixing the problem seems to be an issue with LSP4E,
and is not fixable by the author in the timeframe of this thesis.

12. Better presentation of witnesses:

The presentation and handling of witnesses could be improved. Instead
of only marking the violating line, the path leading to the violation
could be highlighted. Implementing this feedback was not possible due
to time constraints of this thesis.

6 Future Work and Conclusion

In the future, implementation of language clients using the cpachecker-lsp
language server can be implemented for other IDEs, such as Visual Studio
Code34 or CLion35. Possible improvements for the language client would be
increasing flexibility of configuration, like separate settings for each source
file, and providing easier configuration for testing with witnesses. These
improvements would be mostly implemented on the language client side, and
thus would need an implementation for each language client supporting the
cpachecker-lsp language server, while the language server would only require
minimal changes. Presentation of results could also be improved, like analysis
of witnesses to show the path leading to a property violation. This could
be realized on the language server side with the Debug Adapter Protocol
(DAP)36, a sister protocol to LSP for providing IDE independent debugging
implementations. Using DAP, the path of the witness through the program
could be visualized step by step, like debugging a running program.

Taking the user survey into consideration, the cpachecker-lsp language
server and the corresponding Eclipse IDE plug-in can be successfully used to
integrate formal verification into a graphical development workflow. It can
be installed into the Eclipse IDE easily via the update site37, and includes
everything necessary to start using CPAchecker. Even though some issues
exist regarding presentation of results and configuration, they can be worked
around, and the result of this thesis is sufficient for basic usage.

34https://code.visualstudio.com/
35https://www.jetbrains.com/clion/
36https://microsoft.github.io/debug-adapter-protocol/
37https://sosy-lab.gitlab.io/software/cpachecker-lsp/

30

https://code.visualstudio.com/
https://www.jetbrains.com/clion/
https://microsoft.github.io/debug-adapter-protocol/
https://sosy-lab.gitlab.io/software/cpachecker-lsp/

Overall, the cpachecker-lsp language server and CPAchecker LSP Eclipse
Feature are usable for formal verification in a graphical development work-
flow, and can be used as a base for improvement, extension, and integration
into other IDEs.

31

List of Figures

1 Illustration of the complexity of language support without
LSP.
Source: https://langserver.org/. Visited on 08.03.2020 7

2 Illustration of the best case complexity of language support
with LSP.
Source: https://langserver.org/. Visited on 08.03.2020 8

3 Example communication between language client and language
server.
Source: https://microsoft.github.io/language-server-protocol/

overviews/lsp/img/language-server-sequence.png.
Visited on 02.03.2020 . 9

4 Simplified illustration of the CPAchecker architecture.
Source: https://www.sosy-lab.org/research/prs/Current_CPAchecker.

pdf, page 22. Visited on 08.03.2020 11
5 Simplified UML Diagram for the Interface with the Verifier-

Cloud. 13
6 Simplified UML Diagram for the cpachecker-lsp language server. 16
7 Simplified illustration of the sequence of operations for the

cpachecker-lsp language server. 18
8 Installing via update site . 19
9 CPAchecker LSP configuration 20
10 Property violation information hover 20
11 Illustration of dependencies and project types 25

References

[BDW15] Dirk Beyer, Matthias Dangl, and Philipp Wendler. Boosting k-
induction with continuously-refined invariants. In Daniel Kroen-
ing and Corina S. Păsăreanu, editors, Computer Aided Verifica-
tion, pages 622–640, Cham, 2015. Springer International Publish-
ing.

[BHT07] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Con-
figurable software verification: Concretizing the convergence of
model checking and program analysis. In Werner Damm and
Holger Hermanns, editors, Computer Aided Verification, pages
504–518, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

32

https://langserver.org/
https://langserver.org/
https://microsoft.github.io/language-server-protocol/overviews/lsp/img/language-server-sequence.png
https://microsoft.github.io/language-server-protocol/overviews/lsp/img/language-server-sequence.png
https://www.sosy-lab.org/research/prs/Current_CPAchecker.pdf
https://www.sosy-lab.org/research/prs/Current_CPAchecker.pdf

[BL13] Dirk Beyer and Stefan Löwe. Explicit-state software model check-
ing based on cegar and interpolation. In Vittorio Cortellessa and
Dániel Varró, editors, Fundamental Approaches to Software Engi-
neering, pages 146–162, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

[BL17] Dirk Beyer and Thomas Lemberger. Software verification: Testing
vs. model checking. In Ofer Strichman and Rachel Tzoref-Brill,
editors, Hardware and Software: Verification and Testing, pages
99–114, Cham, 2017. Springer International Publishing.

[CKL04] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for
checking ansi-c programs. In Kurt Jensen and Andreas Podelski,
editors, Tools and Algorithms for the Construction and Analy-
sis of Systems, pages 168–176, Berlin, Heidelberg, 2004. Springer
Berlin Heidelberg.

[DPV11] Kamil Dudka, Petr Peringer, and Tomáš Vojnar. Predator: A
practical tool for checking manipulation of dynamic data struc-
tures using separation logic. In Ganesh Gopalakrishnan and Shaz
Qadeer, editors, Computer Aided Verification, pages 372–378,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[DPV12] Kamil Dudka, Petr Peringer, and Tomáš Vojnar. An easy to
use infrastructure for building static analysis tools. In Roberto
Moreno-Dı́az, Franz Pichler, and Alexis Quesada-Arencibia, edi-
tors, Computer Aided Systems Theory – EUROCAST 2011, pages
527–534, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[HCD+13] Matthias Heizmann, Jürgen Christ, Daniel Dietsch, Evren Ermis,
Jochen Hoenicke, Markus Lindenmann, Alexander Nutz, Chris-
tian Schilling, and Andreas Podelski. Ultimate automizer with
smtinterpol. In Nir Piterman and Scott A. Smolka, editors, Tools
and Algorithms for the Construction and Analysis of Systems,
pages 641–643, Berlin, Heidelberg, 2013. Springer Berlin Heidel-
berg.

33

Appendix A CPAchecker LSP User Study

A.1 Introduction

Please go to https://sosy-lab.gitlab.io/software/cpachecker-lsp/ and follow
the instructions to install the plugin into your Eclipse with CDT.
A short introduction is also availabe at the linke above. Please try it out and
spend a little time experimenting before continuing the survey.

Known Issues/Pitfalls
There are five things to keep in mind:

1. Eclipse has to be run with at least Java 11. As the plugin directly uses
CPAchecker classes and CPAchecker requires Java 11, the plugin also
requires Java 11 to run.

2. You need your Eclipse version needs to be at least 2019-09, otherwise
the installation will fail.

3. The plugin will not work on *.c files that are automatically reopened
by Eclipse after a IDE restart. You have to close the editor and open
the file again. This is an issue with the CDT editor for .c files. It does
not occour with the generic editor.

4. After getting results, refresh your project in Eclipse to make the result
directory appear in your project explorer.

5. If you are getting a Message ”Submitting run configuration timed out
after 15 seconds” when using cloud verification, this is not a problem
of CPAchecker LSP but of VerifierCloud failing to give a response code
when the most current CPAchecker is not compiled on the Verifier-
Cloud.

Question 1: Installation and Known Issues
required

I have installed the plugin and i have read the known Issues.
6 responses:

34

https://sosy-lab.gitlab.io/software/cpachecker-lsp/

0 1 2 3 4 5 6

Ok 6

Votes

A
n
sw

er

A.2 Installation

Did you have Problems during installation? Did you notice something wrong?

Question 2: Did the installation process work without problems?
required

If yes, skip to question 6.
6 responses:

0 1 2 3 4 5

Yes

No

5

1

Votes

A
n
sw

er

A.3 Problems during Installation

Question 3: What was the Problem?
required

1 response:

It is not sufficient to select Java 11 during Eclipse installation, if the
default command-line Java is 8.

Question 4: Did you find a Workaround?
required

1 response:

Switch Java versions. Is this a problem of some Eclipse component or of
the plugin? Could you find out the currently running JVM and use that
one?

35

Question 5: Do you want to continue with the survey?
required

1 response:

0 1

Yes

No

1

0

Votes

A
n
sw

er

A.4 Configuration

An explanation of the configuration is available at https://sosy-lab.gitlab.

io/software/cpachecker-lsp/

Configuration Options for CPAchecker LSP:

� You can chose if the verification tasks will be done locally or by sending
a request to the VerifierCloud at https://vcloud.sosy-lab.org/cpachecker/webclient/help/

� The option ”Start LSP Server in new Java VM” should stay selected
for normal use. Disabling it is mostly useful for debugging.

36

https://sosy-lab.gitlab.io/software/cpachecker-lsp/
https://sosy-lab.gitlab.io/software/cpachecker-lsp/

� You can chose a configuration file for CPAchecker. Any of the config-
urations shipped with CPAchecker by default should work.

� You can chose a specification file for CPAchecker. Any of the specifi-
cations shipped with CPAchecker by default should work.

� If you selected to use local verification, you can add additional com-
mandline arguments to verification tasks. By default, this includes
”-preprocess”.

Question 6: Are the configuration options enough to cover your use
case?
required

0 = Totally unusable, 10 = Everything covered
6 responses:

0 1 2 3 4 5 6 7 8 9 10

1

2

3

0 0 0 0 0

1

0

1 1

0

3

Answer

V
ot

es

Question 7: What is your use case? What is missing, which configu-
ration option would make the plugin more usable for your use case?

37

6 responses:

A separate field for witness validation would be nice. This is a common
usecase for CPAchecker, but at the moment, I would have to write all
of the parameters for witness validation in the quite small text field for
local parameters. This also means that witness validation doesn’t work
with cloud execution.
In addition, radio buttons for 32bit/64bit analysis would be good to have.
At the moment, this is also only possible through local execution and
manually providing ’-32’ or ’-64’ as locla parameter.

Testing JavaSMT Solvers

Disabling auto-run of verification job on file save.

To play around

I do my bachelor thesis on CPA-checker as well. The plugin simplifies
testing my c benchmarks. The configuration options are sufficient for my
use case.

configuring output files, resource limits

Question 8: Did you encounter any bugs within the configuration
process?

3 responses:

Cloud execution did not work.

No

38

There is no feedback when invalid config/spec/args are specified. Further-
more, there is no input validation, even line breaks can be entered into
the text fields (e.g. by pasting text). This leaves ’cpals.cfg’ in a corrupt
state. Manually editing ’cpals.cfg’ is possible, but content is overwritten
when a new verification task is started.

A.5 Usage

Verification of a document is started after making a change, and then sav-
ing. The following explanation and known issues is also available at https:

//sosy-lab.gitlab.io/software/cpachecker-lsp/

First Steps:

� Create a new C Project

� Download https://raw.githubusercontent.com/sosy-lab/cpachecker/trunk/

doc/examples/example.c and add it to your project

� Open ”example.c”, change something minor and save the file. Adding
or removing a new line should be enough.

� Changing and saving a file triggers a verification task.

� You will see the progress and the result in the console window.

� Now try adding ”goto ERROR;” in line 12, and save

� A new verification task should have been started. This time, the verifi-
cation result should be ”false”, and you should see that the beginning
of line 12 has a red underline, signifying the error.

Example of a marker for a property violation:

39

https://sosy-lab.gitlab.io/software/cpachecker-lsp/
https://sosy-lab.gitlab.io/software/cpachecker-lsp/
https://raw.githubusercontent.com/sosy-lab/cpachecker/trunk/doc/examples/example.c
https://raw.githubusercontent.com/sosy-lab/cpachecker/trunk/doc/examples/example.c

Question 9: Did the plugin do its job for you?
required

6 responses:

0 1 2 3 4 5 6

Yes

No

6

0

Votes

A
n
sw

er

Question 10: Did you encounter any bugs or unexpected behaviour?

5 responses:

40

Cloud execution did not work.

No

You get a ’DidSave’ notification after saving a file. If this is sup-
posed to indicate that a new verification task started, a ’Verification
started/running...’ message might be more appropriate.
There is no indication that a task is still running. Also, there is no
indication that a task has failed (e.g. configuration is invalid).
You cannot cancel a running task.
The error-marker does not disappear when the error has been fixed and
the verification result is true.
You cannot manually start a verification task.

Issue 1:
The x that marks an error position (in this case: goto ERROR on line 12)
did not disappear after fixing the problem (removing line 12). Refreshing
does not fix the problem.
Issue 2:
1) I added the example.c file to my project
2) I made changes and saved it
3) Verification run locally without issues
4) Changed the setting to: cloud
5) Verification run on the cloud without issues
6) Changed back to local verification in the settings
7) I deleted the goto ERROR line (line 12)
8) I saved the file and nothing happens anymore. No matter what I
change, the plugin won’t react. (No error message either)
9) Restarting Eclipse fixes the problem.
10) BUT: I could not reproduce it

Unexpected notification bubbles with ”DidSave”

Question 11: Did you encounter any Errors or Exceptions? If so,
please provide a stack trace.

0 responses

41

A.6 Presentation of Results

Example of a marker for a property violation
Question 12: Did the markers for property violations appear in the
editor?
required

6 responses:

0 1 2 3 4 5 6

Yes

No

6

0

Votes

A
n
sw

er

Question 13: Are you satisfied with the presentation of the results?
required

0 = Unusable, 10 = Totally satisfied
6 responses:

42

0 1 2 3 4 5 6 7 8 9 10

1

2

0 0 0

2

1

0 0

1

0

1 1

Answer

V
ot

es

After executing a verification job, and refreshing your project in the project
explorer, it should look something like this. The directory may look a little
different, depending on if its a local or a cloud result:

43

Question 14: Did you see the result files generated by CPAchecker?
required

After refreshing your project in Eclipse, there should be a directory named
”cparesults”. This directory contains additional information about the veri-
fication run. It contains all output files normally generated by CPAchecker.
6 responses:

0 1 2 3 4 5 6

Yes

No

6

0

Votes

A
n
sw

er

44

A.7 Ideas for Improvement and Comments

Question 15: Do you have any ideas for Improvement or sugges-
tions?

3 responses:

It would be nice if the error indicator, i.e., the squiggly red underline, was
not at the beginning of the line, but right after the ERROR encountered.
If this is not possible, at least the whole line could be underlined. This
may be more visually pleasing.

1) more informative error messages maybe 2) use the running JVM, not
the default one for LSP (if that is possible)

Counterexamples need to be presented better (full path etc.), not only
the violating line; Verification should not always done on each save, it
is too expensive; needs a way to specify configuration & specification
easily without changing the IDE-wide configuration, for example if I have
different files that need different specifications; standard configurations
and specifications should be available in a drop-down list; directory name
”cparesults” is not really useful for users

45

	Introduction
	Related Work
	Used Technology
	Microsoft Language Server Protocol
	CPAchecker
	Eclipse IDE

	Implementation
	Language Server
	Interfacing with the VerifierCloud
	Interfacing with CPAchecker locally
	Interaction with the Language Server Protocol
	Sequence of Operations

	Client for Eclipse IDE
	Description of the Language Client
	Implementation of the Language Client
	Build Process

	Evaluation
	Analysis of the Results
	Installation
	Configuration
	Usage
	Presentation of Results
	Ideas for Improvement and Comments

	Implementation of Feedback

	Future Work and Conclusion
	List of Figures
	References
	Appendix CPAchecker LSP User Study
	Introduction
	Installation
	Problems during Installation
	Configuration
	Usage
	Presentation of Results
	Ideas for Improvement and Comments

