
DEPARTMENT OF COMPUTER SCIENCE
LUDWIG-MAXIMILIANS-UNIVERSITÄT

Bachelor’s Thesis in Computer Science

Complexity Measures in Software
Engineering: A Systematic Comparison

and Evaluation on
Software-Component-Level

Simon Lund

DEPARTMENT OF COMPUTER SCIENCE
LUDWIG-MAXIMILIANS-UNIVERSITÄT

Bachelor’s Thesis in Computer Science

Complexity Measures in Software
Engineering: A Systematic Comparison

and Evaluation on
Software-Component-Level

Author: Simon Lund
Supervisor: Prof. Dr. Dirk Beyer
Mentor: Thomas Lemberger
Submission Date: 12.10.2020

I confirm that this bachelor’s thesis in computer science is my own work and I have
documented all sources and material used.

Munich, 12.10.2020 Simon Lund

Acknowledgments

First, I would like to thank Thomas Lemberger for his great mentoring. Whenever I got
stuck, you helped me to find a solution. Moreover, you patiently answered my questions
and gave me many helpful tips for this thesis. Additionally many thanks to Anton and
Joachim, who helped me a lot by reviewing and correcting this thesis. Last, I want to
thank my family for their lifelong support.

Abstract

There are many measures on class- and statement-level which assess different characteris-
tics of software systems. However, the selection and diversity of package-level measures,
especially of those focusing on the dependencies of a software system, is very limited.
This is problematic because the complexity of a large software system emerges from the
dependencies between the components of the system, i.e., we need to be able to measure
these dependencies with regard to different characteristics of the dependency graph of a
system. Therefore, we propose and evaluate several package-level measures that cover
several of these characteristics. For this purpose we use Weyuker’s Properties to conduct
a formal analysis of the measures and implement the prototypical measurement tool
Jade to evaluate the applicability of the measures on the example of CPAchecker. Based
on the analysis we show that three of the proposed measures - DCMCC , DLM and
P-DepDegree - are applicable and useful for measuring the complexity of a system based
on its dependencies.

Keywords: software measures, package-level, dependencies, dependency graph, DepDe-
gree, cohesion, locality

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Related Work 2
2.1 Measures . 2
2.2 Evaluation Frameworks . 3

3 Weyuker’s Properties 4

4 Existing Measures 8

5 Proposed Package Measures 10
5.1 Dependency Cohesion Measure . 10

5.1.1 Variant based on LCOM3 . 10
5.1.2 Variant based on similarity measure 11
5.1.3 Variant based on cohesion count 12

5.2 Package DepDegree . 13
5.3 Dependency Locality Measure . 14

6 Theoretical Evaluation 16
6.1 Proofs . 16
6.2 Summary . 24

7 Practical Evaluation 26
7.1 Implementation . 26
7.2 Graph Analysis . 27
7.3 Correlations . 35
7.4 Threats to Validity . 37

8 Future Work 39

v

Contents

9 Conclusion 41

List of Figures 42

List of Tables 43

Bibliography 44

vi

1 Introduction

Software measures provide key indicators for software systems and allow us to compare and
evaluate the complexity of software systems and their components. The obtained insights
can be used, for instance, may be used during refactoring to identify overly complex
components as well as to predict maintainability and testability of software components.
[1]. For this purpose, many measures have been proposed in the last two decades. Most
of them focus on certain aspects of the system’s complexity on class- and statement-level.
However, the selection and diversity of package-level measures, especially of those focusing
on the dependencies of a software system, is very limited. This is problematic because
the complexity of a large software system emerges from the dependencies between the
components of the system, i.e., we need to be able to measure these dependencies with
regard to different characteristics of the dependency graph of a system. For example,
consider a software system of 1000 classes with many dependencies between these classes.
A classic measures like LOC, the number of lines of code in a system, is not capable of
capturing the complexity emerging from the dependencies. Therefore, the measurement
value of LOC for a system can deviate strongly from reality and the actual complexity of
a system. Hence, we need measures which take the dependencies of a system into account.
Therefore, we propose the following five dependency measures on package-level focusing on
three different characteristics - cohesion, locality and transitivity - of dependencies between
the packages of a software system respectively the dependency graph of a software system.
That is, we propose three variants for dependency cohesion DCMLCOM3, DCMSIM ,
DCMCC inspired by existing class cohesion measures, P-DepDegree inspired by DepDegree
[4] focusing on transitivity as well as DLM focusing on the locality of the dependencies of
a package. In addition, we conduct a theoretical and practical evaluation of the proposed
measures and compare the results with existing package-level measures. For the theoretical
part, we establish Weykuer’s Properties [29] on package-level to do a formal analysis of
the proposed and existing measures. For the practical part of the evaluation we use our
prototypical measurement tool Jade implemented in Python to calculate the proposed
and existing measures for all packages on the example of CPAchecker [11]. Finally, we
evaluate the applicability of the proposed measures based on the data sets containing the
measurement values of the different measures for all packages of CPAchecker.

1

2 Related Work

2.1 Measures

Software measures can be categorized based on the level of the software system on which
they work, i.e., system-level, package-level, class-level or statement-level. In this thesis
we propose several package-level measures which focus on the package’s dependencies.
However, there are additional categories regarding special types of measures, a selection
of which are presented below. These can be used together with the proposed measures to
facilitate a more comprehensive analysis of a software system. Furthermore, there are also
some package-cohesion measures [14, 23, 30, 3, 28, 26] similar to the proposed dependency
cohesion measures. However, their definitions differ from the measures proposed in this
thesis. For example, the measure PCoh [14] calculates a measurement value for a package
P based on the relations between the classes, interfaces and subpackages of P which can
include aggregation, inheritance or reference. We, however, consider a package as a set of
classes including interfaces and therefore the proposed dependency cohesion measures
do not take into account the subpackages of a package, i.e, the hierarchical order of
a system. Another example is Common-Use [26], which in contrast to the proposed
dependency measures calculates the cohesion value of a package based on the incoming
the dependencies. Furthermore, some of the measures are based on the actual interactions,
i.e., method invocations, between the classes of a software system and not only their
dependencies.

Annotation Measures [20]. These are only applicable on software systems imple-
mented in a programming languages which features the annotation of classes, methods
and variables (e.g. @Deprecated in Java). Although annotations simplify metadata
configuration, their abuse and misuse can reduce source code readability and complicate
its maintenance [20]. Therefore, annotation measures are used to assess used source code
annotations based on certain characteristics and help developers identify problematic
code annotations.

Inheritance Measures [19]. These quantify the complexity of the inheritance tree of
a software systems. Key characteristics are the branching of the inheritance tree and its

2

2 Related Work

depth. Per definition they are only of interest regarding the evaluation of object oriented
design systems as they are based on the aspects of inheritance and polymorphism.

Change Measures [10, 12]. These are related to the changes made during software
development and can be used to evaluate the complexity of software system regarding
its development cycles. For this purpose the measures evaluate different aspects of the
commit history of a software project. This helps to track the development progress of a
project and identify possible causes of errors.

Package Coupling Measures [13]. This measure suite consists of several measures
for measuring coupling between packages. Hence, these focus on the interactions between
packages and not similarities within a package. However, using these measures to reduce
coupling between packages can result in packages with higher dependency cohesion as
reducing coupling between packages may result in packages with classes that share more
of their dependencies.

2.2 Evaluation Frameworks

We chose Weyuker’s Properties for the theoretical evaluation of the proposed measures
because they are considered to be simple and straightforward [25, 29]. However, there
are other frameworks that could be also used to analyze the proposed measures. The
following is a selection of such frameworks.

Mathematical Properties [8]. This generic framework proposes properties for differ-
ent measurement concepts such as size, length, cohesion and coupling. These concepts,
in turn, are based on precise mathematical concepts and for each one of them several
properties are proposed that cover different characteristics of the respective concept.

Class Cohesion Metrics Properties [7]. This framework focuses on cohesion mea-
sures and uses the following four properties that are based on precise mathematical
concepts [8] to analyze such measures: "Non-negativity and normalization", "null value
and maximum value", "monotonicity", "merging of unconnected classes". As it provides a
standardized terminology and formalism for expressing measures, it facilitates comparison,
evaluation and empirical validation of existing cohesion measures.

3

3 Weyuker’s Properties

A newly proposed complexity measure is acceptable only when its usefulness has been
proven by a validation process [25]. For this reason, we use Weyuker’s Properties, a set of
nine abstract properties that allows us to formally evaluate and compare the measures
proposed in this thesis. Although several authors criticize Weyuker’s Properties, they still
play an important role in the evaluation of software complexity measures [24, 25]. That
is because Weyuker’s Properties are considered to be simple and straightforward as they
serve as a basis for the evaluation of software complexity measures [25, 29]. Hence, the
properties are not meant to be a conclusive evaluation of software measures, but as formal
prerequisites of measures to satisfy an intuitive understanding of software complexity [5].

Definition

Since this thesis focuses on package-level measures, the following definition of Weyuker’s
Properties is based on software components and their dependencies, i.e., the system’s
packages and classes. Therefore, we consider Pi ∈ P our universe, i.e., the set of all
possible packages Pi, and beyond that we consider arbitrary systems S with PS the set
of all packages of S, i.e, PS = P1, P2, ..., Pn. Furthermore, we consider CP the set of all
classes c1, c2, c3, ... of P with c1, c2, c3, ... as unique identifiers of the classes in P in regard
to system S. Thus, we can distinguish between all packages and classes within a system
S by their identifier. Based on these definitions, we also define the following operators on
which Weyuker’s Properties rely.

• µ(X) − the measurement value of a package X for measure µ

• P ≡ Q − the packages P and Q are functionally equivalent

• P . Q − the extension of CQ by the classes of P

We consider two packages P , Q in to be functionally equivalent if, and only if, we
can emulate the functionality of P using Q and vice versa. Thereby, we define the
functionality of a package as the sum of the functionality of the classes in the package
which, in turn, is defined by the relation of the class with other classes and its public
methods. Furthermore, we also refer to P . Q as the composition of P,Q which extends

4

3 Weyuker’s Properties

CQ by the classes of P in system S′ with PS′ = PS where CQ = CP.Q = CQ ∪ CP . In
addition, if µ µ(P . Q) = µ(Q . P) holds for any two packages P,Q for a measure µ,
then we consider P . Q to be commutative and write P +Q instead. Having formally
established these operators, we can now define Weyuker’s Properties as follows.

Property 1: ∃P,Q : µ(P) 6= µ(Q)

This property states that a measure must not treat all packages as equally complex. If
the property is not satisfied by a measure µ, then each package of a system would have
the same measurement value (i.e. µ(X) = c; c constant). Consequently, a legitimate
measure must satisfy Property 1.

Property 2: There are only finitely many packages of complexity c, with c ≥ 0

This property is a strengthening of Property 1. Intuition implies that a measure is not
sensitive enough if it divides all programs into just a few complexity classes. Property 2
is an attempt to formalize this intuition [29].

Property 3: ∃P,Q : (P 6≡ Q) ∧ (µ(P) = µ(Q)

This property stresses the necessity that a legitimate measure must focus on the complexity,
not the functionality of a package. Therefore, packages of the same complexity should
have the same measurement value in regard to a measure µ despite their functionality.

Property 4: ∃P,Q : P ≡ Q ∧ µ(P) 6= µ(Q)

This property states that not only the functionality of a package, but also its implementa-
tion is significant for its measurement value. This means that a legitimate measure must
also differentiate between implementation details on which the complexity for a package
can be based.

Property 5: ∀P,Q : µ(P) ≤ µ(P . Q) ∧ µ(Q) ≤ µ(P . Q)

This property ensures that measure µ is a monotone function and that the measurement
values of µ for a given set of packages increases with their complexity. Thus, merging two
packages results in a measurement value greater than or equal to that of the individual
packages for a measure µ satisfying Property 5.

Property 6:

a) ∃P,Q,R : µ(P) = µ(Q) ∧ µ(P . R) 6= µ(Q . R)

b) ∃P,Q,R : µ(P) = µ(Q) ∧ µ(R . P) 6= µ(R . Q)

5

3 Weyuker’s Properties

This property states that by merging each of two packages P,Q of the same complexity
with a third package R their measurement values of µ need not increase uniformly. If
P .Q is commutative regarding µ, then we can simplify this property to ∃P,Q,R : µ(P) =

µ(Q) ∧ µ(P +R) 6= µ(Q+R).

Property 7: ∃P,Q : Q = p(P) ∧ µ(P) 6= µ(Q)

This property states that for a measure µ there are packages P,Q such that Q is derived
from P by permuting the order of its classes and P,Q have different measurement values.

Property 8: If we rename package P to Q, then µ(P) = µ(Q)

This property states that measure µ is independent of the naming of the packages.
Therefore, renaming a package has no impact on the measurement value of a measure µ
satisfying this property.

Property 9: ∃P,Q : µ(P) + µ(Q) < µ(P . Q)

This property expresses the possibility that merging two packages can result in increasing
complexity. Reasons for this can be, for instance, the non-linear fashion of the measure
or additional interactions between the packages as a result of the merging.

Usage

We introduced all properties for the sake of completeness, but not all of the properties
are of significance for the evaluation of the proposed package-level measures. This is
because Weyuker’s Properties were originally proposed for the evaluation of statement-
level measures, i.e., measures used to determine the complexity of a single function. Thus,
we will not use the following properties for the evaluation of the proposed package-level
measures. The remaining properties will be considered.

• Property 1 (Always True): None of the measures considered in this thesis maps
all packages to a constant value. Hence, all measures satisfy this property.

• Property 2 (Always True): There is a finite number of applications, each having
a finite number of classes [6, 9]. Under the assumption that there can only be a
maximum of two dependencies between two classes (x→ y, y → x), there is also a
finite number of dependencies. It follows that there is a finite number of packages
that contain one or more classes. Thus, there is also a finite number of packages of
the complexity c. Hence, all package-level measures defined in this thesis satisfy
this property.

6

3 Weyuker’s Properties

• Property 7 (Not Applicable): This property has no significance for package-level
measures as one can not derive a package from another package only by changing
the order of its classes.

• Property 8 (Always True): The package-level measures proposed in this thesis are
solely based on the classes of a package and their dependencies. Thus, the name of
the package has no impact on its corresponding measurement values.

7

4 Existing Measures

In addition to the measures proposed in this thesis we introduce the following existing
measures that help us to assess the proposed measures, understand unexpected behavior
and better interpret the measurement values of outliers.

Number of Classes. We define Number of Classes (NOC) as the number of classes
in a package P and formally define NOC based on CP as follows.

NOC(P) = |CP | (4.1)

Hence, we can use this measure to better interpret measurement values, which are
affected by the size of a package. This allows us to normalize measurement values of
packages of different size and compare them under consideration of their size.

Afferent Coupling. We define the Afferent Coupling (Ca) [22] value for a package P
as the number of classes outside of P that depend on classes of P . We consider therefor
Dc the set of dependencies for a class c ∈ CP and Ca for P as follows.

Ca(P) =
∑

Q∈PS\P

|{ c | c ∈ CQ : Dc ∩ CP 6= ∅ }| (4.2)

Thus, Ca allows us to estimate the relevance of a package P since the more classes
depend on classes of P the more relevant P is for the system S. This is an important
measure because we can determine the responsibility of P and the impact of change in P
on other packages in S.

Efferent Coupling. We define the Efferent Coupling (Ce) [22] value for a package P
as the number of classes in P that depend on classes outside of P . By means of the
definitions we can formally define Ce as follows.

Ce(P) = |{ c | c ∈ CP : Dc \ CP 6= ∅ }| (4.3)

8

4 Existing Measures

Thus, Ce measures the effect of changes in S on P . It follows that the higher Ce for P
the higher the probability that P is affected by changes in the rest of S. At this point
NOC comes in handy as we can use it to determine the proportion of classes in P that
depend on classes outside of P , which facilitates a context-sensitive interpretation of Ce.

Instability. The Instability measure (I) [22] for a package P calculates the stability of
P based on the measurement values of Ca and Ce for P . Thereby, we define the stability
of a package as the difficulty of modifying the package where the difficulty depends on
the number of classes that depend on the package. Hence, a package with a high Ca
value is very stable since modifications lead to many more obligatory modifications in the
dependent classes. Thus, we can formally define the instability of P in S as follows.

I(P) =
Ce

Ce+ Ca
(4.4)

The measurement value for a package P ranges between 0 and 1 where I(P) = 0 means
that P is stable in the sense that the classes of P do not depend on classes outside of
P and I(P) = 1 signifies that P is unstable as P depends on other classes but no class
outside of P depends on classes in P , i.e., Ca(P) = 0. It follows that the closer I(P) is
to 0 the less responsible is P and the easier are modifications within P .

9

5 Proposed Package Measures

In this chapter we propose the following three package measures in a uniform manner:

1. Dependency Cohesion Measure

2. Package DepDegree

3. Dependency Locality Measure

These measures focus on the DP the set of dependencies of a package P . The first
measure focuses on the proportion of dependencies in DP that are shared among the
classes of P , the second one determines the overall proportion of the system on which a
package directly and indirectly depends and the last one measures the distribution of the
dependencies of P within the system’s package tree. Note that the first two measures
are based on existing measures defined on class- or statement-level. The last measure,
however, was developed because existing package-level measures treat the dependencies
of a package P equally and their location has not been considered so far.

5.1 Dependency Cohesion Measure

The proposed Dependency Cohesion Measure (DCM) is based on the dependency cohesion
of a package, i.e., the degree to which the classes of a given package have the same
dependencies. The measure is inspired by existing class-level cohesion measures, which
quantify the overall cohesion of the methods of a class with respect to the number of
attributes that share the class’s methods with each other. Thus, it helps to understand
how the dependencies of a package P are used and distributed over the classes of P
which is a useful information, for instance, to determine the impact of changes regarding
the dependencies of P . After the evaluation of more than twenty measures [17], three
measures were found to be fitting candidates. As the measures differ in their concepts,
we decided to adapt all of them and define three variants of DCM .

5.1.1 Variant based on LCOM3

This variant is based on LCOM3 [16], an improved version of the original lack of cohesion
methods (LCOM) measure [9]. It is a counting measure whereby the key idea is to

10

5 Proposed Package Measures

count the number of pairs of classes for a package P that share at least one dependency.
Therefore, we define the set of pairs of classes a, b ∈ CP for which Da ∩Db 6= ∅ holds as
follows.

MP := { (ci, cj) | ci, cj ∈ CP : i < j ∧Di ∩Dj 6= ∅ } (with c1, c2, ..., cn ∈ CP) (5.1)

Note that MP is an asymmetrical relation over P (∀x, y ∈ P : (x, y) ∈ MP =⇒
(y, x) /∈MP) as we do not consider reflexive pairs of classes (a, a) and want to count a
pair of classes a, b for which a ∩ b 6= ∅ holds only once. With MP we now define the
dependency complexity measure DCMLCOM3 as the number of elements in MP .

DCMLCOM3(P) = |MP | (5.2)

The measurement value for a package P ranges between 0 and the number of all possible
pairs of classes of P . If there is no class of P that shares a dependency with another
class of P then MP = ∅ and DCMLCOM3(P) = 0. If all classes of P share at least one
dependency with each other class in P then MP contains all possible pairs of classes of P .
This upper boundary maxM can be calculated for every package P as follows.

maxM (P)
(1)
= (n− 1) + (n− 2) + ...+ 1 =

(n− 1) ∗ n
2

(with n = |CP |) (5.3)

Hence, the closer DCMLCOM3(P) to maxM (P) the more classes in P share their
dependencies.

5.1.2 Variant based on similarity measure

This variant is based on the similarity measure [6]. Contrary to the first variant, this
measure does not directly count the number of elements in a subset of P ×P , but defines a
sim function to calculate the similarity value for all possible pairs of classes in a Package P .
So it differentiates between pairs of classes that have dependencies in common. Therefore,
we define the set of pairs for all classes in P as follows.

OP := { (ci, cj) | ci, cj ∈ CP : i < j } (with c1, c2, ..., cn ∈ CP) (5.4)

1Explanation: To get all possible pairs of classes - in which (x, y) is identical with (y, x), thus we only
need (x, y) - we take a class a of P and form pairs with all remaining n− 1 classes of CP \ {a}. Then
we take another class b of P and form pairs with all remaining n− 2 classes of CP \ {a, b}. And so on
and so forth.)

11

5 Proposed Package Measures

OP is an asymmetrical relation for the same reasons asMP . However, OP is not limited
to pairs of classes a, b for which a ∩ b 6= ∅ holds. Hence, OP contains all possible pairs
of classes in P regardless of whether the classes share dependencies. To determine the
similarity value for all pairs in OP we define the simP function as the ratio of the number
of common dependencies both classes use to the number of all dependencies of both
classes.

simP : P(DP)× P(DP)→ [0, 1] (with DP =
⋃

c∈CP

Dc) ,

(Da, Db) 7→
Da ∩Db

Da ∪Db
(5.5)

Note that the simP function is 0 for all pairs of classes that share no dependencies and
1 for all pairs of classes which share all their dependencies. With the simP function we
now define the second variant of DCM as the arithmetic mean of the similarity value for
the pairs in OP as follows.

DCMSIM (P) =

∑
(a,b)∈OP

sim(Da, Db)

|OP |
(5.6)

Regardless of the number of classes and dependencies, DCMSIM ranges between 0 and
1 because the values of the sum in the counter of the fraction range between 0 and 1

(per definition of sim) so that the sum itself is less or equal to the number of pairs in
OP . Thus, the measurement value of DCMSIM for a package P is normalized. This also
means that the closer DCMSIM (P) to 1 the more classes in P share more dependencies
and that in contrast to the first variant the size of the package is not of any relevance.

5.1.3 Variant based on cohesion count

This variation is based on cohesion count [21]. In contrary to the other variants, it is not
based on a relation over the classes of P . Instead, it takes a holistic approach and focuses
on the dependencies that are used by at least one class of P . Therefore, we need to know
the number of classes that use the dependency d for each dependency d ∈ DP . Thus, we
define the count function cntP to formalize the desired relation between DP and CP .

cntP : DP → N , d 7→ |{ c | c ∈ CP : d ∈ Dc }| (5.7)

Note that ∀d ∈ DP : cntP (d) > 0 is a result of the definition of DP . With cntP we can
now define the third variant of DCM as follows.

12

5 Proposed Package Measures

DCMCC(P) =

∑
d∈DP

cntP (d)

|CP | ∗ |DP |
(5.8)

DCMCC is normalized too and the measurement value for a package P ranges between
0 and 1. This is because for all dependencies d ∈ DP the ratio of cntP (d) to |CP | is less
than or equal to 1 and therefore DCMCC is the arithmetic mean of the normalized count
function for each dependency d ∈ DP . Thus, DCMCC(P) = 0 if DP = ∅. Otherwise,
DCMCC(P) = 1

|DP | if the classes of P don’t share any dependencies (i.e. DP =
⋃̇

c∈CP
Dc)

or else DCMCC(P) >
1
|DP | . Furthermore, DCMCC(P) = 1 if all dependencies of P are

used by all classes of P .

5.2 Package DepDegree

The proposed Package DepDegree (P-DepDegree) is based on the statement-level measure
DepDegree [4]. The key idea of DepDegree is to derive a measurement value for the
object of interest from a graph representing the object of interest in a meaningful manner.
P-DepDegree uses this approach to derive the measurement value for a package P from its
transitive dependency graph TDGP , a subgraph of the system’s dependency graph DGS

that contains all classes on which the classes of P directly and indirectly depend. So,
P-DepDegree helps us, for instance, to identify root-packages that directly or indirectly
depend on all classes of the system. Consequently, we can also find base-packages that
only have a few dependencies. Furthermore, we can identify core classes on which most
of the classes indirectly depend by comparing the transitive dependency graphs of the
packages in the system. In order to formalize P-DepDegree we first of all define the
dependency graph DGS that represents all dependencies between the classes of S. For
that, we consider CS the set of all classes in S and define DGS = (CS , EDG) with EDG

as follows so that for all dependencies d in Dc for all classes c in CS (c, d) is an edge of
DGS , i.e., c→ d ∈ DGS .

EDG =
⋃

c∈CS

{ (c, d) | d ∈ Dc } (5.9)

Then there exists a path v0 → v1 → ... → vn ∈ DGS between the vertices v0, vn if
∀ 0 ≤ i < n : di → di+1 ∈ DGS and we consider d0 →∗ dn the set of all edges of the path
between d0 and dn. Based on these definitions we now define TDGP = (VTDG, ETDG)

with VTDG and ETDG as follows.

13

5 Proposed Package Measures

VTDG = CP ∪ { d ∈ Cs | ∃ c ∈ CP : c→∗ d }

ETDG =
⋃

c∈VTDG

{ (c, d) | d ∈ Dc } (5.10)

Having defined TDGP , we now define P-DepDegree as the ratio of the number of edges
of TDGP to the number of edges of DGS .

P-DepDegree(P) =
|ETDG|
|EDG|

(5.11)

We use the edges instead of the vertices of the graphs to calculate P-DepDegree for
P because they represent the dependencies between the classes of S and thereby better
reflect the complexity of the dependency graphs DGS , TDGP .
P-DepDegree is also normalized and the measurement value for a package P ranges
between 0 and 1 as |ETDG| ≤ |EDG| since EDG is a subset of EDG. It follows that
P-DepDegree for P is 0 if, and only if, the classes of P have no dependencies so that
ETDG = ∅ with |ETDG| = 0.

5.3 Dependency Locality Measure

The proposed Dependency Locality Measure (DLM) is inspired by the locality principle
which states that an object is only dependent and influenced by its immediate environment.
Regarding a software system this would mean that classes only interact with other classes
in close proximity. This, of course, is only an idealistic goal as classes, for instance,
often reference globally defined utility classes. We can, however, still use this concept to
measure the complexity of a package based on the distance of its dependencies within the
package tree. To do so, we first group the dependencies of P by their package as follows.

PD := {Q |Q ∈ PS : CQ ∩DP 6= ∅ } (5.12)

To calculate the distance between P and each package in PD we now define the system’s
package tree PTS = (PS , EPT) with EPT as follows.

EPT = { (Q,U) |Q,U ∈ PS : Q is parent of U } (5.13)

So, for each parent-child relation between two packages Q,U ∈ PS there is an edge
Q→ U in PTS and for all packages Q ∈ PS there exists a path R →∗ Q from the root

14

5 Proposed Package Measures

package R, i.e., the root of PTS . Based on PTS we then define the distance function dst
to calculate the distance between two packages Q,U ∈ PTS as follows.

dst : PS × PS → N ,

(Q,U) 7→ |R→∗ Q4R→∗ U | (with R root of PTS) (5.14)

Hence the distance between two packages Q,U is the symmetric difference of their paths
from the root package, i.e., the number of edges that the paths R→∗ Q and Q→∗ U do
not have in common. With dst and |CQ ∩DP | as the number of dependencies of P in the
package Q we can now define the dependency locality measure DLM for P as follows.

DLM(P) =
∑

Q∈PD

dst(P,Q) ∗ |CQ ∩DP | (5.15)

Note that DLM is not normalized and therefore ranges between 0 and +∞.

15

6 Theoretical Evaluation

For the evaluation of the measures we begin with the theoretical analysis. For this purpose
we use Weyuker’s properties and prove or disprove the properties for each measure. Also
note that the composition operator . is commutative for all measures except DLM .

6.1 Proofs

We prove each relevant property of Weyuker separately for all measures defined in this
thesis. Most properties are existential, such that we give a witness for the properties (cf.
[5].

Number of Classes

For the evaluation of NOC we consider the packages P = {a, b, c, d}, Q = {e, f} and
R = {g, h, i, j} with P ≡ Q and P 6≡ R. Then the measurement values of NOC for
P,Q,R are NOC(P) = 4, NOC(Q) = 4 and NOC(R) = 2.

Properties 3 and 4. With the packages P,R it immediately follows that NOC satisfies
Property 3. Furthermore, with the packages P,Q it immediately follows that NOC also
satisfies Property 4.

Properties 5, 6 and 9 As the measurement value of NOC for a package is equal to
the number of its classes it follows per definition of the "+"-operator that NOC(U) +
NOC(V) = NOC(U + V) for any two packages U, V . Thus, NOC(U) ≤ NOC(U + V)

and NOC(V) ≤ NOC(V + U) such that NOC satisfies Property 5. Furthermore, with
NOC(U) +NOC(V) = NOC(U + V) it follows that NOC satisfies neither Property 6
nor Property 9.

Afferent Coupling

To disprove Property 5 and to show the existence of the properties 3, 4 and 6 for Ca,
we consider the packages P,Q,R,U and their dependencies as shown in Figure 6.1 with
P ≡ U and P 6≡ Q. The measurement values of Ca for P,Q,R,U are Ca(P) = 3,
Ca(Q) = 3, Ca(R) = 0 and Ca(U) = 1.

16

6 Theoretical Evaluation

Figure 6.1: Exemplary dependency graph for the theoretical evaluation of Ca

Properties 3 and 4 With the packages P,Q it immediately follows that Ca satisfies
Property 3. Furthermore, with the packages P,U it immediately follows that Ca also
satisfies Property 4.

Property 5. The composition P +R with Ca(P +R) = 0 shows Ca(P) > Ca(P +R)

as no classes outside of P +R depend on classes within P +R. Thus, Ca does not satisfy
this property.

Property 6. The compositions P+U with Ca(P+U) = 4 andQ+U with Ca(Q+U) = 3

have different measurement values such that Ca(P) = Ca(Q) ∧Ca(P + U) 6= Ca(Q+ U)

holds. Thus, Ca satisfies this property.

Property 9. We consider the composition V +W of any two packages V,W for which
we know that the classes depending on V +W depend either on one or both packages
V,W . Thus, Ca(V +W) can not be greater than Ca(V) + Ca(W) per definition of Ca
since a class that depends on V and W is only counted once for Ca(V +W) but twice in
Ca(V) + Ca(W). Furthermore, classes in V that depend on classes in W and vice versa
are also not considered for Ca(V +W) as the classes of V and W are in V +W so that
the dependencies between V and W are dependencies within V +W . Consequently, Ca
does not satisfy this property.

Efferent Coupling

To disprove Property 5 and to show the existence of the properties 3, 4 and 6 for Ce,
we consider the packages P,Q,R,U and their dependencies as shown in Figure 6.2 with

17

6 Theoretical Evaluation

Figure 6.2: Exemplary dependency graph for the theoretical evaluation of Ce

P ≡ U and P 6≡ R. The measurement values of Ce for P,Q,R,U are Ce(P) = 2,
Ce(Q) = 0, Ce(R) = 2 and Ce(U) = 1.

Properties 3 and 4 With the packages P,R it immediately follows that Ce satisfies
Property 3. Furthermore, with the packages P,U it immediately follows that Ca also
satisfies Property 4.

Property 5. The composition P +Q with Ce(P +Q) = 0 shows Ce(P) > Ce(P +Q)

as no classes within P +Q depend on classes outside of P +R. Thus, Ce does not satisfy
this property.

Property 6. The compositions P+U with Ce(P+U) = 3 and R+U with Ce(R+U) = 2

have different measurement values such that Ce(P) = Ce(R) ∧ Ce(P + U) 6= Ce(R+ U)

holds. Thus, Ce satisfies this property.

Property 9. We consider the composition V +W of any two packages V,W . Then
Ce(V +W) is the number of classes in V that depend on classes outside of V +W plus
the number of classes in W that depend on classes outside of V +W . However, classes in
V that only depend on classes in W and vice versa are not considered for Ce(V +W) as
the classes in V and W are in V +W so that the dependencies between V and W are
dependencies within V +W . Thus, Ce(V +W) ≤ Ce(V) + Ce(W) per definition of Ce
such that Ce does not satisfy this property.

18

6 Theoretical Evaluation

Figure 6.3: Exemplary dependency graph for the theoretical evaluation of I

Instability

To disprove Property 5 and to show the existence of the properties 3, 4 and 6 for I, we
consider the packages P,Q,R,U and their dependencies as shown in Figure 6.3 with
P ≡ U and P 6≡ R. The measurement values of I for P,Q,R,U are I(P) = 2

3 (Ce(P) = 2,
Ca(P) = 1), I(Q) = 0 (Ce(Q) = 0, Ca(Q) = 2), I(R) = 2

3 (Ce(R) = 2, Ca(R) = 1) and
I(U) = 1

2 (Ce(U) = 1, Ca(U) = 1).

Properties 3 and 4 With the packages P,R it immediately follows that I satisfies
Property 3. Furthermore, with the packages P,U it immediately follows that I also
satisfies Property 4.

Property 5. The composition P +Q with I(P +Q) = 0 as a result of Ce(P +Q) = 0

shows I(P) > I(P +Q) as no classes within P +Q depend on classes outside of P +R.
Thus, I does not satisfy this property.

Property 6. The compositions P+U with I(P+U) = 3
4 (Ce(P+U) = 3, Ca(P+U) =

2) andR+U with I(R+U) = 1 (Ce(R+U) = 1, Ca(R,U) = 0) have different measurement
values such that I(P) = I(R) ∧ Ce(P + U) 6= Ce(R + U) holds. Thus, I satisfies this
property.

Property 9. Unfortunately, we were neither able to disprove this property for I nor
able to find an example to show the existence of this property for I.

19

6 Theoretical Evaluation

DCM based on LCOM3

Figure 6.4: Exemplary dependency graph for the theoretical evaluation of DCMLCOM3

To disprove property 5 and to show the existence of the properties 3, 4 and 6 for
DCMLCOM3 we, consider the packages P,Q,R,U and their dependencies as shown in
Figure 6.4 with P ≡ U and P 6≡ R. The measurement values of DCMLCOM3 for
P,Q,R,U are DCMLCOM3(P) = 3, DCMLCOM3(Q) = 0, DCMLCOM3(R) = 3 and
DCMLCOM3(U) = 1.

Properties 3 and 4 With the packages P,R it immediately follows that DCMLCOM3

satisfies Property 3. Furthermore, with the packages P,U it immediately follows that
DCMLCOM3 also satisfies Property 4.

Property 5. This property must be modified as high cohesion is a desirable criterion
and Weyuker’s properties are developed to evaluate complexity measures. Here, high
cohesion means lower complexity and vice versa [6]. Thus, we have to reverse the
comparative sign in the property’s definition. Then with the composition Q+ P with
DCMLCOM3(Q+ P) = 7 the equation DCM(Q) > DCM(Q+ P) does not hold such
that DCMLCOM3 does not satisfy this property.

Property 6. The compositions P +Q with DCMLCOM3(P +Q) = 7 and R +Q with
DCMLCOM3(R+Q) = 3 have different measurement values such that DCMLCOM3(P) =

DCMLCOM3(R)∧DCMLCOM3(P+Q) 6= DCMLCOM3(R+Q) holds. Thus, DCMLCOM3

satisfies this property.

20

6 Theoretical Evaluation

Property 9. For the same reasons as for Property 5, we need to reverse the comparative
sign in the property’s definition. We consider the composition V +W of any two packages
V,W . Then all pairs of classes in V and W that share dependencies are also in V +W

per definition of the "+"-operator. Furthermore, there could be new pairs of classes in
V +W that share dependencies. Thus, the formula DCMLCOM3(V)+DCMLCOM3(W) ≤
DCM1(V +W) is true for all packages V,W such that DCMLCOM3 does not satisfy this
property.

DCM based on similarity measure

The measure DCMSIM is based on, has already been analyzed with Weyuker’s Properties
by other authors [6]. It has been shown that it satisfies the properties 1,2,3,4 and 6.
Furthermore, it has also been shown that it does not satisfy properties 5 and 9. Since
we have accurately transferred the definition of this measure to define DCMSIM as a
cohesion measure on package-level, this also holds for DCMSIM .

DCM based on cohesion count

Figure 6.5: Exemplary dependency graph for the theoretical evaluation of DCMCC

To show the existence of the properties 3, 4, 6 and 9 for DCMCC , we consider
the packages P,Q,R,U and their dependencies as shown in Figure 6.5 with P ≡ U and
P 6≡ R. The measurement values ofDCMCC for P,Q,R,U areDCMCC(P) = 1+1+1

3∗3 = 1
3 ,

DCMCC(Q) = 2+1
4∗3 = 3

8 , DCMCC(R) =
1+1+1+1

3∗4 = 1
3 and DCMCC(U) = 1+1

2∗2 = 1
2 .

Properties 3 and 4 With the packages P,R it immediately follows that DCMCC

satisfies Property 3. Furthermore, with the packages P,U it immediately follows that
DCMCC also satisfies Property 4.

21

6 Theoretical Evaluation

Property 5. This property must be modified as high cohesion is a desirable criterion and
Weyuker’s properties are developed to evaluate complexity measures. Here, high cohesion
means lower complexity and vice versa [6]. Thus, we have to reverse the comparative sign
in the property’s definition. We consider the composition V +W of any two packages
V,W . We know that the composition does not result in new dependencies such that
the number of dependencies in V +W is equal to the sum of the dependencies of V,W .
Furthermore, the denominator of the formula of DCMCC increases for V +W as the
number of classes of V +W is the sum of the number of classes of V,W . Thus, it follows
that DCMCC(V) ≥ DCMCC(V +W)∧DCMCC(W) ≥ DCMCC(V +W) holds for V,W
such that DCMCC satisfies this property.

Property 6. The compositions P + Q with DCMCC(P + Q) = 1+1+2+1
7∗4 = 5

28 and
R+Q with DCMCC(R+Q) = 1+1+1+1+2+1

7∗6 = 1
6 have different measurement values such

that DCMCC(P) = DCMCC(R) ∧ DCMCC(P + Q) 6= DCMCC(R + Q) holds. Thus,
DCMCC satisfies this property.

Property 9. For the same reasons as for Property 5, we need to reverse the comparative
sign in the property’s definition. Then for the composition R+Q withDCMCC(R+Q) = 1

6

the equation DCMCC(R) + DCMCC(Q) > DCMCC(R + Q) holds. Thus, DCMCC

satisfies this property.

Package DepDegree

Figure 6.6: Exemplary dependency graph for the theoretical evaluation of P-DepDegree

Although DepDegree has already been evaluated using Weyuker’s Properties, we need
to reevaluate Weyuker’s Properties for P-DepDegree since it does not use the same graph

22

6 Theoretical Evaluation

as DepDegree but instead is based on the dependency graph of a system. To show the
existence of the properties 3, 4 and 6 for P-DepDegree, we consider the packages P,Q,R,U
and their dependencies as shown in Figure 6.6 with P ≡ U and P 6≡ Q. The measurement
values of P-DepDegree for P,Q,R,U are P-DepDegree(P) = 4

17 , P-DepDegree(Q) =
4
17 ,

P-DepDegree(R) = 17
17 and P-DepDegree(U) = 7

17

Properties 3 and 4 With the packages P,Q it immediately follows that P-DepDegree
satisfies Property 3. Furthermore, with the packages P,U it immediately follows that
P-DepDegree also satisfies Property 4.

Property 5. We consider the composition V +W of any two packages V,W . Then
per definition of the "+"-operator all classes of V and W are also in V + W and
it follows that the edges of TDGV and TDGW are also edges of TDGV+W . Thus,
P-DepDegree(V) ≤ P-DepDegree(V +W) ∧ P-DepDegree(W) ≤ P-DepDegree(V +W)

such that P-DepDegree satisfies this property.

Property 6. The compositions P +U with P-DepDegree(P +U) = 11
17 and Q+U with

P-DepDegree(Q+U) = 7
17 have different measurement values such that P-DepDegree(P) =

P-DepDegree(Q)∧P-DepDegree(P+U) 6= P-DepDegree(Q+U) holds. Thus, P-DepDegree
satisfies this property.

Property 9. We consider the composition V + W of any two packages V,W . We
know that the edges of TDGV and TDGW are also edges of TDGV+W . Furthermore,
we know that TDGV and TDGW are complete. Thus, it follows per definition of
the "+"-operator that each edge of TDGV+W is either an edge of one or both TDGs
of V,W . The latter is the case when TDGV and TDGW overlap, i.e., the classes
in V and W indirectly depend on the same classes. Consequently, it follows that
P-DepDegree(V) + P-DepDegree(W) ≥ P-DepDegree(V +W) such that P-DepDegree
does not satisfy this property.

Dependency Locality Measure

For the evaluation of DLM we consider the packages P,Q,R,U and their dependencies
as well as their package tree as shown in Figure 6.7 with P ≡ U and P 6≡ R. Then
the measurement values of DLM for P,Q,R,U are DLM(P) = 3, DLM(Q) = 0,
DLM(R) = 3 and DLM(U) = 4. Furthermore, the distance values for the packages are
dst(R,P) = 1, dst(R,Q) = dst(R,U) = 2, dst(P,Q) = dst(P,U) = 3 and dst(Q,U) = 2.

23

6 Theoretical Evaluation

(a) Package tree (b) Dependency graph

Figure 6.7: Exemplary dependency graph and package tree for the theoretical evaluation
of DLM

Properties 3 and 4 With the packages P,R it immediately follows that DLM satisfies
Property 3. Furthermore, with the packages P,U it immediately follows that DLM also
satisfies Property 4.

Property 5. For the composition P .Q withDLM(P .Q) = 0 the equationDLM(P) <

DLM(P . Q) does not hold. Thus, DLM does not satisfy this property.

Property 6. The compositions R.Q with DLM(R.Q) = 5 and P .Q with DLM(P .

Q) = 0 have different measurement value. Furthermore, the compositions Q . R with
DLM(Q . R) = 3 and Q . P with DLM(Q . P) = 0 have also different measurement
value. Thus, DLM satisfies this property.

Property 9. For the composition R.Q the equation DLM(R)+DLM(Q) < DLM(R.

Q) holds. Thus, DLM satisfies this property.

6.2 Summary

Table 6.1 shows that only DCMCC satisfies all Weyuker’s properties. This is because
the composition of two packages results only for DCMCC in a disproportionately lower
measurement value. In contrast, P-DepDegree satisfies Property 5 but not Property 9,
because its measurement values are not disproportional in regard to the composition of
two packages. Regarding Property 9, the same applies to the measures NOC, Ca, Ce,

24

6 Theoretical Evaluation

Measures 1 2 3 4 5 6 8 9
NOC 3 3 3 3 3 7 3 7

Ca 3 3 3 3 7 3 3 7

Ce 3 3 3 3 7 3 3 7

I 3 3 3 3 7 3 3 ?
DCMLCOM3 3 3 3 3 7 3 3 7

DCMSIM 3 3 3 3 7 3 3 7

DCMCC 3 3 3 3 3 3 3 3

P-DepDegree 3 3 3 3 3 3 3 7

DLM 3 3 3 3 7 3 3 3

Table 6.1: Overview of the Weyuker’s Properties fulfilled by the measures

I, DCMLCOM3 and DCMSIM . Similar to DCMCC , however, the measurement values
of DLM are disproportional for some compositions of two packages, but there are also
exceptions such that the complexity of a composition of two packages is lower than the
measurement values of the packages, which is why DLM does not satisfy Property 5. This
is because the distance of dependencies within a composition is 0. Hence, the composition
of two packages that heavily depend on each other has most likely a lower measurement
value than that of the individual packages.
The measures Ca, Ce, I, DCMLCOM3 and DCMSIM also do not satisfy Property 5. Ce
and Ca focus on the outgoing and incoming dependencies of a package. Thus, dependencies
within a package are not considered such that the measurement value of a composition of
packages that depend on each other is lower than of the individual packages. Since I is
based on Ce and Ca, I does also not satisfy Property 5 for the same reasons as Ce and
Ca. DCMLCOM3 in turn does not satisfy Property 5 because it is not normalized such
that the cohesion value for the composition of two packages is higher than or equal to
that of the individual packages. DCMSIM does not satisfy Property 5 because of some
exceptions where the composition of two packages contains more pairs of classes that
share their dependencies than the packages themselves.
Lastly, NOC does not satisfy Property 6 because it is a counting measure. As such
the measurement values of NOC increase uniformly. Hence, the measurement value of
the composition of two packages is equal to the sum of the measurement values of the
packages.

25

7 Practical Evaluation

Following the theoretical analysis of the defined measures, we conduct a practical evalu-
ation of the measures on the example of the open-source project CPAchecker (v.1.9.1),
a configurable software-verification platform for C and Java programs, to identify cor-
relations between the defined measures and evaluate the practical applicability of the
proposed measures. The code base of CPAchecker is written in Java and consists of
230 packages with 3596 classes including interfaces, abstract and static classes of which
1440 are nested classes. Furthermore, we also found 115 test classes, i.e., classes whose
name ends on "Test" and 1015 external references to classes which are not in the domain
"org.sosy_lab.cpachecker" of the project. We listed these classes and references separately
because we focus for the practical evaluation on classes which are in the domain and
also relevant for the functionality of CPAchecker. Thus, we only consider dependencies
between classes of CPAchecker which are not test classes and ignore dependencies to
classes of external libraries.

7.1 Implementation

Since we needed to implement the measures for practical evaluation, we decided to develop
our own prototypical measurement tool Jade for maximum flexibility instead of using an
existing software-analysis platform. However, we used the command line tool jdeps [18],
which is part of the JDK, to generate the dependency graph for CPAchecker. It uses the
Java class dependency analyzer to generate and store the dependency graph of a Java
project including external dependencies as a directed graph in a dot file.
Jade itself was developed with Python and consists of several scripts, the code can be
found online (1). The first script depgraph.py parses the dependency graph generated by
jdeps from the dot file, removes the vertices and edges from the graph which should be
ignored according to the restrictions mentioned above and stores the refined graph as
json file under "./data/depgraph.json". The second script measures.py reads the refined
graph from the json-file, calculates the measurement values of the defined measures for all
packages and stores the calculated values for each measure in a separate json file under

1Github code repository for the measurement tool Jade: https://github.com/simon-lund/jade/tree/
304a35e8cad74b9bbfca71ff67782ef790b1e777

26

https://github.com/simon-lund/jade/tree/304a35e8cad74b9bbfca71ff67782ef790b1e777
https://github.com/simon-lund/jade/tree/304a35e8cad74b9bbfca71ff67782ef790b1e777

7 Practical Evaluation

"./data/<measure>.json". The third script report.py reads the json files of all measures
as well as the json file storing the dependency graph and generates stores a report in
markdown, the colored graphs of the different measures as shown below as well as a
correlation matrix for all measures defined in this thesis.
The scripts can be called separately, however, it is recommended to use main.py which
runs the scripts consecutively. Note that the scripts depgraph.py and report.py depend on
config.py which specifies the domain of the software project, the location of the dot file
generated by jdeps and a deny list containing classes that should also be excluded from
the dependency graph of the software system under consideration. Furthermore, Jade
also includes a test suite with several smaller, manually crafted dependency graphs for
which we calculated the different measures by hand to test the script measures.py.

7.2 Graph Analysis

The dependency graph of CPAchecker has 3596 vertices according to the number of classes
in CPAchecker and 32 183 edges, i.e, there are 32 183 dependencies defined between the
classes of CPAchecker. The json file with the dependency graph of CPAchecker, the data
sets for the measures as well as the generated graphs can also be found online (2) Based
on this data, we will analyze the distribution of the measurement values for the different
measures and evaluate the practical applicability of the proposed measures. Note that
the graphs, if not stated otherwise, are sorted by their y-values so that the y-values of
the different graphs do not necessarily belong to one and the same package.

Number of Classes

The graph for the measurement values of NOC (cf. Figure 7.1) shows that the majority
of the packages of CPAchecker, i.e, 197 packages, contain less than 30 classes. This fact is
underlined by the arithmetic mean of the measurement values of NOC, i.e., the ratio of
the number of all classes to the number of all packages of CPAchecker which is 3596

230 ≈ 16.
In the respective data set for NOC we found 158 packages with less than 16 classes
including 17 packages containing less than 3 classes. In contrast, Table 7.1 shows the five
packages of CPAchecker with the highest NOC measurement values. Thus, the package
"cpa.automaton" is with 132 classes by far the largest package.

2Github data repository for CPAChecker: https://github.com/simon-lund/cpachecker-data/tree/
9e3932a617ca39999536d16847522cf11f1db759

27

https://github.com/simon-lund/cpachecker-data/tree/9e3932a617ca39999536d16847522cf11f1db759
https://github.com/simon-lund/cpachecker-data/tree/9e3932a617ca39999536d16847522cf11f1db759

7 Practical Evaluation

Figure 7.1: Graph for the measurement values of NOC

Coupling Measures

If we take a look at the graphs of Ce and Ca as shown in Figure 7.2, we notice that
the range of the measurement values of Ca is by far larger than the one of Ce. This is
because the maximum value of Ce for a package P is NOC(P), i.e., the number of classes
in P , while the maximum value of Ca for P is the number of classes in the system (in
this case 3596 minus NOC(P). Furthermore, in both cases most packages of CPAchecker
have a relatively low value. However, this effect is more extreme for Ca than for Ce,
because of the larger range of the measurement values of Ca. There are 203 packages

Rank Package NOC

1 cpa.automaton 132
2 util 79
3 cpa.invariants 75
4 cpa.predicate 74
5 core.algorithm.bmc 69

Table 7.1: The five packages with the highest NOC values

28

7 Practical Evaluation

whose Ce value is lower than 25 and 191 packages with a Ca value lower than 45. Thus,
neither the measurement values of Ce nor of Ca are uniformly distributed.

Figure 7.2: Graphs for the measurement values of Ce and Ca

Now, if we take a look at the five packages of CPAchecker with the highest Ca values
and their corresponding Ce and I measurement values as shown in Table 7.2, we notice
that the Ce values of these core packages are relatively small compared to the Ca values
resulting in a very low I value for the packages. However, the Ce values of these packages
are in the upper third of the Ce values for the packages of CPAchecker.

Rank Package Ca Ce I

1 cfa.model 969 14 0.014
2 core.interfaces 921 23 0.024
3 exceptions 708 11 0.015
4 util 623 55 0.081
5 cfa.ast.c 438 56 0.113

Table 7.2: The five packages with the highest Ca values and corresponding Ce and I

values

Furthermore, if we look at the five packages of CPAchecker with the highest Ce values
and their corresponding Ca and I values (cf. Table 7.3), we notice that the Ca values of
these package are in the upper fifth of the Ca values. Hence, there is a weak correlation
between the Ce and Ca values for the packages of CPAchecker.

29

7 Practical Evaluation

Rank Package Ce Ca I

1 cpa.automaton 98 41 0.705
2 cpa.predicate 65 78 0.455
3 core.algorithm.bmc 57 30 0.655
4 cfa.ast.c 56 438 0.113
5 util 55 623 0.081

Table 7.3: The five packages with the highest Ce values and corresponding Ca and I

values

Having discussed Ca and Ce, we now take a closer look on the graph for the normalized
measure I as shown in Figure 7.3. In contrast to Ce and Ca, the measurement values
of I are very uniformly distributed. So, despite the non-uniformity of the measurement
values of Ce and Ca for the packages of CPAchecker the stability of the packages varies
considerably.

Figure 7.3: Graph for the measurement values of I

However, the graph has also 7 bigger tiers that stand out particularly; one with y-value
0 at the beginning and one with y-value 1 at the end and five in between. Especially
interesting for us is the tier at the end of the graph which implies that there are packages

30

7 Practical Evaluation

with an I measurement value of 1. Hence, these packages have a Ca value of 0. According
to the data sets of I and Ca, there are 31 of such packages in CPAchecker. However, an
in-depth analysis to investigate the reasons that these packages are not used by other
packages of CPAchecker is beyond the scope of this thesis.

Dependency Cohesion Measures

Figure 7.4 shows the graphs of the three variants of DCM , DCMLCOM3 and the two
normalized measures DCMSIM , DCMCC . In comparison with the other unnormalized
measures DCMLCOM3 has by far the largest measurement values with a maximum value
of 3605 for the package "cpa.automaton" which is also the package with the most classes.
As a consequence, the measurement values are poorly distributed because the majority
of the packages, i.e., 206 packages, have a measurement value below 300 whereby the
arithmetic mean of the measurement values is 131. However, this does not mean that most
packages of CPAchecker have low dependency cohesion because for the interpretation of
DCMLCOM3 one should take the number of the packages into account which is 16 on
average.
The normalized measures are more uniformly distributed with DCMCC being slightly
better distributed than DCMSIM where the majority of the packages, i.e., 197 packages,
have a measurement value below 0.25. Also note that the measurement values of DCMCC

range between 0 and 1 while the measurement values of DCMSIM only range between 0
and 0.55. Thus, according to DCMCC there are packages that are fully cohesive while on
other hand according to DCMSIM there are no such packages.

Furthermore, we discovered that the packages with a DCMCC measurement value of 1,
i.e., the packages with the highest measurement values all have a DCMSIM measurement
value of 0. This is the case because all of these packages have only one class so that
there are no pairs of classes for which a similarity value could be determined resulting
in a DCMSIM measurement value of 0. This explains the tiers at the end of the graph
of DCMCC and at the beginning of the graph of DCMSIM . In addition, we listed in
Table 7.4 the five packages with the highest value of DCMSIM and their corresponding
DCMCC value which are, except for the value of the fourth package, in the upper tenth
of the measurement values.
However, the second and third package show that DCMSIM and DCMCC measure

different aspects in regard to the dependency cohesion of a package. By counting the
number of classes that use the dependency for all dependencies of the second package, we
found that only 5 of the 43 different dependencies of the package are used by almost all
classes of the package. This explains the low value for DCMCC which measures the overall
dependency cohesion of the package. On the other hand, the package has a DCMLCOM3

value of 410, i.e., 410 of 465 pairs of classes share at least one dependency. Furthermore,

31

7 Practical Evaluation

Figure 7.4: Graphs for the measurement values of DCMLCOM3, DCMSIM and DCMCC

Rank Package DCMSIM DCMCC

1 cpa.value.symbolic.refiner.interpolant 0.544 0.773
2 cpa.value.symbolic.type 0.523 0.165
3 cpa.invariants.operators.bitvector 0.521 0.163
4 cpa.pointer2.util 0.5 0.563
5 cpa.octagon.coefficients 0.467 0.617

Table 7.4: The five packages with the highest DCMSIM values and corresponding
DCMCC values

each class of the package has only 7 dependencies on average so that even a low number of
common dependencies of two classes results in a comparatively high similarity value. Both
points together explain the relatively high measurement value for DCMSIM . From this
follows that DCMCC is better suited than DCMSIM to measure the dependency cohesion
of the package as it uses a more holistic approach. Also, DCMCC is more useful than
DCMLCOM3 because it allows better comparison and interpretation of the measurement
values than DCMLCOM3. This is because DCMLCOM3 only counts the pairs of classes
of a package that share dependencies. Thus, it does not properly reflect the dependency
cohesion for a package and we also need the NOC value of a package for comparison and
a more comprehensive interpretation of its DCMLCOM3 value. Therefore, only DCMCC

meets our expectation for a dependency cohesion measure and we recommend to use
DCMCC as the measure of choice over DCMLCOM3 and DCMSIM .

32

7 Practical Evaluation

Package DepDegree

In contrast to the other normalized measures, the graph for P-DepDegree as shown in
Figure 7.5 stands out because the measurement values of P-DepDegree are clustered which
results in a jump of the measure’s graph. We found only 21 packages in the corresponding
data set with a measurement value close to 0 and therefore lower than 0.7. Thus, the
majority of the packages have a measurement value slightly higher than 0.71.

Figure 7.5: Graph for the measurement values of P-DepDegree

This is also reflected in the highest values of P-DepDegree (cf. Table 7.5) of which none
is higher than 0.76. However, most packages have a P-DepDegree value between 0.71 and
0.73 whereby 95 packages have a measurement value of 0.718. Thus, the data set as a
whole implies that the transitive dependency graphs for 209 packages each cover more
than 71% of the system’s dependency graph.

Thus, we compared the transitive dependency graphs of the packages with a P-DepDegree
measurement value greater than 0.71. With this limitation we were able to find a subgraph
consisting of 2646 classes which all of the transitive dependency graphs share. A svg and
a corresponding dot file of this core dependency graph can be found online in the data
repository for CPAchecker (> core_depgraph). The analysis of this graph, is beyond
the scope of this thesis. Although we expected a more balanced distribution of the

33

7 Practical Evaluation

Rank Package P-DepDegree
1 cpa.value.symbolic.refiner.delegation 0.758
2 cpa.value.symbolic.refiner 0.751
3 cpa.usage.refinement 0.747
4 cpa.value.refiner 0.747
5 cfa.parser.eclipse.c 0.734

Table 7.5: The five packages with the highest P-DepDegree values

measurement values, the extreme distribution of the data emphasized the fact that P-
DepDegree is a good indicator to identify base-packages and core classes on which most
of the classes and packages of a system depend.

Dependency Locality Measure

Last, we take a look at the graph of DLM as shown in Figure 7.6 which describes a
flatter curve in comparison to the graphs of Ce, Ca, DCMLCOM3 and NOC. Therefore
in contrast to the other unnormalized measures, there is no comparatively small value
such that the majority of the measurement values of DLM are below this value. Hence,
the measurement values of DLM are more uniformly distributed over the range of 0 to
850 which is similar to the range of the measurement values of Ca.

In the corresponding data set we found 9 packages whose measurement value of DLM is
0. These packages have per definition of DLM also a Ce value of 0. In addition, Table 7.6
shows the five packages with the highest DLM measurement values and corresponding
NOC and Ce values. The differences between these values show the impact of the locality
of the dependencies of a package. Except for the second and third packages, the values of
NOC an Ce are smaller values. Thus, should DLM be considered for the evaluation of
software systems as it sets the dependencies of a package in relation to the package tree
of a software system and therefore provides additional, useful insights with regard to the
location of dependencies within a system.

Rank Package DLM NOC Ce

1 cpa.value 849 26 23
2 cpa.predicate 787 74 65
3 cpa.automaton 715 132 98
4 cpa.smg 668 46 34
5 cpa.invariants 646 75 43

Table 7.6: The five packages with the highest DLM values

34

7 Practical Evaluation

Figure 7.6: Graph for the measurement values of DLM

7.3 Correlations

Figure 7.7 shows the correlation matrix(3) for all measures defined in this thesis based
on their measurement values for the packages of CPAchecker, calculated using Jade.
According to the matrix, a strong correlation exists between the measures NOC and Ce
with a correlation value of 0.94. Thus, the graphs of NOC and Ce as shown in Figure 7.8
are very similar to each other whereby the NOC for package is the upper boundary for
its Ce value. Furthermore, there is also a strong correlation between DCMLCOM3 and
NOC with a value of 0.89. The reason for this correlation is that the more classes a
package has, the higher the probability of pairs of classes sharing dependencies, which
results in a higher DCMLCOM3 value for packages with a higher NOC value and a lower
DCMLCOM3 value for packages with a lower NOC value. Also, the value of DCMLCOM3

is limited by the number of classes, i.e., the NOC value of a package such that there are
not disproportional outliers regarding the data set of DCMLCOM3 for packages with a low
number of classes. In addition, there is also a strong correlation between DCMLCOM3

and Ce with a value of 0.86 because of the strong correlation between NOC and Ce.
Beyond that, there are also weak correlations between the measures Ce and DLM with

3Used method of correlation: Pearson

35

7 Practical Evaluation

Figure 7.7: Correlation matrix regarding all defined measures

a value of 0.58 as well as between DCMCC and NOC with a negative value of -0.55. Ce
and DLM correlate with each other because DLM is, among other things, based on the
number of dependencies in a package and the more classes of a package depend on classes
outside the package, the higher the number of dependencies of package. The negative
correlation between DCMCC and NOC exists because DCMCC is defined as fraction
whereby the denominator is defined as |CP | ∗ |DP |, i.e., NOC(P) ∗ |DP | for a package
P . Thus, the larger the number of classes for package, the lower is its DCMCC value.
Also, because of the strong correlation between NOC and Ce there are additional weak
correlations between DLM and NOC with a value of 0.51 as well as between DCMCC

and Ce with a negative value of -0.51.
As you can see, there are also correlations with a value lower than |0.5| between some
measures. Because we consider them as very weak relations between the defined measures,
we will not discuss them in more detail. Note, however, that these correlations may be
stronger for other software projects. This is to be evaluated by further research.

36

7 Practical Evaluation

Figure 7.8: Graph for the measurement values of NOC with the corresponding values of
Ce

7.4 Threats to Validity

The following points might impact the computer-aided calculation of the measurement
values of the different measures. Therefore, they are considered threats to validity.

Bugs. We wrote several test cases with smaller, manually crafted graphs and calculated
the measurement values of each measure by hand to check the correctness of the imple-
mented scripts. Using these tests, we found and fixed several bugs such that all tests pass.
Nevertheless, our program may still contain bugs we have not discovered yet. We assume,
however, that this is very unlikely since the test cases cover various key characteristics
and different variants of dependency graphs.

Jdeps. While studying the dependency graph generated by Jdeps, we noticed dependen-
cies between nested classes and their parent classes which apparently were added because
of their parent-child relation. Hence, in some cases the nested classes did not actually use
the parent classes. However, we do not know if a nested classes uses its parent class and
therefore we can not remove the dependencies which only exist because of the parent-child

37

7 Practical Evaluation

relation. Thus, we decided to keep these dependencies since this concerns only 1440 of
the 32 183 dependencies, i.e., 4.47% of the dependencies of CPAchecker. Therefore, we
assume that these dependencies only have a low impact on the overall result.

Deny list. While analyzing the data sets we identified several classes that were only
related to test classes, for example, nested classes of test classes which were not auto-
matically removed from the dependency graph. Thus, we implemented a deny list with
the found classes so that they were also removed by the script. But there may be a few
other classes that should also be excluded for similar reasons which we did not find. If
this should be the case, however, we assume that it would only slightly affect the overall
result.

Codebase. We evaluated the measures using the dependency graph of CPAchecker.
This means that the practical evaluation depends on the architecture and code quality of
CPAchecker. Therefore, it is possible that certain factors were underestimated, overesti-
mated or even not considered in the evaluation of the data. However, we have been able
to show the practical applicability of the measures and therefore consider the practical
evaluation to be sufficient, although the measures will likely perform differently on other
software systems.

38

8 Future Work

With the theoretical and practical evaluation we have established a solid basis for future
work on the proposed measures. Future work regarding this thesis may include the
following topics.

Theoretical Evaluation. We evaluated the proposed measures using Weyuker’s Prop-
erties. However, Weyuker’s Properties have been criticized by different authors and do
not cover all aspects of software measures. Thus, future work could include the theoretical
evaluation of the proposed measures using other evaluation frameworks suitable for the
analysis of the dependency measures on package-level.

Practical Evaluation. We used CPAchecker for the practical analysis of the proposed
measures. In addition, practical evaluations of the proposed measures could also be
conducted on the example of other open-source software systems with different architecture.
Furthermore, the influence of different software architectures on the proposed measures
could be analyzed.

Metric Suite. The analysis of software systems requires a well-balanced metric suite
that covers as many different aspects of software systems as possible. The proposed
metrics, however, cover only package-level characteristics of software systems. Hence, it
would be useful to combine the proposed metric with other measures that focus on other
aspects of software systems. In this context the measures could also be implemented and
added to existing tools for measuring software systems.

SonarQube [27] This platform provides the capability to not only show health of an
application but also to highlight issues newly introduced. For this purpose it uses software
metrics to assess the code quality of software systems. As it provides a plugin system
for extension with new software measures, it is a good idea to implement the proposed
measures with SonarQube to make them accessible to a wide range of developers.

Automatic Optimization. The evaluation of large software systems using a metric
suite and the search for changes that reduce the complexity of the software is time-
consuming and costly. Therefore, the development of tools for automatic optimization

39

8 Future Work

is promising. For instance, one could try to use simulated annealing [15] with a fixed
number of packages to reduce the overall complexity of a software system (the sum of the
measurement values of the packages) by moving the classes between the packages.

CPAchecker To avoid further increase of the complexity of CPAchecker in regard to
the dependencies of the packages, one could use ArchUnit [2] to enforce a architecture
with low complexity according to the proposed measures. ArchUnit is an open-source
library to automatically test Java architectures as plain unit tests. That is, ArchUnit can
check dependencies between packages and classes, check for cyclic dependencies and more.
Furthermore, one could analyze the core dependency graph found during the practical
evaluation of the measures to evaluate whether the overall complexity of CPAchecker
could be reduced by refactoring and optimization of this graph. In addition, an analysis
could be conducted to determine why there are 30 packages which are not used by other
packages of CPAchecker.

40

9 Conclusion

We proposed five dependency measures on package-level, four of which were inspired
by existing class- or statement-level measures. In addition, we conducted a theoretical
evaluation and established Weyuker’s Properties on package-level for a formal analysis of
of the measures. We also conducted a practical evaluation using the code base and the
dependency graph of CPAchecker to evaluate the practical applicability of the measures
for which we implemented the prototypical measurement tool Jade, in Python. Regarding
the evaluation, only three of the proposed measures DCMCC , P-DepDegree and DLM
met our expectations. However, further evaluations are required to clearly prove the
usefulness and applicability of the measures.

41

List of Figures

6.1 Exemplary dependency graph for the theoretical evaluation of Ca 17
6.2 Exemplary dependency graph for the theoretical evaluation of Ce 18
6.3 Exemplary dependency graph for the theoretical evaluation of I 19
6.4 Exemplary dependency graph for the theoretical evaluation of DCMLCOM3 20
6.5 Exemplary dependency graph for the theoretical evaluation of DCMCC . 21
6.6 Exemplary dependency graph for the theoretical evaluation of P-DepDegree 22
6.7 Exemplary dependency graph and package tree for the theoretical evalua-

tion of DLM . 24

7.1 Graph for the measurement values of NOC 28
7.2 Graphs for the measurement values of Ce and Ca 29
7.3 Graph for the measurement values of I . 30
7.4 Graphs for the measurement values of DCMLCOM3, DCMSIM and DCMCC 32
7.5 Graph for the measurement values of P-DepDegree 33
7.6 Graph for the measurement values of DLM 35
7.7 Correlation matrix regarding all defined measures 36
7.8 Graph for the measurement values of NOC with the corresponding values

of Ce . 37

42

List of Tables

6.1 Overview of the Weyuker’s Properties fulfilled by the measures 25

7.1 The five packages with the highest NOC values 28
7.2 The five packages with the highest Ca values and corresponding Ce and I

values . 29
7.3 The five packages with the highest Ce values and corresponding Ca and I

values . 30
7.4 The five packages with the highest DCMSIM values and corresponding

DCMCC values . 32
7.5 The five packages with the highest P-DepDegree values 34
7.6 The five packages with the highest DLM values 34

43

Bibliography

[1] S. Almugrin, W. Albattah, and A. Melton. “Using indirect coupling metrics to
predict package maintainability and testability.” In: J. Syst. Softw. 121 (2016),
pp. 298–310. doi: 10.1016/j.jss.2016.02.024.

[2] ArchUnit. https://www.archunit.org/.

[3] M. Bauer and M. Trifu. “Architecture-Aware Adaptive Clustering of OO Systems.”
In: 8th European Conference on Software Maintenance and Reengineering (CSMR
2004), 24-26 March 2004, Tampere, Finland, Proceedings. IEEE Computer Society,
2004, pp. 3–14. doi: 10.1109/CSMR.2004.1281401.

[4] D. Beyer and A. Fararooy. “A Simple and Effective Measure for Complex Low-
Level Dependencies.” In: The 18th IEEE International Conference on Program
Comprehension, ICPC 2010, Braga, Minho, Portugal, June 30-July 2, 2010. IEEE
Computer Society, 2010, pp. 80–83. doi: 10.1109/ICPC.2010.49.

[5] D. Beyer and P. Häring. “A formal evaluation of DepDegree based on weyuker’s
properties.” In: 22nd International Conference on Program Comprehension, ICPC
2014, Hyderabad, India, June 2-3, 2014. Ed. by C. K. Roy, A. Begel, and L. Moonen.
ACM, 2014, pp. 258–261. doi: 10.1145/2597008.2597794.

[6] C. Bonja and E. Kidanmariam. “Metrics for class cohesion and similarity between
methods.” In: Proceedings of the 44st Annual Southeast Regional Conference, 2006,
Melbourne, Florida, USA, March 10-12, 2006. Ed. by R. Menezes. ACM, 2006,
pp. 91–95. doi: 10.1145/1185448.1185469.

[7] L. C. Briand, J. W. Daly, and J. Wüst. “A Unified Framework for Cohesion
Measurement in Object-Oriented Systems.” In: Empir. Softw. Eng. 3.1 (1998),
pp. 65–117. doi: 10.1023/A:1009783721306.

[8] L. C. Briand, S. Morasca, and V. R. Basili. “Property-Based Software Engineering
Measurement.” In: IEEE Trans. Software Eng. 22.1 (1996), pp. 68–86. doi: 10.
1109/32.481535.

[9] S. R. Chidamber and C. F. Kemerer. “A Metrics Suite for Object Oriented Design.”
In: IEEE Trans. Software Eng. 20.6 (1994), pp. 476–493. doi: 10.1109/32.295895.

44

https://doi.org/10.1016/j.jss.2016.02.024
https://www.archunit.org/
https://doi.org/10.1109/CSMR.2004.1281401
https://doi.org/10.1109/ICPC.2010.49
https://doi.org/10.1145/2597008.2597794
https://doi.org/10.1145/1185448.1185469
https://doi.org/10.1023/A:1009783721306
https://doi.org/10.1109/32.481535
https://doi.org/10.1109/32.481535
https://doi.org/10.1109/32.295895

Bibliography

[10] G. R. Choudhary, S. Kumar, K. Kumar, A. Mishra, and C. Catal. “Empirical
analysis of change metrics for software fault prediction.” In: Comput. Electr. Eng.
67 (2018), pp. 15–24. doi: 10.1016/j.compeleceng.2018.02.043.

[11] CPAchecker. https://cpachecker.sosy-lab.org/.

[12] M. O. Elish. “An exploratory study of package metrics as change size indicators in
evolving object-oriented software.” In: Comput. Syst. Sci. Eng. 28.4 (2013).

[13] V. Gupta and J. K. Chhabra. “Package Coupling Measurement in Object-Oriented
Software.” In: J. Comput. Sci. Technol. 24.2 (2009), pp. 273–283. doi: 10.1007/
s11390-009-9223-6.

[14] V. Gupta and J. K. Chhabra. “Package level cohesion measurement in object-oriented
software.” In: J. Braz. Comput. Soc. 18.3 (2012), pp. 251–266. doi: 10.1007/s13173-
011-0052-4.

[15] D. Henderson, S. H. Jacobson, and A. W. Johnson. “The Theory and Practice of
Simulated Annealing.” In: Handbook of Metaheuristics. Ed. by F. W. Glover and G. A.
Kochenberger. Vol. 57. International Series in Operations Research & Management
Science. Kluwer / Springer, 2003, pp. 287–319. doi: 10.1007/0-306-48056-5_10.

[16] M. Hitz and B. Montazeri. “Measuring coupling and cohesion in object-oriented sys-
tems.” In: Proceedings of International Symposium on Applied Corporate Computing.
1995, pp. 25–27.

[17] H. Izadkhah and M. Hooshyar. “Class Cohesion Metrics for Software Engineering:
A Critical Review.” In: Comput. Sci. J. Moldova 25.1 (2017), pp. 44–74.

[18] jdeps. https://docs.oracle.com/javase/9/tools/jdeps.htm.

[19] R. Kumar, A. Choudhary, and A. Agrawal. “Inheritance Metrics for Object-Oriented
Design.” In: International Journal of Computer Science & Information Technology
2 (Dec. 2010). doi: 10.5121/ijcsit.2010.2602.

[20] P. Lima, E. Guerra, P. Meirelles, L. Kanashiro, H. Silva, and F. F. Silveira. “A
Metrics Suite for code annotation assessment.” In: J. Syst. Softw. 137 (2018),
pp. 163–183. doi: 10.1016/j.jss.2017.11.024.

[21] S. Mal and K. Rajnish. “New Class Cohesion Metric: An Empirical View.” In:
International Journal of Multimedia and Ubiquitous Engineering 9 (June 2014),
pp. 367–376. doi: 10.14257/ijmue.2014.9.6.35.

[22] R. C. Martin. Agile Software Development: Principles, Patterns, and Practices.
Prentice Hall PTR, 2003. isbn: 0135974445.

45

https://doi.org/10.1016/j.compeleceng.2018.02.043
https://cpachecker.sosy-lab.org/
https://doi.org/10.1007/s11390-009-9223-6
https://doi.org/10.1007/s11390-009-9223-6
https://doi.org/10.1007/s13173-011-0052-4
https://doi.org/10.1007/s13173-011-0052-4
https://doi.org/10.1007/0-306-48056-5_10
https://docs.oracle.com/javase/9/tools/jdeps.htm
https://doi.org/10.5121/ijcsit.2010.2602
https://doi.org/10.1016/j.jss.2017.11.024
https://doi.org/10.14257/ijmue.2014.9.6.35

Bibliography

[23] V. B. Misic. “Cohesion is Structural, Coherence is Functional: Different Views, Differ-
ent Measures.” In: 7th IEEE International Software Metrics Symposium (METRICS
2001), 4-6 April 2001, London, England, UK. IEEE Computer Society, 2001, p. 135.
doi: 10.1109/METRIC.2001.915522.

[24] S. Misra. “Modified Set of Weyuker’s Properties.” In: Proceedings of the Firth IEEE
International Conference on Cognitive Informatics, ICCI 2006, July 17-19, Beijing,
China. Ed. by Y. Yao, Z. Shi, Y. Wang, and W. Kinsner. IEEE Computer Society,
2006, pp. 242–247. doi: 10.1109/COGINF.2006.365703.

[25] S. Misra and I. Akman. “Applicability of Weyuker’s properties on OO metrics:
Some misunderstandings.” In: Comput. Sci. Inf. Syst. 5.1 (2008), pp. 17–23. doi:
10.2298/CSIS0801017M.

[26] M. L. Ponisio and O. Nierstrasz. “Using Contextual Information to Assess Package
Cohesion.” In: 2006.

[27] SonarQube. https://www.sonarqube.org/.

[28] N. Tagoug. “Object-Oriented System Decomposition Quality.” In: 7th IEEE Inter-
national Symposium on High-Assurance Systems Engineering (HASE 2002), 23-25
October 2002, Tokyo, Japan. IEEE Computer Society, 2002, pp. 230–236. doi:
10.1109/HASE.2002.1173127.

[29] E. J. Weyuker. “Evaluating Software Complexity Measures.” In: IEEE Trans. Soft-
ware Eng. 14.9 (1988), pp. 1357–1365. doi: 10.1109/32.6178.

[30] B. Xu, Z. Chen, and J. Zhao. “Measuring cohesion of packages in Ada95.” In:
Proceedings of the 2003 Annual ACM SIGAda International Conference on Ada:
The Engineering of Correct and Reliable Software for Real-Time & Distributed
Systems using Ada and Related Technologies 2003, San Diego, CA, USA, December
7-11, 2003. Ed. by R. C. Leif and R. E. Sward. ACM, 2003, pp. 62–67. doi:
10.1145/958420.958429.

46

https://doi.org/10.1109/METRIC.2001.915522
https://doi.org/10.1109/COGINF.2006.365703
https://doi.org/10.2298/CSIS0801017M
https://www.sonarqube.org/
https://doi.org/10.1109/HASE.2002.1173127
https://doi.org/10.1109/32.6178
https://doi.org/10.1145/958420.958429

	Acknowledgments
	Abstract
	Contents
	Introduction
	Related Work
	Measures
	Evaluation Frameworks

	Weyuker's Properties
	Existing Measures
	Proposed Package Measures
	Dependency Cohesion Measure
	Variant based on LCOM3
	Variant based on similarity measure
	Variant based on cohesion count

	Package DepDegree
	Dependency Locality Measure

	Theoretical Evaluation
	Proofs
	Summary

	Practical Evaluation
	Implementation
	Graph Analysis
	Correlations
	Threats to Validity

	Future Work
	Conclusion
	List of Figures
	List of Tables
	Bibliography

