
Bachelor’s Thesis

A Web Frontend for Visualization of
Computation Steps and their Results in

CPAchecker

Dr. Sonja Münchow

2020

SoSy-Lab LMU Munich, Germany
Supervisor: Prof. Dr. Dirk Beyer Advisor: Thomas Lemberger

Statement of originality
Hiermit versichere ich, dass die vorliegende Arbeit von mir selbstständig verfasst wurde
und dass keine anderen als die angegebenen Quellen und Hilfsmittel benutzt wurden, sowie
dass ich die Arbeit in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde
vorgelegt habe.

I hereby confirm that I have written the accompanying thesis by myself, without contribu-
tions from any sources other than those cited in the text , and that I have not yet submitted
the paper in the same or similar form to any other examination office.

München, Juni 2020

Dr. Sonja Münchow:

Abstract
CPAchecker is a highly acclaimed software verification tool, based on the CPA concepts.
Configurable program analysis (CPA) allows the expression of different program analysis
and model checking approaches in one single formalism. Analysis results can be viewed in-
teractively in form of a HTML document, created by the implemented ReportGenerator. The
report includes not only log entries, statistics, configuration properties, and source code to
be verified but also two interactive graphs. CFA, which shows the control-flow automaton of
the program and ARG, which shows the abstract reachability graph calculated by the anal-
ysis. Although the report is interactive, only final results of the computed and constructed
abstract reachability graph are displayed. It might be sufficient to view only the results of
the verification analysis, but since the CPA algorithm with its multiple analysis combining
opportunities makes it reasonably challenging to follow the complex computation, a visual-
ization of every single or at least every relevant calculation step would be an improvement
of the CPAchecker.

This thesis provides a new web frontend design and implementation for visualization of com-
putation steps and their results. The implementation includes a new CPA (CollectorCPA),
acting as a wrapper of the ARG CPA. As the name suggests, it serves to collect relevant
calculation steps, which are displayed in the new web frontend. The new web frontend Com-
putationSteps.html will be generated in addition to report.html. It includes the graphical
representation of the program flow and reached abstract states in form of an interactive
ARG. The final ARG can be inspected both as a standard ARG, where only the final cal-
culation steps are displayed, and as an ARG with intermediate merging states, where the
relevant states are highlighted in color. The inspection of the ARG is supported by the
zoom and pan function, and the tooltip. A novelty of this implementation is the viewable
interactive step-by-step construction of the ARG. The user has the possibility to go back
an forth in the chronological construction of the ARG by using PREV/NEXT buttons or
a slider. Source code of the C-program to be analyzed and the developing ARG or compu-
tation steps graph are displayed side by side. The source code lines are corresponding to
the current edges of the ARG and are also highlighted in color. To achieve these goals we
used state-of-the-art web technologies like Dagre D3 for graph generation and for the step-
by-step construction of the ARG the use of D3 JavaScript libraries. The web design was
realized with CSS and HTML. In summary the newly implemented CPA and web frontend
help to understand the computation steps of the CPAchecker better and faster and is thus
a beneficial tool for teaching and the general user.

Contents

1 Introduction 8

2 Related Work 13

3 Theoretical Background 17
3.1 CPAchecker . 17

3.1.1 Control Flow Automaton . 17
3.1.2 Abstract Reachability Graph . 18
3.1.3 Configurable Program Analysis . 20
3.1.4 CPA-Algorithm . 24
3.1.5 CPAchecker . 25

3.2 Used Libraries and scripts . 27
3.2.1 D3 . 27
3.2.2 Dagre D3 . 27
3.2.3 jQuery . 28
3.2.4 Dot_to_ gif_sh . 28

3.3 CPAchecker report . 29

4 Implementation 32
4.1 CollectorCPA . 32
4.2 DOT Graph . 34
4.3 ARGStateView . 36
4.4 Graph Data . 37
4.5 Web Frontend . 40

5 Evaluation 50
5.1 Evaluation concept . 50
5.2 Evaluation results . 52

6 Future Work 58

7 Conclusion 60

4

Contents

Bibliography 61

Appendix 62
A.1 Survey Content . 63
A.2 Survey Results . 79

5

List of Figures

1.1 Report.html . 9
1.2 Merge Operation . 10
1.3 Step by step merge operation . 12

2.1 Screenshot of SATVIS, showing visualized derivation and interaction menu,
taken from [1] . 14

2.2 Main workflow of VisFuzz, Figure taken from [2] 15

3.1 Example C function and corresponding CFA, Figure taken from [4] 17
3.2 Abstract Reachability Graph . 19
3.3 Unwrapping of CollectorState for CPA operations 23
3.4 Merge of two CollectorStates . 23
3.5 CPA-Algorithm [4] . 25
3.6 Design for implementation, Figure taken from [3] 26
3.7 Structure of JSON object for ARG . 30

4.1 snapshot of animation.gif . 35
4.2 ARGStateView constructor . 36
4.3 ARGStateView getter . 37
4.4 Structure of the Collector JSON object . 39
4.5 Screenshot of the web frontend using Safari 41
4.6 Setting nodes and edges . 42
4.7 Zoom support . 42
4.8 Pan support, move your target into a position 43
4.9 Sorting the nodes in chronological order . 43
4.10 Start page . 44
4.11 Zoom and highlighted source code line . 45
4.12 Snapshot of evolving ARG before a merge 47
4.13 Snapshot of evolving ARG with merged element 47
4.14 Standard final ARG . 49
4.15 Final ARG with highlighted merge partners (plum) and merged elements (cyan) 49

5.1 Source code of the C-program and corresponding CFA 51

6

List of Figures

5.2 Implemented improvements . 53
5.3 Syntax highlighting . 55
5.4 Dashed node rim of stopped states . 56

7

1 Introduction

Motivation

Beside software testing, dataflow-analysis and model-checking are important techniques, used
for the formal verification of software. CPAchecker is an open-source tool which combines
the latter two approaches in just one formalism [3]. CPAchecker derived from the idea of
configurable program analysis [5]. Meaning the tool can be configured to perform a variety
of customized settings to fit the users focuses on either precision or efficiency. The main
CPAchecker algorithm can execute a reachability analysis on freely selectable combinations
of existing CPAs [3]. The CPA interface bares the opportunity for the definition of program
analyses. It includes the defining of an abstract domain, which is the abstraction of con-
crete semantics, the defining of a transfer relation, that associates abstract states with their
successors, the defining of a merge operator, which controls the merge of two states, and a
stop operator, which controls whether the analysis should terminate or continue at a given
state, and last but not least the defining of a precision adjustment operator for weakening
or strengthening of a given abstract state.

Before a program analysis starts, the C-program to be analyzed is arranged into a control-
flow automaton (CFA). The nodes of a CFA represent the locations, i.e. a program counter
value, and the edges of the CFA represent program operations, for instance a function call
or return. For some of the CPA configurations the program then computes an abstract
reachability graph (ARG). The nodes of the ARG represent states. Those states can be
told as an overestimation of the concrete reachable state. The edges of the ARG represent
the transfer relation to the successor states of a reached state. Once the program analysis
is finished the CPAchecker automatically generates a report of the verification run (see
Figure 1.1). Both graphs, CFA and ARG, are included as graphical representations in the
generated HTML-report which is located in the CPAchecker output folder. The report also
contains source code of the analyzed C-program, used configuration properties, log entries
and statistics. The report itself is interactive, but only final results of the computed and
constructed abstract reachability graph are displayed. The user also has the possibility to
view the constructed graphs, CFA and ARG, via an additional Python script and Graphviz
by using the generated CFA.dot or ARG.dot file, which are also found in the output folder
of CPAchecker.

8

CHAPTER 1. INTRODUCTION

Figure 1.1: Report.html

The whole report of the verification analysis gives the user a good and detailed overview
of the results. However for a deeper understanding of the CPA-algorithm a visualization of
computation steps is missing.

Visualization refers to the process of translating e.g. logically difficult to formulate contexts
into visual media in order to make them understandable. Furthermore, visualization is used
to make a certain context clear, which results from a given set of data, but which is not
immediately obvious. Most people are visually oriented. It is easier to understand logically
demanding contexts when you "see" them. Meaning when you see what exactly e.g. the
merge operator of the CPAchecker is calculating, the whole final results becomes clearer to
the one who is using the CPAchecker to verify his written C-Program. As a consequence it
will become easier to find errors and inconsistencies since verification results could be faster
reviewed by visual inspection.

It is a typical students exercise to perform a CPA analysis manually and represent the
resulting set of reachable states as an ARG. To check their manual calculated result, students
can use the final ARG of the CPAchecker. As long as they made their calculations right
the final ARG is adequate to validate their results, but if they made somewhere mistakes
the ARG will no longer be sufficient. To follow the whole computation of reachable states,

9

CHAPTER 1. INTRODUCTION

represented by nodes in the final ARG is quite challenging. Students examining the final
ARG, regarding all steps of the algorithm, often come to a point where calculation steps
are difficult to understand, since the intermediate states are not displayed anymore. In the
Evaluation part (5.1) of this thesis this typical problem is presented in more detail by means
of a task for the survey participants.

Viewing the growth of the abstract reachability graph interactively or animated would be a
feature of the CPAchecker which is not only beneficial for students, but also for the interested
general user of verification software. The motivation that drove us was to visualize the
construction of the already existing ARG in the report step by step instead of the final ARG
view, because we hoped to make logically complex calculation steps easier to understand.
One such complex calculation is the merge operation of the CPAchecker. Merged states
disappear in the final ARG, only the state which is calculated by the merge operator is
visible. The two states, the merge partners are no longer visible. Compare (1) and (2) in
figure 1.2.

(1) Highlight Merge, showing the two merge partners in plum and the merged state in cyan

(2) Standard ARG, only the calculated merged state is visible

Figure 1.2: Merge Operation

Thus, information is missing in the final ARG product, which can only be calculated or
guessed at with great effort. The step-by-step visualization is intended to show the exact
generation and visualize the merging of states. How can this be realized? The idea we had
in mind was that states appear step by step in the correct chronological order and states
that are merged in the temporal future of the algorithm are somehow marked. When the
merge operation is performed by the CPAchecker, it should be clearly visible which states are

10

CHAPTER 1. INTRODUCTION

merged. The merge partners should be highlighted and appear in the correct chronological
order. The first step is the calculation of the transfer relation of the first merge partner
(and its successor). Followed by the appearance of the second merge partner. The next
computation step of the merge operator is the merge itself with the merged element as result
and the consequent disappearance of the merge partners. After the merge the ARG should
show the same as the standard ARG (See Figure 1.3).

Viewing the growth of the ARG step by step could be realized either by animating the
construction of the ARG or by interactively take action. Pressing PREV/NEXT buttons
or operating a slider are typical interactive HTML events. Before we decided to go for an
interactive web frontend, we pursued the idea using dot files for the animation, which had
several disadvantages (see section 4.2). The interactive web frontend has the advantage
to use interactive HTML events like PREV/NEXT buttons. The idea of going back and
forth visually when creating an ARG contributes to a deeper understanding of CPAchecker’s
results. Compare it to a movie where you missed the key moment but have the opportunity
to rewind. The result of the CPAchecker how it is shown in the final ARG is like the movie
with the missed key moment. The new interactive web frontend allows you to repeat the
key moment as many times as you like, respectively until you understand the key moments
such as the merge operation.

This thesis presents the new web frontend design and implementation for visualization of
computation steps and their result. It required the implementation of a new CPA, Collector-
CPA and the design and implementation of the web frontend in form of an additional HTML
file, ComputationSteps.html. The implemented CollectorCPA serves as a wrapper of the al-
ready existing ARG CPA. The ARG CPA is defined in order to track reachable abstract
states and build the ARG using the predecessor-successor relation of two abstract states.
Wrapping the ARG CPA allows to collect and store states which will be otherwise discarded
in the process of calculating reachable abstract states. Such destroyed states are for example
states which result in an more abstract state by the merge operation. But those are exactly
the states which will be necessary for a deeper understanding of the CPA algorithm and
consequently the results of the verification analysis. The data stored by the CollectorCPA
are passed to a JavaScript in JSON format. As for the report the new implementation also
uses Dagre D3 for the graph creation using the passed data. The additional output in form of
a HTML file has a new web design in order to fulfill the needs of a step-by-step construction
of the ARG. In order to make the graph structure, which is actually static from Dagre D3,
interactive, D3 JavaScript libraries are used. The fact that the new web front-end largely
delivers what it promises was evaluated by means of a survey.

11

CHAPTER 1. INTRODUCTION

(1) First merge partner and its successor are calculated and highlighted in color

(2) Second merge partner is calculated and highlighted in color

(3) Merged element in color with passed successor

(4) Next step, the color highlighting is removed again

Figure 1.3: Step by step merge operation

12

2 Related Work

In this section I introduce some related approaches for visualization of procedure and results
of software verification methods.

Static Verification of Linux kernel modules

Bugs in kernel modules may result in unstable operation of a kernel or an entire OS (Oper-
ating System). Zakharov et al. devised a new method for static verification of Linux kernel
modules which is embedded in a configurable toolset [6]. This toolset can be used to check
software written in the C programming language, since kernel modules for most of OSs are
developed using C. The final step of this new method for static verification is the analysis
of the verification results. One part of this analysis is that all error traces are uniformly vi-
sualized with links to the corresponding source code of the analyzed modules and the Linux
kernel. To facilitate analysis of error traces the user is provided with easy navigation over
error traces and over corresponding source files of modules, kernel, and contract specifica-
tions. However no error trace graphs are provided, which could further improve the analysis
of the verification results of the configurable toolset.

SATVIS

Automated theorem proving is a sub-area of formal verification of software programs. A
state-of-the-art theorem prover is VAMPIRE1. Gleis et al. designed SATVIS [1] to support
interactive visualization of the saturation algorithm used in VAMPIRE. The goal was to
ease the manual analysis of VAMPIRE results. SATVIS is a tool for interactively visual-
izing saturation-based proof attempts in first-order theorem proving. It is build on top of
VAMPIRE. SATVIS visualizes the DAG (Directed Acyclic Graph)-structure of the VAM-
PIRE saturation as derivation graph, where a node represents a clause. Figure 2.1 shows a
screenshot of the derivation graph and the interaction menu. They used pygraphviz for the
graph layout and vis.js for the graph/derivation visualization. Vis.js is a JavaScript browser-
based visualization library which enables manipulation and interaction with large amounts
of dynamic data. In its entirety vis.js is comparable with Dagre D3. They claim that the

1http://www.vprover.org/

13

http://www.vprover.org/

CHAPTER 2. RELATED WORK

interactive features of SATVIS ease the task of understanding both successful and failing
proof attempts in VAMPIRE and hence can be used to further development of VAMPIRE.
It facilitate first-order theorem proving for both experts and non-experts.

Figure 2.1: Screenshot of SATVIS, showing visualized derivation and interaction menu, taken
from [1]

VisFuzz

Fuzzing [7] is a automated software testing technique to find implementation faults using
invalid or random data as input. After inputted the invalid data, the behavior of a system is
monitored to find severe bugs, like system crashes, memory leaks or unhandled exceptions.
Zhou et al. [2] developed an interactive tool for better understanding and intervening fuzzing
process. VisFuzz is the first tool for visualizing the fuzzing process. It is a LLVM (Low Level
Virtual Machine) plugin with several features like call graphs, control-flow flow graph etc. A
Python script for visualization is included. A test engineer interact with VisFuzz in 3 steps.
First monitoring chart and statistics, second analyzing the call graph and the control-flow
graph and last the intervention. Figure 2.2 shows the main workflow of VisFuzz. The nodes
of the call graph represent functions and the edges represent the call relation between two
functions. Interactive events are for example mouse hovering on a specific node which results
in displaying the corresponding function. Similar to the call graph nodes, the nodes of the
control-flow graph represent basic blocks and the edges represent the relation between them.
The data that VisFuzz visualizes are collected static analysis results and statistics. The web
application for viewing uses HTML5, Bootstrap and D3. Bootstrap is a framework for re-
sponsive web design. Since CPAchecker already uses D3 and we wanted to use it for the new
web frontend as well, the D3 library is explained in section 3.2.1. In summary VisFuzz helps

14

CHAPTER 2. RELATED WORK

test engineers to achieve higher coverage and find more vulnerabilities in less time. This is
reached because among other features of VisFuzz, the visualization helps test engineers to
understand the fuzzing process.

Figure 2.2: Main workflow of VisFuzz, Figure taken from [2]

15

CHAPTER 2. RELATED WORK

DIVINE

DIVINE 4 2 is a LLVM-based model-checking simulator developed by Ročkai and Barnat. It
is used for verification of C and C++ programs. The model checking analysis could be either
valid or a counterexample is found. It is important to examine counterexamples interactively,
since the state of a program is a very complicated structure [8]. Providing facilities for
inspecting data is a main function of a simulator. A memory graph is a satisfying basis for
presenting the program state to the user, since memory shortages and leaks often lead to
instability of a system. Ročkai and Barnat implemented a debug graph by overlaying the
already existing memory graph with metadata based on debug information. This enriches
the nodes with more type information than the memory graph nodes, which hold only the
information if a pointer exists or not. The behavior of a program as it executes, termed state
space, is a time dimension. It is also visualized as a graph, where the path from a initial
state to the current state can be viewed. The predecessors are the past of the program,
whereas the successors correspond to possible futures of the computation. This enables to
navigate back and forth in state space. When counterexamples are simulated, the stepping
through the program will simply follow a counterexample. That means the user is guided
through the unsound behavior of the program and stepping back and forth helps to locate
the cause of the problem.

In all four examples a visualization of computation steps and results are of great benefit for
the user of verification tools. A deeper understanding, even if the user has a rather low level
of expertise, is achieved if the visualization is in the form of a graph. A goal, we also want
to achieve by visualizing complex computation steps of the CPAchecker. SATVIS, DIVINE
and VisFuzz all show an obvious advantage for the visual understanding of complex contexts
when graphs are used instead of textual or tabular visualization. To show the calculation
steps as a step-by-step graph should make it much easier to understand the results of the
CPAchecker. In contrast to VisFuzz, however, we want to visualize not only the results
but also the calculation of them in chronological order. In comparison to DIVINE, the
visualization should be independent of whether a counterexample is found or not. The focus
is on the visualization of the calculation steps and the results regardless of whether the
verification result is true or false.

2https://divine.fi.muni.cz/index.html

16

https://divine.fi.muni.cz/index.html

3 Theoretical Background

3.1 CPAchecker
This chapter provides answers to how a CFA represents a C-program [4] (section 3.1.1),
what is a CPA (section 3.1.3) and how the CPA algorithm (section 3.1.4) calculates program
states on a CFA [5], how an ARG (section 3.1.2) represents those states and finally how this
is all implemented in the CPAchecker [3] (section 3.1.5).

3.1.1 Control Flow Automaton
CFA

A CFA is a directed graph. The nodes of the CFA are program locations and the edges
connect those locations where a transfer, namely a program operation is executed. Figure
3.1 (b) shows an example of a CFA for a corresponding C-program (a). The example is
taken from [4] .

Figure 3.1: Example C function and corresponding CFA, Figure taken from [4]

17

CHAPTER 3. THEORETICAL BACKGROUND

A control-flow automaton A = (L, l0, G) consists of a set L of control locations, an initial
location l0 ∈ L and a set of control-flow edges G ⊆ L x Ops x L, where Ops is the set of all
possible operations.

3.1.2 Abstract Reachability Graph
ARG

As a central data structure the CPAchecker constructs an abstract reachability graph (ARG).
In principle, an abstract reachability graph represents an examination of the state space of
a function, while making assumptions about the behavior of other functions it calls. Nodes
represent the explored abstract states and edges describe the successor relation of abstract
states and thus how the state space is explored.

An Abstract Reachability Graph R = (N, i, GARG) for a program P = A = (L, l0, G) and
a given CPA A (see 3.1.3 ARG CPA) consists of a set N ⊆ EARG of nodes (see 3.1.3 for
EARG), an initial node i ∈ N , and a set GARG ⊆ N x G x N of edges.

The construction of an ARG is done by continuous calculation of successors along the edges
of the CFA of the C-program to be analyzed. Figure 3.2 shows an example of an ARG as you
can view in the CPAchecker report. The nodes of the calculated ARG represent reachable
abstract states and the edges represent program operations of the corresponding CFA. The
initial node is the entry point of a program, where the analysis normally starts. If a program
statement exists between two nodes respectively two abstract states, the ARG edges are
labeled with this statement. If a node has no outgoing edges, it is called a final node. Final
nodes represent either the exit point of a program or a target state if the ARG is incomplete.
An ARG node stores the abstract state of its wrapped CPA. These abstract states include
for example the formulas which represent the abstract data states, control-flow locations
(program counter), and the information collected by the main CPAs used in parallel. Such
used CPAs are for example CompositeCPA, LocationCPA and ValueAnalysisCPA with their
own definition for the abstract domain, the transfer relation, merge and stop operator. The
CompositeCPA is used for combination of multiple CPAs. For tracking the program counter
explicitly the LocationCPA is used. Tracking concrete values (e.g. integers, Strings, floats or
pointer) for all program variables is done by the ValueAnalysisCPA. For more details about
those CPAs see [4].

18

CHAPTER 3. THEORETICAL BACKGROUND

Figure 3.2: Abstract Reachability Graph

19

CHAPTER 3. THEORETICAL BACKGROUND

3.1.3 Configurable Program Analysis
Concrete state

A concrete state c is a variable assignment that assigns to each variable in X ∪{pc} a value.
The set X is the set of all program variables and the program counter pc is the representative
of the program location.

CPA

A CPA D = (D, Π, , merge, stop, prec) consists of an abstract domain D, a set of precisions
Π, a transfer relation , a merge operator merge, a termination check stop, and a precision
adjustment prec [5].

The abstract domain D = (C, ε, J·K) is defined by the set C of concrete states, a semi-lattice
ε = (E,v,t,>,⊥) and a concretization function J·K. A semi-lattice consists of a set E of
elements, a partial order v, a join operator t, and a top element > and bottom element ⊥.
The elements from E are abstract states. The concretization function J·K : E → 2C assigns
to each abstract state the set of concrete states that it represents.

The transfer relation ⊆ E x G x E assigns to each abstract state e possible new abstract
states e′ that are abstract successors of e, and each transfer is labeled with a control-flow
edge g.

For soundness and progress of the program analysis the abstract domain and the transfer
relation have to satisfy several requirements.

The top element of abstract states has to represent all possible concrete states whereas the
bottom element has to represent none. J>K = C and J⊥K = ∅

The join operator has to be precise or over-approximating, meaning a join of two abstract
states has to be the same or a more concrete state that the union of two concrete states.
∀e, e′ ∈ E : Je t e′K ⊇ JeK ∪ Je′K.

If an abstract state e is smaller than another abstract state e’ the represented concrete
states must be a subset of the concrete states e’ is representing. ∀e, e′ ∈ E : e v e′ ⇒ JeK ⊆
Je′K.

The transfer relation has to be total and over-approximating in regards to program oper-
ations. ∀e ∈ E : ∃e′ ∈ E : e e′ and ∀e ∈ E, g ∈ G : ⋃

e
g

e′Je
′K ⊇ ⋃

c∈JeK{c′|c g−→ c′}.
The union of all concrete states represented by all possible abstract successors of e and a
program statement g need to be the same or more than the union of all concrete successors
of g and all concrete states represented by e.

20

CHAPTER 3. THEORETICAL BACKGROUND

The merge operator merge: E x E → E combines the information of two abstract states.
The result of merge(e, e′) is an abstract state and can be anything between e′ and >. That
means the merge operator weakens the second parameter depending on the first parameter.
The resulting state can hence only be more abstract. The merge operator is defined either
in mergesep(e, e′) = e′ or mergejoin(e, e′) = e t e′.

The stop operator stop: E x 2E → B checks if the abstract state that is given as first
parameter is covered by the set of abstract states given as second parameter. To ensure
soundness of the termination check, the value stop(e, R) = true has to imply JeK ⊆ ∪e′∈RJe′K.
If the value is true the CPA-Algorithm skips further analyzing the successor states of e.

Each of the configurable components of a CPA influences precision and cost. The precision
adjustment component can either strengthen or weaken an abstract state. It is defined as
prec : E x Π x 2ExΠ → E x Π.

ARG CPA

The ARG CPA is defined in order to track the abstract states in the reached set of the CPA-
Algorithm, and build an abstract reachability graph with the stored predecessor-successor
relationship between two abstract states. Using both, the ARG CPA and the LocationCPA
allows to reconstruct from an abstract path the path represented in the CFA. An abstract
path is a sequence 〈e0, ..., en〉 of abstract states such that for any pair (ei, ei+1) and i ∈
{0, ..., n− 1} either ei+1 is an abstract successor of ei or the result of merge [9].

Each node of the ARG is labeled with a unique ID and an abstract state. A labeled node
is denoted as n : (i, a), where n is the node, i a unique Integer, and a an abstract state.
Each edge of the ARG is marked with a basic block, an assume predicate, a function call or
a return.

An ARG CPA A = (DARG, ΠARG ARG, mergeARG, stopARG, precARG) consists of an abstract
domain DARG, a set of precisions Π_ARG, a transfer relation ARG, a merge operator
mergeARG, a termination check stopARG, and a precision adjustment precARG.

The abstract domain DARG = (CARG, εARG, J·K) is defined by the set CARG of concrete states,
a semi-lattice εARG = (EARG,v,t,>,⊥) and a concretization function J·K. The elements
from EARG are abstract states. The concretization function J·K : EARG → 2CARG assigns to
each abstract state the set of concrete states that it represents.

The transfer relation ARG⊆ EARG x G x EARG assigns to each abstract state e possible
new abstract states e′ that are abstract successors of e, and each transfer is labeled with a
control-flow edge g.

The ARG merge operator is defined in mergesep(e, e′) = e′.

21

CHAPTER 3. THEORETICAL BACKGROUND

The termination check stop checks if the given abstract state with the given precision is
covered by the set of abstract states given as second parameter.

The precision adjustment computes a new abstract state and precision for a given abstract
state, a given precision and a given set of abstract states with precision.

CollectorCPA

At the end of a verification run the report visualize the final Abstract reachability graph.
The ARG is part of the calculated reached set. The states which result in new merged
abstract states are removed from the final set of reached states. Our goal was to visualize
computation steps of CPAchecker like the merge operation. Since destroyed or removed
states after a merge are missing in the final set of reached states it is important to store
those states. But how can you store states from other CPAs without affecting the respective
CPAs used?

This is done by building a wrapper CPA around the ARG CPA. Since the function of this
wrapper CPA is to collect and store states that would have been lost after a merge, we have
called it CollectorCPA. The CollectorCPA Dc = (Dc, Πc c, mergec, stopc, precc) consist of a
collector abstract domain, a set of precisions, a collector transfer relation, a collector merge
operator, a collector stop operator, and a collector precision adjustment.

The abstract domain Dc = (C, εc, J·K) is defined by the set C of concrete states, a semi-lattice
εc = (Ec,v,t,>,⊥) and a concretization function J·K. The elements from Ec are abstract
states. Each element e in Ec is defined as tuple (ac, Hmerge) where ac ∈ EARG is the current
ARGState and Hmerge a tuple (ac, a′

c, a′′
c), namely the recorded merge operation. Each tuple

(ac, a′
c, a′′

c) describes the merge operation merge(a′
c, a′′

c) = ac with ac, a′
c, a′′

c ∈ EARG. The
concretization function J·K : Ec → 2C assigns to each abstract state the set of concrete states
that it represents.

Even though the collector state is able to store additional information, all the analysis
operations are applied on the wrapped states which are ARG states [Figure 3.3].

22

CHAPTER 3. THEORETICAL BACKGROUND

CollectorState e
ARGState a

ARGState a ARGState a’

CollectorState e’
ARGState a’

unwrap

PrecsisionAdjustment,
TransferRelation,
Merge, Stop

wrap

Figure 3.3: Unwrapping of CollectorState for CPA operations

The transfer relation c⊆ Ec x G x Ec assigns to each abstract state e possible new abstract
states e′ that are abstract successors of e, and each transfer is labeled with a control-flow
edge g. This is done by unwrapping each abstract state e and subsequent calculation of
possible successors of eunwrapped which then will be wrapped and assigned as new abstract
states e′. For eunwrapped = ac the transfer relation ARG⊆ EARG x G x EARG assigns to
each abstract state ac possible new abstract states a′

c that are abstract successors of ac, and
each transfer is labeled with a control-flow edge g. The transfer relation has to be total.
∀e ∈ EC : ∃e′ ∈ EC : e e′ if it is valid that ∀a ∈ EARG : ∃a′ ∈ EARG : a a′. We write
for a given e = (ac, Hmerge) (a′

c, H{}) = e′ if for ac ∈ EARG : ∃a′
c ∈ EARG : ac a′

c
. For

each e′ the tuple H{} is an empty set.

The merge operator is defined as delegated merge
mergec((a′

c, H ′
merge), (a′′

c , H ′′
merge)) = (mergeARG(a′

c, a′′
c), Hmerge) = (ac, Hmerge)

As additional information to the merged element the new merged collector state will store a′

and a′′ as Hmerge = (ac, a′
c, a′′

c) where ac is the result of mergeARG(a′
c, a′′

c). The merge history
in form of H ′

merge and H ′′
merge will not be passed to the new merged collector state since

this information is irrelevant for the visualization of a current merge operation. For a short
overview see Figure 3.4. The figure illustrates how two CollectorStates are merged into a
new CollectorState. As shown in Figure 3.3 the elements must be unwrapped for the merge
operation. More details are discussed in the implementation part of this thesis.

CollectorState
ARGState a’c , H’merge

CollectorState
ARGState ac, Hmerge

CollectorState
ARGState a”c , H”merge

Figure 3.4: Merge of two CollectorStates

23

CHAPTER 3. THEORETICAL BACKGROUND

The termination check stopsep considers each abstract state individually. If the check returns
stopsep(e, R) = true because it is already covered the analysis of further successors of e is
omitted.

The precision adjustment is also delegated to the wrapped state. If the CPAchecker computes
a new precision the analysis is continued with this precision adjustment otherwise nothing
is changed.

3.1.4 CPA-Algorithm
For a given CPA and an initial abstract state (see Input in Figure 3.5) the reachability
algorithm computes a set of reachable abstract states. This set is an over-approximation
of the set of reachable concrete states. The set reached stores all reachable abstract states
already visited, and the set waitlist stores all abstract states yet not processed. Both sets
are being updated during the execution of the CPA-algorithm. It starts with the initial
abstract state e0. In the beginning the initial state is the only state included in both sets.
As long the waitlist set is not empty, a state from waitlist is chosen as current state and each
possible successor obtained from the transfer relation is examined. Every abstract successor
state is then combined with an existing abstract state from the reached set using the given
merge operator. In case that the merge operator does not generate a new combined state, it
simply returns the existing abstract state that was given as second parameter to the merge
operator. Otherwise if the merge operator has added information to the new abstract state,
such that the old abstract state is included, then the old abstract state is replaced by the
new one. The existing state is removed from waitlist and reached and the new one is added
instead. After the current successor state has been merged with all existing abstract states,
the stop operator determines whether needs to store the current state in reached and waitlist.
The iteration stops when the waitlist set is empty and the reached set will be returned. It
contains all reached and analyzed states. The CPAchecker uses then an ARG as model for
visualization.

24

CHAPTER 3. THEORETICAL BACKGROUND

Algorithm 1: CPA(D, e0)
Input : a CPA D = (D, , merge, stop), an initial abstract state e0 ∈ E where E

denotes the set of elements of the lattice of D

Output : a set of reachable abstract states
Variables: a set reached ⊆ E, a set waitlist ⊆ E

1 waitlist := {e0};
2 reached := {e0};
3 while waitlist 6= {} do
4 choose e from waitlist;
5 waitlist := waitlist\{e};
6 for each e′ with e e′ do
7 for each e′′ ∈ reached do
8 //combine with existing abstract state;
9 enew := merge(e′, e′′) //Merge Operator ;

10 if enew 6= e′′ then
11 waitlist := (waitlist ∪ {enew})\{e′′};
12 reached := (reached ∪ {enew})\{e′′};
13 end
14 end
15 if ¬stop(e′, reached) //Stop Operator then
16 waitlist := waitlist ∪ {e′};
17 reached := reached ∪ {e′};
18 end
19 end
20 end
21 return reached //Output

Figure 3.5: CPA-Algorithm [4]

3.1.5 CPAchecker
CPAchecker1 is a software verification tool which unifies model checking and program anal-
ysis. Data-flow analysis and model checking are two approaches in software verification to
prove the correctness of a program according to a given specification. The given specifica-
tion include liveness (something good eventually happens) and safety (nothing bad happens)
properties. The information you get by data-flow analysis or model checking are used to vali-
date safety properties [4]. One approach for this is called reachability analysis, which checks

1https://cpachecker.sosy-lab.org/

25

https://cpachecker.sosy-lab.org/

CHAPTER 3. THEORETICAL BACKGROUND

if an execution path of a program exists that reaches a specific location in the program.
A program is represented by a control-flow automaton (CFA). The CPAchecker analyzes
the program on this intermediate representation of the program using specific CPAs (Con-
figurable Program Analyses). To visualize the flow of a program, an abstract reachability
graph (ARG) will be constructed. The reachability tree contains all reachable abstract states
according to the transfer relation [4]. The construction of an ARG is done by traversing the
CFA and calculating successor states using the information of the edges (program operations)
of the CFA.

The CPA algorithm is the core of CPAchecker. Since it applies all operations on an abstract
data type, the concrete analyzing CPA is not necessary to know. For most configurations
the composite CPA is used. It allows the combination of multiple different CPAs. In general
the ARG CPA is the most outer CPA, so that an abstract reachability graph is available at
the end of a verification run.

Figure 3.6 [3] shows the interaction of CFA, main CPA and additional CPAs. The CFA
represents the C-program to be analyzed. CPAchecker has all required interfaces and oper-
ations for the implementation of a new user-defined CPA. It is possible to implement a new
CPA as CompositeCPA if a combination of different CPAs is desired or as a Leaf CPA for
stand-alone usage or as part of compositeCPA.

Figure 3.6: Design for implementation, Figure taken from [3]

26

CHAPTER 3. THEORETICAL BACKGROUND

3.2 Used Libraries and scripts

3.2.1 D3
D32, short for Data-Driven documents is a JavaScript library for interactive visualization of
data in web browsers. D3 provides prebuilt functions for creating and manipulating SVG
(Scalable Vector Graphics) objects. Large data sets can be bound to the SVG objects and
you have the possibility to style them using CSS (Cascading Style Sheets). The prebuilt
functions that allow you the manipulation of a DOM (Document Object Model) include
selections, transitions, array operations and a variety of maths functions. There are many
functions for 2D transformations, like translation, scaling, and rotation. The data you would
like to bind and process with D3 can be in different formats e.g. in JSON (JavaScript Object
Notation) format. CPAchecker already uses JSON , which are easy human-readable objects
consisting attribute-value pairs and array-data types. The D3 library also provides multiple
pre-built functions that enables the user for array manipulation, like removing and sorting
array elements. Together with selection you can find specific elements and manipulate them
individually. Elements can be selected in different ways, either by an attribute, a HTML
tag, a unique identifier or a CSS class. Once an element is selected you can modify the
associated properties (like shape, colors and values) and behaviors (like transitions and
events). On the D3 website3 you will find a detailed online documentation with many
examples and tutorials. Since D3 with all its prebuilt functions for data manipulating and
visualization is right between a data processing and pure graphics library, D3 fulfills all the
data visualization requirements we need for the CPAchecker. Even though it would have
been possible to draw directed graphs with D3, another library (Dagre D3, Section 3.2.2)
facilitates this challenge.

3.2.2 Dagre D3
Dagre D34 is a JavaScript library especially for lay out directed graphs. It is a D3-based
renderer for dagre5. The layout is completely client-side computed. That means the techni-
cal environment of the user can be taken into account. The processing is done directly from
the browser. The request is redirected to a HTML file without content. Once the layout
information (Data and JavaScript) will be supplied, the browser compiles everything before
rendering the content. On the basis of faster processing at the expense of security, Dagre
needs only rudimentary information to lay out medium-sized graphs quickly. For the cre-

2https://d3js.org/
3https://d3js.org/
4https://github.com/dagrejs/dagre-d3
5https://github.com/dagrejs/dagre/wiki

27

https://d3js.org/
https://d3js.org/
https://github.com/dagrejs/dagre-d3
https://github.com/dagrejs/dagre/wiki

CHAPTER 3. THEORETICAL BACKGROUND

ation of a graph dagre uses the graphlib API6. Graphlib has only one graph type which is per
default directed. All functions necessary for nodes need user-supplied String ids for unique
identification. Edges are identified by nodes they connect. Dagre uses several different al-
gorithms for drawing nice graphs [10] with minimum edge crossing and perfect matching
coordinates for the nodes [11]. For a more detailed description of the used algorithms have a
closer look at the papers recommended on the dagre wiki site. Although it is an advantage
not to have to calculate the best node and edge positions yourself, Dagre D3 also has disad-
vantages. Beside some minor issues, like less well documentation, a major disadvantage of
using Dagre D3 is the fact, that a stepwise creation of graphs is not supported.

3.2.3 jQuery
The jQuery library greatly simplifies programming using the popular language JavaScript.
Features of jQuery are for example HTML/DOM manipulations, CSS manipulations, effects,
and HTML event methods. The basic syntax of jquery is: $(selector).action()7. With the
$ sign you access jQuery, then you select your HTML element and manipulate it. JQuery
selectors are based on CSS selectors. It is possible to select by id, name, classes and so
on. You can combine different selectors for a more precise finding of an element. The
methods which take action on elements include changing values of attributes, and adding
and removing CSS classes . Additionally jQuery provides several methods to handle events.
For example the command $(#button).click() triggers the mouse click event when the id of
the selected element matches "button". For defining "what should happen" when the event is
activated it is necessary to pass a function to the event. The function can be anything from
a single statement to a block of multiple commands to perform the task you would like to
bind to an event. For further information the jQuery API documentation gives a detailed
overview on jquery featured methods8.

3.2.4 Dot_to_ gif_sh
In addition to the Report.html file CPAchecker generates several DOT files, including CFA
and ARG DOT files. Those files harbour all graph-relevant information for nodes and
edges and their attributes as Strings. DOT is a plain-text graph description language.
The DOT syntax describes or defines a graph but has no capability for rendering a graph.
To view a graph in DOT language, an additional program is needed. Graphviz is such a
graph visualization software 9. The graph description in its simple text language is used

6https://github.com/dagrejs/graphlib/wiki/API-Reference
7https://www.w3schools.com/jquery/default.asp
8https://api.jquery.com/
9www.graphviz.org/

28

https://github.com/dagrejs/graphlib/wiki/API-Reference
https://www.w3schools.com/jquery/default.asp
https://api.jquery.com/
www.graphviz.org/

CHAPTER 3. THEORETICAL BACKGROUND

by Graphviz to create SVGs (Scalable Vector Graphics) for web pages. Note that an older
version of CPAchecker used only those DOT.files for graph visualization. It was necessary to
run an external Python script which passed the DOT files to the Graphviz library [11].

As a first approach we wanted an animation of the ARG construction for visualization of
computation steps of the CPAchecker. GIF (Graphics Interchange Format) is an image
format, which can be used for small animations. A series of frames is be combined to
produce this sort of animated GIFs. Dot_to_ gif_sh 10 is an easy and short shell script for
creating a GIF from DOT files using Graphviz. It enables to use multiple DOT files, each
file representing one step of a graph-building algorithm to create an animated GIF. Once
you have all your separate DOT.files representing each a snapshot of the graph building in
one directory you execute the shellscript using for example the command ./dot_to_gif.sh
$(find dot -name ’*.dot’). That means all files in your directory ending with .dot will be
used for creating animation.gif. The command dot tells Graphviz to draw directed graphs.
The animation.gif can then be viewed in a web browser.

3.3 CPAchecker report
The CPAchecker report is an automatically generated HTML file. To provide SoC (Sep-
aration of Concerns) CPAchecker combines three template files, namely HTML, CSS, and
JS to one single HTML file. The report.html file is found in the output folder inside the
CPAchecker directory. The user can view the report.html in any arbitrary web browser.
In case the result of the verification run is that the C-program is not proven correct the
report is named different. The user finds out the exact name of the report at the end of the
command-line output of the CPAchecker. Even though the DOT files of an older version
of CPAchecker are still generated, and delivered in the output folder, there are no longer
required for building graphs (e.g. ARG and CFA) in report.html. The latest version of
CPAchecker uses D3 and Dagre D3 for rendering the graphs. The data required for graph
creation are given to the report after the verification run is terminated. As already mentioned
the data is provided in JSON format. JSON is a language-independent data format. It is
human-readable and the basic data types are Number (no distinction between integer and
floating-point), String, Boolean, Array, Objects (unordered collection of name-value pairs),
and null.

The data which is necessary for the construction of the abstract reachability graph is sup-
plied as a quite simple structured JSON object. It consists two keys, nodes and edges. The
keys contain arrays of objects, which hold all the information, important for the nodes and
edges of the ARG. Figure 3.7 shows an example of how such an array of objects looks like.

10https://gist.github.com/maelvls/5379127

29

https://gist.github.com/maelvls/5379127

CHAPTER 3. THEORETICAL BACKGROUND

Each node object has the information about the function in which the node is present, its
index, which represents the ARG ID, a label and the type of the node. Each edge object
carries information about the file in which the edge is contained, the source-code line, the
source, which is the node index where the edge starts, a label and its target, which is the
index of the node, the edge is pointing to.

1 {"nodes": [
2 ...,{...},
3 {"func":"main",
4 "index": 42,
5 "label":"40 @ N10\nmain\ nValueAnalysisState : [main ::a=

NumericValue [number =3] (int), main ::i= NumericValue [number
=3] (int)]\\",

6 "type":""}, {...},...],
7 "edges": [
8 ...,{...},
9 {"file":"doc/ examples / example .c",

10 "line":"13",
11 "source":42,
12 "label":"Line 13\n[!(i != a)]",
13 "type":" AssumeEdge ",
14 "target": 43},
15 {...}, ...]
16 }

Figure 3.7: Structure of JSON object for ARG

Once the verification run is terminated, the HTML template is read line by line, and as
soon as the current line contains a predefined string, this string will trigger a specific ac-
tion. It is the ReportGenerator.java class which possesses methods for certain actions. The
action-causing strings are included in the HTML template as meta tags. The meta tag
<!−−REPORT_CSS−− > causes the ReportGenerator to read the CSS template, and
the meta tag <!−−REPORT_JS−− > to read the JS template and insert them line by
line into the HTML template. There are other meta tags which trigger insertion of dynamic
data like statistics, configuration etc. The JavaScript template contains also action-causing
strings. For example reading ARG_ JSON_ INPUT causes the ReportGenerator to write
the JSON data required for the construction of the ARG and insert it into the JavaScript

30

CHAPTER 3. THEORETICAL BACKGROUND

template respectively into the HTML file as var argJson. The HTML template only lists
the content, the JavaScript template processes the inserted data (behavior) and the CSS
template contains the style information. All three assembled in one file enables an easy
transfer of the verification results between users.

Both graphs, CFA and ARG are constructed using the JSON data the CPAchecker produces.
An empty Dagre D3 graph will be populated with nodes and edges. The essential information
for the nodes and edges are provided in the appropriate JSON object and processed by the
JavaScript using the Dagre D3 library. The resulting graphs can then be viewed by the user.
An online tutorial about the features of the CPAchecker report is available11.

11https://sosy-lab.gitlab.io/research/tutorials/CPAchecker/HTMLReport.html

31

https://sosy-lab.gitlab.io/research/tutorials/CPAchecker/HTMLReport.html

4 Implementation

This chapter will focus on the implementation of the new wrapper CPA alias CollectorCPA
in section 4.1 (for the definition see page 22 ff.), the collection and preparation of the relevant
graph data in section 4.4 and the integration of the new web frontend into the CPAchecker
in section 4.5. In addition it will give a short outline on a first approach using DOT files
and why this approach was not pursued further (section 4.2).

4.1 CollectorCPA
In order to extend the CPAchecker by integrating a new CPA two steps are mandatory. First
an entry in the global properties file and second the implementation of the new CPA with
all operation interfaces [3].

The collector.properties file stores the collector configuration. It defines the collectorCPA as
wrapper of the ARG CPA. It tells the main CPA that the concrete CPA is the CollectorCPA
and that this CPA should use the ARG CPA and the CompositeCPA, which in turn defines
that the LocationCPA, ValueAnalysis, and CallstackCPA are combined.

The configuration of CPAchecker is done via configuration files and command-line arguments.
The configuration file specify a set of options and the argument -setprop <KEY>=<VALUE>
sets any option: KEY = VALUE. The file doc/ConfigurationOptions.txt in CPAchecker con-
tains an explanation of these options and command line switches are described in doc/Con-
figuration.md. To run the analysis you need to use the following arguments:
-setprop solver.solver=smtinterpol
-setprop cpa.predicate.encodeBitvectorAs=integer
-setprop cpa.predicate.encodeFloatAs=rational
-collector doc/examples/exampleSM.c
The arguments -config config/CONFIGFILE.properties can be abbreviated to -CONFIGFILE,
meaning using -collector is sufficient. If you would like to use another C-program example,
than exampleSM.c you need to preprocess your program with the C pre-processor.

The implementation of the Wrapper CPA, we named CollectorCPA follows the principles of
implementing a Composite CPA with only one associated CPA, the wrapped ARG CPA. The

32

CHAPTER 4. IMPLEMENTATION

CollectorCPA returns for all CPA Operations the corresponding Collector operations. The
newly implemented collector operations all unwrap the abstract collector states and execute
the operations on the unwrapped ARG state by using the ARG operations. Subsequently the
information about the current state and the computated state (e.g. successor, merged ele-
ment) is stored as ARGStateView (Section 4.3) representing the original ARGState, followed
by wrapping it again as new CollectorState.

The TransferRelation as well as PrecisionAdjustment and the termination check operator
Stop are implemented according the formalism described in subsection 3.1.3.

An existing ARGState could be getting destroyed for example, after a merge occurred. If an
ARGState is destroyed, the only information which remains is the state ID of this ARGState.
The final abstract reachability graph does not need any information about states, which will
be merged. The essential information about predecessors (parents) and successors (children)
will be passed to the merged element. In order to build an abstract reachability graph step
by step, taking into account each calculated merge step, we have to remember states that will
be merged. The implemented CollectorMerge Operator stores the merge partners, the states
which will be merged, before it delegates the merge operation to the ARG merge operator. To
avoid dynamic value changes of ARGStates caused by the fact that Java uses pass by value,
we need to store the states as ARGStateView (Section 4.3). After the unwrapped original
ARGStates are passed to the ARG merge Operator and the merged ARGState element is
returned, the merged element is saved additionally as ARGStateView. When rewrapping the
new CollectorState all three ARGStateViews, the two elements which will be merged and the
merged element, are passed.

The CPA Algorithm collects reachable states. At the end of a verification run, the collection
of reachable states is passed as UnmodifiableReachedSet to the method printStatistics in
the class CollectorStatistics. The structure of CollectorStatistics enables to print additional
statistic information into the default statistic text file, the CPAchecker creates after the anal-
ysis stopped. But the main functionality of CollectorStatistics is to create the additional
HTML file ComputationSteps.html. The preliminary purpose of CollectorStatistics was to
create DOT.files instead of the HTML file. The detailed approach is described in section 4.2.
For both approaches (HTML and DOT) the implementation included the preparation and
processing of graph-relevant information out of the proven as reachable CollectorStates col-
lected in the UnmodifiableReachedSet. For the detailed description of graph data processing
see the section 4.4 Graph Data.

33

CHAPTER 4. IMPLEMENTATION

4.2 DOT Graph
The first visualization approach we were pursuing was the idea of an animated graph using
DOT files. This approach is available as a preliminary version in CPAchecker branch SonjaM
revision 31311 1, 2.

The CPAchecker has already existing code (ARGToDotWriter.java) to write DOT files with
information about nodes and edges, required for an abstract reachability graph. Reusing
this code assumes that the abstract states, which represent the nodes are ARGStates. So
the first challenge was "How do we get ARGStates which are not in the reached set and
potentially destroyed?"

As already mentioned an ARGState gets destroyed after a merge occurred, but this is exactly
the computation step we want to visualize. By saving the information about merge partners,
their parents and their children in the CollectorState of an merged element, the required
information of how the merge was calculated is saved. However the information is not
saved as ARGState but as ARGStateView (Section 4.3), which is necessary due to the fact
that the ARGState values could dynamically be changed during the verification run. Two
solutions are conceivable, first the implementation of a CollectorToDotWriter or second
the reconstruction of ARGStates. Since we already have exactly the same information in
ARGStateView as in the corresponding ARGState we went for the second solution.

The reconstruction of the ARGStates starts with extracting the wrapped AbstractState from
the first element of the UnmodifiableReachSet and assign a new ARGState. For further re-
quests it is necessary to link each new ARGState with the current ARGState of each iteration
entry in a Hashmap. We iterate over each entry of the collection of reached states. In case
the entry was calculated in TransferRelation we take the current wrappedAbstractState out
of the current entry and the parent by taking the corresponding ARGState out of the linked-
HashMap. Then a new ARGState is assigned by using the current wrapped AbstractState
and the linked parent ARGState. In case entry is a calculated merged element, the merged
element is processed equally, and in addition we need to reconstruct the saved merge partners
by passing likewise the current wrapped AbstractState and the linked parent ARGState.

In order to achieve single DOT files, each representing a step of the evolution of the ARG,
every newly reconstructed ARGState is put into a collection. The elements of this collection
represent the reachable states, respectively the nodes of the ARG. Every time after adding a
new ARGState to the collection, a new DOT file is generated. So each DOT file provides the
information about the nodes and edges from start until the last added element. The files are
numbered in ascending order and stored in a directory created for this purpose. The user

1https://github.com/sosy-lab/cpachecker/commits/SonjaM
2https://svn.sosy-lab.org/software/cpachecker/branches/SonjaM/?p=31311

34

https://github.com/sosy-lab/cpachecker/commits/SonjaM
https://svn.sosy-lab.org/software/cpachecker/branches/SonjaM/?p=31311

CHAPTER 4. IMPLEMENTATION

will find the CollectorDotFiles folder in the general output folder of the CPAchecker.

The user needs to download the shellscript dot_ to _ gif _ sh 3. This shellscript is used
as raw template we wanted to customize. The DOT files and script need to be in the same
directory. To run the script use the console command ./dot_to_gif.sh $(find dot -name
’*.dot’ | sort -n -t_ -k2). The command sort -n will sort the DOT files numeric, according
to String numerical value. Since the name of the DOT files are etape_0...etape_n we
need -t which assigns the field separator, and -k2 which tells that field 2 should be used.
The shellscript generates animation.gif. The graph animation can then be viewed in a web
browser. Figure 4.1 shows a snapshot of the animation. Enlarged in orange you see a merged
state.

Even though the uncustomized animation looked promising, we discovered several disad-
vantages. Not only that using an external script would be a step back, but also looking
at the data bares several disadvantages. For example the reconstructed ARGStates have
other unique IDs than the original computed ARGStates. Another disadvantage would have
been possible modifications and customization in already existing ARG classes, we wanted
to avoid. It was therefore decided not to pursue this approach any further.

Figure 4.1: snapshot of animation.gif

3https://gist.github.com/maelvls/5379127

35

https://gist.github.com/maelvls/5379127

CHAPTER 4. IMPLEMENTATION

4.3 ARGStateView
An ARGState object can by changed dynamically during the verification run. If it gets de-
stroyed due to e.g. a merge event, the updated ARGState has only a diminished information
content, namely the ARG ID and the information destroyed ARG State. Hence information
about predecessors and successors of an ARGState are lost. Since it is necessary to store
those lost information the java class ARGStateView was implemented. An ARGStateView
object represents an ARGState element in that way that it stores the complete set of ARG
State information. To initialize the attributes of ARGStateView objects, the ARGState-
View constructor shown in Figure 4.2 takes the parameters int cCount, ARGState cElement,
Collection<ARGState> cParents, and Collection<ARGState> cChildren. When unwrap-
ping a CollectorState we get the potentially already calculated parents (predecessors) and
children (successors) of the current ARGState, and pass the unmodifiable collections to the
ARGStateView constructor. These are the lost pieces of information in case an ARGState
gets destroyed. Additionally an integer count is passed. The parameter count is required for
the chronological order of computation steps. The number is incremented every time a new
successor is calculated or a merge is occurred.

1 public ARGStateView (
2 int cCount ,
3 ARGState cElement ,
4 @Nullable Collection <ARGState > cParents ,
5 @Nullable Collection <ARGState > cChildren ,
6 LogManager clogger) {
7 stateId = idGenerator . getFreshId ();
8 element = cElement ;
9 count = cCount ;
10 wrappedelement = element . getWrappedState ();
11 currentID = element . getStateId ();
12 if (cChildren != null) {
13 childrenlist = ImmutableList . copyOf (cChildren);
14 }
15 if (cParents != null) {
16 parentslist = ImmutableList . copyOf (cParents);
17 }
18 }

Figure 4.2: ARGStateView constructor

36

CHAPTER 4. IMPLEMENTATION

Once the method build() in the class CollectorStatistics is called, the ARGStateView getters
(Figure 4.3) are used to get the information needed to generate the ARG nodes and ARG
edges and to keep the chronological order of the abstract reachability graph. Note that in
the preliminary collector version for creating DOT files the ARGStateView class was slightly
different. For example, a getter was implemented for the wrapped element of the stored
ARGState, since we needed it for the reconstruction of the ARGStates. However the pur-
pose, namely to store information of the wrapped ARGStates, was the same.

1 public ARGState getARGState () {
2 return element ;
3 }
4 public int getStateId () {
5 return currentID ;
6 }
7
8 public int getMyStateId () {
9 return stateId ;
10 }
11
12 public int getCount () {
13 return count;
14 }
15
16 public Collection <ARGState > getParentslist () {
17 return Collections . unmodifiableCollection (parentslist);
18 }
19 public Collection <ARGState > getChildrenOfToMerge () {
20 return Collections . unmodifiableCollection (childrenlist);
21 }

Figure 4.3: ARGStateView getter

4.4 Graph Data
A transformation from a proven as reachable state to a JSON object.

A preferable approach than generating multiple time and space consuming DOT files was
to implement methods similar to the already existing ones in the ReportGenerator. Briefly
sketched the procedure starts with filling two maps one for nodes and one for edges and link
them together. They provide all the information needed to create the abstract reachability

37

CHAPTER 4. IMPLEMENTATION

graph using Dagre D3. The linked nodes and edges information is passed to the JavaScript
in JSON format and the additional HTML file ComputationSteps.html is generated.

An advantage of this approach is that it enables to use the CollectorStates in the Unmodifi-
ableReachedSet directly instead of reconstructing ARGStates thereof.

The class CollectorState.java is implemented that it saves all information which are nec-
essary for a step by step creation of an abstract reachability graph. By implementing the
corresponding setter and getter, every attribute (e.g. the current ARGState ID) of the ob-
ject CollectorState is obtainable. Parents (predecessors) and children (successors) and their
attributes are saved in ARGStateView and passed to CollectorState. In case of a merge
the merge partners together with the merged element are saved as ARGStateViews in Col-
lectorState. While the merged element receives an increased integer for count, the merge
partners keep their count numbers they received from the transfer relation. This ensures the
correct chronological sequence. The value for the termination check operator is calculated
and assigned as boolean isStopped in the CollectorState.

The UnmodifiableReachedSet is passed to the method private void build. The purpose of this
method is to assign several variables and to further pass the required information to node
and edge creating methods. The assigned String variables are destroyed, toMerge, merged,
and mergeChild. More variables are conceivably.

The minimal information for building a graph with Dagre D3 is an index for nodes and source
and target indices for edges. Important to mention at this point is the fact that the Dagre
D3 library provides the methods to add nodes and edges to the graph object. The function
setNode(arg1, arg2) receives two arguments. The first one is the node ID, the second is
metadata about the node. The node ID has to be unique otherwise only the last node with
the same ID will be added to the graph. The function setEdge(arg1, arg2, arg3) needs three
arguments. The first one is the source ID, the second the target ID. Both are unique IDs of
nodes of the graph. The third argument is metadata about the edge. Metadata about nodes
and edges are passed as JavaScript objects, containing name:value pairs.

The node and edge creating methods in CollectorStatistics.java ensure that all necessary
arguments are available in JSON format. Two methods for creating nodes are implemented.
createFirstNode and createNEWNode. The first node is treated different, since the implemen-
tation does not allow an ARGStateView representation of the first ARGState. For creating
edges also two methods are implemented. While the method createStandardEdge is similar
to createArgEdge in ReportGenerator and creates standard ARG edges of the CPAchecker
ARG, the second method createExtraEdge is implemented for creating edges of computation
snapshots missing in the final ARG. The merge operation is such a snapshot. While we want
to follow the growing of the abstract reachability graph, meaning the calculation of succes-
sors and merge decisions, the final graph only shows the fully computated ARG. Not all

38

CHAPTER 4. IMPLEMENTATION

information displayed at the final graph edges remain available during the verification run.
Since the information is viewable as edge label after the merge is executed, it is sufficient to
label edges only with "merge edge" towards elements which will get merged. Edges of nodes
that are merged in a future step and point to their successors are marked with merge child
edge. The label of an edge is one of the data, that is passed as metadata in the structure of
the JSONobjects. Figure 4.4 shows the complete structure of JSON objects passed to the
JavaScript.

1 {"nodes": [
2 {" analysisStop ":" Boolean x",
3 "func":"String x"
4 "index":"Number x",
5 " intervalStop ":"Number y",
6 "label":"String y",
7 " intervalStart ":"Number z",
8 "type":"String z"}],
9 "edges": [

10 {"file":"String a",
11 "line":"String b",
12 " mergetype ":"String c",
13 "source":"Number a,
14 "label":"String d",
15 "type":"String e",
16 "target":"Number b"}]
17 }

Figure 4.4: Structure of the Collector JSON object

The collector JSON object contains two keys (nodes and edges), each containing arrays of
objects. Nodes and edges pass their information via those arrays of objects.

An information about the termination check of the current state, respectively node, is passed
in form of a Boolean analysisStop.

The function in which the node is present is passed by a String (e.g. "main") as value for
the key func.

The key index represent the unique ID of the current state and is passed as int.

39

CHAPTER 4. IMPLEMENTATION

For the step by step evolution of the ARG we want to use information of "how long is a state
alive?". The fact that merge partners are alive as long as they have not been merged leads
to the solution to pass the count number of the merged element as value for intervalStop of
the merge partners. If the element is alive infinite the value is " ". The key intervalStart is
the count number of the current element. How exactly this information is used for building
the graph is described in section 4.5.

Label and type provide the same information as the original ARG.

The metadata for edges also provide the same information for file, line, label, and type as
the original ARG.

Source and target are the indices of the nodes they connect. They are passed as int.

The key mergetype is integrated in the JSON object for marking the edges towards states
which will get merged in the future of the evolving ARG. The values are either none, toMerge
for merge partners, mergeChild for successors of a mergepartner state, and merged for the
node representation of a merged state.

After the nodes and edges lists are filled and linked, the method makeHTMLfile is called.
It generates the file ComputationSteps.html in the output folder of CPAchecker. HTML,
JavaScript and CSS are combined and the JSON data is written using the nodes and edges
information out of the LinkedHashMap. The implementation of those three parts is described
in the following section.

4.5 Web Frontend
To view and interact with data provided by the newly implemented collector CPA, a new web
frontend using HTML, CSS and JavaScript was developed. The separate implementation of
collector.html, collector.css, and collector.js was indicated due to the Separation of Concerns
principle in software development. The HTML code provides the framework of how the site
will look like and includes action-causing strings as meta tags. The presentation style of the
elements on the site is controlled by the CSS code and finally the event-based JavaScript
code makes the site interactive by manipulating the data in response to events (e.g. clicking
buttons or operating the slider). Figure 4.5 shows a screenshot of the web frontend. The
functionality will be explained in detail later in this section.

40

CHAPTER 4. IMPLEMENTATION

Figure 4.5: Screenshot of the web frontend using Safari

As soon as the makeHTMLFile method in CollectorStatitics.java is called, the HTML tem-
plate is read line by line. The included meta tags are <!−−COLLECTOR_CSS−− >,
<!−−SOURCE_CONTENT−− >, and <!−−COLLECTOR_JS−− >. The action which
is caused by the first meta tag is the inclusion of the CSS code. Reading the meta tag
<!−−SOURCE_CONTENT−− > results in inserting the source code of the analyzed C-
program as a table-like representation. The method insertSource was implemented in Col-
lectorStatistics similar to the insertSource method in the ReportGenerator. The meta tag
<!−−COLLECTOR_JS−− > leads to the integration of the JavaScript code. Reading
COLLECTOR_ JSON_ INPUT in the integrated JavaScript code effects in passing the
graph data in JSON format. The graph data is the only dynamic data used in the creation
of this additional output content (namely ComputationSteps.html) of the CPAchecker. It is
prefixed with the declaration of the JavaScript variable var data.

Beside the function dagreGraphBuild the JavaScript collector.js has implemented several
functions for evolving and manipulating the graph interactively. The first step in creating
the graph using Dagre D3 is the assigning of an empty graph object. The second step is to
add the nodes and edges to the empty graph (Figure 4.6) .

41

CHAPTER 4. IMPLEMENTATION

1 data["nodes"]. forEach (function (v) {
2 g. setNode (v["index"],
3 {label: v["label"],
4 class : v["type"],
5 id : "node" + v["index"]});
6 });
7
8 data["edges"]. forEach (function (v) {
9 g. setEdge (v[" source "], v[" target "],
10 {label: v["label"] ,
11 class : " source " + v[" source "]+ " "+ " target " + v[" target "],
12 id:" source "+ v[" source "] + " target " + v[" target "],
13 labelId : " source "+ v[" source "]+" target "+ v[" target "]})
14 });

Figure 4.6: Setting nodes and edges

The structure of each node and edge is chosen in that way, that it is possible to use the CSS
class and the ID of nodes and edges to select and thereby control the manipulation of the
individual SVG elements. Setting up a SVG group is required for translating the final graph.
This is done by calling the Dagre D3 renderer. At this point some layout properties (e.g.
rounding of node corners) are configured and the zoom support is implemented (Figure 4.7)

1 var zoom = d3.zoom ().on(’zoom ’, function () {
2 transform = d3.event. transform ;
3 svgGroup .attr(" transform ",
4 " translate ("+ transform .x + ", " + transform .y +")
5 scale(" + transform .k + ")");
6 });
7 svg.call(zoom);

Figure 4.7: Zoom support

42

CHAPTER 4. IMPLEMENTATION

1 var t = d3. zoomIdentity . translateBy (tx , ty).scale(k);

Figure 4.8: Pan support, move your target into a position

The zoom support is complemented by the pan support. D3 provides a transform produc-
ing function, where you can determine the new position(tx,ty) and scale (k), see Figure
4.8. A step by step manual for the implementation of zoom and pan you will find on the
freeCodeCamp site 4.

Now since the graph is built, the manipulation could start. Some of the nodes and edges
have beside their default Dagre D3 CSS classes (edgepath, edgelabel and node) already as-
signed CSS classes to distinguish them from the beginning on. To mark prospective merge
partners and merged elements, nodes obtain the value of its type as CSS class (e.g. the
value toMerge). Beside the implemented CSS color plum for merge partners and turquoise
for the merged element, a dashed node rim is implemented for the termination check boolean
analysisStop.

To select specific edges, the predefined CSS class of an edge is a String composed of source
plus the corresponding index number. A second additional class for edges is target plus its
index number (see Figure 4.6). With the CSS class selector you can then select elements
with specific class attributes and subsequently manipulate them.

Whereas multiple elements in a document can have the same class value, the CSS ID must
be unique. The unique CSS ID of a node is composed of string node and its unique ID
number. For edges it is a concatenated string source + x + target + y, where x andy are
the corresponding index numbers of the source and target nodes (see Figure 4.6).

For the step by step evolution of the ARG in the right time sequence the JavaScript has
implemented a function to sort the nodes in chronological order using the passed count re-
spectively intervalStart value (see Figure 4.9).

1 myVar["nodes"]. sort(function (a, b) { return parseInt (a. intervalStart)-
parseInt (b. intervalStart) });

Figure 4.9: Sorting the nodes in chronological order

4https://www.freecodecamp.org/news/get-ready-to-zoom-and-pan-like-a-pro-after-reading-t
his-in-depth-tutorial-5d963b0a153e/

43

https://www.freecodecamp.org/news/get-ready-to-zoom-and-pan-like-a-pro-after-reading-this-in-depth-tutorial-5d963b0a153e/
h
t
t
p
s
:
/
/
w
w
w
.
f
r
e
e
c
o
d
e
c
a
m
p
.
o
r
g
/
n
e
w
s
/
g
e
t
-
r
e
a
d
y
-
t
o
-
z
o
o
m
-
a
n
d
-
p
a
n
-
l
i
k
e
-
a
-
p
r
o
-
a
f
t
e
r
-
r
e
a
d
i
n
g
-
t
https://www.freecodecamp.org/news/get-ready-to-zoom-and-pan-like-a-pro-after-reading-this-in-depth-tutorial-5d963b0a153e/
h
i
s
-
i
n
-
d
e
p
t
h
-
t
u
t
o
r
i
a
l
-
5
d
9
6
3
b
0
a
1
5
3
e
/

CHAPTER 4. IMPLEMENTATION

When the user opens the ComputationSteps.html document, the function start() calls the
shownode function with the first element of the graph as parameter. The first node receives
the CSS class contentshow. All nodes and edges have the CSS attribute visibility : hidden.
Selecting by the class contentshow sets the visibility value to visibility : visible. Note that
at this point the whole graph is built with Dagre D3, but the user only sees the first node
due to the assignment of visibility of each graph element via its CSS class, meaning the first
node is set to visible, whereas all remaining nodes still have the attribute set to hidden .
Figure 4.10 shows an example of how the starting page looks like. On the left side the source
code of the analyzed C-program is displayed. On the right side the user will see the evolving
ARG, when clicking the NEXT button or operating the slider.

Figure 4.10: Start page

The user can follow the evolution of the ARG in the Computation Steps Graph box on the
right with the implemented possibility to zoom and pan the graph (Figure 4.11). On the left
the source code line corresponding to the edge pointing to the current node is highlighted
in darkblue. D3 selection and class attribute flipping is implemented similar to the function
markSourceLine in report.js. Right-handed in green (Figure 4.11) you see the implemented
mouse over tool tip box, which provide information about the ARG ID and label of the
node.

44

CHAPTER 4. IMPLEMENTATION

Figure 4.11: Zoom and highlighted source code line

In the following, I will describe further details of each HTML element and how the imple-
mented collector.js functions control the behavior by using the jQuery library (section 3.2.3).
The control of the behavior is fundamental to observe the structure of the graph step by
step.

Flexbox

Since vertical centering of elements in a container is a common difficulty in HTML the
Flexbox module was used. Flexbox is a CSS based container layout module or in other
words a container manipulation tool. The page layout with nested Flexbox containers was
implemented by following one of the examples provided on this web log site5. It allows a
side by side layout of graph and source code of the analyzed C-program. A small jQuery
plug-in6 was used for the implementation of a splitter pane. The user has thus the possibility
to resize the Source Code box (on the left) and the Computation Steps Graph box (on the
right) depending on his current needs.

5https://weblog.west-wind.com/posts/2017/Nov/11/Flexing-your-HTML-Layout-Muscles-with-Flexbox
6https://github.com/RickStrahl/jquery-resizable

45

https://weblog.west-wind.com/posts/2017/Nov/11/Flexing-your-HTML-Layout-Muscles-with-Flexbox
https://github.com/RickStrahl/jquery-resizable

CHAPTER 4. IMPLEMENTATION

PREV and NEXT

Mouse clicking events on the NEXT button result in the function call nextStep(). A step
counter will be increased for each click event. In case the current step number is smaller
then the maximum step number the function shownode is called with the current step num-
ber. The function iterates over each node in chronological order until the current node is
reached. Depending on their CSS classes and their unique IDs, the jQuery selector is used
to manipulate the behavior and appearance of each node and edge. Figure 4.12 and 4.13
show two snapshots of an evolving ARG. The snapshots are suitable to demonstrate the
different behavior due to CSS classes and IDs. The plum colored nodes in Figure 4.12 are
elements with three relevant CSS classes. The predefined class toMerge which is responsible
for the color, the class contentshow is assigned as visible, and the class Stop14, which has no
style property. The class Stop14 is a concatenation of the String Stop and the value of the
variable intervalStop, which is in that case 14. It classifies the node with the information
that this node is alive (visible) until the value intervalStart of a future current node equals
its intervalStop. In Figure 4.13 the value of intervalStart of the current node is equal to
intervalStop of the two plum colored nodes in Figure 4.12. Meaning in the first snapshot
you see the two merge partners and in the next computation step (Figure 4.13) the merge is
calculated. The merge partners are selected using the fitting jQuery class selector and their
CSS class contentshow is removed. Subsequently the merge partners disappear due to the
value hidden for those nodes. The merged element has at this point the relevant CSS class
mergedColored to identify the node as merged element colored in cyan. The successor, which
was already calculated for one of the merge partner is transferred to the merged element
as well as the predecessors (compare Figure 4.12 and 4.13). Edges to nodes, representing
states which will get merged are labeled with merge edge, whereas the edges to finally merged
element are labeled with the original ARG label. Edges starting from a merge partner to an
already calculated successor are labeled with child merge edge. After the child is passed to
the merged element the edge gets the original ARG label.

Clicking the button PREV causes a decrease of the step counting variable and in term calls
the function shownode. The same function as triggered by clicking the NEXT button. Since
the function is called with the counting value (step-1) the iteration ends one step prior. The
implementation allows the user to go back and forth in the computation of the evolving ARG
by using the PREV and NEXT buttons.

46

CHAPTER 4. IMPLEMENTATION

Figure 4.12: Snapshot of evolving ARG before a merge

Figure 4.13: Snapshot of evolving ARG with merged element

47

CHAPTER 4. IMPLEMENTATION

Slider

The back and forth functionality is also implemented for the slider. The function slide()
requires information about the current computation step, which is constantly updated. It
gets the information about the current step by the common getEementById() method for
HTML DOM selection and manipulation of elements. Subsequently the function shownode
is called with the value of the current step.

RESET

The reset button is a simple implementation divided in two commands. First the step
counting value is set to step = 0 (slider and computation steps display) and second the
function call start().

FINAL ARG

The user has the possibility to view the results of the verification analysis in form of an
abstract reachability graph, when choosing STANDARD ARG in the drop-down list of the
FINAL ARG button (Figure 4.14). This function is implemented that it calls the shownode
function with the maximum computation step of the verification run. Choosing HIGHLIGHT
MERGE calls another JavaScript function, where all nodes and edges are selected and the
CSS class contentshow is added. Furthermore the merged elements are selected by their
predefined class merged and by adding the class mergedColored the merged elements are also
highlighted in the final graph (Figure 4.15).

48

CHAPTER 4. IMPLEMENTATION

Figure 4.14: Standard final ARG

Figure 4.15: Final ARG with highlighted merge partners (plum) and merged elements (cyan)

49

5 Evaluation

In order to determine whether the implementation of the new web frontend has the benefits
we had hoped for, a user survey was designed. Gathering feedback from the people that will
be profiting from the software is done by sending a survey to those people. The evaluation
survey (A.1) itself was created using Google forms and distributed via a link. This section
describes the evaluation concept (5.1) and its results (5.2).

5.1 Evaluation concept
The aim of the survey was for one thing to evaluate the use of the new web frontend as a tool
for students to compare and correct their exercise results of manual creation of an abstract
reachability graph using the CPA algorithm, and secondly as a tool for the general user to
improve his understanding of the analysis results.

The evaluation consists of four parts, a general questionnaire, two tasks followed by specific
questions, and a part for general ratings. The general questionnaire was conceived to find
out how well the participants know the CPAchecker and how often they use the different
features of the CPAchecker report. The first task served to familiarize the participants with
the new web frontend. The participants were asked to perform the analysis with the newly
implemented Collector CPA and the already shipped example C-program of the CPAchecker.
This example was used because it shows several merge events. After the participants had
completed the analysis, the task was to test all features. Based on the experiences of the
participants, the questions to be answered should give me an idea of the operability. In addi-
tion, ideas for improvements should also be collected. The second task was designed to find
out if the new web frontend is suitable to make the calculation of the merge operator easier
to understand. To keep the effort for the participants as low as possible it was necessary to
choose a simple C-program. The participant should be able to easily follow the requirements
of typical student exercises. A typical exercise for student is: "Perform a CPA analysis on the
given program (represented by the CFA) and represent the resulting set of reachable states
as an abstract reachability graph (ARG)." A slightly modified program from the Handbook
on Model Checking [4] was suitable for this task (Figure 5.1). The CFA of this C-program
has eight program locations (L = {2, 3, 5, 6, 8, 9, 11, 12}, l0 = 2) and three program variables

50

CHAPTER 5. EVALUATION

(X = {x, y, z}). At location 6 there is only one concrete state reachable from the initial re-
gion. The variable assignment at this location is c(pc) = 6, c(x) = 0, c(y) = 1, c(z) = 0.
The set of concrete states at program location 11 can be represented by the predicate
pc = 11∧((x = 1∧y = 1∧z = 0)∨(x = 1∧y 6= 1∧z = 1)). The variable assignment of the two
concrete states are c(pc) = 11, c(x) = 1, c(y) = 1, c(z) = 0 and c(pc) = 11, c(x) = 1, c(z) = 1.
The merge operation will merge those two concrete states to a more abstract state with
variable assignment c(pc) = 11, c(x) = 1. To solve this typical student exercise the students
need to calculate the merge manually. Before they are able to draw the final ARG, they
had to calculate the states which will get merged. Using this rather simple example makes
it easier or faster to solve the exercise if the participant wants to. However the task was
designed that the participants do not need to calculate the ARG manually, but being able to
understand how the calculations are done. The questions that should be answered afterwards
are planned to help to draw conclusions, whether the new web frontend can serve as a tool
for a better understanding of the calculations of the CPAchecker. Finally, the participants
are asked to rate the usability, the web design, and their user experience.

Figure 5.1: Source code of the C-program and corresponding CFA

51

CHAPTER 5. EVALUATION

5.2 Evaluation results
Participation in the survey required a minimal knowledge of CPAchecker. For this reason,
the pool of participants and the response rate to the survey was rather low. A quantitative
statement can therefore not really be made. Nevertheless, the results are presented and dis-
cussed here. A summary of all answers as generated by Google can be found in the appendix
A.2. Based on the statements that the participants are familiar with the CPAchecker and use
the report weekly to monthly, it can be assumed that the answers are of high quality.

The participants were asked how often they use the different features of the report. The
answer scale ranges from 1 to 5, where 1 means every time and 5 never. It turns out that
50% of the participants uses the ARG-tab every time. The remaining 50% rated it at 2. 50%
of the user also rated the CFA-tab usage at 2, the rest of the users rated equally at 1 and 3.
The remaining features are used less. The frequency of use in descending order starts with
the source-tab, followed by log-tab and configurations-tab and as final the statistics-tab.
The usage of interactive features of the report like clicking on edges of the CFA to switch to
the source code line or clicking on elements of the ARG is median distributed. 75% of the
participants regularly used the outdated ARG.dot files. If they still use the ARG.dot files
can unfortunately not be derived from the answers.

I tested the new web frontend using several common browsers. Namely Mozilla Firefox,
Safari, Internet Explorer, and Google Chrome. The participants of the survey did not use
any other browser. As expected no display problems were discovered. The criticized contrast
of the source code view is independent of the browser choice. By changing the font color
from white to dark blue on light blue background the point of criticism was immediately
fixed. In summary task 1 "Testing the features" resulted in more or less what was expected.
All Buttons, the slider, the hyperlink, the displayed graph, the tooltip box and the pan
and zoom function worked to the fullest satisfaction. One outlier of the slider performance
is due to mix-up of splitter and slider, as I assume by looking on each survey response
separately. One of my own criticisms where I was undecided was the width of Computation
Steps Graph box. The splitter has the function to resize the boxes. As one participant was
also not entirely satisfied I decided to change the min-width from 150px to 25px in the CSS
file. Another not quite satisfying fact was that the source code highlighting is not as obvious
as I thought. Only 50% of the participants rate it as perfectly obvious that the highlighted
source code line matches the edge label. The content of the tooltip box was pretty much
clear. The only suggestion for additional displayed data was to add "The step were the state
is created or merged". The improved tooltip box now shows beside the ARG ID and the
label of the node, information about the step when the node is created, the type of the state
and the step when it will be merged. The implemented improvements (font color of source
code and additional information in tooltip box) are shown in Figure 5.2.

52

CHAPTER 5. EVALUATION

Figure 5.2: Implemented improvements

The results of task 2 of the survey should answer the question if the new web frontend is
suitable to make the calculation of the merge operator of the CPA easier to understand.
The implementation makes it easy to find or go to specific steps and nodes. All participants
said it was clear how to get to a specific step. 50% rated it as supereasy (mark 1) to find a
specific node and 50% rated it with mark 2.

The node color of merge partner states in the graph help to understand the merge operation
said 75% of the participants (mark 1). The remaining 25% rated it with mark 2. Even
though merge partner nodes and merged element are on the same vertical graph level it was
not absolutely clear that those states are get merged. 75% rated it with mark 2 and 25%
with mark 3. The second task was structured in such a way that the participants had to
put themselves in the position of a student in order to answer the question which features
of the new web frontend help to understand the calculation steps of the CPAchecker. All
participants are of the opinion that the final ARG Highlight Merge will help a student to
correct or compare his manually calculated results. 50% think that also the final standard
ARG is of help. On average they rated the question "Does the final ARG Highlight Merge
made the computation steps of the CPA Algorithm clearer?" with mark 2, where 1 was
Yes, absolutely and 5 Not at all. All participants of the survey are convinced, that the
possibility to go back and forth by using either the PREV/NEXT buttons or the slider help

53

CHAPTER 5. EVALUATION

to understand the computation steps of the CPA algorithm. But only 50% are convinced
that highlighting the source code line leads to a better understanding of the computation
steps. The final evaluation questions whether the new web frontend is useful for students
and general users were rated by 50% of the participants with grade 1 and 50% with grade
2.

The last part of the survey consisted of three general rating questions about usability, web
design and user experience. The scale for the usability is 1 for Completely unclear where to
find and click and 5 for Everything was self-explaining. 75% of the participants rated it
with mark 4 and 25% with mark 5. The scale for the web design was 1 for not attractive
and 5 for attractive. 100% gave a solid 4. The scale for the user experience ranged from It
was a pain working with it (1) to I enjoyed working with it (5). 50% enjoyed working with
the new web frontend. The other half rated it with mark 4.

Finally the participants had space for suggestions, wishes, comments, and remarks. My
thanks to all participants for the large number of answers listed here:

• If you loose the graph while zooming and paning a "find" or "focus" Button would be
nice to reset the view

• Missing features from other report (clicking on edges, clicking on source code).

• Highlight the states on the waitlist! It was confusing in the last example in steps 7-11
because I did wonder whether 6@N6 would still be explored, i.e., whether it is still
on the waitlist or not. The slider does not go all the way to the left. The top bar
takes a lot of screen space but cannot be minimized. The Computation Steps Graph
Windows does not move as I would expect it when moving the slider. I would expect
the Graph to not move at all when I move the slider, but the slider simple moved the
whole canvas with it. So I need to readjust/recenter the graph after using the slider.
I also do not see whether a state was stopped (coverag) and if so by which state. I
really like the fact that all states at the same location/ that are merged are on the
same graph rank (vertical position). Makes it easier to understand what is happening.
Maybe that is just the case in the examples. This could make the graph harder to
read if the program is more complicated. There is also a projected view for analyses
that use ABE. Most of the ARG nodes are not used for merge there. Supporting this
would make ARGs for analyses that use ABE better understandable.

• "The contrast of the source-code view is a little bit low, white on light blue is too hard
to read. Syntax highlighting like in the standard report would also be nice.

In general: Why have a separate file? Can’t the two HTML files be merged, such that
the interactive ARG is a tab on the existing report? Or even replaces the existing
ARG tab? This would also solve the problem that the current ComputationSteps.html

54

CHAPTER 5. EVALUATION

does not provide any further details about the verification, e.g., which program file was
analyzed, which version of CPAchecker, which configuration, etc.

In the first file I opened (for example.c) I had tooltip contents that overflowed the
tooltip box.

The term "Highlight merge" is not clear to me.

In the "Highlight merge" view it would probably make sense to actually connect the
merged states with its resulting state, e.g., by adding dashed edges or so.

I am not sure whether it is helpful that all states that will be merged at some point
in the future are immediately highlighted when they are added. This can be confusing
when going step-wise and a new highlighted node appears without explanation why it
is highlighted. Maybe highlight them only in the last step before the merge?"

• The CPAchecker-Logo causes 1cm of space usage at the bottom. This is an inacceptable
waste of space. Can you insert ticks for the computation steps slider? Can you rename
the "merge edge" or insert additional edges "merged into"? This would make thinks
clearer.

As already mentioned, both the minimum width of the graph box and the contrast of the
source code line were immediately improved. Another possibility to improve the contrast of
the source code line is to initialize Google pretiffy code as it is done in the report (Figure
5.3). This would also satisfy the wish of highlighting the source code syntax. I classify that
as matter of preference and decided to go for less color instead of syntax highlighting.

1 // Initialize Google pretiffy code
2 $(document).ready(function () {
3 PR. prettyPrint ();
4 });

Figure 5.3: Syntax highlighting

A previously unnoticed problem, that the tooltip content overflowed the tooltip box is solved
by a change of width size. As already mentioned the tooltip content itself has now additional
information, among other things about the step where a state will get merged. Since one
suggestion was to rename merge edge I decided to add this information (merged at step x)
also to the merge partner edges (see Figure 5.2).

55

CHAPTER 5. EVALUATION

Although I disagree with the comment that the size of the CPAchecker logo is an unacceptable
waste of space, since a non-participant in the survey missed the hyperlink, I have minimized
it by 40% as a compromise.

Another criticism about space was that the top bar can not be minimized. I am aware of
this, but see it as necessary that the buttons, the slider and the Computation Steps display
remains permanently visible. But to save at least a bit of space I put the Computation Step
display on top, next to the buttons (see Figure 5.2). Space and size is also a problem for
big graphs of more complex programs. The visualization does not work well for very large
programs, but the goal is teaching and understanding in small programs, so it was decided
to focus on that.

For faster access to certain calculation steps, ticks were attached to the slider as suggested
by one survey participant. They have been implemented so that they adapt dynamically to
the number of calculation steps (see Figure 5.2).

One suggestion was already implemented, but the program examples in the survey did not
focus on that. The user will see stopped states as nodes with dashed borders in case the
boolean analysisStop is true (see Figure 5.4).

Figure 5.4: Dashed node rim of stopped states

56

CHAPTER 5. EVALUATION

Since the remaining suggestions (additional edges, integration of the new web fontend in the
report, find button, supporting ABE analyses) provide great ideas for future work, they will
be discussed in the next chapter (6).

57

6 Future Work

During implementation of the new web frontend and discussions with my advisor we came
up with multiple desirable ideas for future work. Some of them were also listed as wishes
and suggestions from the survey participants.

Integration in the report

We started with the idea to implement an additional output for the purpose of visualizing
the computation steps of CPAchecker. It turned out that more and more features of the
already existing report would also be nice in the ComputationSteps.html. The best solution
could be to integrate it into the report file as extra feature or by replacing the actual ARG
tab. It will be part of future work to decide whether an integration makes sense or whether
additional features like configuration and statistics should be integrated into the separate
ComputationSteps.html. Depending on what you decide, either the help button in the report
must be extended or a help button must be inserted. One of our considerations was at
what point should the merge partners be highlighted in color. A mix of the improvements
already made plus a help function should get these ambiguities out of the way. A help
function can also indicate that the current edge label matches the highlighted source code
line. Irrespective of this, future work should focus to improve the new web frontend by
highlighting all calculation steps. To name a few: highlight states on waitlist, highlight
states before and after precision adjustment, highlight source code (pseudocode) of the CPA
algorithm.

Additional ARG edges

A problem I could not solve to my full satisfaction was the question "Are extra edges from
merge partners to the merged element helpful or confusing?". In case one think it is helpful
would mean an additional calculation step in the CPA algorithm. The CPAchecker does not
compute edges of merge partners to their computed merged element. The current imple-
mentation creates as a first step the complete final ARG with dagre D3, where beside the
first node all other nodes are invisible. It is therefore not a real live recording of the ARG

58

CHAPTER 6. FUTURE WORK

creation but rather a simulation by changing the visibility of the nodes. Finding a better
solution for that could therefore be part of a future work.

Quantitative Evaluation

Even though the website is well received by the survey participants, there are many things
that need to or could be improved. The web design can be easily adapted at any time, but it
is a challenge to optimally arrange all content in a limited space. Future work will probably
achieve a better arrangement. It is also worth discussing whether a find/focus button to reset
the view in case you lost the graph by panning and zooming is mandatory or not needed.
Another point of discussion could be if users prefer that the graph is not moving when the
splitter is used or if the majority of the users prefer that the whole canvas with the graph
fixed is moving like I do prefer. A larger number of survey participants could have answered
questions of this kind. To get a more quantitative result in this respect, testing the new web
frontend with students under real conditions where they have to solve the typical exercise
of manually calculating an ARG as before and then check their result with the new web
frontend could be part of the future work.

ABE Support

ABE (Adjustable-Block Encoding) was introduced in CPAchecker to obtain a better pre-
cision and performance of the verification analysis [12]. Supporting this with the the new
CollectorCPA and web frontend could be a nice future project.

59

7 Conclusion

This thesis provides a successful design and implementation of a new web frontend for visu-
alization of computation steps and their results in CPAchecker. The work was divided in two
implementation parts. First implementation of a new CPA and second the implementation
of the new web frontend. The storage of states which get lost during the verification anal-
ysis but being important for a comprehensive understanding of the verification results was
achieved by implementing the new CPA CollectorCPA. This new CPA acts as a wrapper of
the ARG CPA. Calculations like merge and termination check are all delegated to the oper-
ators of the ARG CPA, but stored in the Collector CPA. Since the visualization of complex
logical calculations makes a large contribution to the understanding of the same, emphasis
was also placed on the design, choice of visualization elements like colors and graphics, and
features for interactivity. The survey showed that we have made a suitable selection of those
visualization elements. The automated generation of an additional output Computation-
Steps.html is achieved in the same way the report is generated. The fact that the HTML
page is cross-browser compatible was also confirmed by the survey participants. The data
produced by the CPAchecker or more precisely by the Collector CPA for creation of the
interactive ARG is provided dynamically and structured in JSON format to the HTML file.
The already established use of Dagre D3 was a good choice to create the final ARG. Starting
from this an interactive platform was implemented in form of a routine in JavaScript. The
new web frontend was completed with HTML for the framework and CSS for the style. The
subsequent evaluation showed that all implemented functions work to our full satisfaction.
Furthermore the participants of the survey were convinced that the new web frontend is a
great help not only for students but also for general users. The most important achievement
in respect for an enhanced understanding of computation steps of the CPAchecker is the pos-
sibility to go interactively forth and back in the step-by-step creation of the ARG, since 100%
of the survey participants rated it as absolutely helpful. In summary, it can be said that the
design and implementation of this new web frontend achieves a better comprehension of the
calculation steps and results of CPAchecker. The new web frontend provides a good basis
for further improvements, supports and integration in the report of the CPAchecker.

60

Bibliography

[1] Gleiss, Bernhard ; Kovács, Laura ; Schnedlitz, Lena: Interactive Visualization
of Saturation Attempts in Vampire. In: Ahrendt, Wolfgang (Hrsg.) ; Tarifa, Silvia
Lizeth T. (Hrsg.): Integrated Formal Methods - 15th International Conference, IFM
2019, Bergen, Norway, December 2-6, 2019, Proceedings Bd. 11918, Springer, 2019
(Lecture Notes in Computer Science), 504–513

[2] Zhou, Chijin ; Wang, Mingzhe ; Liang, Jie ; Liu, Zhe ; Sun, Chengnian ; Jiang, Yu:
VisFuzz: Understanding and Intervening Fuzzing with Interactive Visualization. In:
34th IEEE/ACM International Conference on Automated Software Engineering, ASE
2019, San Diego, CA, USA, November 11-15, 2019, IEEE, 2019, 1078–1081

[3] Beyer, Dirk ; Keremoglu, M. E.: CPAchecker: A Tool for Configurable Software
Verification. In: Gopalakrishnan, Ganesh (Hrsg.) ; Qadeer, Shaz (Hrsg.): Com-
puter Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT,
USA, July 14-20, 2011. Proceedings Bd. 6806, Springer, 2011 (Lecture Notes in Com-
puter Science), 184–190

[4] Beyer, Dirk ; Gulwani, Sumit ; Schmidt, David A.: Combining Model
Checking and Data-Flow Analysis. Version: 2018. http://dx.doi.org/10.1007/
978-3-319-10575-8_16. In: Clarke, Edmund M. (Hrsg.) ; Henzinger, Thomas A.
(Hrsg.) ; Veith, Helmut (Hrsg.) ; Bloem, Roderick (Hrsg.): Handbook of Model Check-
ing. Springer, 2018. – DOI 10.1007/978–3–319–10575–8_16, 493–540

[5] Beyer, Dirk ; Henzinger, Thomas A. ; Théoduloz, Grégory: Configurable Software
Verification: Concretizing the Convergence of Model Checking and Program Analysis.
In: Damm, Werner (Hrsg.) ; Hermanns, Holger (Hrsg.): Computer Aided Verification,
19th International Conference, CAV 2007, Berlin, Germany, July 3-7, 2007, Proceed-
ings Bd. 4590, Springer, 2007 (Lecture Notes in Computer Science), 504–518

[6] Zakharov, Ilja S. ; Mandrykin, Mikhail U. ; Mutilin, Vadim S. ; Novikov, Evgeny
; Petrenko, Alexander K. ; Khoroshilov, Alexey V.: Configurable toolset for
static verification of operating systems kernel modules. In: Programming and Computer
Software 41 (2015), Nr. 1, 49–64. http://dx.doi.org/10.1134/S0361768815010065.
– DOI 10.1134/S0361768815010065

61

http://dx.doi.org/10.1007/978-3-319-10575-8_16
http://dx.doi.org/10.1007/978-3-319-10575-8_16
http://dx.doi.org/10.1134/S0361768815010065

Bibliography

[7] Takanen, Ari ; Demott, Jared D. ; Miller, Charles: Fuzzing for Software Security
Testing and Quality Assurance. 2nd. USA : Artech House, Inc., 2018. – ISBN 1608078507

[8] Rockai, Petr ; Barnat, Jiri: A Simulator for LLVM Bitcode. In: CoRR
abs/1704.05551 (2017). http://arxiv.org/abs/1704.05551

[9] Wendler, Philipp: Towards Practical Predicate Analysis. PhD Thesis, Univer-
sity of Passau, Software Systems Lab. https://www.sosy-lab.org/research/phd/
wendler/. Version: 2017

[10] Gansner, Emden R. ; Koutsofios, Eleftherios ; North, Stephen C. ; Vo, Kiem-
Phong: A Technique for Drawing Directed Graphs. In: IEEE Trans. Software Eng. 19
(1993), S. 214–230

[11] Ivanov, Deyan: Interactive Visualization of Verification Results from CPAchecker with
D3. Bachelor’s Thesis, LMU Munich, Software Systems Lab, 2017

[12] Beyer, Dirk ; Keremoglu, M. E. ; Wendler, Philipp: Predicate Abstraction with
Adjustable-Block Encoding. In: Proceedings of the 10th International Conference on
Formal Methods in Computer-Aided Design (FMCAD 2010, Lugano, October 20-23),
FMCAD, 2010, 189-197

62

http://arxiv.org/abs/1704.05551
https://www.sosy-lab.org/research/phd/wendler/
https://www.sosy-lab.org/research/phd/wendler/

A.1 Survey Content
The questionnaire created with Google Forms is attached as pdf file on the following pages.

63

General Questions
To find out how well you know the CPAchecker

1.

Markieren Sie nur ein Oval.

Yes, I know it by heart

1 2 3 4 5

No

2.

Markieren Sie nur ein Oval.

Daily

Weekly

Monthly

Less than monthly

Never

Report features
I would like to know how regularly you use them

Evaluation of a web frontend for
visualization of computation steps and
their results
My bachelor thesis provides the design and implementation of a new web frontend for
visualization of computation steps and their results of the software verification tool
CPAchecker. The aim of this survey is to
evaluate the use of this web frontend as a tool for students to compare and correct their
exercise results of manual creation of an abstract reachability graph (ARG) using the CPA
(Configurable Program Analysis) algorithm, and as a tool for the general user to improve his
understanding of the analysis results.

Your precious time should be a good investment in improving the new web frontend. Please
give me about 30 min of your time to fill out this survey. The tasks should help you to discover
and test the features. Maybe you have some great suggestions for improving the new web
frontend which you would like to share with me.
Have fun!

Are you familiar with CPAchecker?

How often do you use the report.html provided by CPAchecker?

3.

Markieren Sie nur ein Oval.

Every time

1 2 3 4 5

Never

4.

Markieren Sie nur ein Oval.

Very often

1 2 3 4 5

Only by accident

5.

Markieren Sie nur ein Oval.

Every time

1 2 3 4 5

Never

6.

Markieren Sie nur ein Oval.

Very often

1 2 3 4 5

Only by accident

7.

Markieren Sie nur ein Oval.

Every time

1 2 3 4 5

Never

How often do you use the CFA-tab?

How often do you click on edges of the CFA to switch to the source code line?

How often do you use the ARG-tab?

How often do you click on elements of the ARG?

How often do you use the source-tab?

8.

Markieren Sie nur ein Oval.

Every time

1 2 3 4 5

Never

9.

Markieren Sie nur ein Oval.

Every time

1 2 3 4 5

Never

10.

Markieren Sie nur ein Oval.

Every time

1 2 3 4 5

Never

Output folder
In the output folder you will also find results of the verification run in other formats

11.

Markieren Sie nur ein Oval.

Yes, regularly

Yes, once or rarely

No

How often do you use the log-tab?

How often do you use the statistics-tab?

How often do you use the configurations-tab?

Have you ever used the ARG.dot file in the output folder?

Task
1

This task is intended to get familiar with the new web frontend and its functionalities. Based
on your user experience the following questions shall give me information about the
operability and hopefully ideas for improvements.

1. Please read carefully the CPAchecker Documentation "Getting started with CPAchecker"
(https://cpachecker.sosy-lab.org/doc.php).

2. Please checkout the CPAchecker branch from svn with "svn checkout https://svn.sosy-
lab.org/software/cpachecker/branches/SonjaM/ cpachecker".

3. Run the analysis with configuration "-setprop solver.solver=smtinterpol -setprop
cpa.predicate.encodeBitvectorAs=integer -setprop cpa.predicate.encodeFloatAs=rational -
collector doc/examples/example.c".

4. You will find the ComputationSteps.html in the output folder, open it with any browser.

5. Please make yourself familiar with the different features of the web frontend. Note the
Source Code and the Computation Steps Graph boxes. Try the buttons, slider, splitter and
hyperlink (marked on the following screenshot).

6. Note the drop down button FINAL ARG GRAPH. Select a final ARG and compare it with the
other.

7. Build the graph with the slider or NEXT button, try to zoom and pan the graph. Then hover
the mouse over nodes and make yourself familiar with the informations in the tooltip box.

8. Press the RESET ARG GRAPH button. Step forward with the NEXT button or the slider and
step backwards with the PREV button or the slider. Note the dark blue highlighting of the
source code.

9. Move the splitter to the right and left, click the CPA logo.

Screenshot

12.

Markieren Sie nur ein Oval.

Yes

1 2 3 4 5

Not at all

13.

14.

15.

Markieren Sie nur ein Oval.

Yes, no problem

1 2 3 4 5

No

16.

Markieren Sie nur ein Oval.

Yes

1 2 3 4 5

Not at all

Was it clear where to find the ComputationSteps.html?

Which browser did you use?

If there were any difficulties or display problems with your chosen browser,
please name them?

Did the CPA-logo hyperlink work?

Could you slide the Source Code and Computation Steps Graph boxes with the
splitter to your desired width?

17.

Markieren Sie nur ein Oval.

Yes, perfectly obvious

1 2 3 4 5

Not noticed

18.

Markieren Sie nur ein Oval.

Yes, from the first to the last node

1 2 3 4 5

Not at all

19.

Markieren Sie nur ein Oval.

Flawless

1 2 3 4 5

Not at all

20.

Markieren Sie nur ein Oval.

Yes, easy

1 2 3 4 5

Not at all

21.

Markieren Sie nur ein Oval.

Yes

No

Have you noticed that the highlighted source code line (dark blue) matches the
edge label?

Was the graph displayed in the Computation Steps Graph box?

How did the graph zooming work?

Were you able to pan/drag-and-drop the graph easily?

Did the mouse over showed the tooltip box?

22.

Markieren Sie nur ein Oval.

Yes

1 2 3 4 5

No

23.

24.

Markieren Sie nur ein Oval.

Good

1 2 3 4 5

Bad

25.

Markieren Sie nur ein Oval.

Yes, from the first to the last node

1 2 3 4 5

Not at all

26.

Markieren Sie nur ein Oval.

Yes from the last to the first step

1 2 3 4 5

Not at all

Was the content of the tooltip box clear to you?

Do you have any suggestions what could be additionally displayed in the tooltip
box?

How was the performance of the slider?

Did the NEXT button worked properly?

Did the PREV button worked proberly?

27.

Markieren Sie nur ein Oval.

Yes

No

There were problems loading the page

The slider and/or the Computation Step Display was not reseted

28.

Wählen Sie alle zutreffenden Antworten aus.

Yes

Only the HIGHLIGHT MERGE option resulted in displaying the graph

Only the STANDARD ARG option resulted in displaying the graph

No

When pressing the reset button, was the graph deleted and the first node
displayed again?

Did the drop down menu FINAL ARG GRAPH worked for both options?

Task
2

This task is to find out if the new web frontend is suitable to make the calculation of the
merge operator of the CPA easier to understand for students.

1.Please have a closer look at following figures. They show an example C-program to be
analyzed and its representation as CFA and the CPA algorithm, the CPAchecker uses.

2. Run the CPAchecker analysis with configuration "-setprop solver.solver=smtinterpol -
setprop cpa.predicate.encodeBitvectorAs=integer -setprop
cpa.predicate.encodeFloatAs=rational -collector doc/examples/exampleSM.c".

3. Open the ComputationSteps.html and choose the STANDARD ARG in the drop down menu
FINAL ARG GRAPH,
then zoom and pan until you find the node 14@N5 with ARG ID 14.
Then choose the HIGHLIGHT MERGE in the drop down menu FINAL ARG GRAPH, zoom and
pan again until you find the node 14@N5 with ARG ID 14. Note the difference.
Performing the CPA algorithm on the provided C-program, represented by the CFA, results in a
merge at node N5 of the CFA (see CFA figure).
Note that the standard ARG in your browser shows the merged node (14@N5) with
ValueAnalysisState (x = 1).
A main advantage of the new web frontend is the display of the calculation steps of the
merge operator. The merge operator is defined as merge(e',e")= e". Note that the merge
partners (e') will not be displayed in the final standard ARG.

4. Please press the RESET ARG GRAPH button. Now follow the graph evolution carefully by
clicking on the NEXT button or using the slider until you have reached Computation Step 13 or
node 13@N5.

5. A typical exercise for student is:
"Perform a CPA analysis on the given program (represented by the CFA) and represent the
resulting set of reachable states as an abstract reachability graph (ARG)."
To solve this exercise you need to calculate the merge manually. Before you are able to draw
the final ARG,
you had to calculate the states which will get merged.
Try to understand why node 13@N5 has the ValueAnalysisState(x=1, y=1, z=0) and node
10@N5 has the ValueAnalysisState(x=1, z=01). These are the states e' which will get merged
to node 14@N5 with ValueAnalysisState (x = 1). Note the colors of the nodes.

5. Now go to the next calculation step by pressing the NEXT button or using the slider. Watch
what happens. If necessary, go back and forth using either the slider or the PREV/NEXT
buttons.

C-Program and Control-flow automaton (CFA)

CPA Algorithm

29.

Markieren Sie nur ein Oval.

Yes, super easy

1 2 3 4 5

No, I almost surrendered

30.

Markieren Sie nur ein Oval.

Sure

1 2 3 4 5

No, I looked for the node 13@N5

31.

Markieren Sie nur ein Oval.

Yes, great help

1 2 3 4 5

Completely superfluous and confusing

Was it easy to find node 14@N5?

Was it clear how to get to computation step 13?

Does the colors of states e' which will get merged and the merged state e" help
to unterstand the merge operation?

32.

Markieren Sie nur ein Oval.

Yes

1 2 3 4 5

No

33.

Wählen Sie alle zutreffenden Antworten aus.

Highlight Merge

Standard ARG

34.

Markieren Sie nur ein Oval.

Yes, absolutly

1 2 3 4 5

Not at all

35.

Markieren Sie nur ein Oval.

Absolutly

1 2 3 4 5

Still no clue

36.

Markieren Sie nur ein Oval.

Yes a lot

1 2 3 4 5

Not at all

Was it clear that node 14@N5 is the merged state of 13@N5 and 10@N5?

Which final ARG do you think a student will use to correct/compare his exercise
results?

Does the final ARG "Highlight Merge" made the computation steps of the CPA
Algorithm clearer?

Does the possibility to go back and forth by using PREV/NEXT buttons
respectively the slider help to understand computation steps of the CPA
Algorithm and therefore the evolution of the ARG?

Does highlighting the source code line help to understand the step-by-step
evolution of the ARG?

37.

Markieren Sie nur ein Oval.

Yes

1 2 3 4 5

No

38.

Markieren Sie nur ein Oval.

Yes

1 2 3 4 5

No

General Rating
You are almost ready......

39.

Markieren Sie nur ein Oval.

Completely unclear where to find and click

1 2 3 4 5

Everything was self-explaining

40.

Markieren Sie nur ein Oval.

not attractive

1 2 3 4 5

attractive

41.

Markieren Sie nur ein Oval.

It was a pain working with it

1 2 3 4 5

I enjoyed working with it

Do you think the new web frontend is a useful tool for students?

Do you think the new web frontend is useful for the general CPAchecker user?

Please rate the usability of the ComputationSteps.html

5.2 Please rate the web design

5.3 Please rate your user-experience

42.

43.

THANK YOU

Dieser Inhalt wurde nicht von Google erstellt und wird von Google auch nicht unterstützt.

Feel free to express wishes for additional features or make suggestions for
improvements to the existing features

Please use this section for additional comments and remarks

 Formulare

78

A.2 Survey Results

(1) Scale: 1 =Yes,I know it by heart; 5 = No

(2)

(3) Scale 1 = Every time; 5 = Never

79

(1) Scale 1 = Very often; 5 = Only by accident

(2) Scale 1 = Every time; 5 = Never

(3) Scale 1 = Very often; 5 = Only by accident

80

(1) Scale 1 = Every time; 5 = Never

(2) Scale 1 = Every time; 5 = Never

(3) Scale 1 = Every time; 5 = Never

81

(1) Scale 1 = Every time; 5 = Never

(2)

(3) Scale 1 = Yes; 5 = Not at all

82

(1)

(2)

(3) Scale 1 = Yes, no problem; 5 = No

83

(1) Scale 1 = Yes; 5 = Not at all

(2) Scale 1 = Yes, perfectly obvious; 5 = Not noticed

(3) Scale 1 = Yes, from the first to the last node; 5 = Not at all

84

(1) Scale 1 = Flawless; 5 = Not at all

(2) Scale 1 = Yes, easy; 5 = Not at all

(3)

85

(1) Scale 1 = Yes; 5 = No

(2)

(3) Scale 1 = Good; 5 = Bad

86

(1) Scale 1 = Yes, from the first to the last node; 5 = Not at all

(2) Scale 1 = Yes, from the last to the first step; 5 = Not at all

(3)

87

(1)

(2) Scale 1 = Yes, super easy; 5 = No, I almost surrendered

(3) Scale 1 = Sure; 5 = No, I looked for the node 13@N588

(1) Scale 1 = Yes, great help; 5 = Completely superfluous and confusing

(2) Scale 1 = Yes; 5 = No

(3)

89

(1) Scale 1 = Yes, absolutely; 5 = Not at all

(2) Scale 1 = Absolutely; 5 = Still no clue

(3) Scale 1 = Yes, a lot; 5 = Not at all

90

(1) Scale 1 = Yes; 5 = No

(2) Scale 1 = Yes; 5 = No

91

(1) Scale 1 = Completely unclear where to find and click; 5 = Everything was self-
explaining

(2) Scale 1 = not attractive; 5 = attractive

(3) Scale 1 = It was a pain working with it; 5 = I enjoyed working with it
92

	Introduction
	Related Work
	Theoretical Background
	CPAchecker
	Control Flow Automaton
	Abstract Reachability Graph
	Configurable Program Analysis
	CPA-Algorithm
	CPAchecker

	Used Libraries and scripts
	D3
	Dagre D3
	jQuery
	Dot_to_ gif_sh

	CPAchecker report

	Implementation
	CollectorCPA
	DOT Graph
	ARGStateView
	Graph Data
	Web Frontend

	Evaluation
	Evaluation concept
	Evaluation results

	Future Work
	Conclusion
	Bibliography
	Appendix
	Survey Content
	Survey Results

