
BACHELORARBEIT

Extending the Framework JavaSMT with the
SMT Solver Yices2

Michael Obermeier

Prüfer: Prof. Dr. Dirk Beyer
Mentor: Karlheinz Friedberger

Abgabetermin: 13.03.2020

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 13.03.2020

. .
(Unterschrift des Kandidaten)

III

Abstract

JavaSMT, developed at the Software and Computational Systems Lab at the Ludwig-
Maximilians-Universität München, is a common API for SMT solvers. It offers access to
a selection of solvers developed in Java as well as other programming languages. Support
for those non-Java solvers is achieved through either existing or self-developed language
bindings. While most solvers have a mostly identical core set of supported theories and
features, they still differ by availability of additional theories and performance. As such
adding more solvers to the framework will always be beneficial to the users. The Yices2
SMT solver, developed at SRI International’s Computer Science Laboratory was chosen
as an addition because of its large feature set and extensive, well documented API. In
this paper we will go over how the needed Java binding was developed and the integration
with the JavaSMT API works. We will also cover the problems that were encountered
while adapting the Yices2 API to JavaSMT’s and the solutions that were implemented.
After covering the implementation, we will evaluate the performance of Yices2 against
existing solvers in JavaSMT using the CPAchecker software verification framework and
the SV-benchmarks set of verification tasks, which are also maintained at the SoSy-Lab.

Contents

1 Introduction 1

2 Background 5
2.1 Satisfiability Modulo Theories . 5
2.2 SMT-LIB2 . 5
2.3 Yices2 . 5
2.4 Java Native Interface . 6
2.5 Explanations for Table 1.2 . 6

3 Basic Implementation 7
3.1 JNI Macros . 7
3.2 Initializing . 7
3.3 Types . 8

3.3.1 Types in Yices2 . 8
3.3.2 Types in JavaSMT . 9

3.4 Terms . 9
3.4.1 Terms in Yices2 . 9
3.4.2 Symbols . 9
3.4.3 Boolean terms . 10
3.4.4 Bitvector terms . 10
3.4.5 Arithmetic terms . 10
3.4.6 Uninterpreted functions . 10

4 Visiting and dumping 13
4.1 Term properties in Yices2 . 13

4.1.1 Term classes . 13
4.1.2 Term constructor . 13
4.1.3 Value . 13

4.2 Basic visiting principle . 14
4.3 Constants and variables . 14
4.4 Functions . 14

4.4.1 Built-in . 14
4.4.2 UFs . 15

4.5 Transformed terms . 15
4.5.1 And . 15
4.5.2 Bitvector functions . 16

4.6 Sums and products . 16
4.6.1 Arithmetic sums . 16
4.6.2 Bitvector sums . 16
4.6.3 Products . 16

i

Contents

4.7 Dumping/Parsing . 17

5 Solving and stack manipulation 19
5.1 Creating a solver environment . 19
5.2 Push and pop . 19

5.2.1 Internal stack . 19
5.2.2 Push . 19
5.2.3 Pop . 20

5.3 Adding constraints . 20
5.4 Solving and UnsatCores . 20

5.4.1 Solving . 20
5.4.2 UnsatCores . 20

6 Model exploration 23
6.1 Model in Yices2 . 23

6.1.1 Structure . 23
6.1.2 Yval_t and yval_vector_t . 23

6.2 Creating the model . 23
6.3 Evaluating a term . 24
6.4 Traversing the model . 24

6.4.1 Evaluating constants . 24
6.4.2 Evaluating functions . 24

7 Evaluation 27
7.1 Software . 27

7.1.1 CPAchecker . 27
7.1.2 SV-benchmarks . 27

7.2 Configuration . 28
7.3 Results . 28

8 Conclusion 31

List of Figures 33

List of Tables 35

Listings 37

Bibliography 39

ii

1 Introduction

Today software and hardware are becoming ever more complex due to the advent of
cloud services, internet of things, software as a service and rising hardware performance
requirements for tasks like machine learning or weather predictions. As software gains
more features increasing the code base size and hardware contains more different circuits
than before, both become increasingly difficult to verify in a manual review or through
test cases. Thus additional tools like SMT solvers are needed to help ensure a piece of
hard- or software works like it should. Since these SMT solvers have varying degrees of
capabilities and performance and may not accept the same input, various frameworks
that offer a unified API to several SMT solvers were created. One of these frameworks
is JavaSMT1 to which the solver Yices2 was added as part of this work. JavaSMT is a
common API for multiple SMT solvers written in Java. For an overview which solvers
are available in JavaSMT compared to other frameworks see table 1.1. It is developed
by the Software and Computational Systems Lab (SoSy-Lab)2 at Ludwig-Maximilians-
Universtität München and distributed under the Apache 2.0 license. If the license of a
solver allows it, compiled binaries are also distributed for a simpler setup. The goal of
JavaSMT is to provide a performance optimized, customizable and type safe interface
for various solvers. A simple example of solving a formula with Yices2 is given in listing
1.1. For comparison an equivalent example in SMT-LIB2 notation is given in listing
1.2. Additionally to simple solving JavaSMT can provide additional features such as
Interpolation or AssumptionSolving when the selected solver supports them. For an
overview of these features and their support see table 1.2. A short explanation of each
feature can be found in 2.5. Since the theory support differs by solver and JavaSMT does
not necessarily support all theories offered by a solver, an overview of available theories
can be found in table 1.3. For a closer look at JavaSMT see [KFB16].

This work is divided into three major parts. Chapter 2 gives a short introduction of
Satisfiability Modulo Theories, the JavaSMT framework, the Yices2 solver and the Java
Native Interface, which was used to build a wrapper between the C-Code of Yices2 and the
Java based JavaSMT. The Chapters following 3 will then cover how the implementation
was done, the encountered problems and how they were solved. The final chapter 7 then
explains the programs used for evaluation and compares the performance of Yices2 to the
already available solvers.

1https://github.com/sosy-lab/java-smt, 12.2019
2https://www.sosy-lab.org, 12.2019

1

https://github.com/sosy-lab/java-smt
https://www.sosy-lab.org

1 Introduction

Highlighted text refers to relevant program parts, such as variables, methods and
macros. A prefix yices_ refers to methods from Yices2’s API.3. UPPER-CASE TEXT
indicates a macro found in the JNI binding(see 3.1). The majority of remaining highlights
refer to methods within the Yices2 adapter classes in JavaSMT and are usually referred
to in context of their containing class.

B
oo

le
ct

or
4

Z3
5

M
at

hS
AT

56

C
V

C
47

Pr
in

ce
ss

8

SM
T

In
te

rp
ol

9

Y
ic

es
210

Pi
co

SA
T

11

SW
O

R
D

12

JavaSMT13 3 3 3 3 3 3 3 7 7

ScalaSMT14 7 3 3 3 7 3 3 7 7

MetaSMT15 3 3 7 3 7 7 7 3 3

PySMT16 3 3 3 3 7 7 3 3 7

Table 1.1: Solvers supported by JavaSMT and other frameworks. Other frameworks may
support additional solvers.

3An API reference can be found under: https://yices.csl.sri.com/doc/index.html, 02.2020
4https://boolector.github.io, 03.2020
5https://github.com/Z3Prover, 03.2020
6http://mathsat.fbk.eu/, 03.2020
7https://cvc4.github.io, 03.2020
8http://www.philipp.ruemmer.org/princess.shtml, 03.2020
9https://ultimate.informatik.uni-freiburg.de/smtinterpol/, 03.2020

10https://yices.csl.sri.com, 03.2020
11http://fmv.jku.at/picosat/, 03.2020
12http://www.informatik.uni-bremen.de/agra/eng/sword.php, 03.2020
13https://github.com/sosy-lab/java-smt, 12.2019
14https://bitbucket.org/franck44/scalasmt/src/master/, 12.2019
15http://www.informatik.uni-bremen.de/agra/eng/metasmt.php, 12.2019
16https://github.com/pysmt/pysmt, 12.2019

2

https://yices.csl.sri.com/doc/index.html
https://boolector.github.io
https://github.com/Z3Prover
http://mathsat.fbk.eu/
https://cvc4.github.io
http://www.philipp.ruemmer.org/princess.shtml
https://ultimate.informatik.uni-freiburg.de/smtinterpol/
https://yices.csl.sri.com
http://fmv.jku.at/picosat/
http://www.informatik.uni-bremen.de/agra/eng/sword.php
https://github.com/sosy-lab/java-smt
https://bitbucket.org/franck44/scalasmt/src/master/
http://www.informatik.uni-bremen.de/agra/eng/metasmt.php
https://github.com/pysmt/pysmt

B
oo

le
ct

or

C
V

C
4

M
at

hS
AT

5

Pr
in

ce
ss

SM
T

In
te

rp
ol

Z3 Y
ic

es
2

AllSAT 7 7 3 3 3 3 7

AssumptionSolving 3 7 3 7 7 3 3

Interpolation 7 7 3 3 3 3 7

Optimization 7 7 3 7 7 3 7

UnsatCore 7 3 3 3 3 3 3

UnsatCore with Assumptions 7 7 3 7 7 3 3

Table 1.2: Additional features supported by the available solvers. See section 2.5 for
explanations.

B
oo

le
ct

or

C
V

C
4

M
at

hS
AT

5

Pr
in

ce
ss

SM
T

In
te

rp
ol

Z3 Y
ic

es
2

Bool 3 3 3 3 3 3 3

BV 3 3 3 3 7 3 3

Int 7 3 3 3 3 3 3

Real 7 3 3 7 3 3 3

Float 7 3 3 7 7 3 7

UF 3 3 3 3 3 3 3

Array 3 3 3 3 3 3 7

QF 3 7 7 3 7 3 7

Table 1.3: Theories available in JavaSMT.

3

1 Introduction

Listing 1.1: Solving a simple formula with Yices2 using JavaSMT
// Instantiate JavaSMT with Yices2 as backend

2 try (SolverContext context = SolverContextFactory .
→˓ createSolverContext (config , logger , shutdownNotifier
→˓ , Solvers . YICES2)) {

IntegerFormulaManager imgr = context . getFormulaManager ()
→˓ . getIntegerFormulaManager ();

4

// Create formula "a = b" with two integer variables
6 IntegerFormula a = imgr. makeVariable ("a");

IntegerFormula b = imgr. makeVariable ("b");
8 BooleanFormula f = imgr.equal(a, b);

10 // Solve formula , get model , and print variable
→˓ assignment

try (ProverEnvironment prover = context .
→˓ newProverEnvironment (ProverOptions . GENERATE_MODELS
→˓)) {

12 prover . addConstraint (f);
boolean isUnsat = prover . isUnsat ();

14 assert ! isUnsat ;
try (Model model = prover . getModel ()) {

16 System .out. printf ("SAT with a = %s, b = %s",
→˓ model. evaluate (a),
→˓ model. evaluate (b));

}
18 }

}

Listing 1.2: SMT-LIB2 equivalent to listing 1.1
1 (set -logic QF_LIA)

(declare -const a Int)
3 (declare -const b Int)

(assert (= a b))
5 (check -sat)

(get -value (a b))
7 (exit)

4

2 Background

In this first chapter we will give a short introduction of Satisfiability Modulo Theories
and the SMT-LIB2 Standard, as well as the used programs and their capabilities.

2.1 Satisfiability Modulo Theories
Satisfiability Modulo Theories (short SMT) are a class of decision problem (Yes-No an-
swer) used in various tasks of computer science such as software verification. They are an
extension of the Boolean satisfiability problem (SAT) with predicates and theories, other
than the boolean theory, such as the theory of integers or bitvectors. Because of SMT
extending SAT, solving SMT formulae is also a NP-complete problem. This relationship
also makes it possible to translate SMT formulae into SAT formulae and use proven SAT
solving techniques like the Davis–Putnam–Logemann–Loveland (DPLL) algorithm. But
due to DPLL being inefficient in discovering theory specific facts, like that 𝑥+ 𝑦 = 𝑦+ 𝑥
holds for integer values, most solvers now use a more refined approach called DPLL(T).
This approach allows the DPLL-based SAT solver to interact with a theory specific solver
T to ’learn’ more about the given formula. For details on the DPLL(T) approach see
[NOT06].

2.2 SMT-LIB2
SMT-LIB21 is a standard aiming to provide common definitions for SMT theories and
associated logics as well as a unified language for writing input formulae for SMT solvers.

2.3 Yices2
Yices22 is a SMT solver mainly written in C that is being developed at SRI International’s
Computer Science Laboratory3. It is open source software distributed under the GPLv3
license. Since it is incompatible with the Apache 2.0 license, that JavaSMT is under, a
compatible one, that would allow the non-commercial use of Yices2 as part of JavaSMT
and CPAchecker, was requested. But due to the developers not wanting to change the
license as requested, Yices2 can only be offered as an optional part of JavaSMT. Yices2
offers support for a wide range of SMT theories, model generation and exploration as
well as some additional features for solving as listed in table 1.2. It can use the DPLL(T)
approach or Model Constructing Satisfiability Calculus (MCSAT)4 for solving with the

1http://smtlib.cs.uiowa.edu/index.shtml, 12.2019
2https://yices.csl.sri.com/index.html, 12.2019
3https://www.sri.com/about/organization/information-computing-sciences/

computer-science-laboratory, 12.2019
4For details on MCSAT see [JBd13] and [JdM12]

5

http://smtlib.cs.uiowa.edu/index.shtml
https://yices.csl.sri.com/index.html
https://www.sri.com/about/organization/information-computing-sciences/computer-science-laboratory
https://www.sri.com/about/organization/information-computing-sciences/computer-science-laboratory

2 Background

latter supporting non-linear arithmetic. When compiling Yices2 from source MCSAT is
optional and was left out in this implementation as it currently only supports the one-
shot mode for solving, while JavaSMT requires push-pop. For more information on the
architecture of Yices2 the tool paper [Dut14] can be read.

2.4 Java Native Interface
The Java Native Interface(JNI)5 allows Java programs to interact with programs written
in another language. This helps if a certain program can reach significant performance
improvements in a lower level language or an existing library/program can be used in
Java without re-implementing. Additionally to just calling a method, it also enables the
native method to access and manipulate Java objects, call Java methods and more. For
Java to be able to call a native method a binding, such as the one shown in listing 3.1,
has to be written and compiled into a library, which then has to be loaded in Java (see
3.2) before calling the native method.

2.5 Explanations for Table 1.2
AllSAT The solver can find all satisfying assignments to a given set of predicates with
a set of formulae.

AssumptionSolving The solver can use additional assumptions during solving without
adding them to the context beforehand.

Interpolation The solver can compute a formula 𝜓 from 𝜙1 and 𝜙2 where the following
holds: 𝜙1 ∧ 𝜙2 is unsatisfiable, 𝜙1 ⇒ 𝜓 holds, 𝜓 ∧ 𝜙2 is unsatisfiable and all variables in
𝜓 occur in both 𝜙1 and 𝜙2.

Optimization The solver can be told to maximize or minimize the value of a given term
during solving.

UnsatCore For an unsatisfiable problem, the solver can give a small set of constraints
causing the unsatisfiability.

UnsatCore with Assumptions The solver can generate an UnsatCore when assumptions
were used during solving.

5https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/intro.html, 12.2019

6

https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/intro.html

3 Basic Implementation

In this chapter we will cover the initialization of Yices2 for use with JavaSMT and the
handling of types and terms. But first we will explain some quality of life improvements
that were used for the C part of the wrapper.

3.1 JNI Macros

Manually writing a JNI wrapper for an existing API requires defining the method sig-
nature, meaning name, argument types and return type, for each needed method. Ad-
ditionally arguments must be copied from the Java argument into a native equivalent,
before using them to call a native method. Likewise it needs to be ensured that the
return of a method can be handled by Java. For an example of how such a JNI binding
for JavaSMT of the simple method yices_not , that takes one term and returns its
negation, would look like, see Listing 3.1. As can be seen in the example, even ignor-
ing the return error handling, this is a lot of code for one method call. It also contains
unnecessary information like the full Java package name, which in the case of JavaSMT
is the same for each method. Also since many methods of the Yices2 API have similar
or even identical signatures, for example all functions for checking if a term is a certain
type, writing out each method like in 3.1 would cause a lot of code duplication, making
the resulting code harder to read, understand and maintain. Thus we used C macros to
replace multiple occurrences of (near) identical code to alleviate this issue. The listing
3.2 shows the same yices_not method as before, although this time using these macros.
It will result in the same code as 3.1, but is more compact and the key parts, such as
the method name, argument type, number of arguments and return type, are more eas-
ily identifiable. This also has the benefit of only requiring editing one macro instead of
each declaration, if something like the package name were to change or additional error
checking is needed for a common return type. The macros and the JNI binding can be
found under /lib/native/source/yices2j/ .

3.2 Initializing

Because Yices2 is a native library it first needs to be loaded in Java before any of its meth-
ods can be called. This is done in the create() method in Yices2SolverContext with
the call to NativeLibraries.loadLibrary("yices2j"); . Due to the platform inde-
pendent nature of Java, the given name is first expanded to fit the platform specific
naming scheme of the current environment, e.g. libyices2j.so for Linux. Afterwards
Java searches for a matching library in and if one is found loads it. Now that the li-
brary is loaded the next step is to initialize Yices2 with a call to the native method
yices_init() . This allows Yices2 to setup its internal data structures for storing type,

7

3 Basic Implementation

Listing 3.1: JNI binding
JNIEXPORT jint JNICALL

→˓ Java_org_sosy_1lab_java_1smt_solvers_yices2_
→˓ Yices2NativeApi_yices_1not (JNIEnv *jenv , jclass
→˓ jcls , jint arg1) {

2 term_t m_arg1 = arg1;
term_t retval = yices_not (m_arg1);

4 if (retval <= 0 && yices_error_code () != 0){
const char *msg = yices_error_string ();

6 throwException (jenv , "java/lang/ IllegalArgumentException
→˓ ", msg);

return -1;
8 }

return (jint) retval ;
10 }

Listing 3.2: JNI binding with Macros
DEFINE_FUNC (jterm , 1not) WITH_ONE_ARG (jterm)

2 TERM_ARG (1)
CALL1(term_t , not)

4 TERM_RETURN

term, model information and so on. After setting up Yices2 the create() method initial-
izes the theory specific formula managers and passes them to the Yices2FormulaManager
as arguments, before finally creating a Yices2SolverContext . Now that we have a
solver environment we will go over creating types and terms.

3.3 Types

In this part we will explain how Yices2 handles types and how they are created in
JavaSMT.

3.3.1 Types in Yices2

Yices2 stores type information internally and offers type creation, testing and access
methods. All these functions either return or accept a value type_t that serves as a
reference to the internal table. Since type_t is defined as typedef int32_t type_t;
it can be easily passed back and forth between C and Java. Since, as described earlier,
JavaSMT uses only a handful of the types supported by Yices2, only the methods needed
for those were implemented. The methods for getting the Bool, Int and Real type are a
simple call with no arguments, since these are non-parametric. The method for Bitvectors
is also very simple, as it just needs a positive integer as a parameter to define the size.
Finally the function for getting a Function type of arbitrary arity is the most complex,

8

3.4 Terms

as it requires passing a positive integer 𝑛 defining the arity, an array of types of length
𝑛 containing the domain types and a range type. Each of these types has an associated
method for testing if a given type_t is of said type. The access functions allow to
retrieve the size of a Bitvector type as well as the number and type(s) of children of a
Function type.

3.3.2 Types in JavaSMT

In JavaSMT the Yices2FormulaCreator is responsible for handling the types. The val-
ues for Bool, Int and Real type are initialized along with the Yices2FormulaCreator
itself as these remain the same throughout the execution. As the Bitvector type is para-
metric it has its own method getBitvectorType for getting different sizes of Bitvector
types. Since the creation of Function types is closely tied to uninterpreted functions it will
be covered in Section 3.4.6. The type tests and access functions for a type’s child(ren) are
used while visiting a formula, dumping formulas in SMT-LIB2 format and during Model
exploration.

3.4 Terms

This section will first cover how terms are handled by Yices2, then cover how the different
theories were implemented in JavaSMT.

3.4.1 Terms in Yices2

Similar to types Yices2 stores the contents of terms internally and only allows manip-
ulation through some generic as well as theory specific constructors, test and access
functions. These return and/or accept terms as a term_t which is also defined with
typedef int32_t term_t; and thus is also easily transferred between C and Java.

3.4.2 Symbols

Yices2 offers three different kinds of symbols for use in terms. The first are ’constants’
which are used for scalar and uninterpreted types. As these types are not used in
JavaSMT, they are not relevant for this implementation. ’Variables’ are the second kind
and used in lambda terms and quantifiers. While JavaSMT can use quantified formulas,
there currently is no way to create specific symbols for use as quantifiers. A solution
for this would be building a map between quantifier symbols and general symbols when
creating quantified formulae, but it was chosen not to do this for now. The final kind
of symbol are ’uninterpreted terms’ which are usable with all remaining types. When
creating these Yices2 by default does not set a name, but one can be set afterwards. It
is of note that if two symbols are created and the same name is set for both, the first
will lose its associated name. As it is possible to call the makeVariable function in
the Yices2FormulaCreator multiple times with the same type and name values, this
would create a set of symbols with different ids, of which only the last would carry the
name. Since JavaSMT expects to get the same actual symbol in this scenario, a cache was
added, which either returns an already existing symbol of same name and type, creates

9

3 Basic Implementation

and names a new symbol if no symbol with this name exists or throws an exception if a
symbol with an existing name but different type is requested for creation.

3.4.3 Boolean terms

Boolean terms are created in the Yices2BooleanFormulaManager and since the Boolean
theory is the most basic one, the methods simply needed to be matched with their Yices2
equivalents. Note that for 𝑎𝑛𝑑, 𝑜𝑟 and 𝑥𝑜𝑟 the 2-ary versions were used. The super
implementation of Yices2BooleanFormulaManager contains wrappers for n-ary 𝑎𝑛𝑑 as
well as n-ary 𝑜𝑟, which also simplify them to Boolean constants if appropriate, e.g. an 𝑎𝑛𝑑
term containing a 𝑓𝑎𝑙𝑠𝑒 constant. Additionally functions for creating Boolean constants
and variables exist.

3.4.4 Bitvector terms

Just like for the Boolean theory, implementing the Yices2BitvectorFormulaManager
mostly just required matching the appropriate signed or unsigned Yices2 functions to
the JavaSMT methods. However the two methods equivalent to SMT-LIB’s 𝑏𝑣2𝑖𝑛𝑡 and
𝑖𝑛𝑡2𝑏𝑣 could not be implemented as Yices2 lacks support for these as of version 2.6.1.
Another more complex function is makeBitvectorImpl which creates a bitvector of
a certain length from a BigInteger value. First the value is range checked and if
negative transformed into the matching positive representation using the super method
transformValueToRange . The result is then converted to a binary string and zero
padded as needed. Finally the string is passed to yices_parse_bvbin to create the
bitvector.

3.4.5 Arithmetic terms

The creation of arithmetic terms in JavaSMT is split in three classes. The abstract
Yices2NumeralFormulaManager containing the arithmetic and comparative operations,
which are usable for both Integer and Rational, as well as general functions for making
arithmetic constants. Extending this base class the Yices2IntegerFormulaManager and
Yices2RationalFormulaManager then add theory specific functions such as modular
congruence and the appropriate division type. Also note that all arithmetic operations,
that would require nonlinear arithmetic to solve, are checked eagerly if they contain a
constant before creating the formula. This is done to ensure solvability as the DPLL(T)
solver of Yices2 can not solve nonlinear constraints.

3.4.6 Uninterpreted functions

The Yices2UFManager extends the AbstractUFManager and only contains a construc-
tor, delegating the creating and calling of uninterpreted functions entirely to its su-
per class. The AbstractUFManager in turn uses the methods declareUFImpl and
callFunctionImpl implemented in the Yices2FormulaCreator for this purpose.

declareUFImpl The declareUFImpl method is responsible for declaring an uninter-
preted function from a list of argument types, a return type and a name. If the ar-

10

3.4 Terms

gument list is empty the function is nullary and thus is treated as a variable with the
type being the return type. When it is not empty a function type is created using
yices_function_type . This method gets passed an array of the argument types, its
length as well as the return type and returns a function type, the arity of which is defined
by the length of the array. The return value and the given name can then be used with
yices_named_variable to declare the uninterpreted function of this this type.

callFunctionImpl The method callFunctionImpl calls a given uninterpreted or built-
in function identified by a term constructor (see 4.1.2 for details) with the given list of
parameters. Since there exists a collision between term constructor values and UF ids
as described in 4.4.1 the method first checks if the received declaration is less than zero.
In this case the declaration is a built-in function and gets matched against the possible
term constructor values in a switch case. When a match is found the list of arguments
is tested for correct length if the particular function requires a fixed argument count and
then the appropriate term construction method is called. If the declaration is positive it
is an uninterpreted function declaration and yices_application is called to apply the
list of arguments to the UF.

11

4 Visiting and dumping

JavaSMT supports visitation, dumping and parsing of SMT formulae. In this chapter we
will talk about the term properties in Yices2, give an overview of the process for visiting
terms in JavaSMT then finally cover dumping and parsing in SMT-LIB2 notation.

4.1 Term properties in Yices2
Apart from the type a term in Yices2 has several more properties that can be tested or
retrieved. We will explain the properties used for visiting in this section.

4.1.1 Term classes

In Yices2 terms are categorized in four classes, which are 𝑎𝑡𝑜𝑚𝑖𝑐, 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒, 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛
and 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙. These classes determine the kind of term and which property access
functions can be used, e.g. yices_term_child can only be used for 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 terms.
The 𝑎𝑡𝑜𝑚𝑖𝑐 class contains the different types of constants and variables/uninterpreted
terms. Most built-in functions are in the 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 class as these have one or more
child terms. The 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 class contains one method specific to tuples and one for
extracting bits from a bitvector. Finally arithmetic and bitvector sums as well as power
products are classed as 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 and have their own specific functions for retrieving
their components.

4.1.2 Term constructor

To determine which function a term is yices_term_constructor is used. This method
returns a term_constructor_t , which is defined as an enum containing a list of the
built-in functions, constants and variables as well as a special error value for invalid terms.
When visiting a term in JavaSMT the term constructor is used in most cases to determine
the function kind and match it to a FunctionDeclarationKind defined by JavaSMT.

4.1.3 Value

Yices2 offers a method in the form of yices_TYPE_const_value to retrieve the value of
the Bool, Bitvector, Arithmetic and Scalar (unused in JavaSMT) constant type. While
the retrieved values for the first two types can be easily passed back to Java as they are
represented by an int32_t and an array of int32_t values respectively, the value of
arithmetic constants is given as a GMP1 rational mpq_t . Since these GMP rationals are
structs and cannot be handled by Java in this form, the MPQ_RETURN macro converts
them to strings using the GMP method mpq_get_str .

1GNU Multiple Precision Arithmetic Library, https://gmplib.org, 02.2020

13

https://gmplib.org

4 Visiting and dumping

4.2 Basic visiting principle

When a given formula is visited, it gets analyzed from the outside in. In each step of the
analysis, information about the current part of the formula, such as values for constants,
names for variables and child terms of functions, is collected until the formula is fully
explored. The collected data can then be used to simplify other actions, like dumping
the formula in SMT-LIB2 format for use with another solver as described in 4.7.

4.3 Constants and variables

The visit function in the Yices2FormulaCreator checks if the given formula is a
constant, an uninterpreted term or a function based on the term constructor. If it is a
function the analysis is delegated to the visitFunctionApplication method 4.4. For
an uninterpreted term the formula and the name, obtained with yices_get_term_name ,
are recorded. Finally for constants the value and formula are stored. Obtaining the value
of boolean constants is simply done using yices_bool_const_value , while the values of
arithmetic and bitvector constants require conversion to their matching Java type, which
is done in the convertValue method. This method in turn passes the conversion task to
an appropriate method, based on the type of the formula. If the constant is arithmetic,
the conversion is done in the parseNumeralValue function which obtains the value
as a String (see 4.1.3) using yices_rational_const_value and parses it as either a
Rational or BigInteger based on the type of the formula. For bitvector constants the
parseBitvector function takes the integer array returned by yices_bv_const_value ,
which is in little endian order, reverses and makes a String out of it. This String ,
now in big endian order, is then converted to a BigInteger.

4.4 Functions

This section describes the handling of most built-in Yices2 functions and uninterpreted
functions, while the following sections describe special cases and how they are han-
dled on JavaSMT’s side. If a formula is recognized as a function it is analyzed by the
visitFunctionApplication method. The following section will go over what kind of
information is collected and how.

4.4.1 Built-in

This section describes how the information is obtained for non special cases.

FunctionDeclarationKind The FunctionDeclarationKind is an enum defined in
JavaSMT to uniformly identify which operation the function represents, e.g. OR for
a boolean or operation. The kind of most functions is simply determined by matching
the Yices constructor values to the appropriate FunctionDeclarationKind in a switch
case. Some special cases require further information to accurately identify them and are
described later.

14

4.5 Transformed terms

Function declaration The function declaration is a value that can be used in the method
callFunctionImpl 3.4.6 to call a function of the same kind is the currently analyzed one.
For built-in functions the term constructor given by Yices2 is used. However uninterpreted
functions are a special case, as for them the term id replaces the term constructor for
this purpose (see 4.4.2. As both term constructors and term ids use positive integers
a collision between them was found during testing. To mitigate this issue the term
constructor values are negated when used as a function declaration, such that they use
negative integers and UFs/ term ids use positive integers.

Arguments For most functions obtaining the arguments is handled by the getArgs
method. It uses yices_term_num_children to determine the number of arguments
of the given function and then runs a loop from 0 to less than the argument count,
which simply retrieves each child term using yices_term_child and adds it to a list.
Just like for getting the FunctionDeclarationKind some special cases exist for getting the
arguments, which are detailed below.

4.4.2 UFs

During visiting function applications are treated as uninterpreted functions. For function
applications in Yices2 the first child term is the function the arguments are applied to
and the remaining child terms are the arguments. Thus the list of arguments is retrieved
like normal, but then the first argument is set as the function declaration and dropped
from the list. The remaining list is used as the arguments to the uninterpreted function.

4.5 Transformed terms

Yices2 performs several simplifications after a term is created to speed up and simplify
solving. Some of these simplifications cause the terms to appear in an alternate form
during visiting. Thus additional measures need to be taken to detect their kind and
extract the arguments in a sensible way.

4.5.1 And

When a term in the form 𝐴𝑁𝐷(𝑋,𝑌, ...) is created, Yices2 transforms it into the alter-
native form 𝑁𝑂𝑇 (𝑂𝑅(𝑁𝑂𝑇 (𝑋), 𝑁𝑂𝑇 (𝑌), 𝑁𝑂𝑇 (...))), thus when visiting such a term
would be classified as a 𝑁𝑂𝑇 term based on the outer constructor. To enable JavaSMT
to distinguish between a true 𝑁𝑂𝑇 term and a transformed 𝐴𝑁𝐷 term the method
isNestedConjunction is used. This method labels the term as an 𝐴𝑁𝐷 term if the
first child of an outer 𝑁𝑂𝑇 is an 𝑂𝑅. If a term is recognized as an 𝐴𝑁𝐷, its function
declaration is set to a special value as Yices2 does not have a term constructor value
for 𝐴𝑁𝐷. Additionally the arguments are extracted using nestedConjunctionArgs ,
which takes the arguments of the inner 𝑂𝑅 and negates each one such that the retrieved
arguments can be used normally.

15

4 Visiting and dumping

4.5.2 Bitvector functions

Some bitvector operations such as sign- or zero-extension are modeled as an array of
boolean terms and/or bit extraction operations, which extract a certain bit from a bitvec-
tor. For example the extension of a bitvector 𝑏 of length 𝑚 with 𝑛 sign bits would result
in an array of 𝑛 extraction operations on the highest bit of 𝑏 followed by 𝑚 extraction
operations on each bit of 𝑏. As it would be highly involved and potentially unreliable to
try to match these back to the original operation type, these arrays are simply considered
a concatenation of 1-bit bitvectors. Since the arguments of the bit extraction operation
consist of a bitvector term and an integer index of the bit to extract, the index is stored as
an integer term, which is unpacked into an integer when a bit extract function is called.

4.6 Sums and products

Like mentioned in 4.1.1 sums and products of both arithmetic and bitvector have their
own unique argument retrieval methods due to their polynomial nature. These methods
also require some work on the JNI side as they all return a term, which is easily returnable
as an integer, and a coefficient or an exponent, which also need to be returned to Java.

4.6.1 Arithmetic sums

The components of arithmetic sums can only be accessed through yices_sum_component .
If successful the method fills a given mpq_t variable with the coefficient and a given
term_t variable with the term. To be able to return both values back to Java they
are converted to strings and returned in a string array. On JavaSMT’s side the method
getSumArgs is responsible for collecting all components of a sum. It iterates over the
sum’s child terms and adds either the multiplication of the coefficient and the term or
if the term is an error term just the term representation of the coefficient to the list of
arguments.

4.6.2 Bitvector sums

The arguments of a bitvector sum can only be retrieved using yices_bvsum_component .
If successful an integer array equivalent to the length of the bitvector is filled for the
coefficient and a term_t for the accompanying term. To facilitate the return of both
values from JNI the length of the integer array given to the method is deliberately one
integer longer than needed and the term is stored in the last free field of this array. On
JavaSMT’s side the method getBvSumArgs loops over the child terms of the bitvector
sum and retrieves its arguments. Equivalent to the handling of arithmetic sums, if an
error term is encountered only the coefficient is stored as a bitvector constant, otherwise
a multiplication of coefficient and term is stored.

4.6.3 Products

Both arithmetic and bitvector products are handled by yices_product_component . If
successful both the term and the exponent are passed back to Java in an integer array. On
JavaSMT’s side the method getMultiplyArgs iterates over the children of the product

16

4.7 Dumping/Parsing

term and stores them in a list either as a boolean or an arithmetic power term based on a
boolean value, that the method visitFunctionApplication determines form the type
of the product term.

4.7 Dumping/Parsing
Dumping Dumping a formula from Yices2 in SMT-LIB2 is a relatively simple process
due the previously described visiting capabilities of JavaSMT. The method dumpFormula
in the Yices2FormulaManager first retrieves a map of the variables and UFs contained in
the to be dumped formula with the help of the extractVariablesAndUFs . This function
is part of JavaSMT and uses the visiting process to find all variables and UFs in a formula.
Each entry in the map contains the the name as a key and the corresponding term as a
value. For each entry the type of the term is determined using yices_type_of_term
(for application terms the first child is used for this as it represents the UF). If this type
has no children as tested via yices_type_num_children this type is used directly as
return type, otherwise the child types obtained with yices_type_children are used
for declaring. After this the function declaration is built, beginning with (𝑑𝑒𝑐𝑙𝑎𝑟𝑒− 𝑓𝑢𝑛,
followed by the name, then if needed the input type(s) and finally the return type.
The strings representing the types is obtained by using yices_type_to_string and
uppercasing the first letter of the returned string. Once all declarations are processed,
(𝑎𝑠𝑠𝑒𝑟𝑡 followed by the string from yices_term_to_string and the final closing bracket
are appended to finish the declaration.

Parsing Parsing SMM-LIB2 into Yices2 could not be implemented as Yices2 itself sup-
ports parsing SMT-LIB2, but the methods offered by the API expect the formulas in
Yices2’s own input language.

17

5 Solving and stack manipulation

This chapter will go over creating a context for solving, adding and removing formulas
to solve from the stack of this context and finally solving the pushed formulas.

5.1 Creating a solver environment
A new context for solving is created by calling the newProverEnvironment0 method in
Yices2SolverContext which creates a Yices2TheoremProver instance and returns it.
In the constructor of Yices2TheoremProver a new configuration for Yices2 is created
using yices_new_config , then, using yices_set_config , the configuration is set to
use the DPLL(T) solving approach and use push-pop mode for adding or removing levels
from the stack. Finally the new context is created using yices_new_context with the
configuration as an argument and a first level is pushed to the internal stack described
below.

5.2 Push and pop
This section will briefly describe why an internal stack is needed and how the push and
pop operations interact with it.

5.2.1 Internal stack

The internal stack in JavaSMT is needed for two reasons. The first is that Yices2 detects
obvious falsities while adding formulas to the stack. This can cause the context to become
unsatisfiable (UNSAT) before solving and pushing a new level in this state causes an error.
The second reason is that Yices2 will not generate unsat cores, if the context is solved
without assumptions. Thus if unsat cores should be generated, the internal stack collects
the formulas and uses them as an assumption for solving.In conjunction with the internal
stack an integer value stackSizeToUnsat is used to keep track of the lowest level of
the stack causing the context to become UNSAT. In the beginning its value is set to the
maximum integer value.

5.2.2 Push

Before a push of Yices2’s stack is done, the push method checks if the internal stacks
level is less than or even to stackSizeToUnsat . It also checks if the context’s sta-
tus is something else than UNSAT using yices_context_status . If both conditions
are met, the stack Yices2’s stack can be pushed to the next level with yices_push .
Should one of the conditions fail the current level of the internal stack is set as the new
stackSizeToUnsat , provided its value is still the max integer value meaning it has not

19

5 Solving and stack manipulation

been set before. Regardless of the previous actions the level of the internal stack is always
increased, to keep track of the stack level.

5.2.3 Pop

Similar to the push method, the pop checks if the internal stack’s level is less than
or equal to stackSizeToUnsat . When this condition is met, both stacks are on the
same level and a level of Yices2’s stack can be removed using yices_pop . SInce this
action will bring the context back into a non UNSAT state, if it was previously UNSAT,
stackSizeToUnsat is reset to its initial value to indicate this. The internal stack is
always popped regardless.

5.3 Adding constraints
Constraints are usually added to both Yices2, using yices_assert_formula , and the
internal stack. Note that the state of Yices2’s context does not matter here, as it will
simply do nothing if a constraint is added to an UNSAT context. But due to the problems
regarding unsat cores described in 5.2.1, if the flag to generate unsat cores is set, the
constraint is not added to Yices2’s context and only kept in the internal stack for use
during solving.

5.4 Solving and UnsatCores
This section describes how the context can be solved and how to obtain the unsat core if
the context is unsatisifiable.

5.4.1 Solving

JavaSMT provides two methods isUnsat and isUnsatWithAssumptions to check if
a context is unsatisfiable. These methods call yices_check_context respectively
yices_check_context_with_assumptions via an intermediary method. This method
converts Yices2’s numerical status code for UNSAT/SAT to a boolean value. Should the
context be in another state an exception is thrown. Note that due the inability to generate
an unsat core after solving with yices_check_context , isUnsat will use assumption
solving with all constraints collected on the internal stack if an unsat core is needed.

5.4.2 UnsatCores

Yices2 is able to generate unsat cores from an unsatisfiable context after it was solved us-
ing yices_check_context_with_assumptions . The returned unsat core then contains
the terms that cause the context to be unsatisfiable. The method yices_get_unsat_core ,
which is responsible for this, requires a struct term_vector_t to output the unsat core.
This struct consists of two unsigned integers, indicating the capacity and the actual
size, and an array of term_t . Since it needs to be initialized before use, a macro
TERM_VECTOR_ARG that creates a term_vector_t and uses yices_init_term_vector
on it was needed. After the method has filled the struct with the unsat core another macro

20

5.4 Solving and UnsatCores

TERM_VECTOR_ARG_RETURN unpacks the contained term_t array into an integer array
for returning to Java and deletes the term_vector_t using yices_delete_term_vector .

21

6 Model exploration

A model can be created from a satisfiable context and holds information on the terms in
the context and the values that their variables were assigned during solving. This chapter
details the structure of the model in Yices2 and how JavaSMT traverses and evaluates it.

6.1 Model in Yices2

6.1.1 Structure

Yices2 stores the model as a directed acyclic graph (DAG). In this DAG leaf nodes
represent atomic values, while non-leaf nodes can either represent a tuple, a function or
a mapping, that serves as an auxillary node for describing functions. For terms of atomic
type the value can be either obtained directly through provided functions or exploring the
DAG, while evaluating the value of a tuple or function requires exploration. In the DAG
a function is represented by a node for the function, a node for the function’s default
value and a set of mapping nodes. Each of these mapping nodes represents a tuple of
arguments of the function and the returned value for these arguments.

6.1.2 Yval_t and yval_vector_t

Programmatically each node of the DAG is represented as a yval_t . It is a struct
containing a node_id , identifying the node, and a node_tag , representing the type of
the node. Since Java can not handle structs directly a pair of macros YVAL_RETURN and
YVAL_ARG were created, where YVAL_RETURN packs the node_id and the node_tag
into an int array for Java and YVAL_ARG repacks two int values from Java into an yval_t
argument. The yval_vector_t struct has the same structure as term_vector_t and
also needs to be initialized, which is done by the YVAL_VECTOR_ARG macro with the use of
yices_init_yval_vector . Since it is only used for the yices_val_expand_function
method, its return is done inside the JNI wrapper of said function by unpacking the
yval_t values from the array, unpacking these like above and concatenating them into
an integer array for return.

6.2 Creating the model

The model of a satisfiable context can be created by calling the getModel method of a
Yices2TheoremProver . This method creates and returns an instance of Yices2Model
with one of the constructors being a pointer to the model. This pointer is obtained by
calling yices_get_model and passing the returned pointer back to Java as a long value.
This method also takes a flag that tells it to either disregard or keep substituted variables

23

6 Model exploration

in the model. Per the developer’s recommendation this flag is set to keep substitutions
in JavaSMT.

6.3 Evaluating a term
A single term can be evaluated in the model by using evalImpl in the Yices2Model .
This method calls yices_value_as_term which evaluates the term’s value and returns
it as a term of an appropriate type. This term can then be converted into a value by
using convertValue in the Yices2FormulaCreator . Since the returned term’s type
does not necessarily match the evaluated term’s type, convertValue uses the latter’s
type for the conversion decision to ensure consistent typing.

6.4 Traversing the model
Additionally to evaluating a single formula with evalImpl the method toList is avail-
able for gathering a ValueAssignment for each defined term in the model. Each of these
assignments consist of the evaluated term, a term representing the value, a term represent-
ing the equality between evaluated term and value term, the term’s name, its value as a
Java object and Java objects for the value of arguments if applicable. To facilitate this first
all defined terms in the model are collected using yices_model_collect_defined_terms
which returns a term_vector_t (see 5.4.2) as an integer array, which contains all terms
that have a value in the model. Then for each term its yval_t is obtained using
yices_get_value . Depending on the tag of the yval_t one of three actions is se-
lected. For tags, that indicate an unused constant type or are otherwise unexpected, an
exception is thrown. For terms with YVAL_FUNCTION tag further evaluation is done by
the getFunctionAssignment method 6.4.2. Finally terms with an expected constant
tag are evaluated using getSimpleAssignment 6.4.1.

6.4.1 Evaluating constants

The method getSimpleAssignment is responsible for obtaining the ValueAssignment
for terms representing constants during traversal of the model. It retrieves the value of
the term and the term representing this value the same way the evalImpl method does.
The only additional operations are getting the term’s name using yices_get_term_name
and creating the equality between evaluated term and value term using yices_eq .

6.4.2 Evaluating functions

Due to its structure in the model DAG (see 6.1.1) a function can not be evaluated directly
and instead must be evaluated through expanding and exploring the function node and its
child nodes. Therefore the getFunctionAssignment analyzes each function in a three
step process.

Function expansion In the first step the yval_t corresponding to the function is passed
to the yices_yval_expand_function method. This method returns the child nodes of

24

6.4 Traversing the model

the function node, which contain one node describing the function’s default value and
one or more nodes describing the mapping of argument values to a return value. The
default value is currently not used in JavaSMT and thus is ignored.

Mapping expansion In the second step the mapping nodes are expanded into their child
nodes using yices_val_expand_mapping . These child nodes contain argument nodes,
equal in count to the function’s arity and returned as an array of yval_t , and one node
for the return value, returned as a separate yval_t . For easier handling in Java all
returned yval_t are unpacked into a single integer array similar to to the handling of
the yval_vector_t struct6.1.2.

Yval conversion In the final step the helper method valueFromYval is used to retrieve
the value of each argument and return value node as an appropriate Java object. The
Java object is then used with a second helper function valueAsTerm to create a value
term as no direct way to convert the value of an yval_t to a term exists in Yices2.
The valueFromYval method uses the node_tag of the yval_t to identify which
yices_val_get_TYPE to use. For boolean and bitvector constant nodes their associ-
ated methods yices_val_get_bool and yices_val_get_bv are used. For arithmetic
constant nodes yices_val_get_mpq is used as it returns a mpq_t (see 4.1.3, which is
not subject to possible overflows and can represent both integer and rational values. To
decide whether the value should be stored as a BigInteger or a Rational the type of
the argument in the evaluated function is used, as the node_tag is the same for both
integer and rational constants. Once the value is stored as a Java object valueAsTerm
uses it to generate a matching term. To ensue an appropriate term is created the method
uses the type of the argument, which is retrieved from the evaluated function’s type, as
a decider. For boolean type values either yices_true or yices_false is used, for
bitvector type values a similar approach to makeBitvectorImpl 3.4.4 is used and for
arithmetic type values yices_parse_rational is used, if the value string contains a
slash, otherwise yices_parse_float is used.

25

7 Evaluation

JavaSMT is used as backend for several analyses in CPAchecker. This allows a real-
world evaluation of Yices2 on a large set of tasks. In this chapter we will evaluate the
performance of Yices2 in comparison to the existing solvers in JavaSMT. First we will
give a short overview of CPAchecker and sv-benchmark, which were used for the testing.
Then we will give details about the used configuration, before presenting the results.

7.1 Software

7.1.1 CPAchecker

CPAchecker1, the Configurable Software-Verification Platform, is a framework developed
at SoSy-Lab written in Java for verifying programs. It offers a highly customizable
verification process and has won several awards for many different software verification
tasks. See [BK11] for details on its architecture. Additionally it offers benchmarking
capabilities in conjunction with sv-benchmarks7.1.2 and BenchExec2.CPAchecker makes
use of JavaSMT for the analysis steps that require SMT solving. One of the analysis
techniques, that use SMT, is Bounded Model Checking (BMC) , which was selected
for the benchmark because it can be used with all solvers that are currently available
in JavaSMT. BMC is used for more effectively checking programs with a large set of
execution paths. Consider a program similar to listing 7.1 where an error happens early
in the loop. Analyzing every possible path using SMT would need a large amount of SMT
statements describing every loop from 0 to the analyzed language’s maximum integer
value. Even for a such a simple program, this could cause the used solver to not be
capable of solving the formula created by this approach due to time and/or resource
constraints. BMC prevents this scenario by limiting the number of checked paths to a
certain number. For this evaluation we allowed checking a loop once, respectively 10
times (see 7.2). Only checking the first 10 iterations of the sample program’s loop would
still lead to the discovery of the error, while significantly reducing the required resources.
For a more in-depth explanation of BMC and the other analysis techniques employed by
CPAchecker one can read this paper [BDW18].

7.1.2 SV-benchmarks

SV-benchmarks3 is a large collection of verification tasks aiming to provide a common
basis to evaluate software evaluation techniques. The collection is divided into sets,
allowing to test against a subset of the tasks rather than every task. This is helpful if

1https://cpachecker.sosy-lab.org, 12.2019
2A framework for reliable benchmarking developed at SoSy-Lab. For details on the technical background

see [BLW19]
3https://github.com/sosy-lab/sv-benchmarks, 12.2019

27

https://cpachecker.sosy-lab.org
https://github.com/sosy-lab/sv-benchmarks

7 Evaluation

one wants to test recognition of specific error types or not all tasks are supported by the
tested program.

Listing 7.1: Sample program in pseudo code
for 𝑥 from 0 to Max_Integer {

2 if (𝑥 = 7){
ERROR

4 }
// do nothing

6 }

7.2 Configuration
The following configurations were used during the evaluation:

Execution platform The benchmark was executed on a cluster of Intel Xeon E3-1230
v5 processors running Ubuntu 18.04 and clocked at 3.8 GHz with Turbo Boost disabled.
Each task of the set was ran on 2 Cores of the Cluster with a memory limit of 15000 MB
and a timeout of 900 seconds.

Task set The task set that was used for the evaluation is the BMC set of SV-benchmarks.
This set contains the ReachSafety-ControlFlow, ReachSafety-ECA, SoftwareSystems-
DeviceDriversLinux64-ReachSafety, ReachSafety-Heap, ReachSafety-Loops, ReachSafety-
ProductLines and ReachSafety-Sequentialized subsets. Each subset was run with the
unreach-call specification. All tasks were run twice, the first time unrolling each loop
once (k1) and the second time unrolling each loop 10 times (k10).

Solvers The solvers that were compared for this evaluation are Boolector, CVC4, Math-
SAT5, Yices2 and Z3. Due to an incompatibility regarding Yices2’s implementation of
arrays, the CPAchecker option useArraysForHeap was disabled for all solvers as to not
punish Yices2 with the associated performance decrease. Additionally for Yices2 the op-
tion encodeFloatAs=RATIONAL was set because Yices2 does not support the floating
point theory. Lastly for Boolector the options encodeFloatAs=INTEGER, encodeIn-
tegerAs=BITVECTOR, createFormulaEncodingEagerly=false and handlePointerAlias-
ing=false were set due to reasons explained in [Bai19].

7.3 Results
This section gives a short overview of the evaluation results. Note that due to BMC not
necessarily reaching a definite answer within the loop limit, not only correct results, but
also incorrect and unknown ones were taken into account for the plots. This means that
the plots contain values for all tasks, except for those that ran into the memory/time
limit or another error occurred during execution. As can be seen in figure 7.1 for BMC
with 1 loop unfold Yices2’s cpu times lie between Boolector’s and MathSAT5’s and tend

28

7.3 Results

to stay closer to Boolector’s with a clear separation only in the mid range of execution
times. For memory figure 7.2 shows Yices2’s memory consumption in this scenario is
near identical to Boolector’s for most tasks with a only slightly higher usage on memory
intensive tasks. Moving on to BMC with 10 loop unrolls figure 7.3 once again shows
Yices2 very close in execution times to Boolector and MathSAT5 but with MathSAT5’s
executions times being considerably higher for long tasks. The memory consumption for
these tasks, as plotted in figure 7.4, shows Yices2 taking a small lead on Boolector for
tasks in the lower memory usage range, with the mid-range being nearly identical and
Boolector only getting a clear lead the highest memory range. Also even though for the
most part competitive to Yices2 and Boolector in execution times, MathSAT5’s memory
usage is considerably higher for these tasks.

0 1 000 2 000 3 000 4 000 5 000
1

10

100

1 000

n-th fastest result

C
PU

tim
e

(s
)

Boolector
CVC4

MathSAT5
Yices2

Z3

Figure 7.1: Results for k1 sorted by lowest
CPU time.

0 1 000 2 000 3 000 4 000 5 000
100

1 000

10 000

n-th lowest memory usage

M
em

or
y

us
ag

e
(M

B
)

Boolector
CVC4

MathSAT5
Yices2

Z3

Figure 7.2: Results for k1 sorted by lowest
memory usage.

0 1 000 2 000 3 000
1

10

100

1 000

n-th fastest result

C
P
U

ti
m
e
(s
)

Boolector
CVC4

MathSAT5
Yices2
Z3

Figure 7.3: Results for k10 sorted by lowest
CPU time.

0 1 000 2 000 3 000
100

1 000

10 000

n-th lowest memory usage

M
em

or
y

us
ag

e
(M

B
)

Boolector
CVC4

MathSAT5
Yices2

Z3

Figure 7.4: Results for k10 sorted by lowest
memory usage.

29

8 Conclusion

This work has shown that extending JavaSMT with the SMT solver Yices2 was mostly
straightforward thanks to Yices2’s clearly defined, documented and comparatively ab-
stract API. Paired with a good feature set and extensive theory support this meant that
Yices2 could be very well integrated into JavaSMT. Only array and quantified formula
support could not be implemented at this time. For the array theory differences in han-
dling between Yices2 and JavaSMT were problematic, while supporting quantified for-
mulas was not possible due to Yices2 requiring a special symbol for quantified terms. For
the latter a solution on JavaSMT’s side is planned as another solver has similar problems.
Another small problem is that Yices2’s API does not allow parsing SMT-LIB2 at this
point, while Yices2 itself does. Despite these little annoyances Yices2 showed a very solid
performance in the evaluation, putting it very close to Boolector, the currently fastest
solver in JavaSMT, while offering more features. In the future we hope to be able to fully
support all theories offered by Yices2. We would also like to see Yices2 adding support
for interpolation and optimization while maintaining or topping its current performance.

31

List of Figures

7.1 Results for k1 sorted by lowest CPU time. 29
7.2 Results for k1 sorted by lowest memory usage. 29
7.3 Results for k10 sorted by lowest CPU time. 29
7.4 Results for k10 sorted by lowest memory usage. 29

33

List of Tables

1.1 Solvers supported by JavaSMT and other frameworks. Other frameworks
may support additional solvers. 2

1.2 Additional features supported by the available solvers. See section 2.5 for
explanations. 3

1.3 Theories available in JavaSMT. 3

35

Listings

1.1 Solving a simple formula with Yices2 using JavaSMT 4
1.2 SMT-LIB2 equivalent to listing 1.1 . 4

3.1 JNI binding . 8
3.2 JNI binding with Macros . 8

7.1 Sample program in pseudo code . 28

37

Bibliography
[Bai19] Daniel Baier. Integration des SMT-Solvers Boolector in das Framework

JavaSMT und Evaluation mit CPAchecker. Bachelor’s Thesis, LMU Munich,
Software Systems Lab, 2019.

[BDW18] Dirk Beyer, Matthias Dangl, and Philipp Wendler. A unifying view on SMT-
based software verification. Journal of Automated Reasoning, 60(3):299–335,
2018.

[BK11] Dirk Beyer and M. Erkan Keremoglu. CPAchecker: A tool for config-
urable software verification. In G. Gopalakrishnan and S. Qadeer, editors,
Proceedings of the 23rd International Conference on Computer Aided Verifi-
cation (CAV 2011, Snowbird, UT, July 14-20), LNCS 6806, pages 184–190.
Springer-Verlag, Heidelberg, 2011.

[BLW19] Dirk Beyer, Stefan Löwe, and Philipp Wendler. Reliable benchmarking: Re-
quirements and solutions. International Journal on Software Tools for Tech-
nology Transfer (STTT), 21(1):1–29, 2019.

[Dut14] Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem, editors,
Computer-Aided Verification (CAV’2014), volume 8559 of Lecture Notes in
Computer Science, pages 737–744. Springer, July 2014.

[JBd13] D. Jovanovic, C. Barrett, and L. de Moura. The design and implementation
of the model constructing satisfiability calculus. In 2013 Formal Methods in
Computer-Aided Design, pages 173–180, Oct 2013.

[JdM12] Dejan Jovanović and Leonardo de Moura. Solving non-linear arithmetic. In
Proceedings of the 6th International Joint Conference on Automated Reasoning,
IJCAR’12, pages 339–354, Berlin, Heidelberg, 2012. Springer-Verlag.

[KFB16] Egor George Karpenkov, Karlheinz Friedberger, and Dirk Beyer. JavaSMT:
A unified interface for SMT solvers in Java. In Proc. VSTTE, LNCS 9971,
pages 139–148. Springer, 2016.

[NOT06] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and
SAT Modulo Theories: From an abstract Davis-Putnam-Logemann-Loveland
procedure to DPLL(T). Journal of the ACM, 53(6):937–977, 2006.

39

	1 Introduction
	2 Background
	2.1 Satisfiability Modulo Theories
	2.2 SMT-LIB2
	2.3 Yices2
	2.4 Java Native Interface
	2.5 Explanations for Table 1.2

	3 Basic Implementation
	3.1 JNI Macros
	3.2 Initializing
	3.3 Types
	3.3.1 Types in Yices2
	3.3.2 Types in JavaSMT

	3.4 Terms
	3.4.1 Terms in Yices2
	3.4.2 Symbols
	3.4.3 Boolean terms
	3.4.4 Bitvector terms
	3.4.5 Arithmetic terms
	3.4.6 Uninterpreted functions

	4 Visiting and dumping
	4.1 Term properties in Yices2
	4.1.1 Term classes
	4.1.2 Term constructor
	4.1.3 Value

	4.2 Basic visiting principle
	4.3 Constants and variables
	4.4 Functions
	4.4.1 Built-in
	4.4.2 UFs

	4.5 Transformed terms
	4.5.1 And
	4.5.2 Bitvector functions

	4.6 Sums and products
	4.6.1 Arithmetic sums
	4.6.2 Bitvector sums
	4.6.3 Products

	4.7 Dumping/Parsing

	5 Solving and stack manipulation
	5.1 Creating a solver environment
	5.2 Push and pop
	5.2.1 Internal stack
	5.2.2 Push
	5.2.3 Pop

	5.3 Adding constraints
	5.4 Solving and UnsatCores
	5.4.1 Solving
	5.4.2 UnsatCores

	6 Model exploration
	6.1 Model in Yices2
	6.1.1 Structure
	6.1.2 Yval_t and yval_vector_t

	6.2 Creating the model
	6.3 Evaluating a term
	6.4 Traversing the model
	6.4.1 Evaluating constants
	6.4.2 Evaluating functions

	7 Evaluation
	7.1 Software
	7.1.1 CPAchecker
	7.1.2 SV-benchmarks

	7.2 Configuration
	7.3 Results

	8 Conclusion
	List of Figures
	List of Tables
	Listings
	Bibliography

