
DEPARTMENT OF INFORMATICS
LMU MÜNCHEN

Bachelor’s Thesis in Informatics

Converting Test Goals to Condition
Automata

Frederic Schönberger

DEPARTMENT OF INFORMATICS
LMU MÜNCHEN

Bachelor’s Thesis in Informatics

Converting Test Goals to Condition
Automata

Konvertierung von Testgoals zu Conditions

Author: Frederic Schönberger
Supervisor: Prof. Dr. Dirk Beyer
Mentor: Thomas Lemberger
Submission Date: 28. November 2020

I confirm that this bachelor’s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Munich, 28. November 2020 Frederic Schönberger

Acknowledgments

I wish to express my sincere thanks to Mr. Thomas Lemberger, my mentor, for sharing
valuable guidance and stellar support during the writing of this thesis.

I would like to thank the SoSy Lab for letting me use their cluster infrastructure to run
my experiments.

I take this opportunity to express gratitude to my family and my friends, especially Mr.
Matthias Kettl, for their help and support.

Abstract

Testing is an important part of the software development process. Unfortunately
it is expensive to test. That’s why one can employ test generators, software that
automatically generates test cases. Each tester has different strengths that we can
combine using conditional testing. This way we can achieve higher branch coverage.

Conditional testing works by letting a tester run for a certain amount of time and then
applying a reducer, a program that removes all paths from the program that are covered
by the generated test suite. One such reducer is implemented by CondTest. Another
reducer already exists in CPAchecker. It requires a condition automaton as input.

We designed two algorithms that can generate such a condition automaton from a list
of covered test goals. They work by generating > assumptions for covered leaf goals
and ⊥ assumptions for uncovered goals. We implemented these algorithms: One naive
implementation and another optimized version using propagation.

They were evaluated using the benchmark set of Test-Comp 2020 and its testers. We
found that our algorithms can show significant improvements in branch coverage when
we run a tester, reduce the program and then run the tester again. A combination of
two testers showed no improvements for the considered combinations. We measured
the amount of code our algorithms could reduce in terms of cyclomatic complexity and
found that there is no correlation to branch coverage. We discovered our algorithms to
have an equal performance in terms of branch coverage. We recorded resource usage
and found that our algorithms had comparable performance to CondTest and outper-
formed it in some cases. Both CondTest and our algorithms always outperformed our
baseline.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Related Work 2

3 Background 3
3.1 Control Flow Automata (CFA) . 3
3.2 Condition Automata . 4
3.3 Reducers . 5
3.4 Code Coverage . 6
3.5 Instrumentation . 6
3.6 Cyclomatic Complexity . 7

4 Automaton-based Conditional Testing 8
4.1 Phase 1: BFS . 8
4.2 Phase 2: Pruning the CFA . 10
4.3 Possible optimizations . 11

5 Evaluation 15
5.1 Setup . 15

5.1.1 Software . 15
5.1.2 Benchmarks . 15

5.2 Results . 17
5.2.1 One Tester . 17
5.2.2 Different Testers . 41

5.3 Threats to validity . 43
5.3.1 Bug in the linux kernel . 43
5.3.2 Differing versions of dependencies 43
5.3.3 CoVeriTeam fails when it should have succeeded 45

v

Contents

5.3.4 pycparser doesn’t correctly parse C in some cases 45
5.3.5 Limited selection of pairs of testers 45

6 Future Work 47

7 Conclusion 49

List of Figures 50

List of Tables 51

List of Theorems 52

Bibliography 53

vi

1 Introduction

Software testing is an increasingly important part of the modern software development
process. Methodologies such as test-driven development, extreme programming and
some implementations of SCRUM rely on excessive testing [2, 3]. However, it is
expensive to test: Up to 50% of software system development go into testing [21].

A possible solution are test case generators. Test case generators are programs that
automatically generate test cases. Different approaches to test case generation have
different strengths [10]. In order to achieve stronger tools one approach that has come
up in recent years is conditional testing. Conditional testing combines various testers:
First, we let one tester generate test cases. Then, we remove the paths covered by the
generated test cases from the program using a reducer. Next, we let a second tester
run on the reduced program. That way we can combine the strengths of both testers
without the need of information exchange between testers (i.e. not needing to modify
exiting testers) [8, 11, 12].

There already are some reducers available: CondTests’s reducer and the one im-
plemented in CPAchecker. The first one extracts a list of covered goals as test goal
labels and uses them to prune the program [12]. The second one expects a condition
automaton to reduce the program [11].

In this thesis we present an algorithm that constructs condition automata from a list of
covered test goal labels. We then evaluate it against the benchmark set of Test-Comp

2020 using its candidates and compare it with CondTest.

1

2 Related Work

Our approach works by combining testers. There is no information exchange between
the testers.

Verifiers can be used together with test generators. CondTest [12] uses formal verifiers
to find assertion violations or program locations of interest. Blast [5], FShell [18],
CoVeriTest [10] and CPA/Tiger [9] use the verifier for reachability analyses.

There’s also the option of combining approaches with information exchange between
the individual components. CoVeriTest [10] extracts information from ARGs generated
during preceding analysis runs. SYNERGY [17] and DASH [4] alternate generating tests
and constructing proofs [10]. SMASH [16] combines under- and over-approximation.
Concolic testing [15, 16, 23] generates test inputs by interleaving random testing with
symbolic execution. When random testing is stuck, symbolic execution starts at that
point. As soon as a new goal is covered random testing starts again and is provided
the values used to cover the goal. Badger [29] uses fuzzing with concolic execution
in a similar manner. Test suite augmentation [20, 32, 33] can be used to combine one
arbitrary tester with another specific tester that reuses information from the first’s
run.

The Electronic Tools Integration platform (ETI) [24, 31] and the Evidential Tool Bus
(ETB) [13, 30] provide further approaches for combination of testers and verifiers.

2

3 Background

3.1 Control Flow Automata (CFA)

We can represent programs as control flow automata (CFA) [1, 7, 28]. We use program
lines as nodes and operations as edges.

Definition 1 (CFA). A CFA is an automaton C = (L, l0, G), with a set of locations L, an
initial location l0 ∈ L and a set of transitions G ⊆ L × ops × L, where ops is the set of
operations.

1 void main() {
2 int i = nondet_int();
3 int j;
4 if(i < 0) {
5 j = 1;
6 } else {
7 j = 2;
8 }
9

10 assert(j <= 1);
11 }

Figure 3.1: An example program.

l0

l1

l2

l3

l4 l6

l9

l10

int main()

int i = nondet_int();

int j;

[i < 0] ![i < 0]

j = 1; j = 2;

assert(j <= 1);

Figure 3.2: The corresponding CFA.

Definition 2 (Concrete data state). Let X be the set of all variables occurring in ops. A
concrete data state [11] c is a mapping of each variable in X to its concrete value.

Additionally there is a special variable called pc, the program counter, that points to
the current position in the program.

3

3 Background

Definition 3 (Concrete program path). A concrete program path [11] of a CFA C =

(L, l0, G) is a sequence
π = (c0, l0)

g0−→ . . .
gn−→ (cn, ln)

such that the concrete data state c0 initializes all variables with zero, gi = (li−1, opi, li) ∈
G (gi is a valid transition in the CFA) and ci−1

opi−→ ci. We define path(C) as the set of
all concrete paths of C.

Definition 4 (Execution). We define an execution [11] of a concrete program path π as
ex(π) = c0c1 . . . cn with ci being a concrete data state. We define ex(C) to be the set of
all executions of a CFA C.

3.2 Condition Automata

q1start

q2

q3

q4

q5 q7

q10

q11

(1, int main(), 2)

(2, int i = nondet_int(), 3)

(3, int j, 4)

(4, i < 0, 5)

*

(4, i >= 0, 7)

(7, j = 2, 10)

(10, assert(), 11)

Figure 3.3: An example condition for Fig-
ure 3.1.

1int main() {
2int i = nondet_int();
3int j;
4
5//Notice the different operator
6if(i >= 0) {
7j = 2;
8}
9
10assert(j <= 1);
11}

Figure 3.4: The example program reduced
using the condition on the left.

Conditions [8] are automata that can describe the paths taken by a verifier. They can
additionally introduce assumptions that describe under which conditions a path has
been explored. Assumptions are conditions on the concrete program state from a set Φ.
If a concrete program state c satisfies a state condition ϕ we write c � ϕ.

Definition 5 (Condition). A condition automaton A = (Q, Σ, δ, q0, F) (short: condition)
is an automaton

4

3 Background

• with a finite set of states Q and an initial state q0 ∈ Q,

• an alphabet Σ ⊆ P(Q)× Φ,

• a transition relation δ ⊆ Q × Σ × Q

• and a set F ⊆ Q of accepting states.

Additionally it must well formed so that there is no transition such that an accepting
state goes into an unaccepting state, i.e.

¬∃(q f , ·, q) ∈ δ with q f ∈ F ∧ q /∈ F.

Definition 6 (Coverage of a Path). A condition A = (Q, Σ, δ, q0, F) covers a path π =

(c0, l0)
g1−→ . . .

gn−→ (cn, ln) if and only if there is a run ρ = q0
(G1,ϕ1)−−−−→ . . .

(Gk ,ϕk)−−−−→ qk in A
with 0 ≤ k ≤ n such that

1. qk is an accepting state, i.e. qk ∈ F,

2. ∀1 ≤ i ≤ k : gi ∈ Gi (for each gi such a transition exists in the program) and

3. all concrete program states ci satisfy the corresponding state condition ϕi (i.e.
∀1 ≤ i ≤ k : ci � ϕi).

3.3 Reducers

Definition 7 (Program Reducer). A program reducer [12] redG : P → P′ transforms a
program P to P′ such that for all test vectors v both programs cover the same subset
Gv ⊆ G of all goals. We call this property G-coverage-equivalent. A program reducer
must be both sound and complete.

Soundness. If for a test vector v the program P′ covers a goal g ∈ G, then so must P.

Completeness. If for any test vector v the original program P covers a test goal g ∈ G,
then so must P′.

Definition 8 (Reducer). Let C be the set of all CFAs and A the set of all Conditions. A
reducer [11] is a mapping C ×A → C, that takes a CFA and a condition as an input and
outputs another CFA that satisfies the residual condition

∀C ∈ C∀A ∈ A : ex(C) \ {ex(π) : A covers π} ⊆ ex (red (C)) ⊆ ex(C),

i.e. a CFA with each path of the original program except those that are covered by the
condition. One such reducer is implemented in CPAchecker [11].

5

3 Background

3.4 Code Coverage

When unit testing code there is always the question of how much of the program has
been tested (“covered”). There are multiple criterions we can use to measure which
parts of our code have been covered [14, 26, 27]:

• Statement Coverage measures each statement that has been reached by our tests.

• Branch Coverage (Decision Coverage) dictates that each branch in a if/else,
switch or do-while statement must be executed at least once. This is equivalent
to the condition equating to true and false at least once.

• Condition Coverage requires each part of the condition of an if statement to
evaluate to true and false at least once. For instance, let’s consider the condition
x ≤ 5 ∧ y = 5. Our test cases would need to account for x ≤ 5, ¬(x ≤ 5), y = 5
and ¬(y = 5).

• Decision-Condition Coverage combines branch and condition coverage: Sufficient
test cases must be written such that each condition in an if/else statement takes
on all possible outcomes at least once and each if/else block is executed at least
once.

Please note that this list is not exhaustive and contains only the kinds of coverage that
are going to be important later on.

For our approach we are going to use branch coverage since it can be computed easily1,
is granular enough and thus provides a good metric. However there are some known
issues with branch coverage: Compilers use techniques such as short circuiting2 and we
can not guarantee that each operation in a condition is executed. Those issues might be
solved by using other kinds of coverage criterions. Future work is needed to evaluate if
conditions can be used for those as well (see chapter 6).

3.5 Instrumentation

To measure branch coverage in our program and identify which branches have been
covered we make use of test goal labels. For each node in our CFA that we want covered
we prepend a no-op (a label GOAL_n). This allows us to quickly identify all tets goal

1e.g. by running gcov on an instrumented program.
2For instance, see the C programming language standard, where in section 6.5.13.4 it is stated: “[. . .] If

the first operand compares equal to 0, the second operand is not evaluated.” [19]

6

3 Background

locations in our program. We are using CondTest’s instrumentor, which is based on a
testability transform addLabels() [12].

3.6 Cyclomatic Complexity

To measure how the reducer changed our program we can use a variety of software
measures. One that is particularly useful is called Cyclomatic Complexity [25].

Definition 9 (Cyclomatic Complexity). Let C be a control-flow graph. Then, the
cyclomatic complexity cycl(C) := E − N + 2P, where E is the number of edges on the C,
N the number of nodes and P the number of connected components3.

McCabe showed that cycl(C) provides an upper bound for the number of test cases
that we need to generate for full branch coverage. Hence, we can measure the work of
our reducer by comparing cycl(C) to cycl(red(C)).

3Connected components are individual groups of vertexes in a graph that are not connected to anything
else. In the case of cyclomatic complexity a connected component can be interpreted as a function (or
subprogram).

7

4 Automaton-based Conditional Testing

We want to convert a list of test goals to a condition. This condition is then used by
a reducer to prune our program. The implementation is based on the CPAchecker

framework. It consists of two steps: First we perform a breadth-first search on the CFA
to find all leaf test goals. By partitioning them into “covered” and “not-covered” we
can then generate a condition that is used by the integrated reducer.

4.1 Phase 1: BFS

In this phase we want to identify the leaf test goals in our CFA and categorize them by
their coverage state. For that we need a list of covered test goals. Now we perform a
breadth-first search to identify the outermost goals. Using the list we divide them into
“covered” and “not covered”.

Algorithm 1: Breadth-first search (Phase 1)
Input: CFA P = (L, ·, G), a list of covered goals coveredGoals
Result: A list of test goals, partioned in covered/ not covered

1 waitList = {l ∈ L|∀l′ ∈ L : (l, ·, l′) /∈ G} ;
2 visitedNodes = ∅ ;
3 leafGoals = ∅;
4 while waitlist 6= ∅ do
5 pop li from waitlist;
6 visitedNodes = visitedNodes∪{li};
7 if li is a test goal label then
8 leafGoals = leafGoals∪{li}
9 else

10 waitList = waitList ∪{l′ : l′ /∈ visitedNodes ∧ ∃(l′, ·, l) ∈ G};
11 end
12 end
13 return (leafGoals ∩ coveredGoals, leafGoals \ coveredGoals);

8

4 Automaton-based Conditional Testing

Our implementation identifies goals as labels. For that we use CondTests instrumentor.
The program is instrumented using the addLabels() transformation [12].

In algorithm 1 we take a CFA and a list of covered goals as input. Our wait list is a
queue that contains all elements from our CFA that don’t have a transition to another
state (line 1). We then iterate over this list until it is empty (line 4). We save all visited
elements to avoid visiting one twice (line 5). If our element is a test goal we then add it
to a list of found test goals (lines 7 and 8). Otherwise we add the parents (all elements
for which there is a transition to this particular element) to our wait list (line 10). The
algorithm then returns a tuple of all goals that are covered (the intersection of our leaf
goals with our covered goals) and those that are not (our leaf goals without the ones in
the “covered” list).

1 int main() {
2 if (nondet_int()) {
3 GOAL_0:; // covered
4 if (nondet_int()) {
5 GOAL_1:; // covered
6 } else {
7 GOAL_2:; // covered
8 }
9 } else {

10 GOAL_3:; // covered
11 if (nondet_int()) {
12 GOAL_4:; // covered
13 } else {
14 GOAL_5:; // not covered
15 }
16 }
17
18 return 0;
19 }

Figure 4.1: An example C program instru-
mented with goal labels.

1

2

3

4

5 7

8

10

11

12 14

15

18

19

[nondet_int()]

GOAL_0:

[nondet_int()]
![nondet_int()]

GOAL_1: GOAL_2:

![nondet_int()]

GOAL_3:

[nondet_int()]
![nondet_int()]

GOAL_4:

GOAL_5:

return 0

Figure 4.2: The corresponding CFA with
test goals highlighted.

Let’s quickly take a look at the example from Figure 4.1. Let’s also say we ran a tester
that covered all goals but GOAL_5. We can then run our algorithm. In Figure 4.2 we can
see the corresponding CFA. Covered goals are colored in green with a dotted border,

9

4 Automaton-based Conditional Testing

uncovered goals are colored in red with a solid border. Leaf goals have a thick border.
Node 19 is the only node without children so we put it in our wait list. It is not a test
goal label, thus we continue our search by adding its parent to our queue. Node 18 is
not a test goal label either, the same is true for node 15 and node 8. Hence we search
their parents next. Now, our queue contains nodes 14, 12, 7 and 5. We identify labels
GOAL_1, GOAL_2 and GOAL_4 as covered and GOAL_5 as not covered. Since all our nodes
are test goal labels we don’t need to search any further and stop our search here.

4.2 Phase 2: Pruning the CFA

start

> ⊥

1 → 2, true

2 → 3, true

3 → 4, true

4 → 5, true
4 → 7, true

5 → 8, true

7 → 8, true

2 → 10, true

10 → 11, true

11 → 12, true
11 → 14, true

12 → 15, true 14 → 15, false

* → *, true * → *, false

Figure 4.3: The generated condition.

1int main() {
2if (nondet_int()) {
3GOAL_0:; // covered
4} else {
5GOAL_3:; // covered
6if (!nondet_int()) {
7GOAL_5:; // not covered
8}
9}
10
11return 0;
12}

Figure 4.4: The pruned program.

Using the list of leaf goals from phase 1 we can now construct our condition as follows:
For each covered leaf goal we generate a true (>) assumption. For all other uncovered
goals (which are not necessarily leaf goals) the assumption is false (⊥). The latter
requirement is necessary to avoid issues with non-linear program flows.

Continuing our example from the previous section we generated the condition in
Figure 4.3. We can see that each transition has a true assumption by default. As soon
as we encounter a leaf goal (highlighted by thick border) we look up whether it is

10

4 Automaton-based Conditional Testing

covered or not. In the first case we generate a final false assumption, otherwise a true
assumption. In Figure 4.4 we can see a our original program that was pruned using
this condition.

Proposition. We propose that we now can safely prune each leaf goal that has been
covered. For that we need to show both Soundness and Completeness (i.e. G-coverage
equivalency) of CPAchecker’s reducer using our condition for the purpose of Defini-
tion 7 [12].

Proof. Let C = (L, ·, ·) be the CFA of our original program and C′ = red C. Let G ⊆ L
be the set of all uncovered goals.

Soundness We know that CPAcheckers reducer algorithm is a reducer (i.e. it satisfies
Definition 8) [11]. From ex red C ⊆ ex C follows soundness for any condition.

Completeness We can observe that by construction ∀g ∈ G : A doesn’t cover any
paths that include g. Hence ex C \ {ex π : A covers π} contains all elements from G.
Thus completeness follows from ex C \ {ex π : A covers π} ⊆ ex red C.

4.3 Possible optimizations

. . .

Figure 4.5: A CFA with many branches
and its test goals highlighted.

. . .

Figure 4.6: The same CFA, after applying
our optimization.

11

4 Automaton-based Conditional Testing

A possible optimization technique for our approach consists of merging sibling nodes
that are both covered. Illustrated in Figure 4.6 we see that by recursively merging nodes
we can generate a much more optimal condition (highlighted by a drop shadow).

We implement our optimization by extending algorithm 1. We start a breadth-first
search from the bottom of the CFA. All initial nodes are marked as “virgin”. Later,
when goal labels are discovered, we use the list of covered goals to mark our respective
nodes as “covered” or “uncovered”.

Algorithm 2: Breadth-first search with propagation (Phase 1)
Input: CFA P = (L, ·, G), a list of covered goals coveredGoals
Result: A list of test goals, partioned in covered/ not covered

1 waitList = {l ∈ L : ∀l′ ∈ L : (l, ·, l′) /∈ G};
2 visitedNodes = ∅, nodes = ∅, removableNodes = ∅;
3 while waitlist 6= ∅ do
4 pop li from waitlist;
5 visitedNodes = visitedNodes∪{li};
6 children = {l ∈ L : ∃(li, ·, l) ∈ G};
7 if li is a test goal label and all children are virgin then
8 if li ∈ coveredGoals then
9 nodes = nodes∪{(covered, li)};

10 else
11 nodes = nodes∪{(uncovered, li)};
12 end
13 else if all children are virgin or node has no children then
14 nodes = nodes∪{(virgin, li)};
15 else if all children are covered then
16 nodes = nodes∪{(covered, li)};
17 else if all children are uncovered then
18 nodes = nodes∪{(uncovered, li)};
19 else
20 continue;
21 end
22 removableNodes = removableNodes ∪ children;
23 waitList = waitList ∪{l′ : l′ /∈ visitedNodes ∧ ∃(l′, ·, l) ∈ G};
24 end
25 return ({l ∈ L : (covered, l) ∈ nodes} \ removableNodes, {l ∈ L : (uncovered, l) ∈

nodes} \ removableNodes);

12

4 Automaton-based Conditional Testing

Our algorithm keeps track of a map that assigns all elements to their respective state:
virgin means no (leaf) goals have previously been found. Covered and uncovered are
states that are either leaf goals themselves or whose children all have the same state.

Let’s illustrate the difference to the naïve algorithm by once again looking at our
example program’s CFA representation from Figure 3.2. The steps are listed in Table 4.1.
The column nodes represents the set nodes in algorithm 2. The first element of the tuple
is abbreviated as “V” for virgin, “U” for uncovered and “C” for covered. The second
element refers to the node’s number. We underline the nodes that are not in the set
removableNodes.

Table 4.1: Overview over the steps in our improved algorithm.

Step nodes

1 (V, N19)
2 (V, N19), (V, N18)
3 (V, N19), (V, N18), (V, N15)
4 (V, N19), (V, N18), (V, N15), (V, N8)

5 (V, N19), (V, N18), (V, N15), (V, N8), (U, N14)
6 (V, N19), (V, N18), (V, N15), (V, N8), (U, N14), (C, N12)
7 (V, N19), (V, N18), (V, N15), (V, N8), (U, N14), (C, N12), (C, N7)
8 (V, N19), (V, N18), (V, N15), (V, N8), (U, N14), (C, N12), (C, N7), (C, N5)

9 (V, N19), (V, N18), (V, N15), (V, N8), (U, N14), (C, N12), (C, N7), (C, N5)
10 (V, N19), (V, N18), (V, N15), (V, N8), (U, N14), (C, N12), (C, N7), (C, N5), (C, N4)
11 (V, N19), (V, N18), (V, N15), (V, N8), (U, N14), (C, N12), (C, N7), (C, N5), (C, N4),

(C, N3)
12 (V, N19), (V, N18), (V, N15), (V, N8), (U, N14), (C, N12), (C, N7), (C, N5), (C, N4),

(C, N3)

We start at node 19 because it is the only one without children (Step 1). It is not a test
goal label, just like its successor node 18, so both are assigned the virgin state (Step 2).
The same is true for their successors nodes 15 and 8. We assign them the virgin state,
too (Steps 3 and 4). We add their successors to our removableNodes set. This allows us
to only return leaf nodes at a later point.

Next, we look at node 14. It is a test goal label that is not covered, hence we assign the
uncovered state (Step 5). Its sibling node 12 as well as nodes 7 and 5 are all covered
and we assign them the corresponding state (Steps 6 to 8).

13

4 Automaton-based Conditional Testing

Next up is Node 11. Its children, nodes 14 and 12 aren’t both either covered or
uncovered so our exploration stops here (Step 9). Node 4 inherits the covered state
from its children (Step 10). Node 3 gets its covered state from node 4 (Step 11). Lastly,
the algorithm stops at node 2 because not all of its children are covered and the wait
list is empty (Step 12).

Finally our algorithm returns nodes 3 and 12 as covered leaf nodes and node 15 as
uncovered leaf node. Figure 4.7 and Figure 4.8 illustrate the generated condition and the
resulting program.

start

> ⊥

1 → 2, true

2 → 3, true

3 → 4, true

2 → 10, true

10 → 11, true

11 → 12, true
11 → 14, true

12 → 15, true 14 → 15, false

* → *, true * → *, false

Figure 4.7: The generated condition using
our optimized algorithm.

1int main() {
2if (!nondet_int()) {
3GOAL_3:; // covered
4if (!nondet_int()) {
5GOAL_5:; // not covered
6}
7}
8
9return 0;
10}

Figure 4.8: The pruned program using out
optimized algorithm.

14

5 Evaluation

We want to check whether conditional testing improves existing solutions. We want
to know if our proposed solution improves branch coverage. Furthermore we look at
the resource consumption (i.e. CPU time and memory). Lastly we compare reduction
algorithms in regard to cyclomatic complexity.

5.1 Setup

We performed our experiments on a cluster of 168 with Intel Xeon E5–1320 v5 processors
running at 3.40 GHz. The servers are running Ubuntu 20.04.1 LTS with Linux kernel
5.4.0–52–generic.

5.1.1 Software

We use CondTest (v3.1-dev, git commit 4f0005fb1) for instrumentation, pruning and test
goal extraction. For running a sequence of testers and reducers we employ CoVeriTeam

(v0.5, git commit 126a1bf82). Branch coverage is measured by TestCov (v3.1-dev, git
commit 749770013). Cyclomatic Complexity is measured by pmccabe (installed from
the Ubuntu 18.04 package repositories4).

5.1.2 Benchmarks

We used the candidates from Test-Comp 2020 [6]. They are state-of-the-art testers
and their license allows for free replication and evaluation and does not pose any

1https://gitlab.com/sosy-lab/software/conditional-testing/-/tree/4f0005fb
2https://gitlab.com/sosy-lab/software/coveriteam/-/tree/126a1bf8
3https://gitlab.com/sosy-lab/software/test-suite-validator/-/tree/74977001
4https://packages.ubuntu.com/de/bionic/pmccabe. Note: It is not a mistake that we installed the

Ubuntu 18.04 Version while the servers were running Ubuntu 20.04. Some cheap calculations were run
locally. For more information see subsequent sections.

15

https://gitlab.com/sosy-lab/software/conditional-testing/-/tree/4f0005fb
https://gitlab.com/sosy-lab/software/coveriteam/-/tree/126a1bf8
https://gitlab.com/sosy-lab/software/test-suite-validator/-/tree/74977001
https://packages.ubuntu.com/de/bionic/pmccabe

5 Evaluation

Table 5.1: All testers used in the evaluation.

Name Version Repository Git Tag/ Commit

CoVeriTest CPAchecker 1.8-svn-3223 Test-Comp Archives 2020 testcomp20
HybridTiger CPAchecker 1.8-svn-32283M Test-Comp Archives 2020 testcomp20
Klee KLEE 2.1-pre-test-comp Test-Comp Archives 2020 testcomp20
PRTest 2.1 PRTest 171b066
Symbiotic 7.0.0-dev Test-Comp Archives 2020 testcomp20
TracerX Klee v1.2.0 Test-Comp Archives 2020 testcomp20

restrictions on their outputs. We had to upgrade to a newer PRTest version due to
incompatibilities with our environment. Table 5.1 gives an overview over the testers
used5. There was an issue with Legion writing its test suites to a different output
folder than was expected that forced us to exclude the tool from our benchmarks. We
couldn’t get LibKluzzer or VeriFuzz to run, that’s why we didn’t record any results
for them.

Our testers ran on the tasks from the cover branches category of Test-Comp 2020. These
benchmarks were chosen because it is a large benchmark set and they cover a wide
range of real-life problems.

Instru-
menter

Tester 1
à 7min

Extractor Pruner
Tester 2
à 8min

Figure 5.1: Evaluation setup for pairs of testers.

We measured four different setups:

• To get our baseline we let a tester run for 15 minutes. We then calculated the
branch coverage.

• Three instances of the setup in Figure 5.1. First we instrument our program with
test goal labels. Then we execute tester 1 with a time limit of seven minutes.
Then we extract information about which goals are covered, and execute a pruner.
Lastly we let tester 2 run on the reduced program with a time limit of 8 minutes.
These results are used to calculate the cyclomatic complexity locally and join the
test suites of testers 1 and 2 together. Branch coverage of the joined test suite is

5The repository Test-Comp Archives 2020 can be found in https://gitlab.com/sosy-lab/test-comp/
archives-2020, PRTest can be found in https://gitlab.com/sosy-lab/software/prtest.

16

https://gitlab.com/sosy-lab/test-comp/archives-2020
https://gitlab.com/sosy-lab/test-comp/archives-2020
https://gitlab.com/sosy-lab/software/prtest

5 Evaluation

then calculated on the cluster. We used CondTest’s pruner, our naïve algorithm
and the optimized algorithm with propagation as pruners. The whole sequence
had a time limit of 20 minutes.

Our local analysis uses the output files of CoVeriTeam, mainly execution_trace.xml.
From this file we extract:

• The location of the test suites testers 1 and 2 generated,

• Measurements about the run of testers 1 and 2, like used memory and CPU time,

• The location of the instrumented and reduced program.

We join both test suites together to upload them in the cloud for branch coverage
calculation. The measurements and the cyclomatic complexity of both the instrumented
(i.e. original) and the reducer program are written to a CSV file. If for some reason no
execution_trace.xml is produced, our local analysis is not able to join the test suites
and this particular run is discarded.

5.2 Results

5.2.1 One Tester

We tried executing testers sequentially one after another (i.e. we used the same tester
for tester 1 and 2). This approach was described by Beyer et. al. [12] as “testercycl” (with
one repetition).

5.2.1.1 CoVeriTest

Table 5.2: Status Codes for CoVeriTest. Similar status codes have been merged.

Status Baseline CondTest Naïve Algorithm Propagation

Done 793 2105 683 683
Error 50 144 1743 1747
Out Of Memory 47 43 43 44
Timeout 1641 239 62 57

17

5 Evaluation

We recorded the status codes of our testers in Table 5.2. Both our naïve algorithm and
our optimized algorithm produced a lot of Error states. This has to do with the issues
described in subsection 5.3.3; CoVeriTest did in some cases not produce a test suite
when it should have.

Analyzing the results from Figure 5.2 presents a mixed picture. CondTest in Figure 5.2a
saw some improvements and some declines in branch coverage compared to just
running CoVeriTest. There are some dips at around 50%. The fact that these can’t
be found in Figure 5.2b or Figure 5.2c is an artifact of the issue with CoVeriTeam not
running properly in some cases. Generally speaking it does seem like our approach
produces test suites with a higher branch coverage than CondTest or our baseline. We
can also see that there is virtually no difference between our optimized algorithm and
the naïve approach.

(a) Baseline/ CondTest (b) Baseline/ Naïve (c) Baseline/ Propagation

(d) CondTest/ Naïve (e) CondTest/ Propagation (f) Naïve/ Propagation

Figure 5.2: Branch Coverage (in %) for CoVeriTest.

18

5 Evaluation

Let’s look at the outliers (i.e. tasks where |CondTest − naïve| > 2)6. This limit is
somewhat arbitrary but works in this case. Table 5.3 and Table 5.4 give an overview. We
can compare the cyclomatic complexity of each row to see how each pruner fared.

In some cases our reducer did not reduce the program but instead made it more
complex: randesum20.c’s and rangesum60.c’s cyclomatic complexity increased by
36.36%. This however did not result in a worse branch coverage. Our naïve approach
had significantly more branch coverage than our baseline. Somewhat surprisingly
CondTest’s pruner does not change the cyclomatic complexity. In fact this is not only
true for this sample but for the complete data set. We made sure to check our set-up
for any mistakes even though the fact that it was used for our other algorithms where
differing values for the cyclomatic complexity were calculated makes an error unlikely.
We can see that in both cases reduced complexity does not necessarily influence the
branch coverage. This is not surprising: If a tester fails to generate a test case for a
particular branch because of issues like non-linear math it wouldn’t help if the rest of
the program is reduced; the obstacle is still there.

There is an overlap between the two outlier sets: 8 out of 10 tasks from the CondTest

table are also in our baseline table. The two exceptions are cs_fib_longer-1.c and
cs_queue-1.c.

In Figure 5.2f we can see that there is virtually no difference between our naive algorithm
and the optimized approach. The two outliers are openbsd_cmemchr-alloca-1.yml
(77.78% and 88.89% coverage respectively) and openbsd_cmemrchr-alloca-1.c (88.89%
/ 77.78% coverage). Both results do not change the general picture, that’s why we’re
not analyzing the outliers of Baseline/ Propagation and CondTest/ Propagation.

6We ignore runs where either is equal to zero.

19

5 Evaluation

Table 5.3: Outliers for CoVeriTest (Baseline/ Naïve Algorithm). Correlation Coefficient r = 0.3174. Threshold = 2.

Branch Coverage Cyclomatic Complexity
Task CondTest Naïve ∆ Initial Naïve ∆ % red.

termination-memory-alloca/b.16-alloca.c 50.00% 100.00% -50.00 6 5 1 16.67%
termination-memory-alloca/c.01_assume-alloca.c 25.00% 75.00% -50.00 8 2 6 75.00%
bitvector/s3_clnt_2.BV.c.cil-2a.c 55.80% 90.58% -34.78 93 87 6 6.45%
termination-memory-alloca/openbsd_cstrcmp-alloca-2.c 57.14% 85.71% -28.57 8 3 5 62.50%
reducercommutativity/rangesum20.c 77.78% 88.89% -11.11 11 15 -4 -36.36%
reducercommutativity/rangesum60.c 77.78% 88.89% -11.11 11 15 -4 -36.36%
list-ext-properties/list-ext_flag.c 55.56% 66.67% -11.11 19 2 17 89.47%
termination-memory-alloca/openbsd_cmemrchr-alloca-1.c 77.78% 88.89% -11.11 20 2 18 90.00%
termination-libowfat/strtoull.c 59.09% 68.18% -9.09 26 20 6 23.08%
bitvector/s3_clnt_2.BV.c.cil-1a.c 60.14% 68.84% -8.70 93 87 6 6.45%
ssh-simplified/s3_clnt_3.cil-1.c 34.06% 37.68% -3.62 92 86 6 6.52%

busybox-1.22.0/hostid.c 23.08% 19.23% 3.85 39 2 37 94.87%
bitvector/s3_clnt_3.BV.c.cil-1a.c 62.14% 56.43% 5.71 93 3 90 96.77%
loop-industry-pattern/mod3.c.v+cfa-reducer.c 88.89% 77.78% 11.11 8 7 1 12.50%
termination-libowfat/atoll.c 66.67% 50.00% 16.67 13 8 5 38.46%
busybox-1.22.0/dirname-1.c 32.61% 15.22% 17.39 55 2 53 96.36%
busybox-1.22.0/basename-1.c 26.03% 4.11% 21.92 74 2 72 97.30%
busybox-1.22.0/basename-2.c 32.88% 8.22% 24.66 74 2 72 97.30%

20

5 Evaluation

Table 5.4: Outliers for CoVeriTest (CondTest/ Naïve Algorithm). Correlation Coefficient r = 0.3861. Threshold = 2.

Branch Coverage Cyclomatic Complexity
Task CondTest Naïve ∆ Initial CondTest Naïve ∆ % red.

termination-memory-alloca/b.16-alloca.c 50.00% 100.00% -50.00 6 6 5 1 16.66%
bitvector/s3_clnt_2.BV.c.cil-2a.c 55.80% 90.58% -34.78 93 93 86 7 7.52%
loop-industry-pattern/mod3.c.v+cfa-reducer.c 66.67% 77.78% -11.11 8 8 7 1 12.50%
seq-pthread/cs_fib_longer-1.c 20.51% 26.92% -9.11 75 75 3 72 96.00%
bitvector/s3_clnt_2.BV.c.cil-1a.c 60.14% 68.84% -8.70 93 93 87 6 6.45%
ssh-simplified/s3_clnt_3.cil-1.c 34.06% 37.68% -3.62 92 92 86 6 93.47%
seq-pthread/cs_queue-1.c 22.46% 25.13% -2.67 147 147 5 142 3.40%

busybox-1.22.0/hostid.c 23.08% 19.23% 3.85 39 39 2 37 94.87%
termination-memory-alloca/openbsd_cmemchr-alloca-1.c 88.89% 77.78% 11.11 9 9 4 5 55.55%
termination-libowfat/atoll.c 66.67% 50.00% 16.67 13 13 8 5 34.46%

21

5 Evaluation

5.2.1.2 HybridTiger

Table 5.5: Status Codes for HybridTiger. Similar states have been merged.

Status Baseline CondTest Naïve Algorithm Propagation

Done 807 2146 2275 2272
Error (1) 9 107 168 175
Out Of Memory 93 76 75 76
Timeout 1622 202 13 8

In Table 5.5 we can see HybridTiger’s status codes. Our baseline generated a lot of
Timeouts. This is not a problem, a timeout just forces the algorithm to stop, it is still a
valid result.

(a) Baseline/ CondTest (b) Baseline/ Naïve (c) Baseline/ Propagation

(d) CondTest/ Naïve (e) CondTest/ Propagation (f) Naïve/ Propagation

Figure 5.3: Branch Coverage (in %) for HybridTiger.

The data in Figure 5.3 shows us that HybridTiger generally benefits from a conditional
testing approach. Independent of the reducer most tasks saw a small to medium

22

5 Evaluation

improvement in branch coverage. Our improved algorithm and the naïve version were
once again virtually identical. Note that there are some tasks where the propagation
performed worse than the simple approach. Additionally our optimized version
returned more errors than the naive one.

In our data set we can find a lot of outliers if we followed the previous definition.
That’s why we decided to íncrease our threshold. For this particular dataset we
identified outliers for the baseline by |baseline − naïve| > 15 and for CondTest by
|condtest − naïve| > 5. Again, these values are arbitrary but allow us to find pieces of
data where one approach was clearly better or worse than the other without drowning
in noise. Table 5.6 and Table 5.7 give an overview.

This time despite the higher threshold we have a lot more outliers. Our algorithm is
still better than the baseline in all but 5 of the 27 cases. Our correlation is even weaker
than with CoVeriTest. Unlike last time our algorithm did not add more complexity.

When we compare our naive approach to CondTest we see that there isn’t much overlap
between the outliers. Only 5 out of 13 outliers are the same task: loop-industry-
pattern/mod3.yml, termination-15/count_up_and_down_alloca.yml , termination-
memory-alloca/b.16-alloca.yml, loop-invgen/apache-get-tag.i.p+lhb-reducer.yml
and termination-memory-alloca/gcd1-alloca.yml.

23

5 Evaluation

Table 5.6: Outliers for HybridTiger (Baseline/ Naïve Algorithm). Correlation Coefficient r = 0.106. Threshold = 15.

Branch Coverage Cyclomatic Complexity
Task CondTest Naïve ∆ Initial Naïve ∆ % red.

ldv-regression/sizeofparameters_test.c 1.00 100.00 -99.00 5 1 4 80.00%
termination-memory-alloca/b.16-alloca.c 50.00 100.00 -50.00 6 5 1 16.67%
termination-memory-alloca/openbsd_cstrncat-alloca-1.c 50.00 85.71 -35.71 13 4 9 69.23%
heap-manipulation/bubble_sort_linux-2.c 35.59 66.10 -30.51 58 1 57 98.28%
termination-15/count_up_and_down_alloca.c 57.14 85.71 -28.57 6 2 4 66.67%
list-ext-properties/simple-ext.c 55.56 77.78 -22.22 15 2 13 86.67%
forester-heap/dll-optional-2.c 71.43 92.86 -21.43 13 1 12 92.31%
forester-heap/sll-optional-2.c 71.43 92.86 -21.43 13 1 12 92.31%
seq-mthreaded/pals_floodmax.4.1.ufo.BOUNDED-8.pals.c 52.35 72.41 -20.06 262 1 261 99.62%
forester-heap/dll-01-1.c 50.98 70.59 -19.61 38 1 37 97.37%
seq-mthreaded/pals_floodmax.4.2.ufo.BOUNDED-8.pals.c 48.64 67.98 -19.34 262 1 261 99.62%
forester-heap/sll-token-1.c 33.33 52.38 -19.05 17 1 16 94.12%
termination-memory-alloca/gcd1-alloca.c 66.67 83.33 -16.66 8 8 0 0.00%
seq-mthreaded/pals_floodmax.4.ufo.BOUNDED-8.pals.c 50.15 66.47 -16.32 262 1 261 99.62%
seq-mthreaded/pals_floodmax.4.4.ufo.BOUNDED-8.pals.c 51.06 67.07 -16.01 262 1 261 99.62%
seq-mthreaded/pals_floodmax.4.3.ufo.BOUNDED-8.pals.c 49.55 65.26 -15.71 262 1 261 99.62%
loop-invgen/apache-get-tag.i.p+lhb-reducer.c 31.41 46.79 -15.38 80 23 57 71.25%
seq-mthreaded/pals_STARTPALS_ActiveStandby.1.ufo.BOUNDED-10.pals.c 69.60 84.80 -15.20 121 1 120 99.17%
heap-manipulation/sll_to_dll_rev-1.c 29.27 9.76 19.51 44 1 43 97.73%
loop-industry-pattern/mod3.c 88.89 66.67 22.22 9 1 8 88.89%
loops/bubble_sort-2.c 32.39 5.63 26.76 62 43 19 30.65%

heap-manipulation/merge_sort-1.c 42.86 7.14 35.72 51 1 50 98.04%
floats-cdfpl/newton_3_6.c 100.00 50.00 50.00 6 1 5 83.33%
floats-cdfpl/sine_1.c 100.00 50.00 50.00 5 1 4 80.00%
loops/string-1.c 86.67 6.67 80.00 15 2 13 86.67%
loops/string-2.c 93.33 6.67 86.66 15 2 13 86.67%

24

5 Evaluation

Table 5.7: Outliers for HybridTiger (CondTest/ Naïve Algorithm). Correlation Coefficient r = 0.3693. Threshold = 5.

Branch Coverage Cyclomatic Complexity
Task CondTest Naïve ∆ Initial CondTest Naïve ∆ % red.

termination-memory-alloca/b.16-alloca.c 50 100 -50 6 6 5 1 16.67%
termination-15/count_up_and_down_alloca.c 57.14 85.71 -28.57 6 6 2 4 66.67%
termination-memory-alloca/gcd1-alloca.c 66.67 83.33 -16.66 8 8 8 0 0.00%
loop-invgen/apache-get-tag.i.p+lhb-reducer.c 31.41 46.79 -15.38 80 80 23 57 71.25%
termination-libowfat/strtoul.c 59.09 68.18 -9.09 26 26 20 6 23.08%
seq-pthread/cs_stack-2.c 35.92 43.66 -7.74 121 121 1 120 99.17%

seq-mthreaded/pals_opt-floodmax.5.4.ufo.BOUNDED-10.pals.c 64.85 59.74 5.11 651 651 1 650 99.85%
seq-mthreaded/pals_opt-floodmax.5.ufo.BOUNDED-10.pals.c 63.11 55.92 7.19 651 651 1 650 99.85%
busybox-1.22.0/hostid.c 11.54 3.85 7.69 39 39 2 37 94.87%
termination-15/cstrncat_reverse_alloca.c 100 91.67 8.33 11 11 4 7 63.64%
termination-libowfat/strtoull.c 68.18 59.09 9.09 26 26 20 6 23.08%
loop-industry-pattern/mod3.c.v+cfa-reducer.c 88.89 77.78 11.11 8 8 7 1 12.50%
loop-industry-pattern/mod3.c 88.89 66.67 22.22 9 9 1 8 88.89%

25

5 Evaluation

5.2.1.3 Klee

Table 5.8: Status Codes for Klee.

Status Baseline CondTest Naïve Algorithm Propagation

Done 457 1801 1882 1881
Error (1) 156 105 356 356
Out of Memory 8 8 6 6
Timeout 1651 617 287 287
Unknown 167

We can see that Klee alone runs into a lot of timeouts. Conditional testing helps with
that and our algorithms allowed even more runs to complete successfully.

(a) Baseline/ CondTest (b) Baseline/ Naïve (c) Baseline/ Propagation

(d) CondTest/ Naïve (e) CondTest/ Propagation (f) Naïve/ Propagation

Figure 5.4: Branch Coverage (in %) for Klee.

We can see that our approach compared to our baseline seems to improve branch
coverage, especially where our baseline already has test suites with a high branch

26

5 Evaluation

coverage. Our approaches seem to be on par with CondTest. In some cases it is much
worse, in others much better. Propagation does not enhance our basic algorithm by a
lot and in some case even drastically worsens the results.

Analyzing outliers is not very fruitful. To get a analyzable amount of data points we’d
have to increase our threshold to as much as 25 (see the intervals indicated in light gray
in Figure 5.4b and Figure 5.4d).

5.2.1.4 PRTest

Table 5.9: Status Codes for PRTest.

Status Baseline CondTest Naïve Algorithm Propagation

Done – 2184 1699 1698
Error (1) 521 256 688 689
Out of Memory 8 7 7 7
Timeout 2002 82 137 137

Most runs of PRTest in combination with conditional testing did execute successfully,
which gives us plenty of data to analyze. Note how the tester itself either runs into a
timeout or an error, that’s because it never stops testing unless it is killed (i.e. by signal
SIGTERM). It does however produce valid test suites for each timeout.

We can see that PRTest does not benefit from conditional testing. Neither CondTest

nor our algorithm had any kind of improvement compared to our baseline. Usually the
results are about the same, in some rare cases the results are worse. This might be due
to the way PRTest works [22]: It executes a program and generates a random value for
each input. A reduced program might be smaller and PRTest might be able to create
tests more quickly, but the technique doesn’t benefit as much from program reduction
as other more sophisticated test generators.

Unsurprisingly, we don’t see as many outliers7: Table 5.10 shows us four outliers. Each
tells us that our algorithm performed worse than the baseline. There is a negative
correlation, however with that small of a sample size it is mostly meaningless. There
Table 5.11 has only one outlier. Here our algorithm performed worse, too.

7To get our outliers we used a threshold of 2.

27

5 Evaluation

(a) Baseline/ CondTest (b) Baseline/ Naïve (c) Baseline/ Propagation

(d) CondTest/ Naïve (e) CondTest/ Propagation (f) Naïve/ Propagation

Figure 5.5: Branch Coverage (in %) for PRtest.

28

5 Evaluation

Table 5.10: Outliers for PRTest (Baseline/ Naïve Algorithm). Correlation Coefficient r = −0.6969.

Branch Coverage Cyclomatic Complexity
Task CondTest Naïve ∆ Initial Naïve ∆ % red.

loop-industry-pattern/mod3.c.v+cfa-reducer.yml 44.44 33.33 11.11 8 7 1 12.50%
array-industry-pattern/array_monotonic.yml 37.5 25 12.5 8 5 3 37.50%
loop-crafted/simple_array_index_value_4.i.v+lhb-reducer.yml 50 10.71 39.29 19 18 1 5.26%
loop-crafted/simple_array_index_value_4.i.v+nlh-reducer.yml 60 12 48 16 15 1 6.25%

Table 5.11: Outliers for PRTest (CondTest/ Naïve Algorithm).

Branch Coverage Cyclomatic Complexity
Task CondTest Naïve ∆ Initial CondTest Naïve ∆ % red.

loop-industry-pattern/mod3.yml 44.44 33.33 11.11 9 9 1 8 88.89%

29

5 Evaluation

5.2.1.5 Symbiotic

Table 5.12: Status Codes for Symbiotic.

Status Baseline CondTest Naïve Algorithm Propagation

Done 2488 2402 2284 2283
Error 112 105 223 224
Out of Memory 27 24 24 24
Timeout 9 – – –

In Table 5.12 we can see Symbiotic’s status codes. A lot of tasks completed successfully
which allows us to get a differentiated view on the performance of our algorithms.

(a) Baseline/ CondTest (b) Baseline/ Naïve (c) Baseline/ Propagation

(d) CondTest/ Naïve (e) CondTest/ Propagation (f) Naïve/ Propagation

Figure 5.6: Branch Coverage (in %) for Symbiotic.

In Figure 5.6 we can see a mixed picture: In some tasks conditional testing (regardless of
the implementation) performed better, in others worse. It’s hard to determine outliers

30

5 Evaluation

in this case, because we would need a threshold as high as 50 (or even higher) to get a
subset of data points that would be actually analyzable. We can however look at the
outliers for CondTest/ our naïve algorithm (Table 5.14) using a threshold value of
15.

We can see that a lot of tasks (7 out of 15) didn’t reduce the program at all but instead
made it more complex. Although they were more complex our algorithm still had a
higher branch coverage in all of them.

In Figure 5.6f we can see that this time there is a difference between propagation and
non-propagation: For the most part propagation seems to improve our results by some
margin, even though there were some significant dips.

31

5 Evaluation

Table 5.13: Outliers for Symbiotic (Baseline/ Naïve Algorithm). Correlation Coefficient r = 0.1894. Threshold = 20.

Branch Coverage Cyclomatic Complexity
Task CondTest Naïve ∆ Initial Naïve ∆ % red.

ldv-regression/sizeofparameters_test.yml 1.00 100.00 -99.00 5 1 4 80.00%
array-tiling/rew.yml 12.50 87.50 -75.00 9 1 8 88.89%
array-tiling/rewrev.yml 12.50 87.50 -75.00 9 1 8 88.89%
termination-memory-alloca/Avery-2006FLOPS-Tabel1_true-alloca.yml 25.00 100.00 -75.00 8 1 7 87.50%
ldv-regression/test22-1.yml 20.00 80.00 -60.00 11 1 10 90.91%
ldv-regression/test22-2.yml 20.00 80.00 -60.00 11 1 10 90.91%
array-tiling/mlceu.yml 25.00 75.00 -50.00 8 9 -1 -12.50%
forester-heap/dll-optional-2.yml 50.00 92.86 -42.86 13 1 12 92.31%
termination-memory-alloca/openbsd_cstrncmp-alloca-1.yml 27.27 63.64 -36.37 10 12 -2 -20.00%
loop-industry-pattern/mod3.c.v+cfa-reducer.yml 44.44 77.78 -33.34 8 7 1 12.50%
termination-memory-alloca/HarrisLalNoriRajamani-2010SAS-Fig3-alloca.yml 33.33 66.67 -33.34 6 2 4 66.67%
termination-memory-alloca/cstrncmp-alloca-2.yml 33.33 66.67 -33.34 12 16 -4 -33.33%
termination-15/cstrncmp_diffterm_alloca.yml 33.33 66.67 -33.34 10 16 -6 -60.00%
termination-15/cstrncmp_mixed_alloca.yml 33.33 66.67 -33.34 10 16 -6 -60.00%
termination-15/cstrncmp_reverse_alloca.yml 33.33 66.67 -33.34 10 16 -6 -60.00%
loops/trex03-1.yml 66.67 100.00 -33.33 11 1 10 90.91%
heap-manipulation/bubble_sort_linux-2.yml 35.59 66.10 -30.51 58 1 57 98.28%
array-tiling/revcpyswp2.yml 11.11 33.33 -22.22 11 1 10 90.91%

forester-heap/sll-optional-2.yml 71.43 92.86 -21.43 13 1 12 92.31%
forester-heap/sll-rb-sentinel-2.yml 76.19 52.38 23.81 16 1 15 93.75%
forester-heap/sll-rb-sentinel-1.yml 80.95 52.38 28.57 16 1 15 93.75%
forester-heap/dll-circular-1.yml 62.50 31.25 31.25 15 1 14 93.33%
float-benchs/filter2.yml 66.67 33.33 33.34 9 1 8 88.89%
termination-memory-alloca/Toulouse-BranchesToLoop-alloca.yml 66.67 33.33 33.34 6 1 5 83.33%
termination-memory-alloca/Toulouse-MultiBranchesToLoop-alloca.yml 94.74 47.37 47.37 14 1 13 92.86%
float-benchs/filter2_reinit.yml 80.00 20.00 60.00 10 1 9 90.00%

32

5 Evaluation

Table 5.14: Outliers for Symbiotic (CondTest/ Naïve Algorithm). Correlation Coefficient r = 0.5805. Threshold = 15.

Branch Coverage Cyclomatic Complexity
Task CondTest Naïve ∆ Initial CondTest Naïve ∆ % red.

array-tiling/mlceu.yml 25.00 75.00 -50.00 8 8 9 -1 -12.50%
loop-industry-pattern/mod3.c.v+cfa-reducer.yml 33.33 77.78 -44.45 8 8 7 1 12.50%
termination-memory-alloca/openbsd_cstrncmp-alloca-1.yml 27.27 63.64 -36.37 10 10 12 -2 -20.00%
termination-memory-alloca/HarrisLalNoriRajamani-2010SAS-Fig3-alloca.yml 33.33 66.67 -33.34 6 6 2 4 66.67%
termination-memory-alloca/cstrncmp-alloca-2.yml 33.33 66.67 -33.34 12 12 16 -4 -33.33%
termination-15/cstrncmp_diffterm_alloca.yml 33.33 66.67 -33.34 10 10 16 -6 -60.00%
termination-15/cstrncmp_mixed_alloca.yml 33.33 66.67 -33.34 10 10 16 -6 -60.00%
termination-15/cstrncmp_reverse_alloca.yml 33.33 66.67 -33.34 10 10 16 -6 -60.00%
loop-invgen/sendmail-close-angle.yml 27.27 54.55 -27.28 9 9 14 -5 -55.56%
termination-15/cstrncpy_reverse_alloca.yml 50.00 75.00 -25.00 7 7 4 3 42.86%
loops/trex03-1.yml 83.33 100.00 -16.67 11 11 1 10 90.91%
loop-invgen/nest-if3.yml 25.00 41.67 -16.67 10 10 8 2 20.00%

loops/trex03-2.yml 66.67 50.00 16.67 11 11 1 10 90.91%
termination-15/cstrcmp_diffterm_alloca.yml 80.00 60.00 20.00 7 7 6 1 14.29%
loop-lit/ddlm2013.yml 88.89 66.67 22.22 8 8 1 7 87.50%

33

5 Evaluation

5.2.1.6 TracerX

Table 5.15: Status Codes for TracerX.

Status Baseline CondTest Naïve Algorithm Propagation

Done 1030 1271 1426 1422
Error 249 174 455 442
False 132 – – –
Out of Memory 61 52 56 55
Timeout 1022 1034 594 612
Unknown 29 – – –

TracerX had some successful runs. As many runs resulted in a timeout. As we
explained in previous sections this is not bad because it still produces valid test suites
and test cases.

(a) Baseline/ CondTest (b) Baseline/ Naïve (c) Baseline/ Propagation

(d) CondTest/ Naïve (e) CondTest/ Propagation (f) Naïve/ Propagation

Figure 5.7: Branch Coverage (in %) for TracerX.

34

5 Evaluation

Generally, we can see that TracerX does not profit as much from a conditional testing
approach as other testers do. Most of the time conditional testing generated a higher
coverage, sometimes it did not. Our algorithms once again were virtually identical,
although this time there were bigger differences than with other testers.

When analyzing the outliers we once again see that cyclomatic complexity does not
correlate to branch coverage: Table 5.17 shows some outliers where our algorithm made
the program as much as six times as complex and still was able to calculate a higher
branch coverage than CondTest. Conversely, some programs where our algorithm was
able to reduce a lot of the program clearly favored CondTest. Still, the large number
of programs with a significantly higher cyclomatic complexity stand out and require
further analysis.

35

5 Evaluation

Table 5.16: Outliers for TracerX (Baseline/ Naïve Algorithm). Correlation Coefficient r = 0.1456. Threshold = 15.

Branch Coverage Cyclomatic Complexity
Task CondTest Naïve ∆ Initial Naïve ∆ % red.

array-patterns/array4_pattern.yml 22.22 77.78 -55.56 11 3 8 72.73%
array-industry-pattern/array_of_struct_break.yml 50.00 87.50 -37.50 8 5 3 37.50%
list-ext-properties/simple-ext.yml 44.44 77.78 -33.34 15 2 13 86.67%
loop-acceleration/multivar_1-2.yml 33.33 66.67 -33.34 5 22 -17 -340.00%
termination-15/cstrchr_malloc.yml 33.33 66.67 -33.34 6 5 1 16.67%
termination-memory-alloca/b.03-no-inv_assume-alloca.yml 66.67 100.00 -33.33 7 2 5 71.43%
termination-memory-alloca/cstrchr-alloca-1.yml 66.67 100.00 -33.33 8 5 3 37.50%
termination-15/cstrchr_diffterm_alloca.yml 66.67 100.00 -33.33 6 5 1 16.67%
termination-15/cstrchr_reverse_alloca.yml 66.67 100.00 -33.33 6 5 1 16.67%
list-ext-properties/list-ext.yml 15.38 46.15 -30.77 20 2 18 90.00%
termination-memory-alloca/Avery-2006FLOPS-Tabel1_true-alloca.yml 75.00 100.00 -25.00 8 1 7 87.50%
loops/terminator_03-1.yml 80.00 100.00 -20.00 8 25 -17 -212.50%
loops/trex02-1.yml 60.00 80.00 -20.00 7 2 5 71.43%
loops/trex02-2.yml 80.00 100.00 -20.00 7 2 5 71.43%
loop-acceleration/diamond_1-2.yml 60.00 80.00 -20.00 6 3 3 50.00%
termination-memory-alloca/a.09_assume-alloca.yml 60.00 80.00 -20.00 8 2 6 75.00%
termination-memory-alloca/b.03_assume-alloca.yml 60.00 80.00 -20.00 8 2 6 75.00%
eca-rers2012/Problem10_label52.yml 48.76 66.17 -17.41 954 1 953 99.90%
termination-memory-alloca/gcd1-alloca.yml 33.33 50.00 -16.67 8 7 1 12.50%
termination-memory-linkedlists/cll_search-alloca-1.yml 83.33 100.00 -16.67 9 2 7 77.78%
eca-rers2012/Problem10_label10.yml 47.76 64.18 -16.42 954 1 953 99.90%

eca-rers2012/Problem10_label08.yml 67.66 49.75 17.91 954 1 953 99.90%
eca-rers2012/Problem10_label49.yml 68.16 47.76 20.40 954 1 953 99.90%
eca-rers2012/Problem10_label00.yml 67.66 46.77 20.89 954 1 953 99.90%
eca-rers2012/Problem10_label20.yml 67.66 46.77 20.89 954 1 953 99.90%
eca-rers2012/Problem10_label41.yml 68.16 47.26 20.90 954 1 953 99.90%
seq-mthreaded/pals_lcr-var-start-time.4.1.ufo.BOUNDED-8.pals.yml 37.50 8.33 29.17 82 75 7 8.54%
seq-mthreaded/pals_lcr-var-start-time.4.ufo.BOUNDED-8.pals.yml 38.89 8.33 30.56 82 75 7 8.54%
seq-mthreaded/pals_lcr-var-start-time.4.2.ufo.BOUNDED-8.pals.yml 39.44 8.45 30.99 79 72 7 8.86%
termination-memory-alloca/count_down-alloca-2.yml 88.89 55.56 33.33 9 7 2 22.22%

36

5 Evaluation

Table 5.17: Outliers for TracerX (CondTest/ Naïve Algorithm). Correlation Coefficient r = 0.3809. Threshold = 15.

Branch Coverage Cyclomatic Complexity
Task CondTest Naïve ∆ Initial CondTest Naïve ∆ % red.

array-patterns/array4_pattern.yml 22.22 77.78 -55.56 11 11 3 8 72.73%
seq-pthread/cs_lazy.yml 3.26 42.39 -39.13 81 81 487 -406 -501.23%
seq-pthread/cs_read_write_lock-1.yml 2.94 38.24 -35.30 87 87 644 -557 -640.23%
seq-pthread/cs_stateful-1.yml 3.12 37.50 -34.38 83 83 402 -319 -384.34%
seq-pthread/cs_stateful-2.yml 3.12 37.50 -34.38 83 83 402 -319 -384.34%
loops/terminator_01.yml 33.33 66.67 -33.34 5 5 4 1 20.00%
loop-acceleration/multivar_1-1.yml 33.33 66.67 -33.34 5 5 4 1 20.00%
loop-acceleration/multivar_1-2.yml 33.33 66.67 -33.34 5 5 4 1 20.00%
termination-15/cstrchr_malloc.yml 33.33 66.67 -33.34 6 6 5 1 16.67%
termination-memory-alloca/b.03-no-inv_assume-alloca.yml 66.67 100.00 -33.33 7 7 2 5 71.43%
termination-memory-alloca/cstrchr-alloca-1.yml 66.67 100.00 -33.33 8 8 5 3 37.50%
termination-15/cstrchr_diffterm_alloca.yml 66.67 100.00 -33.33 6 6 5 1 16.67%
termination-15/cstrchr_reverse_alloca.yml 66.67 100.00 -33.33 6 6 5 1 16.67%
seq-pthread/cs_stack-1.yml 2.80 35.66 -32.86 123 123 629 -506 -411.38%
seq-pthread/cs_sync.yml 3.06 30.61 -27.55 84 84 492 -408 -485.71%
seq-pthread/cs_time_var_mutex.yml 2.59 29.31 -26.72 93 93 213 -120 -129.03%
termination-15/cstrncat_reverse_alloca.yml 58.33 83.33 -25.00 11 11 12 -1 -9.09%
seq-pthread/cs_queue-1.yml 2.67 23.53 -20.86 147 147 911 -764 -519.73%
loops/terminator_03-1.yml 80.00 100.00 -20.00 8 8 8 0 0.00%
termination-memory-alloca/a.09_assume-alloca.yml 60.00 80.00 -20.00 8 8 2 6 75.00%
termination-memory-alloca/b.03_assume-alloca.yml 60.00 80.00 -20.00 8 8 2 6 75.00%
termination-memory-alloca/gcd1-alloca.yml 33.33 50.00 -16.67 8 8 7 1 12.50%
termination-memory-linkedlists/ll_search-alloca.yml 83.33 100.00 -16.67 10 10 4 6 60.00%
seq-pthread/cs_peterson.yml 2.88 18.27 -15.39 88 88 136 -48 -54.55%

array-tiling/skippedu.yml 92.31 76.92 15.39 12 12 1 11 91.67%
list-ext2-properties/simple_and_skiplist_2lvl-1.yml 85.71 64.29 21.42 21 21 2 19 90.48%
forester-heap/sll-simple-white-blue-2.yml 92.31 69.23 23.08 12 12 1 11 91.67%
forester-heap/dll-simple-white-blue-1.yml 93.33 66.67 26.66 13 13 1 12 92.31%
heap-data/cart.yml 88.89 33.33 55.56 11 11 1 10 90.91%
array-patterns/array9_pattern.yml 85.71 28.57 57.14 10 10 3 7 70.00%

37

5 Evaluation

5.2.1.7 Summary

We have seen that most testers benefit from a conditional testing approach. Our
algorithm most of the time fared slightly better than CondTest’s pruner. It did not
matter whether we used our approach with propagation or simply our naïve algorithm.
This is because in many cases they produce very similar conditions and thus the
reduced programs were similar.

Definition 6 gives us an explanation why conditions might be similar: A path π is cov-
ered if (among others) “qk is an accepting state”. We used this by generating unaccpting
states (⊥) whenever we found an uncovered node: 1) In the naïve algorithm’s case
uncovered nodes are those that are not in our covered goals list. 2) For our propagating
algorithm uncovered nodes are those whose children are uncovered or that can’t be
found in our covered goals list. We can observe that all paths that aren’t covered for
the first case aren’t covered in the second case either, the cutoff (i.e. the point where
we generate our ⊥ assumption) can just happen earlier. This means that our optimized
algorithm always removes as much or more than our naïve approach.

Although somewhat surprisingly our contribution sometimes generated programs that
were as much as six times as complex as the original program, this did not have any
influence on branch coverage whatsover. We found that the amount that was reduced
(in terms of cyclomatic complexity) and branch coverage did not correlate. This could
be explained as follows: We use a tester that has particular strengths. If it struggles
with one part of the program it can’t produce many test cases for it. When reducing
the program we remove those parts for which we could successfully generate test cases
leaving all parts the tester struggled with in. If the hard part of a program was just
one branch our cyclomatic complexity would decrease sharply, nevertheless it wouldn’t
have any large impact on our tester.

We can now look at the resource consumption of each run. Figure 5.8 shows a box
diagram of the cpu time. In blue is our baseline. CondTest is colored in green. Our
naïve approach is called “thesis” and colored in orange. In pink we see our algorithm
with propagation. We calculated the values for the diagram as follows: Baseline gets
its data from Benchexec, the data was not modified. The other approaches take their
measurements from CoVeriTeam. We added the duration of tester1 and tester2.

We can see that PRTest almost always uses its given cpu time. Sporadically there
are some runs that took less time. Symbiotic uses next to zero CPU time in most of
the cases. There are quite a few outliers, though. Our approach fares very well with
HybridTiger and CoVeriTest while CondTest took the lead in TracerX and had a

38

5 Evaluation

Figure 5.8: The CPU time consumption of all testers in seconds.

stellar performance with Klee. Conditional Testing was always on par or better than
the traditional approach. Our optimization using propagation didn’t use significantly
more CPU time than the naïve variant.

In Figure 5.9 we can see a box plot of the RAM usage of our experiments. Figure 5.9a
takes the memory usage of tester1 and tester2 and halfs them (i.e. the artihmetic
average). Figure 5.9a shows the maximum amount of RAM each pair of testers used
(i.e. max(tester1, tester2)).

PRTest and Symbiotic used next to zero memory. Our algorithms fared really well
when combined with CoVeriTest or HybridTiger. However, for the latter when
comparing maxium memory usage they performed slightly worse than CondTest.
Klee once again profited massively from being combined with CondTest, too. The
tool performed well with TracerX – even better than our algorithm – however our
algorithms only performed worse in the upper quartile, leaving 75% about as good
as CondTest. Again our naïve algorithm and the optimized version were nearly
identical.

39

5 Evaluation

(a) Combined approach’s memory usage is averaged out.

(b) Combined approach’s memory usage maximum.

Figure 5.9: The RAM consumption of all testers in MB.

40

5 Evaluation

5.2.2 Different Testers

We tried executing different testers after another. We chose PRTest as the first tester
because it is relatively simple in nature and can be used to quickly create a baseline for
tests [22]. Other, more sophisticated testers can then take over and try to generate tests
for harder parts of the program.

It might be beneficial to use more than two test generators (i.e. three or more). Future
research is needed to find other good pairings and try out those ideas.

5.2.2.1 PRTest and CoVeriTest

(a) CondTest/ Naïve (b) CondTest/ Propagation (c) Naïve/ Propagation

Figure 5.10: Branch Coverage (in %) for PRTest + CoVeriTest.

From Figure 5.10 it is obvious that our algorithm performed worse than CondTest in
nearly every task. The simple implementation and its counterpart once again performed
virtually identical.

5.2.2.2 PRTest and HybridTiger

The impression from the previous section continues. In Figure 5.11 we can see that our
algorithms performed even worse than before. Again, propagation and no propagation
are somewhat similar, however now there are data points in which propagation had a
slight advantage.

41

5 Evaluation

(a) CondTest/ Naïve (b) CondTest/ Propagation (c) Naïve/ Propagation

Figure 5.11: Branch Coverage (in %) for PRTest + HybridTiger.

5.2.2.3 Summary

We have seen that our algorithms did not fare well when combining PRTest with
HybridTiger or CoVeriTest.

Figure 5.12: The CPU time consumption of all runs of our different testers in seconds.

42

5 Evaluation

In Figure 5.12 we can see that for CoVeriTest our algorithms didn’t use nearly as much
CPU time as CondTest. This continues the trend from Figure 5.8, where our algorithms
outperformed CondTest, too. HybridTiger stands out, though. It looks like most tasks
ran for about 7 minutes, which coincidentally also is the time we gave PRTest to run.
We also know that the tool runs until it is interrupted or killed. If the second tester
didn’t run at all (or just for a short time) this could explain the discrepancy in branch
coverage.

Figure 5.13 shows the RAM usage. In Figure 5.13a we averaged out both runs, in
Figure 5.13b we used the maximum. It can be observed that our algorithms used
significantly less memory than our reference. We can see that the average memory naïve
and propagation used is about half of our maxima. This would support our theory
from the previous paragraph that our second testers only ran for a short amount of
time or didn’t run at all. It should however be noted that PRTest’s memory usage also
shrank in the average case compare to the maximum.

5.3 Threats to validity

In this section we’ll briefly describe challenges that we encountered and other risks that
might threaten the validity of our data.

5.3.1 Bug in the linux kernel

While evaluating our algorithms we discovered a bug in the linux kernel that temporar-
ily prevented Benchexec from running some of our tools8. This forced us to update
some of our tools mid-evaluation.

5.3.2 Differing versions of dependencies

Test-Comp 2020’s candidates ran on a cluster of Ubuntu 18.04 machines. The servers
were updated to Ubuntu 20.04 in the following months which led to some dependencies
(like psutil and pycparser) to not work properly anymore. We had to update them,
but some tasks ran before the upgrade (with dependencies that were specifically built

8See issue #621 in Benchexec’s GitHub repository (https://github.com/sosy-lab/benchexec/issues/
621) and the associated bug in Ubuntu’s bug tracker (https://bugs.launchpad.net/ubuntu/
+source/linux/+bug/1900141).

43

https://github.com/sosy-lab/benchexec/issues/621
https://github.com/sosy-lab/benchexec/issues/621
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1900141
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1900141

5 Evaluation

(a) Combined approach’s memory usage is averaged out.

(b) Combined approach’s memory usage maximum.

Figure 5.13: The RAM consumption of the different testers in MB.

44

5 Evaluation

for Ubuntu 18.04) while most ran after the upgrade. We couldn’t repeat the experiments
due to the time constraints of a bachelor’s thesis.

5.3.3 CoVeriTeam fails when it should have succeeded

A valid test suite is a folder (or zip file) that at least contains one metadata.xml and
zero or more test case XML files. Under some circumstances (e.g. the program requires
no inputs because it has been reduced) testers do not produce a valid test suite. Instead,
the output directory is empty. This however causes CoVeriTeam to not generate a
execution_trace.xml, which in turn causes our local analysis to fail. We can’t discern
between runs that did actually fail and ones that did not follow this specification. In
some cases this greatly reduces the number of runs we were able to analyze and is
especially concerning because it throws out the most successful runs: If our run of
tester 1 produced a test suite with 100% coverage and our program subsequently was
reduced to int main(){ } then our second tester wouldn’t generate a test suite. This
would cause a run with 100% coverage to be thrown out.

5.3.4 pycparser doesn’t correctly parse C in some cases

We used CondTest for instrumentation. CondTest depends on pycparser for parsing
C programs. Alas in some cases pycparser is not able to parse a valid C file. Consider
the excerpt in Figure 5.14. Even though a compiler like GCC is successfully able to
compile the program and accepts it as valid C9, pycparser throws a parser error in
line 631. This causes our evaluation to erroneously fail even though it could have
succeeded.

We estimate the amount of programs to have mistakenly been thrown out at around
100.

5.3.5 Limited selection of pairs of testers

In this thesis we only looked at two pairs of testers. To properly understand phenomena
related to combining different testers we should increase our sample size (e.g. by using
different pairs of testers). This way we could find combinations where our algorithms
perform as well or better than the reference.

9See the corresponding godbolt: https://godbolt.org/z/sqPEra.

45

https://godbolt.org/z/sqPEra

5 Evaluation

626 void ldv_set_del(Element e, Set s) {
627 struct ldv_list_element *m;
628 struct ldv_list_element *n;
629 for (m = ({ const typeof(((typeof(*m) *)0)->list) *__mptr = ((s

)->next); (typeof(*m) *)((char *)__mptr - ((size_t) &((typeof
(*m) *)0)->list));}), n = ({ const typeof(((typeof(*(m)) *)
0)->list) *__mptr = ((m)->list.next); (typeof(*(m)) *)((char
)__mptr - ((size_t) &((typeof((m)) *)0)->list));}); &m->

list != (s); m = n, n = ({ const typeof(((typeof(*(n)) *)0)->
list) *__mptr = ((n)->list.next); (typeof(*(n)) *)((char *)
__mptr - ((size_t) &((typeof(*(n)) *)0)->list));})) {

630 if(m->e == e) {
631 ldv_list_del(&m->list);
632 free(m);
633 }
634 }
635 }

Figure 5.14: An excerpt from ldv-sets/test_add-1.i for which pycparser fails.

46

6 Future Work

As explained in chapter 3 there are more coverage criterions than just branch coverage.
One that might be particularly suitable for our use case is condition coverage.

Condition coverage requires each part of the assumption in an if statement to evaluate
to both true and false at least once. In our generated condition we could — instead
of just using > and ⊥ assumptions — have our assumptions contain which parts have
been explored. In addition to the list of covered goals we would have to save the
relevant local variables to determine which parts of the if-condition have evaluated
to true. Then our condition generator would use that information to generate these
conditions.

This thesis only evaluates sequential combinations of testers. However, there are various
other combinations, that we could try [12]:

• Cyclic Tester. We could let a tester run for a certain amount of time, prune the
program and feed it back to the same tester. We tried this for 1 round, it would
be interesting to see how the results change with N rounds.

• Strategy-Selection Tester. We can use a function to determine which tester should
generate tests for a particular path of a program. This function might be com-
pletely random or do an analysis “pre-pass” to select an appropriate tool.

• Compositional Tester. We can split our set of test goals to be covered and feed each
tester only half by creating corresponding conditions. This way we can effectively
halve the work each test case generator has to do.

In this thesis we weren’t able to test some of Test-Comp 2020’s candidates, namely
Legion, LibKluzzer and VeriFuzz. We should evaluate them in the future.

It might be interesting how different pairings of testers influence our results. In this
thesis we chose PRTest and one other tester because PRTest can quickly generate test
cases and leave the harder goals to more sophisticated testers. However there might
be other combinations that yield better results. It might even be beneficial to combine
three or more testers.

47

6 Future Work

Additionally, our time limits were completely arbitrary. We could measure the same set
up with different time limits and try to find an optimal value that isn’t as hard on the
resource consumption while still providing a good branch coverage.

Another approach that consists of just generating a true assumption for each covered
goal and a false assumption for each uncovered goal (without doing a search for leaf
goals) could be used, too.

48

7 Conclusion

Testing is an important part of software development, but is very expensive. That’s why
we employ test case generators to create the tests for us. These have different strengths
based on their technique: Some might use symbolic execution, others random testing.
By combining various testers (e.g. by using reducers) we can achieve a higher branch
coverage than if we let every tester run alone [12].

Beyer et. al [12] presented CondTest, a suite of tools that can both extract covered test
goals from a program by means of instrumentation and reduce the program. We want
to construct condition automata from lists of test goal labels that CondTest extracted.

For that we presented two algorithms, naive and propagation to generate condition
automata from test goal lists and evaluated them against the benchmark set of Test-
Comp 2020 using its candidates.

We found that for executing one tester for 7 minutes, reducing the program and then
running the tester again for 8 minutes our algorithms usually improved branch coverage
compare to running the tester for 15 minutes straight. Used together with CoVeriTest,
HybridTiger, PRTest, Symbiotic or TracerX they performed as well or better than
CondTest and used less resources (i.e. CPU time and RAM). Our algorithms almost
always reduced more of the program in terms of cyclomatic complexity, however
in some rare cases additional complexity was added. Nevertheless we saw that the
amount of complexity of the program we could reduce did not correlate with branch
coverage.

We discovered that our algorithms didn’t work as well when combining two different
testers; In nearly all cases branch coverage was equal to CondTest’s or worse. We
theorized this might be a sign of only the first tester running. This theory was supported
by measurements of RAM usage and CPU time.

49

List of Figures

3.1 Example Program . 3
3.2 Example CFA . 3
3.3 Example Condition . 4
3.4 Reduced Program . 4

4.1 An example C program instrumented with goal labels. 9
4.2 CFA with test goals highlighted . 9
4.3 Generated Condition . 10
4.4 Pruned Program . 10
4.5 Nested CFA with test goals . 11
4.6 Optimized CFA . 11
4.7 Generated Condition with propagation 14
4.8 Pruned Program with Propagation . 14

5.1 Evaluation setup . 16
5.2 Branch Coverage (in %) for CoVeriTest. 18
5.3 Branch Coverage (in %) for HybridTiger. 22
5.4 Branch Coverage (in %) for Klee. 26
5.5 Branch Coverage (in %) for PRtest. 28
5.6 Branch Coverage (in %) for Symbiotic. 30
5.7 Branch Coverage (in %) for TracerX. 34
5.8 CPU time of all testers . 39
5.9 RAM consumption of all testers . 40
5.10 Branch Coverage (in %) for PRTest + CoVeriTest. 41
5.11 Branch Coverage (in %) for PRTest + HybridTiger. 42
5.12 CPU time of the combined testers . 42
5.13 RAM consumption of different testers . 44
5.14 Excerpt for which pycparser fails . 46

50

List of Tables

4.1 Overview over the steps in our improved algorithm. 13

5.1 Testers used in the evaluation . 16
5.2 Status Codes for CoVeriTest . 17
5.3 Outliers for CoVeriTest (Baseline) . 20
5.4 Outliers for CoVeriTest (CondTest) . 21
5.5 Status Codes for HybridTiger . 22
5.6 Outliers for HybridTiger (Baseline) . 24
5.7 Outliers for HybridTiger (CondTest) . 25
5.8 Status Codes for HybridTiger . 26
5.9 Status Codes for PRTest . 27
5.10 Outliers for PRTest (Baseline) . 29
5.11 Outliers for PRTest (CondTest) . 29
5.12 Status Codes for Symbiotic . 30
5.13 Outliers for Symbiotic (Baseline) . 32
5.14 Outliers for Symbiotic (CondTest) . 33
5.15 Status Codes for TracerX . 34
5.16 Outliers for TracerX (Baseline) . 36
5.17 Outliers for TracerX (CondTest) . 37

51

List of Theorems

1 Definition (CFA) . 3
2 Definition (Concrete data state) . 3
3 Definition (Concrete program path) . 4
4 Definition (Execution) . 4
5 Definition (Condition) . 4
6 Definition (Coverage of a Path) . 5
7 Definition (Program Reducer) . 5
8 Definition (Reducer) . 5
9 Definition (Cyclomatic Complexity) . 7

52

Bibliography

[1] F. E. Allen. “Control flow analysis.” In: Proceedings of a symposium on Compiler
optimization -. ACM Press, 1970. doi: 10.1145/800028.808479.

[2] K. Beck. Extreme Programming Explained: Embrace Change, 2nd Edition (The XP
Series). Addison-Wesley, Nov. 2004. isbn: 9780321278654.

[3] K. Beck. Test Driven Development: By Example. Addison-Wesley Professional, Nov.
2002. isbn: 9780321146533.

[4] N. E. Beckman, A. V. Nori, S. K. Rajamani, and R. J. Simmons. “Proofs from
Tests.” In: Proceedings of the 2008 International Symposium on Software Testing and
Analysis. ISSTA ’08. Seattle, WA, USA: Association for Computing Machinery,
2008, pp. 3–14. isbn: 9781605580500. doi: 10.1145/1390630.1390634.

[5] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar. “Generating
tests from counterexamples.” In: Proceedings. 26th International Conference on
Software Engineering. 2004, pp. 326–335. doi: 10.1109/ICSE.2004.1317455.

[6] D. Beyer. “Second Competition on Software Testing: Test-Comp 2020.” In: Pro-
ceedings of the 22nd International Conference on Fundamental Approaches to Software
Engineering (FASE 2020, Dublin, Ireland, April 25-30). LNCS 12076. Springer, 2020,
pp. 505–519. doi: 10.1007/978-3-030-45234-6_25.

[7] D. Beyer, S. Gulwani, and D. A. Schmidt. “Combining Model Checking and
Data-Flow Analysis.” In: Handbook of Model Checking. Ed. by E. M. Clarke, T. A.
Henzinger, H. Veith, and R. Bloem. Cham: Springer International Publishing,
2018, pp. 493–540. isbn: 978-3-319-10575-8. doi: 10.1007/978-3-319-10575-8_16.

[8] D. Beyer, T. A. Henzinger, M. E. Keremoglu, and P. Wendler. “Conditional Model
Checking: A Technique to Pass Information between Verifiers.” In: Proceedings of
the 20th ACM SIGSOFT International Symposium on the Foundations of Software Engi-
neering (FSE 2012, Cary, NC, November 10-17). Ed. by T. Bultan and M. Robillard.
ACM, 2012. isbn: 978-1-4503-1614-9.

53

https://doi.org/10.1145/800028.808479
https://doi.org/10.1145/1390630.1390634
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1007/978-3-030-45234-6_25
https://doi.org/10.1007/978-3-319-10575-8_16

Bibliography

[9] D. Beyer, A. Holzer, M. Tautschnig, and H. Veith. “Information Reuse for Multi-
goal Reachability Analyses.” In: Programming Languages and Systems. Ed. by M.
Felleisen and P. Gardner. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 472–491. isbn: 978-3-642-37036-6.

[10] D. Beyer and M.-C. Jakobs. “CoVeriTest: Cooperative Verifier-Based Testing.”
In: Proceedings of the 22nd International Conference on Fundamental Approaches to
Software Engineering (FASE 2019, Prague, Czech Republic, April 6-11). LNCS 11424.
Springer, 2019, pp. 389–408. doi: 10.1007/978-3-030-16722-6_23.

[11] D. Beyer, M.-C. Jakobs, T. Lemberger, and H. Wehrheim. “Reducer-Based Con-
struction of Conditional Verifiers.” In: Proceedings of the 40th International Confer-
ence on Software Engineering (ICSE 2018, Gothenburg, Sweden, May 27 - June 3). ACM,
2018, pp. 1182–1193. isbn: 978-1-4503-5638-1. doi: 10.1145/3180155.3180259.

[12] D. Beyer and T. Lemberger. “Conditional Testing - Off-the-Shelf Combination
of Test-Case Generators.” In: Proceedings of the 17th International Symposium on
Automated Technology for Verification and Analysis (ATVA 2019, Taipei, Taiwan, October
28-31). Ed. by Y.-F. Chen, C.-H. Cheng, and J. Esparza. LNCS 11781. Springer,
2019, pp. 189–208. doi: 10.1007/978-3-030-31784-3_11.

[13] S. Cruanes, G. Hamon, S. Owre, and N. Shankar. “Tool Integration with the
Evidential Tool Bus.” In: Verification, Model Checking, and Abstract Interpretation.
Ed. by R. Giacobazzi, J. Berdine, and I. Mastroeni. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 275–294. isbn: 978-3-642-35873-9.

[14] J. Edvardsson. A Survey on Automatic Test Data Generation. Mar. 2002.

[15] P. Godefroid, N. Klarlund, and K. Sen. “DART: Directed automated random
testing.” In: vol. 40. June 2005, pp. 213–223. doi: 10.1145/1065010.1065036.

[16] P. Godefroid, A. V. Nori, S. K. Rajamani, and S. D. Tetali. “Compositional May-
Must Program Analysis: Unleashing the Power of Alternation.” In: Proceedings of
the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. POPL ’10. Madrid, Spain: Association for Computing Machinery, 2010,
pp. 43–56. isbn: 9781605584799. doi: 10.1145/1706299.1706307.

[17] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori, and S. K. Rajamani. “SYN-
ERGY: A New Algorithm for Property Checking.” In: Proceedings of the 14th ACM
SIGSOFT International Symposium on Foundations of Software Engineering. SIGSOFT
’06/FSE-14. Portland, Oregon, USA: Association for Computing Machinery, 2006,
pp. 117–127. isbn: 1595934685. doi: 10.1145/1181775.1181790.

54

https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1007/978-3-030-31784-3_11
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1706299.1706307
https://doi.org/10.1145/1181775.1181790

Bibliography

[18] A. Holzer, C. Schallhart, M. Tautschnig, and H. Veith. “Query-Driven Program
Testing.” In: Verification, Model Checking, and Abstract Interpretation. Ed. by N. D.
Jones and M. Müller-Olm. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 151–166. isbn: 978-3-540-93900-9.

[19] Information technology – Programming languages – C. Standard. Geneva, CH: Inter-
national Organization for Standardization, 2018.

[20] Y. Kim, Z. Zu, M. Kim, M. B. Cohen, and G. Rothermel. “Hybrid Directed
Test Suite Augmentation: An Interleaving Framework.” In: 2014 IEEE Seventh
International Conference on Software Testing, Verification and Validation. 2014, pp. 263–
272. doi: 10.1109/ICST.2014.39.

[21] B. Korel. “Automated software test data generation.” In: IEEE Transactions on
Software Engineering 16.8 (1990), pp. 870–879.

[22] T. Lemberger. “Plain random test generation with PRTest.” In: International Journal
on Software Tools for Technology Transfer (STTT) (2020). doi: 10.1007/s10009-020-
00568-x.

[23] R. Majumdar and K. Sen. “Hybrid Concolic Testing.” In: 29th International Con-
ference on Software Engineering (ICSE’07). 2007, pp. 416–426. doi: 10.1109/ICSE.
2007.41.

[24] T. Margaria, R. Nagel, and B. Steffen. “jETI: A Tool for Remote Tool Integration.”
In: Tools and Algorithms for the Construction and Analysis of Systems. Ed. by N.
Halbwachs and L. D. Zuck. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
pp. 557–562. isbn: 978-3-540-31980-1.

[25] T. J. McCabe. “A Complexity Measure.” In: IEEE Transactions on Software Engineer-
ing SE-2.4 (1976), pp. 308–320.

[26] J. C. Miller and C. J. Maloney. “Systematic Mistake Analysis of Digital Computer
Programs.” In: Commun. ACM 6.2 (Feb. 1963), pp. 58–63. issn: 0001-0782. doi:
10.1145/366246.366248.

[27] G. J. Myers. The Art of Software Testing. 2nd Edition. New York: John Wiley and
Sons, 2004. isbn: 978-0-471-67835-9.

[28] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer
Berlin Heidelberg, 1999. doi: 10.1007/978-3-662-03811-6.

[29] Y. Noller, R. Kersten, and C. S. Psreanu. “Badger: Complexity Analysis with
Fuzzing and Symbolic Execution.” In: Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ISSTA 2018. Amsterdam,
Netherlands: Association for Computing Machinery, 2018, pp. 322–332. isbn:
9781450356992. doi: 10.1145/3213846.3213868.

55

https://doi.org/10.1109/ICST.2014.39
https://doi.org/10.1007/s10009-020-00568-x
https://doi.org/10.1007/s10009-020-00568-x
https://doi.org/10.1109/ICSE.2007.41
https://doi.org/10.1109/ICSE.2007.41
https://doi.org/10.1145/366246.366248
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1145/3213846.3213868

Bibliography

[30] J. Rushby. “An Evidential Tool Bus.” In: Formal Methods and Software Engineering.
Ed. by K.-K. Lau and R. Banach. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, pp. 36–36. isbn: 978-3-540-32250-4.

[31] B. Steffen, T. Margaria, and V. Braun. “The Electronic Tool Integration platform:
concepts and design.” In: International Journal on Software Tools for Technology
Transfer 1.1-2 (Dec. 1997), pp. 9–30. doi: 10.1007/s100090050003.

[32] K. Taneja, T. Xie, N. Tillmann, and J. de Halleux. “EXpress: Guided Path Ex-
ploration for Efficient Regression Test Generation.” In: Proceedings of the 2011
International Symposium on Software Testing and Analysis. ISSTA ’11. Toronto,
Ontario, Canada: Association for Computing Machinery, 2011, pp. 1–11. isbn:
9781450305624. doi: 10.1145/2001420.2001422.

[33] Z. Xu, Y. Kim, M. Kim, and G. Rothermel. “A Hybrid Directed Test Suite Aug-
mentation Technique.” In: 2011 IEEE 22nd International Symposium on Software
Reliability Engineering. 2011, pp. 150–159. doi: 10.1109/ISSRE.2011.21.

56

https://doi.org/10.1007/s100090050003
https://doi.org/10.1145/2001420.2001422
https://doi.org/10.1109/ISSRE.2011.21

	Acknowledgments
	Abstract
	Contents
	Introduction
	Related Work
	Background
	Control Flow Automata (CFA)
	Condition Automata
	Reducers
	Code Coverage
	Instrumentation
	Cyclomatic Complexity

	Automaton-based Conditional Testing
	Phase 1: BFS
	Phase 2: Pruning the CFA
	Possible optimizations

	Evaluation
	Setup
	Software
	Benchmarks

	Results
	One Tester
	Different Testers

	Threats to validity
	Bug in the linux kernel
	Differing versions of dependencies
	CoVeriTeam fails when it should have succeeded
	pycparser doesn't correctly parse C in some cases
	Limited selection of pairs of testers

	Future Work
	Conclusion
	List of Figures
	List of Tables
	Bibliography

