
Institute of Informatics
Ludwig–Maximilians–Universität München

Bachelor’s Thesis

Converting between
ACSL Annotations and

Witness Invariants

Sven Umbricht

Supervisor: Prof. Dr. Dirk Beyer
Mentor: Martin Spießl
Date of Submission: December 14, 2020

Statement of Originality

I hereby confirm that I have written the accompanying thesis myself, without
contributions from any sources other than those cited in the text and acknowledge-
ments. This applies also to all graphics, tables, and images included in the thesis.

Munich, December 14, 2020 .

Sven Umbricht

Abstract

Proving the correctness of a given program with regard to a certain specification
is hard. To make this task easier one can additionally give invariants that
may aid the verification. Several formats exist to provide invariants for this
purpose, like GraphML-based correctness witnesses or ACSL, but herein already
lies the problem: A tool that relies on having invariants provided in a specific
format cannot profit from invariants that are structured differently. It would
therefore be helpful to be able to translate invariants from one format into
the other. The goal of this thesis is to translate invariants from correctness
witnesses into ACSL annotations and vice versa. We describe a possible way to
perform these translations and implement a proof of concept in CPAchecker. Our
evaluation shows that we can indeed generate valid ACSL-annotated programs
from correctness witnesses produced by different verifiers and that we are able
to again create valid witnesses for these annotated programs.

Contents

1 Introduction 3

2 Preliminaries 4
2.1 ACSL . 4

2.1.1 Logic Expressions . 5
2.1.2 Clauses . 7
2.1.3 Annotations . 9

2.2 Control Flow Automaton . 11
2.3 Exchangeable Witness Format . 12
2.4 Configurable Program Analysis 14
2.5 CPAchecker . 16

3 Converting between ACSL and Witness Invariants 17
3.1 Invariants from ACSL Annotations 17

3.1.1 Invariants from Function Contracts 20
3.1.2 Invariants from Statement Contracts 20
3.1.3 Invariants from Loop Annotations 22
3.1.4 Invariants from Assertions 22

3.2 ACSL Annotations from Witness Invariants 23

4 Implementation 26
4.1 Utilizing ACSL Annotations in CPAchecker 26

4.1.1 Parsing ACSL Annotations with CPAchecker 26
4.1.2 Representing ACSL Annotations in CPAchecker 27
4.1.3 The ACSL CPA in CPAchecker 27

4.2 Building ACSL Annotations in CPAchecker 28

5 Evaluation 29
5.1 Experimental Setup . 29
5.2 Results . 30

6 Future Work 37

7 Conclusion 39

1

List of Figures

2.1 Grammar of logic expressions . 6
2.2 A contract containing a requires- and an ensures clause 7
2.3 A contract with multiple behaviors 8
2.4 A statement contract referring to an enclosing behavior 10
2.5 A valid loop invariant that does not hold directly after the loop . 10
2.6 A loop with some valid assertions 11
2.7 A program and its control flow automaton 11
2.8 Overview of Witness Generation in CPAchecker 16

3.1 Schematic representation of locations for invariants extracted from
function contracts . 21

3.2 Extracting witness invariants from ACSL loop invariants 22

5.1 ACSL Annotation referencing out-of-scope variable 34
5.2 The main-function of program eq2.c with an ACSL loop annotation 35

List of Tables

5.1 Results of WitnessToACSL Algorithm 31
5.2 Results of ACSL Validation . 32
5.3 Results of Witness Generation using ACSLCPA 34
5.4 Results of Witness Validation . 35
5.5 Time taken to validate witnesses with and without invariants from

ACSL annotations . 36

2

Chapter 1

Introduction

Within the last two decades it has become common practice that tools for
automatic software verification do not only output a pass/fail verdict for a given
verification task, but supplement this result with some kind of proof [5]. This
way the results of an untrusted verifier can easily be confirmed or discarded
by a second, trusted one that only has to validate that the proof is indeed
correct, which is usually a much simpler task than verifying the original program
again [13]. This has been taken even further: Instead of producing a proof for
the whole verification run, the first verifier can also just supply the validator
with some hints to reach the same verification result on its own. For example,
instead of giving a proof that a certain property holds for a given loop it is
enough to provide a suitable loop invariant and let the validator construct the
proof on its own. This strategy is often still cheaper than having the validator
verify the program again from scratch, because confirming the correctness of
a given invariant can be much faster than finding it was [4]. Many exchange
formats already exist to convey such hints, but without a unified approach it
can happen that verification results, even if they come with some kind of proof
skeleton, have to be validated from scratch again because the validator does not
support the same format. That is quite unfortunate, as often at least some parts
of such a proof skeleton could be represented in the format used by the other
tool.

In this thesis we will give an example of a translation between two formats for
such verification helpers, more specifically the specification language used by the
Frama-C [12] framework, ACSL, and the exchange format for witnesses [4, 5] that
is used in the International Competition on Software Verification (SV-COMP) [2].
After an introduction of the covered features of these exchange formats we
are going to look at how the proof guiding hints of one can be translated and
represented in the other. To show the practical applicability of these translation
concepts, an implementation integrated into CPAchecker [9], a tool that until
now supported witnesses but not ACSL, will be presented and evaluated. An
overview of the known issues as well as possible improvements and extensions
will close this thesis paper.

3

Chapter 2

Preliminaries

Before we delve into the main topic of this thesis we will lay out the founda-
tions necessary to follow the upcoming explanations of translation concepts.
In this chapter we are going to give an overview of ACSL, the witness format
and CPAchecker. We will also make some assumptions and introduce a few
conventions we are going to use throughout the rest of this thesis.

2.1 ACSL
ACSL1 is a contract-based specification language for the C99 version of the
programming language C. It is inspired by the specification language of Caduceus
which is itself inspired by the probably more commonly known JML for Java pro-
grams and is being developed by CEA LIST and INRIA Saclay – Île-de-France
as the specification language for the Frama-C framework2. For this thesis we will
use ACSL version 1.14 as described in the ACSL Manual of the Frama-C 20.0
(Calcium) implementation [1].

ACSL contracts (or ACSL annotations, these terms will be used interchange-
ably in this thesis) can be used to verify program properties and are usually
placed directly in the program file in the form of C comments starting with an @
sign, i.e., //@ contract or /*@ contract */. For the meaning of an annotation
it does not matter whether it is embedded in a single line or multiline comment.
The scope of an annotation is the code for which the property described by the
annotation should hold. This is usually the statement or block of statements
directly following the annotation. This means that the position of an annotation
is important, because properties do not generally hold at every program loca-
tion. Therefore, position information would still have to be retained even if the
annotations were to be stored separately. In this thesis we will always consider
ACSL contracts to be stored as comments inside the program, but this does not
actually matter for any of the presented translation concepts. The pre-state of

1The acronym ACSL is shorthand for "ANSI/ISO C Specification Language".
2https://frama-c.com/index.html

4

https://frama-c.com/index.html

a contract is the program state right before the first statement in the scope of
the contract is executed. Similarly, the post-state of a contract is the program
state directly after the last statement in the scope of the contract was executed.
Whenever we refer to loops we will be talking only about explicit loops, i.e., for-,
while-, and do-while-loops.

In the following we are going to introduce the building blocks of many of
ACSL’s different types of annotations as well as some of its most common kinds
of contracts.

2.1.1 Logic Expressions
The basic building blocks of ACSL annotations are so called logic expressions that
roughly correspond to C expressions but also include some additional constructs
that can not be expressed in pure C. In the grammar for logic expressions
(Fig. 2.1) we distinguish between terms and predicates, which behave similar to
terms and predicates from classical first-order predicate logic. Note that this is a
simplified version of the grammar given in the ACSL Manual that will produce
only a subset of all valid logic expressions. There are a few additional constructs
that we will not cover anywhere else in this thesis, so we omit them here as well.

An important thing to note is that logic expressions only have total functions,
meaning that terms like x/0 are well-defined and can be used in annotations.
Each logic expression also has a type. The type of a logic expression can be
either a C type, a mathematical type, or a self-defined type. Mathematical types
are integer and real for non-overflowing integers and real numbers respectively,
as well as boolean for the boolean values \true and \false.

Additionally to the logic expressions defined by the grammar, there are a
number of built-in logic expressions of varying arity like \at(x, label), \old(x)
or \empty. The semantics of these built-ins are usually not expressible through
pure C expressions. For example, \old(x) refers to the value of expression x in
the pre-state of the current contract. We will not occupy ourselves with built-in
logic expressions much and will only focus on two built-ins: \at and \result.
The \at(x, label) construct has the value that the logic expression x had
the last time when the program location where the Label label is placed was
reached. label can be either a C label placed in the program or a predefined
label. Predefined labels can be used in ACSL annotations even without being
declared in the program and are the following:

• Pre: Refers to the pre-state of the current function.

• Post: Refers to the post-state of the current function.

• Old: Refers to the pre-state of the current contract.

• Here: Refers to the location of the current contract. In function contracts
(cf. Sect. 2.1.3) it is equivalent to Post when used in ensures-clauses (cf.
Sect. 2.1.2) and equivalent to Pre when used in any of the other clauses
that we cover.

5

〈log-op〉 ::= && | || | ==> | <==> | ^^

〈bit-op〉 ::= & | | | --> | <--> | ^

〈rel-op〉 ::= == | != | <= | >= | > | <

〈arith-op〉 ::= + | - | * | / | % | << | >>

〈unary-op〉 ::= + | - | ~ | * | &

〈term〉 ::= 〈literal〉
| 〈id〉
| 〈unary-op〉 〈term〉
| 〈term〉 〈bit-op〉 〈term〉
| 〈term〉 〈arith-op〉 〈term〉
| 〈term〉 [〈term〉]
| (〈type-expr〉) 〈term〉
| (〈term〉)
| sizeof (〈term〉)

〈pred〉 ::= \true
| \false
| 〈term〉 (〈rel-op〉 〈term〉)+
| (〈pred〉)
| 〈pred〉 〈log-op〉 〈pred〉
| ! 〈pred〉
| 〈pred〉 ? 〈pred〉 : 〈pred〉

Figure 2.1: Grammar of logic expressions. <id> stands for an identifier, e.g.,
a variable name, <literal> for an integer- or a string-literal, and <type-expr>
for an expression that evaluates to a C type. If multiple relational operators
are "chained", e.g., x op1 y op2 z then the resulting predicate is equivalent to
x op1 y && y op2 z. The operators all have to "face in the same direction", i.e.
the chain must be monotonous, so the set of used operators has to be a subset
of either {<, <=, ==}, {>, >=, ==}, or {!=}.

• LoopEntry: Only usable in loops. Refers to the state right before entering
the loop for the first time. When used in a nested loop, it refers to the
start of the innermost loop.

• LoopCurrent: Only usable in loops. Refers to the beginning of the current
loop iteration. When used in a nested loop, it refers to the current iteration
of the innermost loop.

• Init: Refers to the program state right before the main function is called.

6

1 /*@ requires x >= 0;
2 ensures \result * \result <= x < (\result + 1) * (\result + 1);
3 */
4 int sqrt(int x) {...}

Figure 2.2: A contract containing a requires- and an ensures clause

\old(x) is actually just a shortcut for \at(x, Old), meaning that it will also be
covered implicitly. The other built-in we will include, \result, is much simpler:
It refers to the current function’s return value.

2.1.2 Clauses
Logic expressions hold truth values (in the case of predicates) or describe elements
of a C program (in the case of terms), like pointers, literals or functions. However,
they alone do not describe a property that could be confirmed by another verifier.
To define properties ACSL uses various kinds of clauses. Clauses start with a
keyword identifying the kind of clause and are followed by a logic expression,
either a term or a predicate depending on the kind of clause. One contract
can have any positive number of clauses, even multiple ones of the same kind.
Multiple clauses of the same type in one annotation act like a single clause of
that type where the contained logic expressions are joined via conjunction. Due
to that we will assume in the following that every contract contains at most one
clause of any given type. Some examples of clause types:

Ensures clauses Ensures clauses begin with the ensures keyword and declare
that the contained logic expression (a predicate) holds once the scope of the
annotation is left. Variables in ensures clauses refer to the variable value in the
post-state of the contract they are used in.

Requires clauses Requires clauses begin with the requires keyword. They
demand that the annotated code is only entered in a state where the logic
expression contained in the clause (a predicate) evaluates to \true. Variables in
requires clauses refer to their pre-state values, i.e., their values at the start of the
annotated code. Using \old(x) in requires clauses would therefore be useless
and is in fact not allowed at all.

An example usage of requires- and ensures clauses is given in Fig. 2.2 in the
form of a specification for a function that computes the integer square root of
its input.

Behaviors Sometimes clauses only hold under certain circumstances. While
this could be expressed via a ternary condition, ACSL allows defining so called
behaviors for more general applicability and better readability. Behaviors each
have a name and contain a number of clauses that only have to hold under a
certain condition. The condition that has to be met is given via an assumes

7

1 /*@ ensures x >= 0;
2 behavior positive:
3 assumes x > 0;
4 ensures \result == x;
5 behavior negative:
6 assumes x < 0;
7 ensures \result == −x;
8 behavior zero:
9 assumes x == 0;

10 ensures \result == 0;
11 */
12 int abs(int x) {...}

Figure 2.3: A contract with multiple behaviors

clause. As one might expect, assumes clauses begin with the assumes keyword
and the contained logic expression has to be a predicate. Only if this predicate
evaluates to true when the annotated code is entered have the other clauses of
the behavior to hold. If no assumes clause is present in a behavior it acts as if
an assumes \true; were present, meaning that the contained clauses always
have to hold. Just like for all other kinds of clauses, multiple assumes clauses
are equivalent to a single assumes clause containing the conjunction of their
logic expressions. In order to give different conditions multiple behaviors can be
specified in one contract. An example for a contract with multiple behaviors can
be seen in Fig. 2.3.

Behaviors can also be reused by other contracts: Certain kinds of annotations
may address behaviors defined in surrounding annotations by their names and
add their own clauses that only have to hold if the condition from the assumes
clause of the addressed behavior held when the surrounding annotation was
entered.

Completeness clauses Related to behaviors are completeness clauses. These
can be used to ensure the correctness of a set of behaviors. Completeness clauses
begin either with complete behaviors or with disjoint behaviors and are
optionally followed by a comma-separated list of behavior names. If complete
behaviors is used at least one behavior’s condition has to be fulfilled whenever
the annotated code is entered. If disjoint behaviors is used the conjunction of
the assumes clauses of any two listed behaviors has to be unsatisfiable, meaning
that at most one behavior can be active at once. A completeness clause without
any behaviors specified acts as if all behaviors of the current annotation had
been given. (This is true for both types of completeness clause.) For example, the
annotation from Fig. 2.3 could be extended with both a complete behaviors
and a disjoint behaviors clause, because the assumptions x > 0, x < 0, and
x == 0 cover all possible cases and are mutually exclusive.

Additional clauses Other clause types include for example assigns clauses
that hold terms describing the variables modified in the annotated code,

8

terminates clauses that contain a condition under which the annotated code
terminates and decreases clauses that hold terms containing expressions whose
value is decreased by the annotated code. However, in this thesis we will limit
ourselves to the clause types mentioned above, i.e., ensures-, requires-, assumes-,
and completeness clauses, as well as behaviors.

2.1.3 Annotations
ACSL does not only support different kinds of clauses to describe program
properties but also provides different types of annotations, each with their own
semantics and scoping rules. Technically most kinds of annotations could also
be expressed via one or more ACSL assertions, but the diversity of annotation
types makes it possible to write annotations that are more concise and better
understandable for a human reader. Having different annotation types can also
make it easier to handle them, e.g., because the scope of an annotation is already
clear from the kind of annotation used. We will limit ourselves to four common
types of annotations which we are going to present here:

Function Contracts The most important type of ACSL annotation is the
function contract [14]. Function contracts are used to specify the properties of
a function. They are placed right before the function or function declaration
and just as is the case with multiple clauses of the same type in one annotation,
multiple function contracts for the same function are treated like a single contract
containing the union of clauses and behaviors. Function contracts may contain
all of the clause types mentioned above, though assumes clauses are only allowed
to appear inside of behaviors.

Statement Contracts Statement contracts are similar to function contracts in
that they also use clauses and behaviors to specify program properties. However,
statement contracts do not describe properties of a function, but, as one might
guess, those of a statement. The grammar for statement contracts is therefore
very similar to the grammar for function contracts but the contract has to be
placed directly before the statement in question. Statement contracts may use
requires-, ensures-, assigns-, and completeness clauses as well as behaviors, but
no clauses that only make sense on the function level, like terminates clauses.

A feature of statement contracts that is not present in function contracts
is the possibility to extend behaviors of enclosing annotations. An enclosing
annotation is an annotation for a block that the statement contract is contained
in. The behavior of such an enclosing annotation can then be extended by
specifying that the statement contract only has to hold if the assumes condition
of the behavior was met when the block annotated by the enclosing annotation
was entered. An example for this can be seen in Fig. 2.4.

Loop Annotations A bit more specialized than statement contracts are loop
annotations. These specify properties of a loop and the contained clauses are

9

1 /*@ behavior even:
2 assumes x % 2 == 0;
3 */
4 int foo(int x) {
5 int y;
6 /*@ for even:
7 ensures y * 2 == x;
8 */
9 y = x / 2;

10 ...
11 }

Figure 2.4: A statement contract referring to an enclosing behavior

1 int x = 0;
2 int y = 10;
3 //@ loop invariant x + y == 10;
4 while (++x < 10) {
5 y−−;
6 }

Figure 2.5: A valid loop invariant that does not hold directly after the loop

slightly different from those used in other contracts. A clause unique to loop
annotations is the loop invariant. ACSL loop invariants contain a predicate I
that acts as an invariant for the annotated loop. I has to hold right before the
loop is entered, that is, right before the loop condition is checked (or, in the case
of a do-while loop, before the first statement in the loop is executed) and has to
hold again after each loop iteration that ended normally, that is, not via a break
or return statement or a goto jumping out of the loop. An ACSL loop invariant
does not necessarily have to hold after the loop is left though because checking
the condition might have side-effects, as demonstrated in Fig. 2.5.

Aside from loop invariants, loop annotations may also contain loop-assigns
clauses which are similar to normal assigns clauses, and loop variants. Loop
annotations may also refer to surrounding behaviors, like statement contracts
do, and contain additional clauses that only have to hold if the condition of the
referenced behavior was met.

Assertions ACSL assertions are usually short annotations and are allowed
before any kind of statement or at the end of a block before the closing bracket.
They contain no clauses at all, only a predicate that is expected to evaluate to
\true at the program location where the assertion is placed. Assertions may
start with either the assert or the check keyword, the only difference being that
check-assertions are not interrupting program execution even if the predicate is
found to be false. Just like statement contracts or loop annotations, assertions
may refer to behaviors of surrounding annotations and in this case only have

10

1 ...
2 while (x > 0) {
3 //@ assert x > 0;
4 y++;
5 x−−;
6 //@ assert x >= 0;
7 }
8 //@ assert x <= 0;
9 ...

Figure 2.6: A loop with some valid assertions

1 int main(void) {
2 int x = 0;
3 int y = x;
4 while (x < 10) {
5 y−−;
6 x++;
7 }
8 if (x + y != 0) {
9 ERROR: return 1;

10 }
11 return 0;
12 }

l2start

l3

l4

l5

l6

l8

l9l11

int x = 0;

int y = x;

(x < 10)!(x < 10)

y - -;

x++;

(x + y != 0)!(x + y != 0)

Figure 2.7: A program and its control flow automaton

to hold if one of the referenced behaviors’ assumes clause predicate was true.
Examples for valid ACSL assertions can be seen in the code snippet from Fig. 2.6.

2.2 Control Flow Automaton
A program can be represented by its control flow automaton (CFA). Formally,
we regard a CFA as a tuple (L, pc0, G) where L is the set of program locations,
pc0 ∈ L is the initial location, and G ⊆ L×Ops×L is the set of control-flow edges
with Ops being the set of operations that can be performed when taking one of
these edges [8]. We can represent the CFA of a program as a directed graph whose
nodes represent the current value of the program counter (e.g., the line number
of the next operation to be performed) and whose edges represent the program
statements. Figure 2.7 exemplarily shows a program and the corresponding CFA.

11

2.3 Exchangeable Witness Format
The exchangeable witness format is an exchange format for witness automata [4, 5]
that observe or guide the program path exploration of a validator. Witness au-
tomata are protocol automata: A protocol automaton A for a CFA C = (L, pc0, G)
is a five-tuple (Q,Σ, δ, q0, F) whereQ is the (final) set of automaton states, q0 ∈ Q
is the initial state, the alphabet Σ ⊆ 2G × Φ is a set of pairs, each containing a
set of control-flow edges and a condition φ ∈ Φ, δ ⊆ Q× Σ×Q is the transition
relation, and F is the set of accepting states.

There are two types of witnesses, violation witnesses and correctness witnesses.
Violation witnesses guide the program path exploration by adding state-space
guards to the automaton transitions. A transition can only be taken if the
condition imposed by the state-space guard is fulfilled. This way the number
of program paths that can be explored is reduced and the validator can find a
property violation more easily. Correctness witnesses do not restrict the number
of explorable program paths and merely observe the exploration effort. They
may provide invariants that hold at certain points during the exploration and
might reduce the amount of work the validator has to do [4]. In this thesis we
will focus solely on correctness witnesses, since ACSL is also meant to help with
proofing correctness.

Since correctness witnesses only observe the program path exploration without
interfering, correctness witness automata are observer automata. An observer
automaton O = (Q,Σ, δ, q0, F) for a CFA C = (L, pc0, G) is a protocol automaton
such that for all q ∈ Q and for all g ∈ G :∨
{φ|∃q′ ∈ Q : ∃σ ∈ Σ : ∃D ⊆ G : (q, σ, q′) ∈ δ ∧ σ = (D,φ) ∧ g ∈ D} = true

This means that the conditions on the transitions may not restrict the program
path exploration, or simply that for every edge taken in the CFA there is a
possible transition in the observer automaton. Violation witnesses for instance
are not observer automata since they can make such restrictions via state-space
guards.

The exchange format for witnesses3 is based on GraphML [10]. A witness file
contains a graph representation of a witness automaton, where nodes represent
states and edges represent transitions. Both nodes and edges of a graph described
in a witness file may be enriched with additional information via GraphML-
Attributes: This is done by adding a data element as a child of the node/edge
that should be annotated with additional information. data elements have a key
attribute that identifies the kind of data contained. In the case of correctness
witnesses, valid keys and the corresponding contents of the data element are:

• for children of nodes:

– entry : contains true or false; if true: the node represents the initial
state of the witness automaton

3The exchange format is being maintained at https://github.com/sosy-lab/sv-witnesses

12

https://github.com/sosy-lab/sv-witnesses

– invariant : contains an invariant for the state represented by the node

– invariant.scope: contains the program scope of the variables in invari-
ants at the node

• for children of edges:

– control : contains condition-true or condition-false; the transition rep-
resented by the edge only matches a CFA edge that corresponds to
a branching in the source code where the branching condition evalu-
ates to true (in the case of condition-true) or to false (in the case of
condition-false)

– startline: contains a line number that should match the line where
the statement of a CFA edge starts

– endline: contains a line number that should match the line where the
statement of a CFA edge ends

– startoffset : contains a character offset that should match the offset of
the first character of the statement of a CFA edge

– endoffset : contains a character offset that should match the offset of
the last character of the statement of a CFA edge

– enterLoopHead : contains true or false; if true: the transition repre-
sented by the edge only matches a CFA edge that enters a loop
head

– enterFunction: contains the name of the function that is entered by
the transition represented by the edge

– returnFromFunction: contains the name of the function that is left by
the transition represented by the edge

For our use-case we are mainly interested in data elements containing in-
variants. Invariants in a witness must be valid C expressions that evaluate to
C type int4 and contain no function calls. A sibling data element with key
invariant.scope can be used to qualify variables in the invariant in order to pre-
vent mapping of the invariant variables to the wrong variables from the program.
There are currently some limitations to this mechanism so we will not rely on
it in the following chapters; however, being able to give more specific scopes
in the witness would be one way to support the representation of some ACSL
constructs that can currently not be expressed in a witness so this mechanism
could prove useful in a future version of the witness format. Data elements
describing program locations (keys startline, endline, startoffset, endoffset) can
be useful in determining the positions of ACSL annotations derived from witness
invariants in the program.

4Witness invariants are used as predicates just as one might expect. However, since logical
operators and comparison operators in C return zero for false and one for true, an invariant
evaluates to an integer value instead of a boolean one. (Similarly, C implicitly converts zero to
false and any non-zero integer to true.)

13

2.4 Configurable Program Analysis
A configurable program analysis (CPA) defines the abstract domain of a program
analysis [6]. We can formally describe a CPA as a four-tuple (D, ,merge, stop),
where D is the abstract domain, is the transfer relation, merge is the merge
operator, and stop is the termination check. These components are described in
the following.

Abstract Domain The abstract domain D = (C, E , [[·]]) consists of the set of
concrete states C, the semi-lattice of abstract states E , and the concretization
function [[·]] : E → 2C that maps each abstract state to the set of concrete
states that it represents. The semi-lattice E = (E,v,t,>) consists of the set
of elements E, the reflexive and transitive less-than relation v ⊆ E × E, the
join operator t : E × E → E which is a total function that is defined for two
abstract states e and e′ as the smallest e′′ ∈ E with e v e′′ and e′ v e′′, and the
top element of the lattice > ∈ E which is the most abstract state with regard to
v, i.e., e v > holds for every e ∈ E .

Transfer Relation The transfer relation ⊆ E×G×E defines for an abstract
state e ∈ E and a CFA edge g ∈ G the set {e′ | (e, g, e′) ∈ } of abstract successor
states of e for g.

Merge Operator The merge operatormerge : E×E → E returns an abstract
state that combines the information of the two input states. The returned state
is at least as abstract as the second input state, i.e., e′ v merge(e, e′) for every
e, e′ ∈ E.

Termination Check The termination check stop : E × 2E → B determines
whether the abstract state given as first parameter is covered by the set of states
given as second parameter.

An example for a CPA is the Composite CPA. The Composite CPA can
combine a number of other CPAs such that they can exchange information with
each other, which makes it feasible to have several simple CPAs that each only
track one specific aspect of the whole analysis. Formally a Composite CPA that
combines CPAs C1, . . . , Cn where Ci = (DCi , Ci ,mergeCi , stopCi) can be
represented as follows:

• The abstract domain is the cartesian product of the abstract domains of
its components.

• The transfer relation yields as abstract successors the cartesian product
of the abstract successors of the component CPAs. This means that the
Composite CPA contains exactly one abstract successor iff all of its com-
ponents have exactly one abstract successor, and that there is no successor
iff any of the components has no successor.

14

• The merge operator merges states componentwise, i.e., it returns the
cartesian product of the merged components.

• The termination check calls the termination checks of the component CPAs
and returns true iff all of the components returned true.

Of course, being configurable this is only one way to define the Composite CPA.
CPAs can be used by the CPA Algorithm (c.f. Alg. 1) to determine the set

of reachable abstract program states. The set reached contains said reachable
states while the set waitlist contains those states that have been discovered as
being reachable but have not yet been processed. Both sets are initialized with
the initial abstract state given as input to the algorithm. Then, while waitlist is
not empty, an element from waitlist is picked and its abstract successor states
are computed. For each of these successors a merge operation is then performed
with every state that has been reached so far. Should the merge yield a new
element the old one is replaced because the new state is more abstract than the
old one (recall the definition of merge) and therefore all concrete states that are
described by the old state are also described by the new one, i.e., the old one is
covered. Every successor state is also added to the sets waitlist and reached, as
long as the termination check does not request otherwise. The time taken for
the analysis and the abstraction level of the results depend on each of the used
CPA’s components.

Algorithm 1 CPA Algorithm
(adapted from: Combining Model Checking and Data-Flow Analysis [7])

Input: a CPA (D, , merge, stop), an initial abstract state e0 ∈ E where E
is the set of elements of the lattice of D

Output: the set of reachable abstract states
Variables: a set reached ⊆ E, a set waitlist ⊆ E
1: waitlist := {e0}
2: reached := {e0}
3: while waitlist 6= ∅ do
4: choose e from waitlist
5: waitlist := waitlist \ {e}
6: for all e′ with e e′ do
7: for all e′′ ∈ reached do
8: enew := merge(e′, e′′)
9: if enew 6= e′′ then

10: waitlist := (waitlist ∪ {enew}) \ {e′′}
11: reached := (reached ∪ {enew}) \ {e′′}
12: if ¬ stop(e′, reached) then
13: waitlist := waitlist ∪ {e′}
14: reached := reached ∪ {e′}
15: return reached

15

Program

Configuration
(incl. Specification)

Parser
+ CFA
Builder

CFA
Verification
Algorithm ARG

Witness
Exporter Witness

CPAchecker

Figure 2.8: Overview of Witness Generation in CPAchecker

2.5 CPAchecker

CPAchecker [9] is a framework for configurable program verification of C programs
that is able to create witnesses as a way to validate verification results. The
process of producing a witness for a given program with CPAchecker is illustrated
in Fig. 2.8. It can be split into three steps: First the program is parsed and a
CFA for the program is built. Then the actual verification commences, working
with the CFA rather than the original program. For this step CPAchecker can
make use of different CPAs, depending on the configuration provided by the
user alongside the program, to compute an abstract reachability graph (ARG).
The ARG contains the reachable abstract states of the program as well as their
relations. Finally a witness is built using the information from the ARG and a
graph representation of the witness is exported as a GraphML file.

16

Chapter 3

Converting between ACSL
and Witness Invariants

In order to make CPAchecker compatible with tools understanding or producing
ACSL annotations two mechanism have to be added to CPAchecker: Extracting
invariants usable by CPAchecker (and other tools that support the witness format)
from ACSL annotations and creating ACSL annotations from the invariants of a
witness. This chapter gives an overview over which kinds of ACSL constructs
can be used or generated and describes a possible translation between ACSL
annotations and witness invariants.

3.1 Invariants from ACSL Annotations
ACSL is a powerful language with a large amount of elements. It is beyond the
scope of this thesis to provide support for translating every kind of construct
ACSL has to offer. In this work we will only describe methods to translate the four
most common types of ACSL annotations which were already introduced above
(cf. Sect. 2.1.3). In fact, for most of these annotation types we will merely provide
means to represent a subset of all valid annotations of that type and will therefore
work with simpler grammars than those found in the ACSL Manual [1] just like
we did when introducing logic expressions (cf. Sect. 2.1.1). These restrictions are
often due to the much lower expressiveness of the witness format compared to
ACSL and are detailed in the corresponding subchapter for each annotation type.
Possible ways to increase the number of translatable annotations are discussed
in Chapter 6.

Before looking into the annotation-specific translations in detail we are go-
ing to present some observations that are useful for the translation of several
different annotation types. First off, note that most ACSL predicates can al-
ready be considered syntactically valid witness invariants. As mentioned before
(cf. Sect. 2.1.1), logic expressions in ACSL are often valid C expressions, and

17

since predicates additionally evaluate to either \true or \false they meet all
necessary requirements to be usable as invariants in a witness. Since witness
invariants may contain conjunctions and disjunctions we can also utilize logical
equivalences to transform some ACSL predicates that are not C expressions into
valid invariants. In the grammar for logic expressions that we will work with
(cf. Fig. 2.1) we already excluded all features that can not be expressed via pure
C expressions.

Another thing to note is the fact that, as mentioned before (cf. Sect. 2.1.3),
most properties described in annotations can also be expressed by a number of
ACSL assertions. Of course, these assertions can in general not just be placed
where the original annotation was, but have to be moved to appropriate locations.
For example, the ensures clause ensures E; of a function- or statement contract
can be replaced by an assertion /*@ assert E;*/ at every program location
directly before the scope of the contract is left. How exactly to split up the
different kinds of annotations will be demonstrated in the upcoming subchapters.

After these observations it is only a small step to the idea of how to translate
annotations to invariants. We first decompose an annotation into one or multiple
simple ACSL assertions of the form assert Pi; and if necessary transform the
predicates Pi into valid invariants. Each invariant then holds at the program
location where the corresponding assertion would be placed, too. In the following,
we will talk about the predicates Pi rather than the assertions and will call them
predicate representations of the original annotation.

Before showing how to construct predicate representations for annotations,
we are going to introduce predicate representations for behaviors. Behaviors
can also be represented by predicates and it is possible to use their predicate
representations in the predicate representations of the annotations they are used
in. Recall that a behavior may contain assumes-, requires- and ensures-clauses.
Since the variables from the assumes- and requires-clauses refer to variable values
in the pre-state of the annotation that the behavior is part of, and the variables
from the ensures-clauses refer to values from the post-state of said annotation,
we create two predicates to represent a behavior.

Let X be the set of valid ACSL contracts and behaviors and Y the set
of ACSL predicates that can be transformed into valid witness invariants.
We define two functions pre : X 7→ Y and post : X 7→ Y that map a con-
tract or behavior to its pre-state (predicate) representation and its post-state
(predicate) representation, respectively. For a behavior, the pre-state repre-
sentation shall represent the requires-clause and the post-state representa-
tion shall represent the ensures-clause. Because the assumes-clause contains
the condition under which the behavior is active and neither requires- nor
ensures-clauses have to hold if the behavior is not active in the first place,
the assumes-clause has to be considered in both the pre-state representation
and the post-state representation. Therefore, for a behavior B of the form

18

/*@ ...
behavior B:

assumes A;
requires R;
ensures E;

... */

the equivalence
pre(B)⇐⇒ R ∨ ¬A

has to hold. For the post-state representation however, the formula

post(B)⇐⇒ E ∨ ¬A

does not hold in general because A does no longer have to hold at the position
where E would hold, since they do not refer to variable values at the same
location. Instead, the ACSL built-in predicate \at has to be used. Since \at is
a predicate that can not be represented in a C expression, a suitable translation
has to be used. In the following we will use at for an abstract way of representing
the translated \at. For example, the equivalence

post(B)⇐⇒ E ∨ ¬at(A,Old)

for the post-state representation of a behavior does hold, because it refers to
the value of A in the correct program state. It is not necessary to talk about
where the assertions holding the predicate representations have to be placed
in the program; this depends entirely on the annotation in which the behavior
is located, as behaviors can never appear outside of an annotation in the first
place.

There are several ways to implement at. One possibility is to use data elements
with the key "assumption": For every unique at(x, label) that appears in a
predicate representation, the witness-automaton transitions for the corresponding
CFA edge are duplicated and one of the duplicate transitions gets the additional
child <data key="assumption">x</data> while the other gets the additional
child <data key="assumption">!x</data>. The reachable part of the witness
automaton after those transitions would also have to be duplicated and in
the duplicate following the first transition the expression at(x, label) could be
replaced with true while in the other at(x, label) could be replaced with false.
This duplication is necessary so that the witness does not restrict the explorable
state space.

A different approach would be to assign additional constants in the program:
A copy of the original program could be verified instead, after the values of
the used at(x, label) constructs were stored in fresh constants. These constants
would be instantiated at an appropriate location where the value of at(x, label)
is accessible even in the C program, e.g., at the beginning of a function for the
built-in label Pre. Since their value never changes, every at(x, label) could then
be replaced with the appropriate constant.

The first approach has the advantage of leaving the program untouched
but the witness can get very big since it grows exponentially with the number

19

of at constructs used in predicate representations. The key "assumption" is
also currently not allowed in correctness witnesses, but if used as described
the properties of a correctness witness would still be kept intact. The second
approach has no drawbacks regarding the witness, except that it does not really
create a witness for the original program. The modified program would also have
to be written out and used when validating the witness.

3.1.1 Invariants from Function Contracts
Function contracts from which invariants should be created may contain only
requires-, ensures- and completeness clauses, as well as behaviors. Other kinds
of clauses, like assigns- or terminates clauses will not be discussed in detail,
because predicates representing them are too unwieldy. For example, a clause
assigns a; could be represented by b1 == at(b1, Old)∧ . . .∧ bn == at(bn, Old)
where {bi|1 <= i <= n} is the set of all variables existing in both the pre- and
the post-state of the annotation wherein the clause occurs, except for a.

Just like for behaviors, in order to produce an invariant from a function
contract we create a pre-state representation and a post-state representation.
The pre-state representation of a function contract shall contain the predicate
from the requires-clause and the pre-state representations of its behaviors, while
the post-state representation shall contain the predicate from the ensures-clause
and the post-state representation of its behaviors. Completeness clauses are not
included in either predicate because they would not contribute anything when
used in invariants. After all, they do not contain information about the program
but about the annotation itself. As a result, for a function contract F of the
form

/*@ requires R;
ensures E;
behavior B_1: ...
...
behavior B_n: ...

*/

we have the following equivalences:

pre(F)⇐⇒ R ∧ pre(B1) ∧ · · · ∧ pre(Bn)

post(F)⇐⇒ E ∧ post(B1) ∧ . . . ∧ post(Bn)

Since the properties in the pre-state representation have to hold whenever the
function is entered, we can just consider pre(F) as an invariant at the start of the
function. Similarly, as the properties from the post-state representation have to
hold every time the function terminates we can use post(F) as an invariant that
holds at every function exit. An example for the correct placement of invariants
can be seen in Fig. 3.1.

3.1.2 Invariants from Statement Contracts
Just like function contracts, statement contracts from which invariants should
be extracted may contain requires-, ensures- and completeness clauses, as well

20

1 /*@ requires x < y;
2 ensures z == x + y;
3 */
4 int sum(int x, int y) {
5 while (x < y) {
6 x++;
7 y−−;
8 }
9 int z = x * 2;

10 if (x == y) {
11 return z;
12 }
13 z−−;
14 return z;
15 }

(i)

1 int sum(int x, int y) {
2 // invariant: x < y
3 while (x < y) {
4 x++;
5 y−−;
6 }
7 int z = x * 2;
8 if (x == y) {
9 // invariant: z == x + y

10 return z;
11 }
12 z−−;
13 // invariant: z == x + y
14 return z;
15 }

(ii)

Figure 3.1: A function with (i) an ACSL function contract (ii) a schematic
representation of where which invariants extracted from the contract hold.

as behaviors. With this reduced number of allowed ACSL constructs the only
syntactic difference left between function contracts and statement contracts is
that statement contracts are allowed to have to hold only under certain behaviors
of enclosing function- or statement contracts.

Since supported function- and statement contracts are so similar syntactically,
the processes of generating invariants from them can also be very similar to each
other. Again we create a pre-state and a post-state representation that represent
the same clauses as the pre- and post-state representation of a function contract,
only that this time the relevant enclosing behaviors are also included: Since a
statement contract S

/*@ for C_1, ... , C_m:
requires R;
ensures E;
behavior B_1: ...
...
behavior B_n: ...

*/

only has to hold if the assumption from at least one referenced behavior Ci held
in the pre-state of the corresponding enclosing annotation, the equivalences

pre(S)⇐⇒ (¬at(A1, old1)∧ . . .∧¬at(Am, oldm))∨ (R∧pre(B1)∧ . . .∧pre(Bn))

post(S)⇐⇒ (¬at(A1, old1)∧ . . .∧¬at(Am, oldm))∨(E∧pre(B1)∧ . . .∧pre(Bn))

shall hold for the pre-/post-state representation of a statement contract, where
Ai is the predicate from the assumes-clause of the referenced behavior Ci and oldi
is a label placed at the pre-state of the annotation wherein Ci is placed. There is
no pre-defined logic label to refer to the position of oldi, so it is unlikely that this
construct can ever be used in practice because it would require that a C label
is placed at the appropriate location in the program. For statement contracts

21

1 int i = 0;
2 int j = 10;
3 //@ loop invariant i + j = 10;
4 while (j > 0) {
5 i++;
6 j−−;
7 }

(i) A program excerpt with an ACSL
loop annotation...

1 int i = 0;
2 int j = 10;
3 // invariant: i + j == 10
4 while (j > 0) {
5 i++;
6 j−−;
7 // invariant: i + j == 10
8 }

(ii) ...and with a schematic
representation of the appropriate

locations for the extracted invariant

Figure 3.2: Extracting witness invariants from ACSL loop invariants

that do not refer to enclosing behaviors, the pre- and post-state representations
shall be the same as for function contracts. In either case the pre-state predicate
representation has to hold directly before, the post-state representation directly
after the statement, so they can be used as invariants for the corresponding
location in the program.

3.1.3 Invariants from Loop Annotations
Loop annotations for the purpose of invariant generation may only contain loop
invariants, though these are allowed to be either general or specific to certain
enclosing behaviors. Since a loop invariant already contains a predicate we can
just use that as an invariant for the program, meaning that it is not necessary
to differentiate between a pre- and a post-state representation. In the case of a
loop invariant specific to certain enclosing behaviors the same construct as for
statement contracts can be used, i.e., the form

(¬at(A1, old1) ∧ . . . ∧ ¬at(Am, oldm)) ∨ I

where I is the predicate from the loop invariant, the Ai are the conditions of the
relevant enclosing behaviors and the oldi are labels placed at the pre-state of
the contract wherein said behaviors appear. Again, fittingly placed labels are
usually not present in the program, so this construct would seldom appear in
practice and usually only simple loop invariants of the form loop invariant I;
can be represented in witnesses. In any case, the generated invariant holds right
before the loop and after each loop iteration (for a do-while loop this means
after every condition check), but not necessarily after the loop is left as this is
not guaranteed by the ACSL invariant. An example for the correct placement of
the derived invariants is shown in Fig. 3.2.

3.1.4 Invariants from Assertions
For the translation of assertions there are no further restrictions: a valid witness
invariant can be extracted from every valid ACSL assertion. In fact, the predicate

22

contained in the assertion may already be used as an invariant itself. If the
assertion is specific to certain enclosing behaviors the same strategy as for
statement contracts and loop annotations can be applied. In either case, the
invariant generated from the assertion holds at the same program location where
the assertion was placed, too.

One could argue that assertions introduced with the check keyword are
incapable of providing any invariant at all, since they do not interrupt program
execution even if they turn out to be invalid and therefore can be seen as not
necessarily having to hold. On the other hand, assertions are expected to hold
even if they are introduced with the check keyword so treating assert-assertions
and check-assertions equally is also a valid option. In the implementation detailed
in Chapter 4 we are going to choose the latter option so as to not potentially
lose useful information.

3.2 ACSL Annotations from Witness Invariants
There are two things we need in order to create an ACSL-annotated program from
the original one and a set of witness invariants: A way to translate the invariants
into ACSL annotations and the means to determine the correct positions of
those annotations.

Since invariants taken from a witness are valid C expressions and therefore
valid ACSL predicates the conversion from invariant to ACSL annotation is
much simpler than the other direction because it is possible to just wrap every
invariant in an ACSL assertion. Multiple assertions created this way can then
be merged into a single statement- or function contract or a loop annotation.
Depending on the positions where an invariant holds, it could also be used in
the ensures-clause of a function contract or as an ACSL loop invariant directly.
However, such approaches only serve to reduce the number of annotations and
should not yield more information.

The only difficulty for this direction is extracting the correct location for the
ACSL annotation from the witness. There are several ways to achieve this: A sim-
ple approach would be to use the location information stored in the witness file,
e.g., the startoffset and endoffset values stored for the witness transitions. Since
these refer to character offsets of program statements, an ACSL assertion derived
from a witness invariant can be placed at all program locations between the endoff-
set values of entering and startoffset values of leaving transitions of the state where
the invariant is placed. For example, consider a witness containing the following:

23

...
<node id="N2">

<data key="invariant">(x == y)</data>
<data key="invariant.scope">main</data>

</node>
<edge source="N1" target="N2">

<data key="startoffset">45</data>
<data key="endoffset">62</data>

</edge>
<node id="N3"/>
<edge source="N2" target="N3">

<data key="startoffset">74</data>
<data key="endoffset">98</data>

</edge>
...

Then the assertion /*@ assert (x == y); */ could be placed anywhere be-
tween character offsets 62 and 74 in the original program, assuming there are no
other entering or leaving transitions present for node N2.

Another possibility to get an appropriate location for the ACSL assertion is
to perform a reachability analysis on the program’s CFA while simultaneously
following the appropriate transitions in the witness automaton. The assertion
could then be placed at all program locations that were visited while the witness
automaton remained in the state with the invariant.

Both ways have their own advantages and disadvantages: The first approach
is easier to implement and does not even need access to the program because the
information can just be extracted from the witness, however there is no guarantee
that there are any data elements with keys startoffset or endoffset present in the
first place. The second approach does not rely on optional information being
present in the witness file and can be used with every valid witness. It does,
however, require the program to be available and is slower due to the additional
parsing and reachability analysis of the program. This approach can also produce
unnecessarily many ACSL annotations if the witness automaton remains in the
state containing the invariant for several consecutive CFA edges. Both approaches
have the drawback that it is not clear whether the invariant always holds at
the determined location or only on certain paths, since the invariants specified
in a witness do not have to be location invariants. We expect that in practice
most invariants are location invariants though and will not try to find a way to
express more general invariants in this thesis. A different approach where that
would be possible is outlined in Chapter 6.

Once it has been decided how exactly the conversion to ACSL annota-
tions and the determination of their correct location should be performed, the
WitnessToACSL Algorithm given in Alg. 2 can be applied. Essentially, the
algorithm iterates over the list of program statements and copies each statement
into the new program P ′, inserting the converted invariants where deemed ap-
propriate. Any invariants that were not added to P ′ once the entire program was
copied this way are then appended at the end of P ′ and the annotated program
is returned. Apart from some standard operations on lists, sets, and natural

24

numbers, we only need two additional functions: location and toACSL, possible
implementations of which were discussed above.

There is one nontrivial condition imposed on toACSL though: toACSL may
not introduce dependencies between different annotations at the same location
because the order in which they are appended to the program is non-deterministic.
The only way that such a dependency could be introduced is by converting one
invariant into a statement contract with a behavior and translating another
invariant into a statement contract referencing that behavior though, which
would be a very rare occurrence. In our implementation this cannot happen at
all and we only mention this restriction here for completeness.

Algorithm 2 WitnessToACSL Algorithm
Input: a set I of invariants, a program P as a list of program statements
Output: the annotated program P ′ as a list of program statements
Variables: a set converted ⊆ I, a counter n ∈ N
1: converted := ∅
2: n := 0
3: while n < P .length() do
4: J := {i ∈ I | n ∈ location(i)}
5: for all j ∈ J do
6: P ′.append(toACSL(j))
7: P ′.append(P .get(n))
8: converted := converted ∪ J
9: n := n + 1

10: for all k ∈ I \ converted do
11: P ′.append(toACSL(k))
12: return P ′

25

Chapter 4

Implementation

An implementation of the translations discussed in Chapter 3 has been inte-
grated into CPAchecker. For the translation from ACSL-annotated program to
witness we extend the parsing process of CPAchecker to also parse any ACSL
annotations present in the program file and implement a CPA dedicated to
providing invariants based on ACSL annotations. However, we do not provide a
concrete translation of the \at construct. CPAchecker can represent annotations
containing \at internally but does not export them as witness invariants. For the
generation of ACSL-annotated programs from witnesses we provide an algorithm
that takes invariants from a witness, turns them into ACSL annotations and
inserts them into the program file at an appropriate location.

4.1 Utilizing ACSL Annotations in CPAchecker

In order to make use of ACSL annotations CPAchecker has to parse and
turn them into a useable format first, in this case into an object of type
ExpressionTree. In this implementation the annotations are not immediately
turned into ExpressionTrees however, but stored as ACSLAnnotation objects.
Should an ExpressionTree be required, e.g., for writing into a witness, the
conversion will be made and the result provided by the ACSLCPA.

In the following subchapters we will take a closer look at the process of
utilizing ACSL annotations in CPAchecker.

4.1.1 Parsing ACSL Annotations with CPAchecker

CPAchecker uses the Eclipse CDT for parsing C programs. The Eclipse CDT
parser creates an abstract syntax tree (AST) of the program that is then traversed
by an ASTVisitor that collects the information necessary to build the CFA of the
program. We extend the traversal process to also inspect IASTComment objects,
which correspond to the comments in the program file. If a comment has the
format of an ACSL annotation (i.e., it starts with either /*@ or //@) its location

26

is mapped to the CFA edges corresponding to the program locations directly
in front of and behind the comment. Once the CFA of the program has been
created, we use a CUP-generated parser together with a tokenizer generated by
JFlex to parse the ACSL annotations in a second iteration over the program file,
this time ignoring everything but ACSL annotations. In this step we make use
of the previously generated mapping and the CFA in order to correctly interpret
annotations. For example, the annotation /*@ ensures x == 10; */ by itself
could be understood as either a function- or a statement contract. With the
additional information from the first round of parsing the correct annotation
type can be determined.

Finally, we create a mapping from CFA edges to those ACSL annotations
whose invariant representations would have to hold at the location directly after
taking the edge, and store it alongside the CFA. The invariants are not being
generated at this point but the locations can already be determined as has been
described above (cf. Sect. 3.1).

4.1.2 Representing ACSL Annotations in CPAchecker

Once they are parsed, CPAchecker stores representations of ACSL annota-
tions as objects of type ACSLAnnotation. The interface ACSLAnnotation
provides only two methods: getPredicateRepresentation() and
getCompletenessPredicate(). Both return an object of type ACSLPredicate
which represents a predicate as defined in the grammar (Fig. 2.1) and
can be translated into an ExpressionTree by calling toExpressionTree().
getCompletenessPredicate() is merely a utility method to make sure that the
completeness clause of an annotation is met as otherwise the annotation is faulty
and shouldn’t be used for invariant generation. getPredicateRepresentation()
returns the predicate representation of the annotation as described in Sect. 3.1.
For function- and statement contracts the pre- or post-state representation
is returned depending on the current program location. This is achieved by
keeping a copy of the contract for every CFA edge entering or leaving its scope
and storing whether the copy is mapped to an entering or a leaving edge. The
obtained representation is then usable as an invariant once translated via
toExpressionTree().

4.1.3 The ACSL CPA in CPAchecker

To be able to not only use invariants obtained from ACSL annotations in witnesses
but also in other parts of CPAchecker a CPA for providing these invariants has
been added. Since the translation of an ACSL annotation to a valid invariant is
already implemented elsewhere, the CPA acts merely as a distributor of those
invariants: The ACSLTransferRelation when asked for successors for a CFA edge
always provides a single ACSLState that stores those ACSL annotations whose
invariant representations have to hold directly after the edge is taken. The class
ACSLState itself implements the interface ExpressionTreeReportingState by
giving an implementation of getFormulaApproximation() that returns the

27

conjunction of the invariants produced from the stored ACSL annotations. This
way any component of CPAchecker that can use invariants provided by an
ExpressionTreeReportingState can profit from them.

4.2 Building ACSL Annotations in CPAchecker

The conversion from witness invariants to ACSL annotations is realized in
the WitnessToACSLAlgorithm which implements Alg. 2. For this we make
use of CPAchecker’s already existing WitnessInvariantsExtractor that is
capable of scanning a witness for invariants and returning them in the
form of ExpressionTreeLocationInvariant objects that also store the CFA
node where the invariant is placed. The ExpressionTreeLocationInvariants
are then mapped to the program locations where they have to hold.
To do so, we consider all leaving edges of the CFA node stored in an
ExpressionTreeLocationInvariant and extract from each the line number
of the corresponding program statement. The invariants are then converted into
ACSL assertions as described in Sect. 3.2 and the assertions placed one line
above each statement.

This has the obvious disadvantage that the program file may only contain one
statement per line or else the assertion may be placed too early, so programs that
should get ACSL annotations this way might have to be reformatted beforehand.
In fact, the reformatting would have to happen before generating the witness
because otherwise the position information recorded in the witness might no
longer match the actual positions in the program.

28

Chapter 5

Evaluation

In this chapter we will examine the correctness and usefulness of the translation
concepts described above by evaluating if and how many of the produced ACSL-
annotated programs can still be verified and whether the witnesses containing
invariants derived from ACSL-annotations can still be validated. In particular,
the hypotheses we hope to confirm are:

1. We can generate syntactically correct ACSL annotations from correctness
witnesses.

2. Generated annotations can be validated by tools supporting ACSL.

3. ACSL annotations can be represented in CPAchecker and written out as
invariants in witnesses.

4. Invariants in a witness that were created from ACSL annotations can be
validated by tools that understand the witness format.

Should the translation from ACSL annotations to witness invariants be
working sufficiently well, it would be possible to manually guide a verifier by
writing ACSL annotations into the program and having them translated and
written into the witness. Technically it is possible to write the invariants into
the witness directly, but this is often not practicable since witness states do not
necessarily correspond to program locations one-to-one and witnesses can get
very big.

5.1 Experimental Setup
For our evaluation we use witnesses from the witness store of SV-COMP 20201 and
the corresponding programs from the sv-benchmarks repository2. We only use
correctness witnesses that contain at least one invariant, in total 10387 witnesses

1https://zenodo.org/record/3630188
2https://zenodo.org/record/3633334

29

https://zenodo.org/record/3630188
https://zenodo.org/record/3633334

and the programs they were created for (there might be multiple witnesses for a
single program). The following evaluation steps are then performed, corresponding
to the hypotheses listed above:

1. Run the WitnessToACSLAlgorithm to produce ACSL annotated programs.

2. Use Frama-C to try and prove generated ACSL annotations.

3. Create new witnesses from the annotated programs with a configuration
that uses the ACSLCPA.

4. Validate the new witnesses with CPAchecker.

Since the WitnessToACSLAlgorithm only produces assertions we will not be
able to directly evaluate the translations for other ACSL constructs this way.
However, since other types of annotations can be expressed via assertions as well,
this approach is still able to give a good impression of how well the translation
between ACSL annotations and witnesses works. We are also not bothered by
the lack of a concrete translation for \at because the WitnessToACSLAlgorithm
does not introduce behaviors.

Each benchmark is executed on a machine running Ubuntu 20.04 and has
access to 2 CPU cores with 3.40 GHz (Intel Xeon E3-1230 v5) and 15 GB of
RAM. Each run also has a time limit of 900 s (15 min). For the evaluation we
use CPAchecker on branch acsl-bachelor in revision 36000 and the Frama-C 20.0
(Calcium) release, as well as BenchExec3 for benchmarking.

5.2 Results
ACSL Annotations from Witness Invariants For the first step of our
evaluation we take the 10.387 correctness witnesses from SV-COMP 2020 together
with their respective programs and pass them to the WitnessToACSLAlgorithm.
Because the WitnessInvariantsExtractor that we use to obtain invariants from the
witnesses actually performs a reachability analysis we use the -skipRecursion
option in order to ignore recursive calls so that we can get annotations even for
recursive programs which are not supported by CPAchecker per default. The
results can be seen in Table 5.1. In total there are 612 witnesses for which the
algorithm does not complete successfully due to timeouts, errors, or memory
shortages. Upon closer inspection we can determine that none of the thrown
exceptions are caused by the actual algorithm given in Alg. 2 but rather happen in
other parts of CPAchecker. For example, all of the tasks with result EXCEPTION
suffered from a StackOverflowError with most of them being caused by too deep
recursion of a function buildConditionTree which has been known to exhibit
this behavior for years4. Given the simplicity of the algorithm it is also likely
that most of the TIMEOUT and OUT OF JAVA MEMORY results can be

3https://github.com/sosy-lab/benchexec
4https://gitlab.com/sosy-lab/software/cpachecker/-/issues/504

30

https://github.com/sosy-lab/benchexec
https://gitlab.com/sosy-lab/software/cpachecker/-/issues/504

count
done 9775

TIMEOUT 465
OUT OF JAVA MEMORY 112

ERROR 18
EXCEPTION 15
ASSERTION 2

sum 10387

Table 5.1: Results of WitnessToACSL Algorithm

attributed at least in part to the invariant-extraction process. For the remaining
9775 witnesses the WitnessToACSLAlgorithm terminates properly and we get
output programs for 5387 witnesses. This number does not yet tell us how well
our implementation of the algorithm works, since an output program is generated
whenever at least one invariant was found by the WitnessInvariantsExtractor
regardless of whether the algorithm actually adds any annotations. Instead
we have to look at the number of generated programs that actually contain
ACSL annotations which is 4685, so our implementation is often able to create
annotations from the given invariants.

Validating the Generated ACSL Annotations Next we try to prove the
generated annotations with Frama-C in order to make sure that they are actually
valid and hold at the locations where they are placed. For this step we use
Frama-C-SV5, a wrapper for Frama-C that was developed so that Frama-C could
be used as part of SV-COMP 2021. As input all of the 5387 programs produced
in step one are used, even those that do not contain annotations. The latter will
serve as a comparison set. The results are listed in Table 5.2. It has to be noted
that Frama-C-SV is still rather unpolished and the results produced by it can
therefore not be considered perfectly reliable. They can give a rough estimate
of our translations validity and soundness though. We use revision 27853bad of
Frama-C-SV with a slight modification: Usually Frama-C-SV would call Frama-C
with the options -val and -rte. Since the latter instructs Frama-C to add
additional annotations on its own which might interfere with our evaluation, we
disable this option.

We see that most of the annotations can be proved, although there is also a
large number of programs where Frama-C-SV is not able to come to a conclusion.
Since this is also the case in the comparison set we will attribute this to the
immaturity of Frama-C-SV. Just like CPAchecker, Frama-C does not support
recursion by default which is why there are a few cases where Frama-C aborts
because of it. There are also some cases where Frama-C is unable to complete
the analysis because of a TIMEOUT or OUT OF MEMORY. This does never

5https://gitlab.com/sosy-lab/software/Frama-C-SV

31

https://gitlab.com/sosy-lab/software/Frama-C-SV

with annotations without annotations total
true 3188 340 3528

unknown 1445 340 1785
unknown(recursive) 17 22 39

TIMEOUT 22 0 22
OUT OF MEMORY 12 0 12

unknown(crash) 1 0 1
sum 4685 702 5387

Table 5.2: Results of ACSL Validation

happen in the comparison set and is likely due to the fact that witness invariants
are sometimes very large and are not shrinked at all by our implementation,
leading to equally large ACSL annotations. Of course it could also be that some
of the affected programs simply contain annotations that Frama-C finds hard
to proof. Finally there is one result with status "unknown(crash)" which seems
to be an internal error of Frama-C and is most likely unrelated to the concrete
annotations present in the corresponding program file.

All in all it seems that the annotations generated by our implementation of
the WitnessToACSLAlgorithm are indeed syntactically correct and can often be
proved by Frama-C, confirming the first two of our hypotheses.

Witnesses from Annotated Programs In the next step we try to generate
new witnesses for the annotated programs created by the WitnessToACSLAlgo-
rithm. Since we only used correctness witnesses for our original input we naturally
assume that only correctness witnesses are created in this step. This time we do
not use -skipRecursion because that could make the analysis unsound and we
also set the option cpa.acsl.ignoreTargetStates to true. This ensures that
all program locations that are affected by ACSL annotations are considered,
meaning that every ACSL annotations gets translated into a witness invariant,
but it also means that error states found by other CPAs are ignored. This should
not be a problem for our evaluation, since the only other CPAs we use are the
LocationCPA, CallStackCPA, and FunctionPointerCPA which are all used only
to track certain information about the current state of the analysis.

The results of this step are displayed in Table 5.3. We see that most of the
programs can still be verified, but also that there are quite a few programs for
which we don’t get a result due to various reasons that are all obviously caused
by the ACSLCPA as they don’t appear at all in the comparison set. The eight
assertion errors marked with ASSERTION all happen while trying to match the
ACSL annotations to the correct edges of the CFA. This tells us that the current
approach of matching is not perfect yet, but it is already very good considering
the small amount of failures. The 70 programs for which an EXCEPTION
occurred all contain a . (period/dot) in one of their ACSL annotations. This
is presumably because a floating point number is used which is not supported

32

in the current implementation and does not indicate a problem. The "ERROR
(recursion)" results are due to not using -skipRecursion as mentioned above
and also appear in the comparison set, so they should be unrelated to the
ACSLCPA. More worrying are the 296 results with status "ERROR (parsing
failed)". Looking at the input programs we observe that this error always appears
because of the same reason: All affected programs contain an annotation at the
end of the program file, i.e., there is no other program statement following it, only
closing brackets and whitespace. In this case our implementation is unable to
determine the CFA edge corresponding to the program location directly behind
the annotation, as described in Sect. 4.1.1, and ultimately fails when trying to
determine the locations where the annotation holds from this information. It is
unclear how such a case should be handled and we leave it as future work to
find a way to rectify this. There is also a lot of programs for which a TIMEOUT
occurs. This can be due to large annotations that were produced from large
invariants, but since there are way more TIMEOUT results than during the
validation of the generated ACSL annotations with Frama-C this is unlikely to
be the only reason. A closer analysis of the programs for which a TIMEOUT
occurs reveals that the creation of ACSLAnnotation objects is currently simply
too inefficient, causing a TIMEOUT even for moderately sized annotations. This
would of course have to be improved in the future but it is clear that this is
only an implementation-specific flaw, since Frama-C only had a few results with
status TIMEOUT, and is not inherent to the translation itself.

Finally we take note of the number of produced witnesses which is higher
than the number of "true" results because CPAchecker apparently also produces
witnesses for programs containing recursion even though they cannot be handled.
Focusing only on those witnesses that actually contain invariants, we can see
that there are unsurprisingly none at all in the comparison set because we did
not use any CPA that is able to provide them apart from the ACSLCPA. Of
the witnesses produced for annotated programs 1585 contain invariants. Since
these have to be generated from ACSL annotations this confirms our third
hypothesis. Considering that we started with witnesses that all contained at
least one invariant though, this number seems rather mediocre. In 1844 of the
3483 cases were a witness was produced all of the annotations in the program
were skipped because they contained an identifier that CPAchecker could not
find a declaration for. This is often the case for annotations after a for-loop: An
annotation placed directly after the loop might use the loop variable referring to
its value after the last loop iteration, but in C the variable is already out of scope
at this point. An example for this can be seen in Fig. 5.1. This particular problem
can unfortunately not be resolved without modifying the program, since there is
in general no program location where both the loop counter still exists and the
invariant expressed by the annotation holds. CPAchecker can also be unable to
find the declaration of an identifier if multiple candidates are found throughout
the program. In this case no declaration is returned just like as if none was found.
This could be alleviated by also including the scope in which the identifier occurs
when trying to find its declaration; this way ambiguities especially in big files
could be avoided. The remaining 54 witnesses might lack invariants because no

33

1 int i = 0;
2 for (int k = 10; k > 0; k−−) {
3 i++;
4 }
5 //@ assert k == 0 && i == 10;

Figure 5.1: The assertion accurately describes the state after the last loop
iteration but is not valid because k is already out of scope.

with annotations without annotations total
true 3392 663 4055

TIMEOUT 828 0 828
ERROR (parsing failed) 296 0 296
ERROR (recursion) 91 39 130

EXCEPTION 70 0 70
ASSERTION 8 0 8

sum 4685 702 5387
produced witnesses 3483 702 4185

witnesses with invariant 1585 0 1585

Table 5.3: Results of Witness Generation using ACSLCPA

annotation could be matched to a concrete program location, or because they
were produced for programs containing recursion.

Validating the New Witnesses To ensure that the "true" results are actu-
ally correct we use CPAchecker to validate the witnesses produced in the second
step. The result can be seen in Table 5.4 and is very straightforward: Almost all
the witnesses can be validated, only for 23 inputs there is again an "ERROR
(recursion)" result and one witness can not be validated because of a TIMEOUT.
These results show that the ACSLCPA, or rather that invariants produced from
ACSL annotations do not introduce any inconsistencies or break the witness
format. We can therefore conclude that we are able to generate valid correctness
witnesses from ACSL annotated programs using those annotations in witness
invariants and furthermore, that our fourth hypothesis holds.

Manually annotating programs Since we have seen that our implementa-
tion of the presented translation works fairly well we will now try to combine the
qualities of ACSL and the witness exchange format, namely being interactive
and being exchangeable between different verifiers, respectively. To do so, we
manually annotate a few sample programs with loop invariants that are known to
be hard to find for automatic verifiers but can easily be found by a human. The
programs are taken from Software Verification with PDR: An Implementation
of the State of the Art [3]. Figure 5.2 exemplarily shows the relevant part of the

34

with annotations without annotations total
true 3463 698 4161

ERROR (recursion) 19 4 23
TIMEOUT 1 0 1

sum 3483 702 4185

Table 5.4: Results of Witness Validation

1 int main(void) {
2 unsigned int w = __VERIFIER_nondet_uint();
3 unsigned int x = w;
4 unsigned int y = w + 1;
5 unsigned int z = x + 1;
6 //@ loop invariant y == z;
7 while (__VERIFIER_nondet_uint()) {
8 y++;
9 z++;

10 }
11 __VERIFIER_assert(y == z);
12 return 0;
13 }

Figure 5.2: The main-function of program eq2.c with an ACSL loop an-
notation. __VERIFIER_nondet_uint returns a random unsigned inte-
ger;__VERIFIER_assert simulates an assertion.

annotated version of program eq2.c from that paper. We then create witnesses
for these annotated programs using the ACSLCPA and try to validate them with
CPAchecker. The produced witnesses all contain an invariant that corresponds
to the loop invariant specified via ACSL, and all of the witnesses can be validated
in less than ten seconds. To make sure that these problems are indeed not trivial
we also try to validate empty witnesses for these programs. As can be seen in
Table 5.5 our previous claim that invariants are hard to come up with for verifiers
holds true, since none of the witnesses can be validated without the invariants
from the manually added ACSL annotations.

This means that our translation from ACSL annotations to invariants can
even help verifying programs by enabling people to specify invariants manually.
As stated in the beginning of this chapter, manually adding invariants to witnesses
is possible in theory but tedious and often effectively impossible in practice.
This problem can now be avoided by specifying invariants in the form of ACSL
annotations in the program and afterwards translating these annotations into
witness invariants.

35

program with invariants without invariants
bin-suffix-5.c 6.44s T

const.c 6.87s T
eq1.c 7.81s T
eq2.c 7.41s T
even.c 6.91s T
mod4.c 7.11s T
odd.c 7.28s T

Table 5.5: Time taken to validate witnesses with and without invariants from
ACSL annotations. T indicates a TIMEOUT, meaning that the program could
not be validated within 900s.

36

Chapter 6

Future Work

An obvious extension would be to increase the number of supported ACSL
features. Though we only worked with a subset of all available ACSL features so
that we would be able to provide a possible translation for as many as possible,
that does not mean that none of the excluded features can be translated in a
meaningful way. In particular, for none of the excluded features did we give a
formal proof that it can not be translated, so a formal evaluation of which ACSL
futures can and cannot be translated would be an interesting area for future
research. The evaluation of concrete translations of \at and other ACSL built-ins
could also lead to a more seamless translation between ACSL annotations and
witness invariants.

The current implementation of the WitnessToACSLAlgorithm could be im-
proved to be applicable for C programs in general, without the need to ensure
that each line contains at most one statement.

Our evaluation also revealed a few areas where the current implementation
of the translation from ACSL annotation to witness invariant could be improved.
This includes being able to handle annotations that are placed after the last
statement in a program file, which is non-trivial at least for CPAchecker because
of the way that branching is handled in the CFA. Another thing to work on is
the efficiency of creating the internal representations of ACSL annotations. This
issue especially should be taken care of, because it is the reason why a big number
of tasks suffered from a TIMEOUT and because this can be improved very much
as demonstrated by Frama-C. We also discovered that often annotations are
simply skipped because CPAchecker cannot find the declaration of a variable it
contains and therefore treats it as invalid. It was already discussed that this could
probably be remedied in some cases by also taking note of the scope wherein
the variable occurs, but that there are also cases where it is simply impossible
to find a location for an annotation where all of the contained variables are in
the current C scope.

The translation concepts covered in this thesis are merely possibilities. There
certainly are other possible ways to translate ACSL annotations into witness
invariants and vice versa. For example, one approach worth exploring is to use

37

ghost code to simulate the transitions of a witness automaton. Ghost code is
a feature of ACSL we did not cover in this thesis. Basically, it allows to add
additional statements to a program in the form of ACSL annotations starting
with the ghost keyword, i.e., a comment like /*@ ghost ... */. These ghost
statements may not interfere with the semantics of the original program but
are allowed to read the values of both ghost variables, i.e., variables declared in
ghost code, and variables that are part of the original code. In order to simulate
a witness automaton with ghost code it would be possible to track the current
automaton state in a ghost variable by updating it after every statement that
causes a transition to be taken in the automaton. Witness invariants could then
be translated to ACSL annotations and the latter be placed at those locations
where the ghost variable has the value that represents the automaton state where
the invariant holds. An advantage of using ghost code to simulate the witness
automaton is that even invariants that only hold on certain program paths can
be translated by including the value of the ghost variable tracking the automaton
state in the generated annotation.

The main reason we barely covered any ACSL built-ins at all is simply that
the current witness format cannot express them adequately. This limitation is
already known and a new version of the format has been suggested that might
even support ACSL annotations natively. Should this new format end up being
used in the future, the translation concepts presented in this thesis could be
utilized to convert old witnesses into the new format, thus allowing validators to
support only the newer version. To a lesser extent witnesses in the new format
could also be backported into the old one should the need arise.

38

Chapter 7

Conclusion

We presented and explored a way to translate witness invariants to ACSL anno-
tations and the other way around. We gave descriptions of how such translations
could work in theory and discussed possible ways of implementing them. Some of
those possibilities were then implemented in CPAchecker and evaluated using a
large set of witnesses produced by several state-of-the-art verifiers. The results of
our study show the practical applicability of the presented translation concepts
but also open up new areas of research.

The WitnessToACSL Algorithm that we introduced to generate ACSL an-
notations from witness invariants has proven to work well even in our simple
proof-of-concept implementation. The algorithm itself depends on three subrou-
tines: one for translating the invariants to ACSL annotations, one for determining
the location where the annotations should be placed, and (implicitly) one for sup-
plying the invariants. All of these can be exchanged independently from another,
meaning that there are several angles to improving this translation even fur-
ther. The translation of ACSL annotations into witness invariants has produced
promising results as well, but also showed some weaknesses. Our implementation
is currently not efficient enough to handle annotations that contain more than a
few hundred characters. It was already clear that not all ACSL annotations can
be translated into valid witness invariants, because ACSL offers some constructs
that can not be expressed in pure C. Because of this we restricted ourselves to a
subset of ACSL that can mostly be expressed via witness invariants. We also
discovered that some witness invariants do not correspond to a specific location
in the program source meaning that ACSL annotations, even though they can
be created, can not be placed anywhere in the program.

We have seen that our translation approach works well enough that users
can manually specify invariants in the form of ACSL annotations to help with
the verification. We were also able to prove a significant number of the ACSL
annotations obtained from witness invariants. All in all we conclude that while
our implementation can still be optimized, our approach is already able to allow
the conversion between witness invariants and ACSL annotations in a wide
variety of cases and has the potential to be improved even further.

39

Bibliography

[1] P. Baudin, P. Cuoq, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and
V. Prevosto. ACSL Version 1.14 Implementation in 20.0 (Calcium).

[2] D. Beyer. Advances in Automatic Software Verification: SV-COMP 2020. In
Proceedings of the 26th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS 2020, Dublin, Ireland,
April 25-30), part 2, LNCS 12079, pages 347–367. Springer, 2020.

[3] D. Beyer and M. Dangl. Software Verification with PDR: An Implementation
of the State of the Art. In Proceedings of the 26th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2020, Dublin, Ireland, April 25-30), part 1, LNCS 12078, pages
3–21. Springer, 2020.

[4] D. Beyer, M. Dangl, D. Dietsch, and M. Heizmann. Correctness Witnesses:
Exchanging Verification Results Between Verifiers. In T. Zimmermann,
J. Cleland-Huang, and Z. Su, editors, Proceedings of the 24th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering
(FSE 2016, Seattle, WA, USA, November 13-18), pages 326–337. ACM,
2016.

[5] D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and A. Stahlbauer. Witness
Validation and Stepwise Testification across Software Verifiers. In E. D.
Nitto, M. Harman, and P. Heymans, editors, Proceedings of the 2015 10th
Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on Foundations of Software Engineering (ES-
EC/FSE 2015, Bergamo, Italy, August 31 - September 4), pages 721–733.
ACM, New York, 2015.

[6] D. Beyer, M. Dangl, and P. Wendler. A Unifying View on SMT-Based
Software Verification. Journal of Automated Reasoning, 60(3):299–335,
2018.

[7] D. Beyer, S. Gulwani, and D. Schmidt. Combining Model Checking and
Data-Flow Analysis. In E. M. Clarke, T. A. Henzinger, H. Veith, and
R. Bloem, editors, Handbook on Model Checking, pages 493–540. Springer,
2018.

40

https://frama-c.com/download/acsl-implementation-20.0-Calcium.pdf
https://frama-c.com/download/acsl-implementation-20.0-Calcium.pdf
https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.1007/978-3-030-45190-5_1
https://doi.org/10.1007/978-3-030-45190-5_1
https://doi.org/10.1007/978-3-030-45190-5_1
https://doi.org/10.1007/978-3-030-45190-5_1
https://doi.org/10.1007/978-3-030-45190-5_1
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-319-10575-8_16

[8] D. Beyer, T. A. Henzinger, and G. Théoduloz. Configurable Software Ver-
ification: Concretizing the Convergence of Model Checking and Program
Analysis. In W. Damm and H. Hermanns, editors, Computer Aided Verifi-
cation, 19th International Conference, CAV 2007, Berlin, Germany, July
3-7, 2007, Proceedings, volume 4590 of Lecture Notes in Computer Science,
pages 504–518. Springer, 2007.

[9] D. Beyer and M. E. Keremoglu. CPAchecker: A Tool for Configurable
Software Verification. In G. Gopalakrishnan and S. Qadeer, editors, Pro-
ceedings of the 23rd International Conference on Computer Aided Verifica-
tion (CAV 2011, Snowbird, UT, July 14-20), LNCS 6806, pages 184–190.
Springer-Verlag, Heidelberg, 2011.

[10] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. S. Marshall.
GraphML Progress Report. In P. Mutzel, M. Jünger, and S. Leipert, editors,
Graph Drawing, 9th International Symposium, GD 2001 Vienna, Austria,
September 23-26, 2001, Revised Papers, volume 2265 of Lecture Notes in
Computer Science, pages 501–512. Springer, 2001.

[11] J. Burghardt, J. Gerlach, T. Lapawczyk, et al. ACSL by Example,
2016. https://github.com/fraunhoferfokus/acsl-by-example/blob/
master/ACSL-by-Example.pdf.

[12] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and
B. Yakobowski. Frama-C - A Software Analysis Perspective. In G. Eleft-
herakis, M. Hinchey, and M. Holcombe, editors, Software Engineering and
Formal Methods - 10th International Conference, SEFM 2012, Thessaloniki,
Greece, October 1-5, 2012. Proceedings, volume 7504 of Lecture Notes in
Computer Science, pages 233–247. Springer, 2012.

[13] S. Glesner. Program Checking with Certificates: Separating Correctness-
Critical Code. In K. Araki, S. Gnesi, and D. Mandrioli, editors, FME 2003:
Formal Methods, International Symposium of Formal Methods Europe, Pisa,
Italy, September 8-14, 2003, Proceedings, volume 2805 of Lecture Notes in
Computer Science, pages 758–777. Springer, 2003.

[14] V. Prevosto. ACSL Mini-Tutorial. https://frama-c.com/download/
acsl-tutorial.pdf.

41

https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/3-540-45848-4_59
https://doi.org/10.1007/3-540-45848-4_59
https://doi.org/10.1007/3-540-45848-4_59
https://doi.org/10.1007/3-540-45848-4_59
https://doi.org/10.1007/3-540-45848-4_59
https://github.com/fraunhoferfokus/acsl-by-example/blob/master/ACSL-by-Example.pdf
https://github.com/fraunhoferfokus/acsl-by-example/blob/master/ACSL-by-Example.pdf
https://github.com/fraunhoferfokus/acsl-by-example/blob/master/ACSL-by-Example.pdf
https://github.com/fraunhoferfokus/acsl-by-example/blob/master/ACSL-by-Example.pdf
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-540-45236-2_41
https://doi.org/10.1007/978-3-540-45236-2_41
https://doi.org/10.1007/978-3-540-45236-2_41
https://doi.org/10.1007/978-3-540-45236-2_41
https://doi.org/10.1007/978-3-540-45236-2_41
https://frama-c.com/download/acsl-tutorial.pdf
https://frama-c.com/download/acsl-tutorial.pdf
https://frama-c.com/download/acsl-tutorial.pdf

	1 Introduction
	2 Preliminaries
	2.1 ACSL
	2.1.1 Logic Expressions
	2.1.2 Clauses
	2.1.3 Annotations

	2.2 Control Flow Automaton
	2.3 Exchangeable Witness Format
	2.4 Configurable Program Analysis
	2.5 CPAchecker

	3 Converting between ACSL and Witness Invariants
	3.1 Invariants from ACSL Annotations
	3.1.1 Invariants from Function Contracts
	3.1.2 Invariants from Statement Contracts
	3.1.3 Invariants from Loop Annotations
	3.1.4 Invariants from Assertions

	3.2 ACSL Annotations from Witness Invariants

	4 Implementation
	4.1 Utilizing ACSL Annotations in CPAchecker
	4.1.1 Parsing ACSL Annotations with CPAchecker
	4.1.2 Representing ACSL Annotations in CPAchecker
	4.1.3 The ACSL CPA in CPAchecker

	4.2 Building ACSL Annotations in CPAchecker

	5 Evaluation
	5.1 Experimental Setup
	5.2 Results

	6 Future Work
	7 Conclusion

