
Shareable Benchmarking Reports with
Enhanced Filters and Dynamic Statistics for

BenchExec

Author: Dennis Simon

Supervisor: Prof. Dr. Dirk Beyer
Mentor: Dr. Philipp Wendler
Submission Date: 18. April 2021

Erklärung

Hiermit versichere ich, dass ich diese Bachelorarbeit selbständig
verfasst und keine anderen als die angegebenen Quellen und
Hilfsmittel verwendet habe.

München, den 18. April 2021

..

Dennis Simon

1

Abstract

BenchExec is a benchmarking tool developed at the Software and Com-
putational Systems Lab of the Ludwig-Maximilians-Universität in Munich,
Germany. One of its features is the automatic generation of a HTML table
that presents the benchmarking results in an interactive and visual environ-
ment. The HTML table was recently rewritten in 2019 in the context of
a bachelor thesis, with the performance and usability of the tables being
greatly improved. This thesis showcases new sets of features that were built
on top of this implementation and additionally showcases the integration of a
rework of the filter functionality including the addition of a new global, more
accessible user interface, the addition of multi-selection capabilities for status
and category filters and components that allow a more granular filtering
by task-ID. In order to improve user experience and to unlock shareability,
navigation is now done via a "Hash Routing" approach, with most state,
including filters, being serialized in the URL thus enabling the navigation
history handling of the browser and allowing users to share state via a copied
URL. To achieve a more consistent representation of the state of selected
data, statistics that were previously statically included in the table are now
asynchronously calculated using pooled web workers to reflect any changes in
selected data that might occur by filtering. Lastly, the performance of the
successful implementation is compared to the previous implementation. The
changes described in this paper are already in use with some of them already
being successfully extended further.

Contents

1 Introduction & Motivation 3

2 Existing Solution 5
2.1 Summary Tab . 6
2.2 Table Tab . 6
2.3 Quantile Plot Tab . 7
2.4 Scatter Plot Tab . 8
2.5 Issues with the Previous Implementation 9

2.5.1 Navigation . 9
2.5.2 Filtering . 11
2.5.3 Statistics . 11
2.5.4 Shareability . 12

3 New Features 13
3.1 Roadmap & Challenges . 13

3.1.1 Building the Roadmap 13
3.1.2 Filtering . 15
3.1.3 Shareability . 16
3.1.4 List of Improvements 17

3.2 Implemented new Features . 19
3.2.1 Hash Routing & Query Parameters 19
3.2.2 Persistance of Component Configurations in the URL . 21
3.2.3 Filter Algorithm & Refactoring 22
3.2.4 Extending the User Interface 26
3.2.5 Serialization of Filters 32
3.2.6 Statistic Calculations via Workers 33

4 Evaluation 35
4.1 Setup . 35
4.2 Benchmarking of Filters . 36
4.3 Benchmarking of Statistics Calculation 39

1

4.4 Result Evaluation . 39

5 Conclusion & Future Work 41

2

1: Introduction & Motivation

In order to analyse the efficiency and complexity of algorithms and to be able to
make educated decisions when evaluating different approaches, developers and
researchers often times use benchmarking as a basis of reasoning. Especially
in high-performance computing communities the use of benchmarking as
a means of performance evaluation is regularly used and standardized [3].
In order to gain reliable and representative insight into the performance of
algorithms or tools a certain sample size is needed to account for minor
deviations and build more precise aggregated representations of the expected
performance.
The benchmarking runs usually produce their results in a list or tabular form.
Especially for runs with a large sample size or sets of measures for different
parts of the tested tool, these will become hard to comprehend and efficiently
analyse.
BenchExec [3], a benchmarking tool developed by the Software Systems
Lab of the LMU Munich provides an auxiliary tool called table-generator
to assist its users with the consumption and comprehension of test results.
The table-generator tool embeds the benchmarking results produced
by BenchExec into a pre-build HTML file. The application included in
the HTML file exposes a number of different methods of visualization using
graphs as well as a filterable tabular representation and statistical description
of the dataset. The HTML tables last underwent a complete rework in 2019
in the context of a bachelor thesis [4].
BenchExec is used in competitions [2] [1] with the HTML tables being used
as the main way to present results. Since the rework, users have requested a
number of additional features1 that would improve usefulness and usability
of the HTML tables.
The ability of looking at different subsets of the full dataset is especially
interesting as it gives additional detailed and contextual insights into the
dataset, however, the capabilities of filtering were limited in functionality

1https://github.com/sosy-lab/benchexec/issues?q=is%3Aissue+label%3A%
22HTML+table%22+label%3Aenhancement+

3

https://github.com/sosy-lab/benchexec/issues?q=is%3Aissue+label%3A%22HTML+table%22+label%3Aenhancement+
https://github.com/sosy-lab/benchexec/issues?q=is%3Aissue+label%3A%22HTML+table%22+label%3Aenhancement+

and usability. Additionally, the statistical representation of the selected
dataset was statically embedded and did not react to changes in filtering.
Consequently it might not always match the currently filtered selection of the
dataset. The goal of this thesis is to analyse and discuss the capabilities and
limitations of the current implementation of the filtering and the calculation
of the statics table as well as the creation of a concept and the implementation
of an improved version.

4

2: Existing Solution

The HTML tables are prebuilt React.js1(subsequently React) applications that
have been built and bundled using webpack2 and enhanced with BenchExec
result data using the table-generator tool. React uses a syntax extension to
pure JavaScript called JSX3.
In order to find ways to improve the functionality and user experience, we
must first explore the currently existing solution and shed light on its proven
good approaches to user experience and parts that have a negative impact on
the efficiency or experience of users.
To build an initial list of tasks to perform with corresponding priorities and
ultimately enabling us to build a timeline, it is beneficial to walk through
each of the main parts of the application and reference its components with a
list of reported issues4.
Various terms that are commonly used in BenchExec and the HTML tables
are also used in this paper. The relevant terms used in context of this paper
are defined in the glossary5 as follows:

run A single execution of a tool. It consists of the full command-line argu-
ments (including input file) and the resource limits, and produces a
result including measured values for the resource consumption.

task A combination of an input file and an expected result that defines a
problem for a tool to solve.

tool A program that should be benchmarked with BenchExec.

Additionally, the definition of a runset is a set of all run executions for a
given tool. These are usually represented in vertical blocks in the HTML table
as can be seen in figure 2.2.

1A popular javascript framework by facebook https://reactjs.com
2https://webpack.js.org/
3https://reactjs.org/docs/introducing-jsx.html
4https://github.com/sosy-lab/benchexec/issues?q=is%3Aissue+label%3A%

22HTML+table%22+label%3Aenhancement+
5https://github.com/sosy-lab/benchexec/blob/master/doc/INDEX.md

5

https://reactjs.com
https://webpack.js.org/
https://reactjs.org/docs/introducing-jsx.html
https://github.com/sosy-lab/benchexec/issues?q=is%3Aissue+label%3A%22HTML+table%22+label%3Aenhancement+
https://github.com/sosy-lab/benchexec/issues?q=is%3Aissue+label%3A%22HTML+table%22+label%3Aenhancement+
https://github.com/sosy-lab/benchexec/blob/master/doc/INDEX.md

Figure 2.1: Summary page

2.1 Summary Tab
The summary tab is the main view of the application and consists of two bigger
components: The setup overview, a static summary of the configurations
of each individual runset and a table containing statistics giving a general
overview over success and failure rates and aggregations over each measure.
The cells in the statistics table on the bottom of figure 2.1 show the values
of each run matching the criteria in the row headers aggregated as a sum
by default, but will show advanced aggregations like average, standard
deviation and median in form of a tooltip when the user hovers over the
individual cells. This table also gives the user the option to hide or show
individual columns in tables and plots.

2.2 Table Tab
The table tab displayed in figure 2.2 gives the user a complete overview over
each run in each runset and the results associated with it.

6

Figure 2.2: table tab

The row below the table headers is used to filter the dataset. A number of
different input fields are used depending on what kind6 of value is represented
in each column:

Text For textual columns a text input search field is used to perform free
text filtering.

Numeric A text input field is displayed that either accepts single values or
value ranges in the form of [<minimum value>]:[<maximum value>]

Enumerable A drop-down selection field is displayed that lets the user
choose between the distinct values of the column

Filters are applied globally and will have effects on the plot tabs as well

2.3 Quantile Plot Tab
The quantile plot tab gives a graphical representation of the dataset that is
shown on the table tab presented in section 2.2. The user can quickly change
between parameters and compare them between different runsets.

6The UI generally differentiates between textual, numeric and enumerable column values.

7

Figure 2.3: Quantile plot tab

Each runset gets represented using a plotted line in a different color with the
x-axis representing the list of tasks and the y-axis representing the values of
the selected parameter [4]. The user has a number of different settings to
configure the graph to their needs:

• Switch between the quantile and direct plot mode.

• Switch between linear and logarithmic scaling.

• Switch between showing only tasks that are classified as correct or all
tasks.

The data set being used is also subjected to filtering as introduced in section 2.2
on page 7.

2.4 Scatter Plot Tab
The scatter plot tab is similarly structured to the quantile plot tab introduced
in section 2.3. Here the user can choose two properties from any runsets and
compare them on the scatter plot to explore correlations. The values of the
first chosen parameter get mapped to the x-axis and the second one to the
y-axis. The intersections of the values of each parameter get rendered as
points in the series.

8

Figure 2.4: Scatter plot tab

The scatter plot tab allows for similar customization to settings as the quantile
plot tab. Various drop-down fields give the user control over the following
settings:

• Tweak the auxiliary lines.

• Switch between linear and logarithmic scaling.

• Switch between showing only tasks that are classified as correct or all
tasks.

2.5 Issues with the Previous Implementation
The previous set of functionality and user interface already gave good control
and some powerful visualization tools to the user. Most of these features had
been recently implemented according to requests and feedback by the main
user group of the tool [4]. Yet there were some parts of the current approach
that could be improved to enhance user experience and to reduce efficiency
blockers.

2.5.1 Navigation
The application follows a single page application (SPA) approach that results
in the creation of a single HTML file with its contents being dynamically
updated and rendered on user interaction [6]. This allows the HTML page to

9

be loaded locally via the file:// protocol, without the need of a server to
handle rendering and routing.
This effect became visible when one used the UI to navigate to a different
page: The new page is loaded, but the URL did not change. While this results
in a smooth experience and removes the need for a server to be included in
bundling, the navigation to different pages only happens in code but did not
actually touch the browsers navigation history. The browsers history object
contains information about visited pages in the current session7 and it is this
object that gets used to resolve navigation targets when the user uses the
"Back" and "Forward" buttons in the browsers user interface.

Figure 2.5: Top-level abstraction of the HTML table

The user interface of the application can be abstracted into two main com-
ponents as seen in figure 2.5: The navigation and the content components.
While the navigation component stays the same and is always visible from all
pages, with each click on an item in the navigation menu the content in the
content container will be replaced. Internally this approach was supported by
the react-tabs8 library and modeled (as the name of the library suggests) like
a tab menu in classical graphical user interfaces.

7The session in this context refers to "[...] the pages visited in the tab or frame that
the current page is loaded in." [5]

8https://github.com/reactjs/react-tabs

10

https://github.com/reactjs/react-tabs

As the navigation in the application is handled purely app-internal and did
not alter the history object, the back and forward buttons of the browser
became either non-functional or, in the worst case, might have navigated the
user back to a previously visited page which resulted in a complete loss of
any application state.

2.5.2 Filtering
Filtering the dataset was only possible from the table tab, yet any filters
set in the respective section on the table tab have an effect the application
globally, meaning that the filtering on the table tab also impacts the quantile
and scatter plot. This can be confusing for the user as the separation of the
components using tabs can give the impression that any actions performed
will only be applied to the current scope (e.g the tab, the graph, etc.) as
it is the case with the configuration of the plots as shown in figure 2.3 and
figure 2.4. A more intuitive approach is to make the filtering functionality
part of the global navigation UI (introduced in section 2.5.1) that is visible
on every tab and therefore can get more easily identified as a globally acting
functionality.
Additionally, while the filters affect the table tab and the plot tabs, the statis-
tics table on the overview tab stayed unchanged, even though contextually
the currently relevant data is now the filtered dataset. This is another slight
inconsistency that might add to any existing confusion about the state of the
dataset and the effects of filtering on it.
The actual logic for filtering the dataset with the user supplied parameters
was handled completely by React Table9. This hid any implementation details
and added a hard dependency on React Table which made it harder to move
to any alternate solutions in the future. As React Table has stopped support10

of the currently used version, this might be necessary.

2.5.3 Statistics
Right at the core of the Summary page, the statistics table intends to give
the user detailed information about their runsets in the form of aggregated
statical measures11 that aim at providing a quick overview over the state of
the whole dataset.

9React Table is a data-grid library that is used to render all tables in the application.
https://github.com/tannerlinsley/react-table/tree/v6

10https://github.com/tannerlinsley/react-table#version-6
11Calculated and displayed are: min, max, average, median and standard deviation

11

https://github.com/tannerlinsley/react-table#version-6

These statistics were pre-calculated and prepared in BenchExec and then
loaded as static data in the HTML table.
While this approach has clear positive effects, like reducing the performance
impact to the HTML table by technically outsourcing the calculation of the
statistics and thus mitigating the need to run these potentially expensive
computations during the load of the page in the browser, there are downsides
to this approach.
The issue with this implementation was that it did not react to changes in the
filtered dataset. If a user chooses to filter data, then as this filtered data is
used as a basis for operation in all other consuming components (e.g. plots),
this change should also be reflected in the statistics. The expected behavior
therefore is that if a filter is applied then the statistics will be calculated over
this filtered dataset and ignore data that has been filtered out.

2.5.4 Shareability
As BenchExec is a benchmarking tool that gets regularly used in compe-
titions [1][2], users might work in a team or at least want to share specific
insights that were gained using filtering and/or specific configuration of the
plots with other members or any other interested third party entities. By
providing the option to specifically link to a certain plot this can be improved
further. Previously there was no real way of doing this as any application
state was lost when the page is deleted during refresh or closure of the browser
and is not persisted anywhere.

12

3: New Features

While the discussion of issues in section 2.5 already hinted the high-level
changes that happened in context of this thesis, there were some considerations
to do regarding the order of implementation as well. Additionally, some
changes required more effort and some additional planning to implement
them seamlessly.

3.1 Roadmap & Challenges
With the outcome of the analysis of the previous state of the application in
section 2.5, a list of changes was compiled which needed to be introduced in
the system in order to improve it further.
This list could then be transformed into a roadmap that helped with optimizing
the order of implementation and grouping tasks into logical sets to reduce
context switching. To ensure that this process works, clear definitions of
tasks and their dependencies are required. For example, if we would want
to implement a new UI element for filtering, we would first need to ensure
that the filtering logic is extracted into a global component or that the
interface of the component responsible for handling filtering is at least globally
accessible in a fashion that suits our needs and does not break best practice
recommendations.

3.1.1 Building the Roadmap
In the following the list of tasks for the roadmap will be compiled. Each task
will be described in a tabular form as follows:

Name A short descriptive name that will be used to reference this task
throughout the document

Description A more detailed description of what should be archived with
this task

13

Name Description Grouping Dependencies

Hash routing
Add React Router to
enable the usage of

hash routing
navigation None

Query params

Handle the setting
and retrieval of
query parameters

in the URL

navigation None

Table 3.1: Changes to navigation

Grouping One or more keywords that will be used to assign the task to
logical groups that contain tasks of certain similarity. The top-level
grouping that was done for sections 2.5.1, 2.5.2 and 2.5.4 are good first
candidates for groupings that might be used here.

Dependencies A list of tasks that need to be performed before this task
can be started. Will contain None if the task has no dependencies.

Navigation

The changes to navigation mainly involved the missing implementation of
any altering of the history object as described in section 2.5.1.
In order to make the history object usable there are generally two options
that could be used. As users navigate from page to page in a normal browser
session the pages get added to the browsers history object [12]. Additionally,
the history object also exposes an API that makes manipulation of the state of
the sessions history possible via interaction using javascript [12]. Navigation
was implemented with the help of hash routing which will be introduced in
section 3.2.1. Additionally, changes to configuration are encoded in the query
parameters of the URL. This will be introduced further in section 3.1.3.

There are various libraries that integrate with React that can do this for us.
Two popular1 libraries are Reach Router and React Router. Both solutions
support building a navigation in a declarative manner out of the box2. As

1https://www.githubcompare.com/reacttraining/react-router+reach/router
2React router: Navigating in the example enables the back button of the frame:

https://reactrouter.com/web/example/basic
Reach router: https://reach.tech/router/api/navigate

14

https://www.githubcompare.com/reacttraining/react-router+reach/router
https://reactrouter.com/web/example/basic
https://reach.tech/router/api/navigate

Name Description Grouping Dependencies

Filter algorithm

Create a custom
filter algorithm to

be used by
the application

filtering None

Filter refactoring

Refactor all current
usages of filters
to use the new
implementation

filtering Filter algorithm

Filter multiselect
Add multiselect
functionality for

enumerable columns
filtering Filter refactoring

Filter UI Add global
User Interface filtering filtering

Table 3.2: Changes to filtering

React Router does everything that we need3 and is the more popular solution4,
it was chosen as the navigation backbone.
This boils down to the tasks shown in table 3.1.

3.1.2 Filtering
The changes required for the new implementation of filtering in the HTML
tables of BenchExec’s table-generator can be roughly divided into
three subsections:

Algorithmic implementation The previous approach used React Table’s
included filtering logic. In order to assist decoupling from React Table
as a dependency and to make it easier to extend filtering functionality
as well as being more compliant to Reacts recommended design of
"moving state up" [7], a custom implementation of the filtering logic
was implemented.

Functionality Previously, the filters did not have the ability to select multi-
ple values for enumerable column types.

3Hash routing: https://reactrouter.com/web/api/HashRouter
Query parameters: https://reactrouter.com/web/example/query-parameters

4https://www.githubcompare.com/reacttraining/react-router+reach/router

15

https://reactrouter.com/web/api/HashRouter
https://reactrouter.com/web/example/query-parameters
https://www.githubcompare.com/reacttraining/react-router+reach/router

Name Description Grouping Dependencies

Location encoding
Encode the currently

viewed tab
in the URL

sharing navigation

Hidden columns
encoding

Encode hidden
columns in
the URL

sharing navigation

Quantile plot
config encoding

Encode deviations
from default plot
configuration
in the URL

sharing navigation

Scatter plot
config encoding

Encode deviations
from default plot
configuration
in the URL

sharing navigation

Filter state
encoding

Serialize all set
filters in the

url and deserialize
them when loaded

sharing navigation,
filtering

Table 3.3: Changes to shareability

UI The filter UI was only visible on the table tab but had side-effects for
other pages as well. A UI for filters that is accessible on every page was
implemented

These sections are ordered in the order of implementation, as each section
depends on the implementation of the previous one.
There are no external dependencies to these changes, as they do not access
external logic but get used by other components. This results in the set of
tasks as defined in table 3.2.

3.1.3 Shareability
Users had no direct way of sharing specific application states or views with
other users. The only way to do so was to give other users a guide with steps
to reproduce the same or a similar state.

16

Figure 3.1: Dependency graph of proposed improvements

One set of new features is the ability to share specific views and configurations
in a more intuitive and practical manner via the URL.
In the changes of this paper the following state is now encoded in the URL:

• Tab currently being viewed

• Columns which the user chose to hide from any visualizations (see
section 2.1)

• Configuration for the quantile plot (see section 2.3)

• Configuration for the scatter plot (see figure 2.4)

• Filter state

In order to successfully implement these changes, the handling of location
hashes and query parameters first needed to be implemented, resulting in the
navigation grouping becoming a dependency of this group.
This leaves us with the list of tasks described in table 3.3

3.1.4 List of Improvements
The list of items in table 3.4 can be represented as a directed graph with
the direction of the arrows modelling which other nodes are dependencies.
A→ B would be interpreted as "A depends on B" as can be seen in figure 3.1

17

Name Description Grouping Dependencies

Hash routing
Add React Router to
enable the usage of

hash routing
navigation None

Query params

Handle the setting
and retrieval of
query parameters

in the URL

navigation None

Filter algorithm

Create a custom
filter algorithm to

be used by
the application

filtering None

Filter refactoring

Refactor all current
usages of filters
to use the new
implementation

filtering Filter algorithm

Filter multiselect
Add multiselect
functionality for

enumerable columns
filtering Filter refactoring

Filter UI Add global
User Interface filtering filtering

Location encoding
Encode the currently

viewed tab
in the URL

sharing navigation

Hidden columns
encoding

Encode hidden
columns in
the URL

sharing navigation

Quantile plot
config encoding

Encode deviations
from default plot
configuration
in the URL

sharing navigation

Scatter plot
config encoding

Encode deviations
from default plot
configuration
in the URL

sharing navigation

Filter state
encoding

Serialize all set
filters in the

url and deserialize
them when loaded

sharing navigation,
filtering

Table 3.4: List of all improvements

18

3.2 Implemented new Features
With the list of tasks and their order of implementation that were defined
in the last chapter, this chapter will now focus on the structure and ideas
behind the implementation of each change as well as technical implementation
details.

3.2.1 Hash Routing & Query Parameters
Hash routing uses the URLs fragment portion identified by the hash (#)
symbol and interprets its content to resolve a routing target. The fragment
portion is used to identify a secondary resource to a primary resource [8],
thus setting a fragment portion still references the preceding document and
changes to the portion will usually not result in a reload of the document. In
the following the fragment portion of the URL will subsequently be called
hash part.
As already discussed in section 3.1.1, we will use React Router (subsequently
now called "router") as a routing and navigation state handling framework to
implement hash routing. The router is configured using react components in
a manner as shown in the abstracted code from the HTML table displayed in
figure 3.2.
The application (or a suitable component on a high level of hierarchy) is
wrapped using a <Router> component.
The <Router> component should be the core of every application using React
Router and handles how navigation events are being processed [11]. The
<Router> component itself is a low-level interface which is implement by the
more high-level <BrowserRouter>5 and <HashRouter>6 components. As we
wanted to implement hash routing, the <HashRouter> was chosen for our
purpose. As the configuration of the router is defined in a declarative manner
as seen in figure 3.2, it is easy to configure and to maintain.
Implementing these components was pretty straight-forward as the previous
approach using react-tabs follows a similar structure, with the links in the
navigation section (refer figure 2.5) selecting the active tab and each page
being wrapped in a separate component that gets configured to become active
when the connected tab anchor has been clicked. Similar to React Router the
whole application is wrapped in an overarching component. Because of the
similarities in structure most components just need to be replaced with the
corresponding counterpart, resulting in minimal refactoring work.

5https://reactrouter.com/web/api/BrowserRouter
6https://reactrouter.com/web/api/HashRouter

19

https://reactrouter.com/web/api/BrowserRouter
https://reactrouter.com/web/api/HashRouter

1 <HashRouter >
2 <div className =" overview ">
3 <div className ="links">
4 <Link to="/">Overview </Link >
5 <Link to="/table">Table </Link >
6 <Link to="/ quantile ">Quantile </Link >
7 <Link to="/ scatter ">Scatter </Link >
8 <Link to="/info">Info </Link >
9 </div >
10 <div className ="route - container ">
11 <Switch >
12 <Route exact path="/">
13 <Summary />
14 </Route >
15 <Route path="/table">
16 <Table />
17 </Route >
18 <Route path="/ quantile ">
19 <QuantilePlot />
20 </Route >
21 <Route path="/ scatter ">
22 <ScatterPlot />
23 </Route >
24 <Route path="/info">
25 <Info />
26 </Route >
27 </Switch >
28 </div >
29 </div >
30 </HashRouter >;

Figure 3.2: React Router example JSX code from the HTML table (abstracted)

After the change the router was configured to provide the following routes:

Route Target

/ Overview
/table Table
/quantile Quantile Plot
/scatter Scatter Plot

Following this definition, a URL of file://<path-to-html>/#/ would re-
solve the <Overview> component, while file://<path-to-html>/#/table
would resolve the <Table> component.

20

The usage of the routers <HashRouter> automatically configures the <Link>
components to append the configured path to the hash-portion of the URL
and the <Route> components to read from it.
We do however also require the use of query parameters to assist shareability
as discussed in section 3.1.3. React Router has no distinct way of handling
this. In fact, it is even recommended by the router to use the standard
browser API to access query parameters via URLSearchParams7.
The usage of the standard API however has some limitations in our use-case.
To be consistent with the common usage and positioning of query parameters
in URLs, the URL would need to follow the usual schema like
<protocol>://<hostname>/<path>?<query-parameters>.
This causes some issues. As we do all our navigation via the local filesystem,
we need to store our route information in the hash-portion of the URL. As the
hash-portion is "terminated by the end of the URI" [8], the query parameters,
when positioned after the route in the hash-portion, will be interpreted as
being part of the hash-portion even if it is prefixed by a "?" and thus will
not be picked up by browser provided accessors for the search portion8 of the
URL.
In order to read and modify query parameters, custom getters and setters
were implemented that accesses the parameters via string operations over the
URL received by the global location.href property.

3.2.2 Persistance of Component Configurations in the
URL

Adding the possibility of navigating via the URL as well as persisting infor-
mation via query-parameters that were set up in the previous section now
allows us to move configuration of certain elements or components of the
application into the URL. This configuration will be read during the load
of the page and the application state and components will be configured as
defined in the URL.
Apart from the state representing the curently active tab that was introduced
in form of routes in the last section, some components in these active tabs
also have state that needs to be persisted in the URL.
The components that allow configuration via the URL namely are the <Quan-
tilePlot> and the <ScatterPlot> components. All configuration options
outlined in section 2.3 and figure 2.4 are persisted into the URL if they do
not match default values and are read from the URL during navigation. The

7https://reactrouter.com/web/example/query-parameters
8The portion of the URL containing query parameters

21

https://reactrouter.com/web/example/query-parameters

state of these configuration items is in the form of typical query parameter
key/value pairs like <key>=<value> separated by an ampersand (&) symbol.

The available query parameters that can be used to set the configuration of
components are as follows:

Key Description

hidden<runsetId> Sets the column id of a runset to be hidden.
runsetId is the index of the runset in question

selection Sets the selection configuration for quantile plots
plot Sets the plot configuration for quantile plots
scaling Sets the scaling configuration for quantile

and scatter plots
results Sets the results configuration for quantile

and scatter plots
toolX Sets the tool to select values from for the

X axis of scatter plots
columnX Sets the column to select values from for

the X axis of scatter plots
toolY Sets the tool to select values from for the

Y axis of scatter plots
columnY Sets the column to select values from for the

Y axis of scatter plots
line Sets the aux. lines configuration in scatter plots

3.2.3 Filter Algorithm & Refactoring
The filter functionality is a central part of the tool and useful to pinpoint outlier
values and focus the analytic capabilities of the application onto a certain
subset of the dataset. As explained in section 3.1.2, filtering was only available
from the table view. This was mainly caused by the hard dependency on
react-table for filtering. The steps outlined in table 3.2 consequently removed
this dependency and allow access to the filtering functionality from a globally
accessible component that allows changes to the dataset from any tab of the
application. This component will be introduced in detail in section 3.2.4.

22

The Filter Algorithm

Generally a filtering logic consists of two main inputs: the dataset and the
filters. The purpose of the filter is to remove entries of the dataset that
don’t satisfy the constraints defined in filters. The dataset contains rows that
represent one task. This task might be in more than one runsets. In this case,
the row will contain information for all runsets that it belongs to. Each run
will have one or more describing properties per runset. These are the same
as described in section 2.2. An approach to filtering might be to sequentially
iterate over each cell and then apply any existing constraint for this column
onto them.
Let the amount of rows be n, the amount of total columns be m and the size
of the filters be k.
The approach presented above will iterate over each cell of the table of size
n · m and then needs to iterate over all filters to remove items for each
constraint defined in the filters. This results in a runtime complexity of
O(n ·m · k) which, as this filtering will be done on the fly in the browser, is a
suboptimal approach.
An approach that would allow us to remove one of the largest dimensions n
or m would be more desireable.
To archive this we will create an approach using a reduced version of the
filter list, called a matcher, and then implement a logic that will filter out
any items breaking the constraints in the matcher out of the dataset in one
iteration.
The idea behind the matcher is that the dataset can be represented as a
structure that is grouped by and accessible by different properties (mainly the
runset ID and the column ID are used for filtering), thus we can use these IDs
to directly retrieve the constraints from the matcher object by direct access,
mitigating the need to iterate over all cells. The selection of the columns in
each row then is constant.
The global filter object will be added on top of the already existing filter
component on the table tab. In order to ensure that both solutions are
compatible, the matcher object will be constructed from the array of filter
objects that are generated internally by react-table.
As the IDs of both the runset and the column are already present in these
objects, reducing an array of filter objects into one is a simple task. For the
special case of numerical range filters first introduced in section 2.2 we will
introduce two new properties, min and max, to remove the need of parsing the
raw range filter string on each iteration. A point to consider here is that the
syntax of the range filters allows for shortcuts like "123:" or ":", translating
into "All values bigger than or equal to 123" and "All values" respectively.

23

One of the requirements for the filter algorithm is the ability to handle multi-
select filters9. This results in two different connections for filters depending
on their grouping in the matcher object: All constraints within the same
column of a run should be disjuncted to allow the multi-select behavior, all
constraints across columns of the same run should be conjuncted.
The algorithm introduced looks as follows: (a|| = b is short for a = a||b,
a& = b is short for a = a&b)

9https://github.com/sosy-lab/benchexec/issues/481

24

https://github.com/sosy-lab/benchexec/issues/481

1: for row in dataset do
2: if matcher.id exists then
3: if row.id !matches matcher.id then
4: remove row
5: end if
6: end if
7: for runset in matcher do
8: columnPass = false
9: categoryPass = false

10: statusPass = false
11: for column in matcher[runset] do
12: for filter of matcher[runset][column] do
13: if filter.min exists or filter.max exists then
14: value = row[runset][column].value
15: columnPass|| = value ≥ min&value ≤ max
16: else if isCategory(filter) then
17: value = row[runset][column].value
18: categoryPass|| = value == filter.value
19: columnPass = categoryPass&statusPass
20: else if isStatus(filter) then
21: value = row[runset][column].value
22: statusPass|| = value == filter.value
23: columnPass = categoryPass&statusPass
24: else
25: value = row[runset][column].value
26: columnPass|| = value == filter.value
27: end if
28: if columnPass == true then
29: break
30: end if
31: end for
32: if columnPass == false then
33: remove row
34: end if
35: end for
36: end for
37: end for

Figure 3.3: New algorithm used for filtering

25

Using the approach in figure 3.3 we only iterate over the rows of the dataset
and then over the set constraints of the filters. Columns will be accessed
directly via the corresponding property of the row, resulting in a complexity
of O(n · k), removing the factor m. As factor m was one of the two biggest
factors, this results in an improved performance in most cases.

Refactoring and Challenges

To make the new algorithm, which is running in a top-level component, and
the old filter selectors that are embedded in the table component compatible,
two refactorings were necessary. Firstly, the previous filter functionality that
was handled by react-table was completely disabled. All filtering is now
handled using the new algorithm, yet we still want to keep the functionality
of setting filters via the column headers of the table.
The column headers of the table contain components that allow for the
creation of filters as introduced in section 2.2. This is important as users that
are used to applying filters using the table tab or just feel more comfortable
doing it there can still use the same functionality even though, under the
hood, a different algorithm is being used.
This leads to the second refactoring. The state of the dataset was kept in two
different places. React-table kept a reference to the original, unfiltered dataset.
When filtering in the table component occurs, the results of this filtering
algorithm along with the applied filters were passed back to the Overview
component which then replaced its internal data state object with the filtered
result.
To ensure compatibility between the newly created algorithm and the table, the
filters that get created by the column headers get intercepted and redirected
to the new filter algorithm. The results of the execution of the algorithm
will then be applied to the global data state object. Lastly, the react-table
component will receive a reference to the currently filtered data as well as
the currently set filters. As we have disabled the filtering functionality of
the table component previously, the state of the global filtered data and the
dataset that is handled internally in the table component are equal. This is a
crucial requirement for the newly added global filter user interface.

3.2.4 Extending the User Interface
In order to show an exhaustive list of all available filters, a lot of UI space
would be needed for more complex tables. This has two implications. First,
we need a component that provides a lot of available space for the filters.
Second, as the list of available filters grows with the complexity of the table

26

and might result in a big list of filters to chose from, it would provide better
user experience to not show all options in the beginning but to let the user
add them when needed.

Figure 3.4: The new filter button

In the top right corner of the navigation UI is a component that displays
the number of selected items in the dataset. This can be seen in figure 3.4.
As filtering the dataset will have direct impact on this component and as it
gives the user an idea on the size of the currently filtered data, the button to
access the filters has been merged with it. To make this more obvious to the
user, an icon hinting the filter functionality has been added. When the user
clicks the button, a sidebar will slide in from the right. This sidebar gives
the user an overview of all currently set filters and also allows the addition of
filters when necessary.

27

Figure 3.5: Opened filter component

The header at the top of the sidebar in figure 3.5 gives the user the overview of
selected vs. available tasks in the same way that the toggling button provides.
The user may slide the sidebar back out of view by pressing the X button on
the left side of the header. With a click of the trashcan icon on the right side
of the header all constraints can be removed and thus the filter will be reset
to its initial state.

28

Figure 3.6: Task-ID filter in the table tab

Figure 3.7: Task-ID filter in the filter component

Below the header the user will find an "ID-Filter", which will add a filter
constraint for a task-ID (refer to section 2.2). This constraint will be applied

29

over all runsets, as the task-ID is static. With the new global filter component
users are now able to specifically filter specific parts of the task-ID. The
task-ID may be a construct of different properties, for example "task name"
and "expected verdict". Previously the ID was only filterable as a whole,
the user was unable to apply filters to different parts as seen in figure 3.6.
This is now improved in the new filter component, as users are given the
option of applying more granular filters on the task-ID by allowing the setting
of different constraints on each different part of the task-ID as shown in
figure 3.7.
Below the ID-Filter section, one section per runset is shown. These sections
are identified by a header string that contains the name of the runset. In
each of these sections the user can create a constraint for any of the runsets
columns. These constraints are conjuncted and are applied to the individual
runset.
When a user chooses to create a new constraint, a card component will be
rendered as can be seen in figure 3.5. This card component can be seen as a
logical and visible wrapper of an underlying constraint. The input fields in
the card component will be chosen depending on the type of the data that
gets represented in the column that this constraint is applied to.
The inputs can be one of:

• Checkboxes for enumerable values

• A slider with two handles and two numeric input fields to select a range
for numeric values

• A text-box for text filtering of strings

Visual representations of these input types can be referenced in figure 3.8.
As we have implemented the new filtering algorithm the checkboxes can now
allow the selection of multiple values, which has been a requested feature10.
Like discussed in the previous section, these values will be disjuncted during
evaluation of the constraints.
As numeric values are filtered by setting a specific interval of valid values, a
slider with two handles has been implemented for numeric values to help with
setting numeric filters more quickly. This presentation of the filter visually
emphasizes the functionality of the filter itself and additionally also gives
instant feedback to how the currently selected filter range relates to the total
range of all values of the dataset. When the user moves the slider, the input
fields will update with the representative values and vice-versa.

10https://github.com/sosy-lab/benchexec/issues/481

30

https://github.com/sosy-lab/benchexec/issues/481

Figure 3.8: Input types for filters

String filters are represented by a text input field that allows the user to
perform a text search over all strings of a certain column in the dataset.

By ensuring compatibility in the implementation step of the new filter algo-
rithm in the previous section, the filter state of the table component and the
filter state of the sidebar are synchronized.
The user can choose to remove a single constraint by pressing the trashcan
icon on the top-right corner of each FilterCard or delete all set filters by
pressing the trash can icon on the top right of the sidebar. Another merit of
moving the state and implementation of the filter functionality up is that we
now have the option to also serialize the filter state in the url to both allow
users to share the state of a filter to third parties and to make keep track of
set filters in the browser history and therefore tying an "undo" functionality

31

to the browsers back button.

3.2.5 Serialization of Filters
Following the core concept of moving as much state as possible into the URL
as introduced in section 3.1.3, filters are now serialized in the URL. The serial-
ization works by transforming the filter state into a declarative representation
of the filters that is also human readable. The filters are represented using
the following grammar:

[idFilter ","]runsetFilter {"," runsetFilter}
with
idFilter := "id(values(" value {"," value} "))"

runsetFilter := runsetId "(" columnFilter {"," columnFilter} ")"

columnFilter := columnId "*" name "*(" filter ")"

filter := valueFilter|statusColumnFilter

valueFilter := "value(" value ")"

statusColumnFilter := statusFilter|categoryFilter|
(statusFilter "," categoryFilter)

statusFilter := "status(" ("in(" value {"," value} ")"|
"notIn(" value {"," value} ")"|"empty()") ")"

categoryFilter := "category(" ("in(" value {"," value} ")"|
"notIn(" value {"," value})|"empty()") ")"

value := ? urlencoded terminal value ?

runsetId := ? id of the runset to apply the filter to ?

To help minimizing the length of the serialized string while still being able
to represent the values in a understandable way, enumerable value types are
either represented using the keywords in or notIn. If more than half of all
values are selected, notIn will be used to represent the filter, as the amount of
non-selected items will be less. Otherwise, in will be used. For example, if a

32

table has three different status values (true, false, error) and only true is se-
lected, it would result in 1(0*status*(statusFilter(in(true))), whereas
if error and false are selected the serialization would be
1(0*status*(statusFilter(notIn(true))). The serialized string can rep-
resent all different column types by encoding their raw input values directly
into the url as so: 1*cputime*(value(%3A1120))).

3.2.6 Statistic Calculations via Workers
Another side-effect to the extraction of filters into a top-level component of the
application is that any other components can subscribe to receiving filtering
results from it. This allowed for the addition of a feature that has been
requested11, which is the recalculation of the previously statically included
statistics that are shown own the Overview Page in the Statistics Table.
Statistics now automatically get recalculated whenever the dataset has been
filtered. As we need to calculate these statistics additionally to the filtering
over the whole dataset, calculation has been off-loaded to web workers12.
JavaScript is executed in a single thread in the browser, the main thread. The
main thread handles the execution of reflows, garbage collection, JavaScript
execution and layout [9]. As JavaScript is run on the same thread that handles
the painting of the page, any long running, blocking scripts may freeze up
the page and restrict the rendering and interactivity of the UI. Web workers
(subsequently named workers) are separate scripts that are each executed
in separate threads [13]. By nature of the execution of workers in separate
threads, communication with the workers and other workers or the main
thread is done via messages 13.
As aggregations for the statistics are computed on a per-column level, we
are able to split the filtered data set by column and then calculate the aggre-
gations for each column in parallel. By splitting the calculation in smaller
chunks we are also increasing performance, as multiple results are calculated
simultaneously as well as reducing the load on each worker instance by mini-
mizing the work it needs to do in one execution. As there is some overhead
attached to the creation of workers, a pool of workers will be created at the
first load of the application. Workers in this pool will receive jobs and return
to an idle state after completing each job, making them re-usable. A job in
this context is the calculation of statistics for a column of the filtered dataset
and the job is considered complete once the calculation of statistics are done

11https://github.com/sosy-lab/benchexec/issues/125
12https://developer.mozilla.org/de/docs/Web/API/Worker
13https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/

Using_web_workers#sending_messages_to_and_from_a_dedicated_worker

33

https://github.com/sosy-lab/benchexec/issues/125
https://developer.mozilla.org/de/docs/Web/API/Worker
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers#sending_messages_to_and_from_a_dedicated_worker
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers#sending_messages_to_and_from_a_dedicated_worker

1 // enqueue is an exposed method of the WorkerDirector which
handles the creation ,

2 // delegation , and processing of jobs
3 import { enqueue } from ’workerDirector ’;
4
5 // The property "name" is the identifier of the pool to use.
6 // The property "data" is the data that a worker should

process
7 const job = enqueue ({ name: ’stats ’, data });
8
9 // as jobs are wrapped in a Promise , we can suspend the

current code block and await completion
10 const result = await job;

Figure 3.9: Example of the usage of the WorkerDirector module

and results have been received on the main thread. If no free workers are
available when a job is received, it will be put into a queue and processed
once a worker completes a job and becomes available again.
This method is implemented using a new module, the WorkerDirector, which
acts as an orchestrator managing the queue of incoming batches of data and
distributes them to a pool of workers as jobs. The WorkerDirector is set-up
to be able to handle different pools containing different implementations
of workers, which makes offloading other potentially expensive tasks in the
future easy. Each scheduled Job that gets put into the queue is wrapped in a
JavaScript Promise which enables us to use JavaScripts native asynchronous
API to handle the asynchronous nature of such scheduled jobs as displayed
in figure 3.9.

34

4: Evaluation

All of the changes and added features that are outlined in this paper involve
significant changes to how data is handled in the whole application. While
removing the coupling between dependencies gives a lot of freedom in terms
of responding to change, we also add functionality that sits on top of the
extracted code and we might have removed any internal optimizations of
dependencies like react-table to reduce render times, as the components now
no longer handle filtering and data changes internally. This chapter discusses
the gained capabilities versus penalties in performance by comparing different
versions of the application via benchmarks. The code to set-up, run and
process the benchmarks is publicly available1. The tests are run using cypress2,
a frontend testing tool. As cypress runs the test in an actual browser, we are
able to get reliable results as render times are included in the timings of each
test.

4.1 Setup
The tables to be tested against were generated using two versions of the
BenchExec tool, one before3 the implementations discussed in this paper
(referenced as old in the plots) and one after4 all changes had been implemented
(referenced as new). The data that is used by the TableGenerator is
randomly generated for each benchmarking run. Each table has 15 columns
and the number of rows will be increased in increments of 1,000 with runs
being executed for numbers of rows spanning from 1,000 to 58,000. We
execute the benchmarking task (for example testing the numeric filters) 10
times each and will store the raw results as well as aggregated results in a
JSON file. These files are then transformed into csv files for further analysis.

1https://github.com/DennisSimon/benchexec-benchmarks
2https://www.cypress.io/
3Commit shorthash: 99470a
4Commit shorthash: 072d3da

35

https://github.com/DennisSimon/benchexec-benchmarks
https://www.cypress.io/

4.2 Benchmarking of Filters
The changes to the filter logic have the biggest impact to the application
overall as most components consume the resulting dataset. In the following
we will observe the changes in performance for filtering:

• Numeric filters

• Enumerable filters using status and category fields

• Task-ID filters
The test is performed by first navigating to the Table tab and then enter a
value to be filtered by. The time from the start of the input of the value to
the UI components being updated with the new values will be used as timing
data for the benchmarks. It is worth noting that as these timings include the
render time as well, there might be further improvements to reducing render
costs of the table in the case when filtered data is provided externally, this
however is not investigated in this paper.

0 10,000 20,000 30,000 40,000 50,000 60,000

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

Number of rows

T
im

e
in

m
s

new
old

Figure 4.1: Average computation time of numeric filters per number of rows

36

0 10,000 20,000 30,000 40,000 50,000 60,0000

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

Number of rows

T
im

e
in

m
s

new
old

Figure 4.2: Average computation time of status filters per number of rows

As can be seen in figure 4.1, testing of numeric filters produced a rather
noisy result which might be caused by the random generation of numeric
values in the test tables. The regression lines are diverging from each other,
resulting in performance penalties of around roughly 1.5 - 2x for the new
filter implementation on large tables.

The performance of the status filters in figure 4.2 are closer to the original
implementation with the divergence of the regression lines being a lot smaller
than the numeric filters. The benchmark results also are less noisy, apart
from a sudden spike in execution time for the old implementation starting at
55,000 rows. This spike has been observed over multiple benchmarking runs
and has been consistent.

The execution of times of the task-ID filters shown in figure 4.3 are similar.
The regression lines are only diverging by a small amount. The benchmarking
data has as notable spike for the execution times of the old implementation

37

0 10,000 20,000 30,000 40,000 50,000 60,000

0

2,000

4,000

6,000

8,000

10,000

Number of rows

T
im

e
in

m
s

new
old

Figure 4.3: Average computation time of task-id filters per number of rows

between 44,000 and 54,000 number of rows. A similar spike is observable
for the new implementation at 43,000 number of rows but it managed to
normalize again at 44,000 number of rows.

38

0 10,000 20,000 30,000 40,000 50,000 60,0000

100

200

300

400

Number of rows

T
im

e
in

m
s

execution time

Figure 4.4: Average computation time of statistics

4.3 Benchmarking of Statistics Calculation
The calculation times for statistics in figure 4.4 vary between 99 and 372
milliseconds. As all results are in the sub-second area, the user experience
should not be impacted negatively by this change [10].

4.4 Result Evaluation
When comparing all results discussed in the the previous sections we can see
that the newly implemented filters have some performance penalty attached
and get out-performed by the solution native to react-table.
The cause for this penalty likely is related to now missing internal optimization
in react-table, forcing a complete re-render of the whole table on change.
The additional features that were introduced by the changes however out-
weigh the penalties, as the features greatly enhance the usability of the tool

39

and allow for further optimization and development of new features in the
future.
As calculations of statistics are in the sub-second area and statistics are
rendered below the fold on navigation to the overview tab by default, the
results are acceptable.

40

5: Conclusion & Future Work

The goal of this thesis was to enhance the functionality and user experience
of the BenchExec HTML tables and to provide changes to functionality
in a modular, maintainable and extendable way. Some functionalities, like
the handling of state in the URL, are already extended by others1, showcas-
ing that the goal of re-usability and extendability is already met. As the
implementation process of the features described was an iterative one, many
features are already actively being used by users. The feedback received was
positive, with the serialization of state in the URL and the hash routing being
mentioned the most.
Another big goal of the thesis was to extend the filters. These are now globally
accessible in the application and provide new features and improvements
like the redesign of the UI, multi-selection of enumerable values and the
ability to retrieve and set filter configurations from the URL, adding value
for distributed teams.
The work described in this paper adds a lot of new functionality and can also
be used as the foundation for other improvements to come. As the handling
of filtering, state management and statistics calculation is now done within
the application, there can be many interesting additions to it. As seen in
section 4.2 there are still topics to explore for further improvements, especially
regarding the numeric filters.
For example the performance loss on the Table page is, as already discussed,
likely due to the loss of internal optimization of react-table causing a lot of
unnecessary render cycles which i could not completely mitigate yet. Providing
a implementation with strong memoization strategies to reduce the number
of renders could improve the perceived performance of the filters on the Table
page by reducing raw render time.
Currently the worker pool for the statistics calculation is hard-coded to
include 8 workers. This amount of workers might be too less or too much
depending on the system and the amount of columns in the table. Providing
a dynamic pool size depending on the dataset and the available resources of

1https://github.com/sosy-lab/benchexec/pull/582

41

https://github.com/sosy-lab/benchexec/pull/582

the system running the HTML table could be an interesting topic for research
to optimize the use of workers. Another angle to consider would also be the
off-loading of other tasks, like filtering or other calculations, to workers and
observing if a increase in performance could be achieved.
Lastly, the development of the HTML tables is not completed and, as software
development is a iterative process, will likely see many additional changes,
including changes to the features described in this paper, in the future.

42

Bibliography

[1] Dirk Beyer. “Advances in Automatic Software Verification: SV-COMP
2020”. en. In: Tools and Algorithms for the Construction and Analysis
of Systems. Ed. by Armin Biere and David Parker. Vol. 12079. Series
Title: Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2020, pp. 347–367. isbn: 978-3-030-45236-0 978-3-030-45237-
7. doi: 10 . 1007 / 978 - 3 - 030 - 45237 - 7 _ 21. url: http : / / link .
springer.com/10.1007/978-3-030-45237-7_21 (visited on 2021-04-
04).

[2] Dirk Beyer. “Software Verification: 10th Comparative Evaluation (SV-
COMP 2021)”. en. In: Tools and Algorithms for the Construction and
Analysis of Systems. Ed. by Jan Friso Groote and Kim Guldstrand
Larsen. Vol. 12652. Series Title: Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2021, pp. 401–422. isbn: 978-3-
030-72012-4 978-3-030-72013-1. doi: 10.1007/978-3-030-72013-1_24.
url: http://link.springer.com/10.1007/978-3-030-72013-1_24
(visited on 2021-04-04).

[3] Dirk Beyer, Stefan Löwe, and Philipp Wendler. “Reliable Benchmarking:
Requirements and Solutions”. In: International Journal on Software
Tools for Technology Transfer (STTT) 21.1 (2019), pp. 1–29. doi: 10.
1007/s10009- 017- 0469- y. url: https://www.sosy- lab.org/
research/benchmarking/.

[4] Laura Bschor. Modern Architecture and Improved UI for Tables of
\sc BenchExec. Published: Bachelor’s Thesis, LMU Munich, Software
Systems Lab. 2019.

[5] Mozilla MDN contributors. History - Web APIs | MDN. url: https:
//developer.mozilla.org/en-US/docs/Web/API/History (visited
on 2021-01-09).

[6] Mozilla MDN contributors. SPA (Single-page application) - MDN Web
Docs Glossary: Definitions of Web-related terms | MDN. url: https:

43

https://doi.org/10.1007/978-3-030-45237-7_21
http://link.springer.com/10.1007/978-3-030-45237-7_21
http://link.springer.com/10.1007/978-3-030-45237-7_21
https://doi.org/10.1007/978-3-030-72013-1_24
http://link.springer.com/10.1007/978-3-030-72013-1_24
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://www.sosy-lab.org/research/benchmarking/
https://www.sosy-lab.org/research/benchmarking/
https://developer.mozilla.org/en-US/docs/Web/API/History
https://developer.mozilla.org/en-US/docs/Web/API/History
https://developer.mozilla.org/en-US/docs/Glossary/SPA
https://developer.mozilla.org/en-US/docs/Glossary/SPA

//developer.mozilla.org/en-US/docs/Glossary/SPA (visited on
2021-01-09).

[7] GitHub contributors. Lifting State Up – React. en. Documentation. url:
https://reactjs.org/docs/lifting-state-up.html (visited on
2021-01-20).

[8] Larry Masinter, Tim Berners-Lee, and Roy T. Fielding. Uniform Re-
source Identifier (URI): Generic Syntax. en. url: https://tools.
ietf.org/html/rfc3986#section-3.5 (visited on 2021-01-22).

[9] Mozilla MDN contributors.Main thread - Definition | MDN. url: https:
//developer.mozilla.org/en-US/docs/Glossary/Main_thread
(visited on 2021-04-09).

[10] Jakob Nielsen. Response Time Limits: Article by Jakob Nielsen. en.
url: https://www.nngroup.com/articles/response- times- 3-
important-limits/ (visited on 2021-03-14).

[11] react-router GitHub contributors. React Router - Router Component.
en. url: https://reacttraining.com/react- router (visited on
2021-01-22).

[12] W3C Organisaton. 6.10 Session history and navigation — HTML 5.
url: https : / / dev . w3 . org / html5 / pf - summary / history . html
(visited on 2021-01-10).

[13] Web Hypertext Application Technology Working Group. HTML Stan-
dard - Web Workers. url: https://html.spec.whatwg.org/#workers
(visited on 2021-04-09).

44

https://developer.mozilla.org/en-US/docs/Glossary/SPA
https://developer.mozilla.org/en-US/docs/Glossary/SPA
https://reactjs.org/docs/lifting-state-up.html
https://tools.ietf.org/html/rfc3986#section-3.5
https://tools.ietf.org/html/rfc3986#section-3.5
https://developer.mozilla.org/en-US/docs/Glossary/Main_thread
https://developer.mozilla.org/en-US/docs/Glossary/Main_thread
https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.nngroup.com/articles/response-times-3-important-limits/
https://reacttraining.com/react-router
https://dev.w3.org/html5/pf-summary/history.html
https://html.spec.whatwg.org/#workers

List of Figures

2.1 Summary page . 6
2.2 table tab . 7
2.3 Quantile plot tab . 8
2.4 Scatter plot tab . 9
2.5 Top-level abstraction of the HTML table 10

3.1 Dependency graph of proposed improvements 17
3.2 React Router example JSX code from the HTML table (ab-

stracted) . 20
3.3 New algorithm used for filtering 25
3.4 The new filter button . 27
3.5 Opened filter component . 28
3.6 Task-ID filter in the table tab 29
3.7 Task-ID filter in the filter component 29
3.8 Input types for filters . 31
3.9 Example of the usage of the WorkerDirector module 34

4.1 Average computation time of numeric filters per number of rows 36
4.2 Average computation time of status filters per number of rows 37
4.3 Average computation time of task-id filters per number of rows 38
4.4 Average computation time of statistics 39

45

List of Tables

3.1 Changes to navigation . 14
3.2 Changes to filtering . 15
3.3 Changes to shareability . 16
3.4 List of all improvements . 18

46

	Introduction & Motivation
	Existing Solution
	Summary Tab
	Table Tab
	Quantile Plot Tab
	Scatter Plot Tab
	Issues with the Previous Implementation
	Navigation
	Filtering
	Statistics
	Shareability

	New Features
	Roadmap & Challenges
	Building the Roadmap
	Filtering
	Shareability
	List of Improvements

	Implemented new Features
	Hash Routing & Query Parameters
	Persistance of Component Configurations in the URL
	Filter Algorithm & Refactoring
	Extending the User Interface
	Serialization of Filters
	Statistic Calculations via Workers

	Evaluation
	Setup
	Benchmarking of Filters
	Benchmarking of Statistics Calculation
	Result Evaluation

	Conclusion & Future Work

