
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis

cgroups v2 Support for benchexec

Robin Gloster

Supervisor: Prof. Dr. Dirk Beyer
Mentor: Dr. Philipp Wendler
Submission date: 2022-01-17





Abstract

The Linux kernel developers have reimplemented the cgroup feature due to shortcomings
in its original implementation and the most common Linux distributions have switched to
version two (v2). BenchExec is a tool by the University of Munich that uses cgroup and
namespacing to reliably benchmark processes and effectively limit their resource usage. It
currently only supports cgroup version one (v1) and in order to ensure its compatibility with
modern systems, needs to be updated to also support v2. The author implemented cgroup
v2 support for BenchExec. This thesis explains the implementation decisions taken during
the upgrade and evaluates the changes to show that v2 support is as effective as v1 support.

iii





Contents

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 cgroup Fundamentals 3
2.1 cgroup Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 kill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 Pressure Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 cgroup v1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Reasons for cgroup v2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Multiple Hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Processes in Inner Nodes . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.3 Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Unified Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.1 Resource Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.2 No Processes in Inner Nodes . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.3 Delegation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.4 Permission Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.5 cgroup v2 Adoption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 cgroup and systemd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Background on BenchExec 15
3.1 cgroup Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 cgroup Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Changes to BenchExec for cgroup v2 17
4.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 General Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 cgroup Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 Library to interact with systemd . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.4.1 Available Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4.2 Interaction with systemd . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.5 Differences of Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.6 PSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Evaluation 23
5.1 Regular Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Feature Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Related Work 25

v



Contents

7 Conclusion 27
7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

List of Figures 29

Bibliography 31

vi



1 Introduction

Control Group (cgroup) is a Linux kernel feature to organise and group processes hierarchi-
cally and is used to monitor and limit resources of those processes. This is utilised extensively
in BenchExec, a tool developed by the University of Munich aiming to reliably benchmark
processes. It is employed in competitions such as the International Competition on Software
Verification and is available open source as a general purpose benchmarking tool.1 cgroup
lets BenchExec collect exact metrics of resources used by a group of processes that are
benchmarked, as well as to limit available resources. It also ensures that the processes can
reliably be terminated. Therefore BenchExec is a state-of-the-art tool for benchmarking,
with no viable alternatives using the Linux operating system to achieve this functionality. [1]

Due to shortcomings and inconsistencies in the implementation of cgroup, a version 2 has
been developed and most major Linux distributions have switched the default to the new
version. BenchExec so far does not support this. To further ensure compatibility with
modern operating systems, BenchExec needs to implement cgroup v2 support. The aim of
this thesis is to add such support, detailing implementation decisions and their justifications.

1.1 Overview
This thesis consists of six further chapters. The following, Chapter 2, explains necessary
knowledge of cgroup and Chapter 3 background on BenchExec and its usage of cgroups.
Chapter 4 details the requirements of the implementation and the actual changes undertaken,
which is then evaluated in Chapter 5. This is followed by comparison and examination of
related work in Chapter 6 and finally Chapter 7, with a look at the outcome and an outlook
for possible future improvements.

1https://github.com/sosy-lab/benchexec

1

https://github.com/sosy-lab/benchexec




2 cgroup Fundamentals

The Linux kernel includes a mechanism called Control Group, often abbreviated to cgroup,
to group processes together and organise these groups in a hierarchy. Among these groups
system resources can be distributed and metrics on their usage are provided. Development
started in 2006 at Google [2], then called Process Containers, later renamed to cgroup to
avoid confusion with Linux containers. The initial release was in Linux 2.6.24. Due to issues
in the first implementation, Linux 4.5 included the public release of cgroup v2 [3].

In conjunction with namespaces they are used to create the basis for containers, making
LXC, systemd-nspawn, Docker, Kubernetes and other similar systems possible [4].

Interaction with cgroup is done through a virtual file system called cgroupfs.
/sys/fs/cgroups has become a de facto default path to mount it on, because systemd—the
most common init system for Linux—uses that path. A new control group is created as
a subdirectory in the file system tree and processes can then be moved to it. Initially all
processes are added to the root of the cgroup hierarchy and a child process of a fork()
inherits the parent’s cgroup membership.

A large advantage of using cgroup, in comparison to interacting with a number of processes
individually or by other means, is that the interaction can happen atomically and race-free.

2.1 cgroup Features

2.1.1 Subsystems

Different subsystems, also called controllers, make up the cgroup system and are configured
or return information on the resources they control in files in the file system hierarchy. All
interaction of the user with the controllers are regular Unix file operations.

blkio/io

The blkio subsystem in v1 and its successor io in v2 can limit read and write operations,
and bandwidth on block I/O devices, and give information on those.

cpuset

With the cpuset controller, processes can be pinned to specific CPU cores and, in case of a
CPU architecture with non-uniform memory access (NUMA), to memory nodes.

cpu & cpuacct

The cpuacct controller provides information on CPU usage of the processes in the cgroup,
the cpu controller on the other hand, regulates distribution of CPU cycles between cgroups.
In cgroup v2 they are merged to a single cpu controller.

3



2 cgroup Fundamentals

memory

The memory controller makes it possible to set limits on memory and swap. It also gives
information on memory and swap usage and provides a mechanism to recognise out-of-
memory (OOM) situations and react to them without necessarily having the kernel OOM
killer invoked.

pid

Introduced in Linux 4.3 the pid controller gives information on the current number of pro-
cesses and can limit the maximum number of processes in the cgroup. This subsytem can
protect the system from forkbombs, where processes create an exponentially growing number
of further processes, stalling the machine.

freezer

Originally a regular controller freezer in v1, in v2 this feature has become a cgroup utility,
available to all cgroups throughout the hierarchy, without having to enable it specifically. It
creates the possibility to freeze and thaw all processes of the cgroup and is therefore similar
to sending SIGSTOP and SIGCONT to the processes, however, it acts atomically on the whole
group.

2.1.2 kill
In Linux 5.14 a similar utility to freezer, kill has been introduced to cgroup v2 [5], which
lets a single write operation to a file, kill all processes in the cgroup. It sends SIGKILL to all
processes and makes it impossible for them to create new processes, stopping all forking.

2.1.3 Pressure Metrics
In cgroup v2, a number of controllers, i.e. cpu, io and memory collect Pressure Stall
Information (PSI) [6, 7]. The information provides insight into bottlenecks caused by one
of the above resources. These PSI metrics are supplied as two types called some and full.
They are measured and returned as averages over the last 10 seconds, 1 and 5 minutes. A
total is provided additionally, the amount of milliseconds the processes are stalled since
creation of the cgroup.

0 1 2 3 4 5 6 7 8 9

Task A

Task B

(a) full=10.0 some=60.0

0 1 2 3 4 5 6 7 8 9

Task A

Task B

(b) full=20.0 some=50.0

Figure 2.1: PSI 10-second example

Figure 2.1 shows two examples of stalled tasks. Both show Task A stalled from the
timespan of 3 to 7 seconds. The first in Figure 2.1a additionally has Task B stalled during

4



2.2 cgroup v1

the span of 2 to 4 seconds. Looking at the 10-second metric full equates to 10.0, because
the timespan of all tasks being stalled at the same time is 1 second or 10 per cent of the
time. The metric some is 60.0, because at least one task is stalled for 6 seconds or 60 per
cent of the time. In Figure 2.1b full is 20.0 and some is 50.0.

2.2 cgroup v1

In cgroup v1 [8] every subsystem can be mounted at a separate mount point, or multiple
controllers can be combined in one mount point, each mount point equating to one hierarchy.
Having one mount point for each subsystem is equally possible, as well as having all attached
to the same hierarchy.

In practice most Linux distributions mount all controllers separately, except for combining
cpu & cpuacct and net cls & net prof.

Mounting one controller is done by:

$ mount --types cgroup --options memory none /sys/fs/cgroup/memory

Mounting multiple controllers at once:

$ mount --types cgroup --options cpu,cpuacct none /sys/fs/cgroup/cpu,cpuacct

It is, however, never possible to mount one controller on multiple hierarchies. Another
possibility is mounting a cgroup hierarchy without controllers. There can be multiple as
long as their names are unique. This mechanism can be used by any software to organise
processes hierarchically. systemd tracks user sessions and services in a hierarchy that has no
controllers attached.

$ mount --types cgroup --options none,name=example none /sys/fs/cgroup/example

A child cgroup is created by creating a directory in the cgroup file system. Processes are
then moved to the cgroup by writing the PID to the tasks file. The special variable $$ in
the example is the PID of the current shell.

$ mkdir /sys/fs/cgroup/memory/bar
$ echo $$ > /sys/fs/cgroup/memory/bar/tasks

Reading the tasks file returns the PIDs attached to the cgroup, one per line. Each process
can at all times only belong to one cgroup per hierarchy.

A child cgroup can subsequently be deleted by removing the directory, if it contains no
non-zombie processes.

$ for p in $(</sys/fs/cgroup/memory/bar/tasks); do
echo $p > /sys/fs/cgroup/memory/tasks

done
$ rmdir /sys/fs/cgroup/memory/bar

5



2 cgroup Fundamentals

Information on the cgroups of a process is read from /proc/$PID/cgroup for a given PID
or /proc/self/cgroup for the information on the querying process itself. The information
given is the mounted hierarchies, then per line the hierarchy ID, list of controllers and the
relative path to the cgroup in the hierarchy. A typical user shell in a cgroup-v1-only Ubuntu
21.04 could look like the example in Figure 2.2.

12:blkio:/user.slice
11:rdma:/
10:perf_event:/
9:cpu,cpuacct:/user.slice
8:cpuset:/
7:memory:/user.slice/user-1000.slice/session-38.scope
6:pids:/user.slice/user-1000.slice/session-38.scope
5:devices:/user.slice
4:hugetlb:/
3:freezer:/
2:net_cls,net_prio:/
1:name=systemd:/user.slice/user-1000.slice/session-38.scope

Figure 2.2: Example /proc/PID/cgroup

The mounted cgroup hierarchies can be read from /proc/cgroups (see Figure 2.3), the
fields in the output are the controller’s name, the unique hierarchy ID, the number of cgroups
in the hierarchy and whether the controller is enabled.

#subsys_name hierarchy num_cgroups enabled
cpuset 8 3 1
cpu 9 100 1
cpuacct 9 100 1
blkio 12 100 1
memory 7 168 1
devices 5 100 1
freezer 3 4 1
net_cls 2 1 1
perf_event 10 1 1
net_prio 2 1 1
hugetlb 4 1 1
pids 6 106 1
rdma 11 1 1

Figure 2.3: Example /proc/cgroups

The mount points of the hierarchies, like any other in Linux, can be read from /proc/mounts.
For an example of a number of mounted cgroup v1 hierarchies and their contents, see

Figure 2.4.

6



2.2 cgroup v1

/sys/fs/cgroup/
blkio/

tasks
blkio.throttle.io service bytes
[...]

cpu -> cpu,cpuacct
cpu,cpuacct/

tasks
cpu.stat
cpuacct.usage percpu
system.slice/

tasks
cpu.stat
postgresql.service/

tasks
cpu.stat
[...]

[...]
[...]

cpuacct -> cpu,cpuacct
freezer/

[...]
memory/

[...]
systemd/

tasks
system.slice/

tasks
postgresql.service/

tasks
[...]

[...]
[...]

[...]

Figure 2.4: Shortened cgroup v1 hierarchy
mounted controller hierarchies are shown in blue,
general cgroup files in orange,
controller-specific files in red,
cgroups themselves in green

7



2 cgroup Fundamentals

2.3 Reasons for cgroup v2

A number of issues and shortcomings existed in cgroup v1 [3, 9, 10], mainly due to it having
grown without any coordinated design across its controllers.

In some controllers, new cgroups inherit the parent’s attributes, in others they are set
to defaults. Also not all controllers follow the concept of cgroups being in a hierarchy, the
blkio controller, while throttling, treats all cgroups as being at the same level.

Another issue is inconsistent use of values for a certain meaning, the maximum value is
sometimes represented as -1 and sometimes as max. In the blkio controller the total number
of shares is 500, in cpu it is 1024. In cgroup v2 this inconsistency has been cleaned up,
removing shares and having a consistent metric weight in the range of 1 to 10000 that always
defaults to 100 across all controllers.

Comparable to this example similar issues were mitigated in v2 by having clearly docu-
mented guidelines in the kernel documentation.

2.3.1 Multiple Hierarchies

The intended flexibility in cgroup v1, allowing multiple hierarchies for different controllers,
proved not to outweigh the added complexity. [11] Not having a single hierarchy, also reduces
the practicality of the freezer controller. For example users cannot freeze a cpu cgroup,
except when mirroring the structure across all hierarchies. systemd has implemented the
mirroring approach.

2.3.2 Processes in Inner Nodes

In cgroup v1 tasks are allowed to be members of a cgroup that has further child cgroups.
This is problematic if processes in a given subgroup are competing for resources with tasks
attached to a parent group, as there is no obvious way to resolve the situation. Due to
the lack of sufficient guidelines, there are inconsistencies on how this is handled, and inter-
preted differently across different controllers. This causes further issues if the hierarchies are
mirrored, due to the different meaning of child and sibling relationships.

2.3.3 Permissions

By default the hierarchy is only modifiable by the administrative user, because the tree is
mounted with root user as owner of all files and directories within. Access to less privileged
users is granted by changing file permissions. This is referred to as delegation. In cgroup
v1 processes can be moved from anywhere to a delegated subtree as long as it is a process
started by the user, this missing boundary can enable users to stall the system, by working
around limits imposed on different subtrees.

2.4 Unified Hierarchy

In cgroup v2 there is one unified hierarchy for all controllers [12]. Its implementation started
in Linux 3.10, and was released as a stable implementation in Linux 4.5. All subsystems not
mounted in a cgroup v1 hierarchy are enabled at the root node of the hierarchy and access
to specific controllers can be passed deeper into the hierarchy. If a controller is disabled in

8



2.4 Unified Hierarchy

a cgroup, it cannot be enabled in any further descendants. Figure 2.5 shows a shortened
directory tree of the mounted cgroup v2 hierarchy.

/sys/fs/cgroup/
cgroup.controllers
cgroup.procs
cgroup.subtree control
cpu.pressure
cpu.stat
memory.stat
[...]
system.slice/

postgresql.service/
cgroup.controllers
cgroup.freeze
cgroup.kill
cgroup.procs
cgroup.subtree control
cpu.max
cpu.pressure
cpu.stat
cpuset.cpus.effective
memory.stat
memory.high
memory.pressure
memory.max
memory.events
[...]

[...]
user.slice/

cgroup.controllers
cgroup.freeze
cgroup.kill
cgroup.procs
cgroup.subtree control
cpu.pressure
cpu.stat
memory.stat
user-1000.slice/

[...]
[...]

Figure 2.5: Shortened cgroup v2 hierarchy
mounted controller hierarchies are shown in blue,
general cgroup files in orange,
controller-specific files in red,
cgroups themselves in green

9



2 cgroup Fundamentals

There are a number of base cgroup files to control controller availability, process member-
ship or give general information.

cgroup.controllers shows all available controllers for this sub-cgroup. In the root of the
cgroupfs all available subsystems are returned, i.e. all not bound to cgroup v1 hierarchies.

cgroup.subtree control enables or disables controllers for child cgroups and allows those
resources to be controlled there. Enabling a subsystem creates the controller-specific at-
tribute files in each child directory.

Creating a child cgroup is creating equivalent to creating a new directory in its parent.

$ mkdir subgroup1

Activating controllers for the cgroup is done by writing to the parent’s
cgroup.subtree control, prefixing the subsystems with - to disable and + to enable them.
Multiple changes can be written to the file in one command.

$ echo "+memory -cpuset" > cgroup.subtree_control

cgroup.procs lists the PIDs of processes belonging to this cgroup. Writing a PID to this
file moves the process to the cgroup. At any time one process can only belong to one single
cgroup.

2.4.1 Resource Constraints
Child cgroups are always subject to any resource constraints defined by controllers in ancestor
cgroups. Constraints cannot be relaxed in child cgroups.

2.4.2 No Processes in Inner Nodes
In cgroup v2 processes can only be attached to leaf nodes, not to an internal subgroup as
long as any controller is enabled. That means it is not possible to enable controllers in
cgroup.subtree control and have processes in cgroups.procs at the same time. The
only exception to this restriction is the root cgroup.

2.4.3 Delegation
To pass management of a subtree to another less privileged user, write permissions have to be
set on the directory at the root of the subtree to be delegated and the files cgroups.procs,
cgroups.subtree control inside this directory. That allows the delegatee to control re-
sources in child cgroups that are created. Permissions must also be granted on any other
files listed in /sys/kernel/cgroup/delegate.

2.4.4 Permission Boundaries
Processes can only be moved if the user has write permissions to all cgroups.procs files
in the subtree, between the origin and destination cgroups, through which the process is
moved, up to the lowest common ancestor node.

Thus, when delegating a cgroup, the first process has to be moved by the delegater to the
delegated cgroup.

10



2.5 cgroup and systemd

2.4.5 cgroup v2 Adoption

Adoption was relatively slow, because most projects using cgroup, especially container sys-
tems, e.g. Docker, Kubernetes, did not feel the need to upgrade quickly, because most
Linux distributions did not support it. However, distributions could not switch to v2 either,
because most software had not added support. Also the cpu, cpuset and freezer controller
were only ported to cgroup v2 in Linux 4.15, 5.0 and 5.2 respectively, blocking adoption for
aforementioned container systems.

systemd

Initial support to systemd was added in version 230 in May 2016 [13], but still had to be
turned on at build-time by distributions or by setting a kernel parameter at boot.

systemd.unified_cgroup_hierarchy=1

In version 243 in September 2019 the build-time default was changed, but most distri-
butions still left it deactivated. It could also be turned off at boot-time with the kernel
parameter set to 0.

Fedora

The first major Linux distribution to use cgroup v2 by default was Fedora in version 31
in October 2019 [14]. Citing the issues in Section 2.3, the improvements elaborated in
Section 2.4, and explicitly wanting to break the dead lock between distributions and users
of cgroup not upgrading, they moved forward first.

Debian and Ubuntu

Following software upgrades to also support cgroup v2, Debian decided to change the default
on their unstable version in systemd version 247.2-2. The switch landed in the stable version
11 “Bullseye” in August 2021 [15]. With this, Ubuntu also changed the default in version
21.10, released in October 2021 [16].

Docker

Over one year after the switch in Fedora, Docker released version 20.10 in December 2020 [17],
adding support for cgroup v2. Previously, users had to switch back to v1 to use it with the
systemd kernel parameter mentioned previously [18].

2.5 cgroup and systemd
Systemd makes extensive use of cgroup, having the complete service and scope hierarchy
represented as a cgroup hierarchy. In systemd there are three types of units—the systemd
term for any configurable entity—that are directly represented in the hierarchy. A slice [19]
is an inner node. The leaves are either a scope [20] or service [21]. The former is a collection
of processes in a single cgroup not directly managed by systemd, such as user sessions. All
processes managed by systemd are in services, each also residing in their cgroup.

11



2 cgroup Fundamentals

The cgroup hierarchy with the root cgroup named -.slice is split into three main parts:
the system services in system.slice, machine.slice containing all virtual machines and
containers, and user.slice being made up of a further systemd instance per user and the
user’s sessions and services. [22]. The main systemd instance running as PID 1 is directly
beneath the root in the init.scope.

For example a user hierarchy for the user with UID 1000 is created as user-1000.slice
in the main user.slice. This contains the user sessions in session-N.scope and the user
systemd-daemon and services in user@1000.service/init.scope and
user@1000.service/app.slice respectively.

The tree in Figure 2.6 is a shortened example of the systemd hierarchical structure. This
tree is the description of the single hierarchy in cgroup v2 and is mirrored across all hier-
archies in cgroup v1. There are clear guidelines that systemd is the sole manager of the
hierarchy if a subtree is not explicitly delegated [23]. Also, systemd mandates that even
when using cgroup v1, the no-processes-in-inner-nodes rule (Subsection 2.4.2) applies, even
when not enforced by the kernel as in v2.

To delegate a subtree in systemd, the Delegate property can be set on a service or scope
unit. This guarantees that systemd does not touch the cgroup hierarchy and its attributes
below this unit and does not migrate processes across the boundaries of the subtree. If the
User property is also set and the unified hierarchy is used, the owner of the subtree is set
to that user. User permissions are not granted when using cgroup v1 controllers, due to it
being unsafe as mentioned in Subsection 2.3.3.

Furthermore, three options for delegation are outlined in the guidelines by the systemd
project. [23]

1. Each process needing cgroup delegation can directly be registered as either a systemd
service or a scope, depending on whether systemd executes the binary or the man-
aging software. Having Delegate switched on for these services or scopes, they can
manipulate the cgroup hierarchy beneath their location in the tree.

2. The managing software itself is started in a service with Delegate turned on. The
manager must subsequently move itself to a child cgroup in order to not violate the
no-processes-in-inner-nodes rule.

3. Moving all processes to a single scope unit is a third option, where the cgroup sub-
hierarchy can further be modified, with Delegate enabled on the scope.

In 1 and 3 communication has to be established with systemd through D-Bus, so that
systemd can either initially move the processes to the scopes, or start the services. Option 2
can be a simple service and everything beneath can be managed by it without the need for
communication with systemd.

Transient services and scopes can also be created from the command line with
systemd-run [24]. This command is used to start an executable directly in a delegated
subtree with -p Delegate=yes without having to touch systemd configuration. [25]

On minimal systems there is not always a D-Bus user-session available which is necessary
to interact with the systemd user daemon. On Debian and Ubuntu for example, the package
dbus-user-session is necessary if no graphical environment is used.

12



2.5 cgroup and systemd

-.slice
user.slice

user-1000.slice
user@1000.service

app.slice
gammastep.service

4257 /nix/store/[...]-gammastep-2.0.7/bin/gammastep [...]
[...]

init.scope
3840 /nix/store/[...]/bin/systemd --user

session-1.scope
3852 /nix/store/[...]-sway-unwrapped-1.6.1/bin/sway
[...]

init.scope
1 systemd

system.slice
postgresql.service

3380 /nix/store/[...]-postgresql-11.13/bin/postgres
3492 postgres: checkpointer
3493 postgres: background writer
3494 postgres: walwriter
3495 postgres: autovacuum launcher
3496 postgres: stats collector
3498 postgres: logical replication launcher

[...]
machine.slice

machine-qemu\x2d1\x2dubuntu20.10.scope
libvirt

1868690 /run/libvirt/nix-emulators/qemu-system-x86 64[...]
emulator
vcpu0
[...]

Figure 2.6: Shortened systemd cgroup hierarchy
cgroups are shown in black, processes in blue

13



2 cgroup Fundamentals

By default, systemd does not delegate all controllers to the user daemon [26, 27]. Further
controllers can be passed to the per-user cgroups by editing the generic user@.service or
the user-specific user@1000.service (for the user with UID 1000). Editing the systemd
service is possible using systemctl [28].

$ systemctl edit user@1000.service

To enable all available controllers, the following line needs to be added. Delegate can be
set to a space-separated list of controller names, to only activate specific controllers.

[Service]
Delegate=yes

Both the main systemd instance and those of affected users have to be reloaded after the
change or the system needs to be rebooted. The controllers delegated to a user are listed in
the cgroup of the service above.

$ cat /sys/fs/cgroup/user.slice/user-1000.slice/user@1000.service/cgroup.controllers
cpuset cpu io memory pids

systemd also provides two command-line tools to introspect the cgroup hierarchy:
systemd-cgls [29] to display the hierarchy in a tree, like the shortened version in Figure 2.6,
and systemd-cgtop [30] that returns resource consumption per cgroup.

To interact with cgroups from systemd, a number of parameters can be set on slices, scopes
or services. [31] Most controller limits can be defined with these options and can also be set,
while the software is running, with systemctl set-property. [32]

14



3 Background on BenchExec

The BenchExec benchmarking framework consists of three parts. runexec is the tool to
execute single isolated runs of the tool to be benchmarked. It sets up the encapsulation
and limits with cgroup and namespaces, and collects the metrics of the run. The second,
benchexec, is in control of starting runexec instances for a number of tools and inputs,
in order to benchmark a whole batch of experiments. The third tool, table-generator,
creates reports of the benchmarks by post-processing the output of benchexec.

Using cgroups in conjunction with namespaces is the only mechanism to reliably collect
information on multiple processes, limit them to specific resources, and terminate all of
them to not influence future benchmarks. Working with a group of processes is necessary to
prevent measurement errors on software that uses subprocesses. It also ensures that spawned
processes are subject to all limits defined for the benchmark at all times. [1]

3.1 cgroup Setup
If the cgroup in each hierarchy, in which runexec is started, is writable by the executing user,
these cgroups are used, and further child cgroups are created within. Should this not be the
case for one or more subsystems used by BenchExec, a fallback mechanism is provided.

The .deb package contains a systemd service, benchexec-cgroup.service, with Delegate
enabled. During startup it ensures one cgroup, for each subsystems relevant to BenchExec,
exists at system.slice/benchexec-cgroup.service relative to the root of the controller’s
hierarchy. systemd will by default already have created it, if it manages this hierarchy.
Subsequently the service script moves itself into these cgroups and makes them writable by
the benchexec user group which is created during installation of the .deb package. The
service then sleeps for 10 years to keep the delegation alive and automatically restarts at
termination.

This service lets all members of the benchexec group create cgroups beneath this fallback
path if permissions in the current cgroups are not available. To run benchexec no further
administrative intervention is necessary after installation of this service.

3.2 cgroup Usage
When benchmarks are run, a child cgroup is created for each runexec execution in the
current cgroups or in the fallback cgroups. Essentially BenchExec mirrors the cgroup
structure across all hierarchies, although the names are not identical as they are created
randomly.

A number of controllers are used to set up the consistent environment of the benchmark-
ing process. cpuset is utilised to constrain the run to a specified set of CPU cores and
NUMA nodes. The memory subsystem is used to limit the maximum memory available
and deactivate swap during the benchmark. It also makes it possible to replace the Linux

15



3 Background on BenchExec

out-of-memory killer with a notification, for which a thread listens. This then, when notified,
reports out-of-memory as the reason for termination and kills the remaining processes.

That subsystem is also one of the controllers used for metric collection, reporting the peak
memory usage of all processes combined. The cpuacct subsystem is utilised to collect the
sum of CPU time of the benchmark and also return these statistics per CPU core. The blkio
controller provides information on the number of bytes read and written on block devices.

To reliably kill all processes of a run, in case of out-of-memory, a time limit is exceeded,
or the execution has completed and to avoid left-over processes the freezer subsystem is
used to freeze all processes. Then the processes are killed and thawed again, to let them
disappear. Subsequently the cgroups can be removed.

16



4 Changes to BenchExec for cgroup v2

4.1 Requirements
The expectation of the updated implementation is to support cgroup v1 and cgroup v2
in parallel. Also where possible the implementation must maintain feature parity and not
influence benchmarking negatively.

Ideally with the improved possibility for delegation, tasks by an administrative user should
be reduced and BenchExec can be installed and used by an unprivileged user. At the same
time it must additionally adhere to new restrictions within the cgroup structure imposed
by the kernel. It also must consider systemd and their recommendations for delegation, to
avoid mutual interference, when managing the cgroup tree.

Furthermore, the runexec executable and Python module must still be usable as a simple
facility to run benchmarks that are encapsulated and have resource limits set.

4.2 General Approach
The implementation constructs an abstraction around the existing cgroup code, delegating
calls to code, handling the details for the detected cgroup version. Detection is done by
checking /proc/mounts for mounted file systems of type cgroup or cgroup2. As soon as
one cgroup mount is found, the existing code for v1 is used, as the mounted hierarchy
can then not be bound to the cgroup2 unified hierarchy. This occurs commonly on recent
versions of Linux distributions that have not switched to cgroup v2 completely, all cgroup v1
controllers and the cgroup v2 hierarchy are mounted, without any controllers being active
in v2. This behaviour makes it useless for our purpose, so this setup is ignored and the v1
implementation is used. [33]

The API to the existing cgroup code is mostly kept in place, a few helpers and abstractions
are added where the existing code referred directly to cgroup v1 implementation details, for
example filenames that changed, such as the tasks file to cgroup.procs.

4.3 cgroup Permissions
A larger necessary change, is the different handling of cgroups setup for benchmarking.
It is no longer possible to use the previous fallback mechanism (Section 3.1), as all sys-
tem services are created under system.slice and all user sessions are in the user.slice.
The cgroups.procs files in between are root-owned, and the unified hierarchy imposes the
permission boundaries, not permitting moving processes from one delegated hierarchy to
another. This approach also does not work with user services because the same boundary
exists between these and user sessions, the cgroups.procs file in the user-UID.slice being
owned by the root user. The sleeping service would also have to be moved to a child, to
adhere to the rule of having no processes attached to inner nodes (Subsection 2.4.2).

17



4 Changes to BenchExec for cgroup v2

To alleviate this, benchexec now handles checking whether it is in a suitable cgroup, that
is being the only process therein and having permissions to create children and delegate
controllers to these. If this check fails, it tries to communicate with systemd over D-Bus, to
move itself to a transient scope unit that has delegation enabled.

An alternative with systemd—apart from directly starting benchexec in a suitable cgroup,
which is always possible—is using systemd-run to move the process at execution to a user
scope with delegation enabled.

systemd-run --user --scope -p Delegate=yes benchexec ...

runexec now expects cgroup delegation and permission handling to be taken care of by the
software calling it. This can either be benchexec or when using it directly as an executable
or library, the cgroup setup has to be ensured by the user. A simple possibility is to use the
mentioned systemd-run call.

4.4 Library to interact with systemd
To handle cgroup setup without user interaction BenchExec needs to communicate with
systemd. The easiest, and by systemd recommended option, is to use the D-Bus API they
provide.

4.4.1 Available Libraries
There are a number of Python libraries to communicate either with D-Bus or with systemd
specifically.

dbus-python1 is the reference implementation for D-Bus in Python with the first standalone
release in July 2006. It still receives regular updates with its last release in July 2021. The
authors themselves note that it might not be the best library to use, but some issues cannot
be fixed without breaking compatibility. The only dependency is libdbus, but the authors
also advise that it has problems with multi-threading.

gdbus2 is part of the glib project and the D-Bus library the GNOME project uses. The
last release happened in December 2021 and updates are frequent, but the API from Python
is used through gi and gobject and not a clean, native API. Also Python documentation
is lacking and only a few examples are available.

qtdbus3 is maintained as part of Qt with regular releases. It has quite a large number of
dependencies because it depends on parts of the Qt toolkit.

pydbus4 is a nicer API around gdbus. Hence, it also depends on gi and gobject and
needs a glib event loop to execute the code. Its last release was in December 2016 and there
has been no activity on the repository since May 2018 and no reaction to neither issues nor
pull requests.

1https://dbus.freedesktop.org/doc/dbus-python/
2https://docs.gtk.org/gio/
3https://doc.qt.io/qtforpython-6/PySide6/QtDBus/QDBusConnection.html
4https://github.com/LEW21/pydbus

18

 https://dbus.freedesktop.org/doc/dbus-python/ 
 https://docs.gtk.org/gio/ 
 https://doc.qt.io/qtforpython-6/PySide6/QtDBus/QDBusConnection.html 
 https://github.com/LEW21/pydbus 


4.4 Library to interact with systemd

dasbus5 is a library that was originally based on pydbus, but largely rewritten. It has a
further improved API and is actively maintained with its last release in May 2021. It also
depends on gi and a glib event loop. For this library there is no package in stable Ubuntu
and Debian releases.

txdbus6 is a D-Bus implementation for the Twisted7 framework, with the last release
in October 2020, but recent activity in repository and active maintenance. In needs the
Twisted reactor to run, but has a modern and simple API. No system packages for it exist
in any larger Linux distribution.

pysdbus8 is a little library based on libsystemd and their D-Bus implementation. It
mainly is a simple ctypes wrapper. The author warns that the library still is at an early
stage and many features are still missing. There has not been any release and the repository
consists of only 10 commits. Also it is not included in any Linux distribution nor published
on PyPI.

jeepney9 is a library without any dependencies and a Python-only implementation, the last
release having been in July 2021. The API is low-level without many helpers or introspection.

python-systemd10 is provided by the systemd project but does not serve the purpose of
creating transient services or scopes but rather for services implemented in Python to notify
systemd that they finished their startup, or for journal and systemd-login interaction.

pystemd11 is similar to pysdbus, also using libsystemd—its only dependency—through
ctypes to interact with systemd. It includes more helper functions to provide a more
user-friendly API. Its last release was in October 2021 and is installable in major Linux
distributions such as Ubuntu, Debian and Fedora as a system package.

4.4.2 Interaction with systemd

Based on the above, and criteria of availability in Linux distributions, active maintenance,
small number of dependencies, and a user-friendly and simple API, the choice of library used
in this implementation is pystemd. If it is installed, it is used to create a transient scope
on the systemd instance of the executing user, with the Delegate property set. All PIDs of
the running BenchExec instance are passed to the call that create the scope. systemd
then handles moving those processes to the new scope and the newly created cgroup that is
delegated to the executing user.

To find all relevant PIDs, the process group of the current process is queried. This is
done by iterating through the /proc/PID/stat files. All processes that contain the process
group ID of the main process are searched for. [34] The reason for this, is to also include

5https://dasbus.readthedocs.io/en/latest/
6https://github.com/cocagne/txdbus
7https://www.twistedmatrix.com/
8https://github.com/anyc/pysdbus
9https://gitlab.com/takluyver/jeepney/

10https://github.com/systemd/python-systemd
11https://github.com/facebookincubator/pystemd

19

 https://dasbus.readthedocs.io/en/latest/ 
 https://github.com/cocagne/txdbus 
https://www.twistedmatrix.com/
 https://github.com/anyc/pysdbus 
 https://gitlab.com/takluyver/jeepney/ 
 https://github.com/systemd/python-systemd 
 https://github.com/facebookincubator/pystemd 


4 Changes to BenchExec for cgroup v2

forked processes, created during namespacing and containerisation setup for the benchmark
execution.

4.5 Differences of Controllers

Apart from changes because of general cgroup management, the subsystems themselves have
changed too. The blkio subsystem is replaced with the io controller and the metrics used in
BenchExec are now fetched from io.stat instead of blkio.throttle.io service bytes.
Due to file structure changes, the parsing of the files also needs minor changes.

The cpu controller now always provides basic information even if not explicitly turned on.
For the purposes of BenchExec, this information (CPU usage) is sufficient, so the check
for controller availability is not necessary. In the v1 implementation this metric is provided
by the cpuacct controller together with per-CPU metrics. These are no longer available
in cgroup v2, although as of January 2022, there is active discussion on the Linux Kernel
Mailing List12 to add them back.

Another metric that is no longer available in v2, is the peak memory usage of a cgroup
which is read from either memory.max usage in bytes or
memory.memsw.max usage in bytes depending on availability of swap, but no replacement
is implemented in v2. The out-of-memory handling, on the other hand, has been simpli-
fied especially for the functionality used in BenchExec, a file memory.events can now be
watched and in case any memory limit is surpassed an event is emitted. Information if a
process was killed due to an out-of-memory event can now be read from a oom kill counter
in this file. Previously swap was turned off by writing 0 to memory.swappiness, in v2 by
writing 0 to memory.swap.max.

To read available CPU cores and memory nodes and limit the execution to a set of these,
runexec reads from and writes to cpuset.cpus and cpuset.mems. For v2 setting the con-
straints is still done with these files. Information on available cores and memory nodes is
read from cpuset.cpus.effective and cpuset.mems.effective, as these list the actually
granted resources including constraints imposed by parent cgroups.

To reliably kill processes, they are all frozen by writing FROZEN to the
freezer.state file, and unfrozen by writing THAWED. Being an ordinary controller in v1,
now in v2, it is a utility, always available in all cgroups. Processes are frozen or unfrozen by
writing 1 or 0 respectively to cgroup.freeze. Another such utility was added in Linux 5.14,
alleviating BenchExec’s need for the freezer. By writing 1 to cgroup.kill, all processes
are killed atomically. This feature is implemented in the code for cgroup v2, falling back to
the freezing option if the Linux kernel on the system does not yet provide support.

4.6 PSI

When running with cgroup v2 BenchExec now provides three additional metrics
total-cpu-pressure-some, total-io-pressure-some and total-memory-pressure-some.
For CPU, memory, and I/O, these report the number of seconds any of the processes running
in the benchmarked is stalled by the respective resource. The metric some is used because
it is relevant as soon as one of the processes in the cgroup is affected and not only when all
12https://lkml.org/lkml/2022/1/7/833

20

 https://lkml.org/lkml/2022/1/7/833


4.6 PSI

processes are; the total is the interesting metric versus information on the last 10, 60 or
300 seconds, because this is information is also relevant to benchmarks that run longer than
five minutes, and resource exhaustion prior to those time spans would not be detected.

21





5 Evaluation
To check the compatibility and feature-parity of the updated cgroup implementation, a few
test benchmarks are performed. They are executed on a physical server with an Intel(R)
Xeon(R) CPU E3-1246 v3 @ 3.50GHz CPU and 32 GB of memory running Ubuntu 21.10
with Linux 5.13. All runs are performed three times, once with BenchExec 3.10 running
cgroup v1, and twice with the described implementation from the cgroupv2 branch of the
BenchExec GitHub repository1 at revision 4d32b32, and with pystemd 0.8.0, the latest
version on PyPI. This version is used once with cgroup v1 and once with cgroup v2. To
test with v1 the machine was booted with the systemd.unified cgroup hierarchy set to
0.

5.1 Regular Benchmark
To verify that general functionality is provided, a subset of the International Competition
on Software Verification 2022 (SV-COMP 2022) taskset2 (git tag svcomp22) is run with
BenchExec on CPAChecker3 2.1. The input set is the ReachSafety-ControlFlow.set
run with BenchExec parameters of timelimit=15m, hardtimelimit=16m, memlimit=31G
and cpucores=8. The parameters to CPAChecker are heap=25000G and timelimit=900s.

0 20 40 60 80 1001

10

100

1 000

n-th fastest result

C
PU

tim
e

(s
)

3.10
cgroup v1
cgroup v2

Figure 5.1: Quantile plot of CPU time

The statistics of the three benchmarks exhibit a high amount of overlap. The statuses of
the runs are exactly the same, each with 88 correct results. The measured CPU time also is

1https://github.com/sosy-lab/benchexec
2https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/tree/svcomp22
3https://cpachecker.sosy-lab.org/

23

 https://github.com/sosy-lab/benchexec
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/tree/svcomp22
https://cpachecker.sosy-lab.org/


5 Evaluation

very similar and differs by only less than 1% which is not a significant variation. Figure 5.1
shows a quantile plot of the CPU time of the three runs. Memory usage in the two cgroup
v1 implementations also only shows insignificant deviations, in the v2 implementation it is
not available due to cgroup v2 not exposing that data.

5.2 Feature Verification
To verify specific features in the updated implementation, a few short benchmarks with
specific limits are run. The same machine as in the preceding experiment and the same
BenchExec versions are used. The benchmark definition used for all runs is the
doc/benchmark-example-calculatepi.xml in the BenchExec repository. This input file
calculates pi to a specified number of digits in steps of 1000, starting with 1000 to 20000.

First, for verification, the benchmark is run on all versions without parameters, and returns
results with insignificant variations for each. To test CPU time limit functionality, the
limit is set to 10 seconds. Based on the previous runs, the benchmark is expected to time
out for all steps starting at 5000. The expectation is observed successfully for each version.

To confirm correct functionality of memory limits, the benchmark is run with a limit of
800 kB. Judging from the two runs of the cgroup v1 versions, the restriction should cause
out-of-memory errors for runs beginning at the 9000 or 10000 steps. This constraint is not
as deterministic as the previous constraint, because the benchmarked process might release
memory if no further memory can be allocated, but otherwise not as early. Therefore with
a restriction imposed, that limit is reached at a later point. For all three runs the expected
out-of-memory errors occur at the 11000 step and all runs are correct as such.

24



6 Related Work

For benchmarking software to use cgroup is not very common. Because of this, there is not
a lot of directly related work with comparable issues, but cgroup as laid out in Chapter 3 is
the state-of-the-art option for benchmarking.

Mininet1 is an emulator for prototyping Software Defined Networks. They include a
benchmarking tool that collects CPU usage with the cpuacct controller. So far they have
not upgraded to support cgroup v2 but there is ongoing discussion after requests for this have
been made. [35] They use libcgroup2 which only added support for v2 in May 2021 [36].
Only updating to the new version, though, is not sufficient for Mininet, as changes between
v1 and v2 are not abstracted completely. This means that switching to libcgroup or having
used it in the first place, would not have avoided the need of changes to the cgroup-related
code.

LXC3 and crun4 have the same issues with user-space containers and cgroup permis-
sions as BenchExec. The former therefore recommends running in a transient systemd
user scope with delegation enabled using systemd-run [37], as laid out as a possibility in
Section 4.3. The latter supports communication with systemd through D-Bus to not require
user interaction, directly using systemd’s D-Bus C library, similar to the use of pystemd in
BenchExec (Subsection 4.4.2).

Podman5 also recommends enabling extra cgroup controllers in the user@.service time
to support use of these in user-space containers. (Section 2.5) [38]

Docker and Kubernetes take a different approach because they generally have daemons
running as root that can handle the cgroup setup and have sufficient privileges to move
processes across cgroups. Although Docker does have the possibility to run the daemon
with user privileges, this requires that systemd and cgroup v2 is used on the machine,
because they use systemd to set up delegation. They also document the change necessary in
the user@.service to enable further controllers enabled in cgroups delegated to users. [39]

1https://github.com/mininet/mininet
2https://github.com/libcgroup/libcgroup/
3https://linuxcontainers.org/
4https://github.com/containers/crun
5https://podman.io/

25

https://github.com/mininet/mininet
https://github.com/libcgroup/libcgroup/
https://linuxcontainers.org/
https://github.com/containers/crun
https://podman.io/




7 Conclusion

The results of the benchmarks run in Chapter 5 show that—with the exception of missing
support for the memory usage and per CPU usage metrics for cgroup v2—the implementation
in the course of this thesis, provides feature parity to the previous state and between cgroup
v1 and v2.

Implementing the missing features would have required changes to the Kernel or possibly
extraction of the metrics with extended Berkeley Packet Filters (eBPF) [40], which might
provide the necessary information, but needs further investigation. This however was not in
scope for this thesis. Most importantly though, this makes it possible to run BenchExec on
modern versions of Linux distributions that have already switched to cgroup v2 and allows
using features that are added to the Linux kernel relating to cgroups and no longer imple-
mented for cgroup v1, such as the cgroup.kill utility and PSI metrics, already implemented
in this thesis.

Additionally, when running with cgroup v2 and systemd, BenchExec now harnesses the
improved delegation possibilities and no longer requires setup by an administrative user
to run, by either the user using systemd-run or with the optional library pystemd, used
to communicate with systemd over their D-Bus API. This interaction makes BenchExec
adhere to systemd’s recommendations regarding delegation and cgroup management.

7.1 Future Work
The improved permission and delegation handling, including support for delegation bound-
aries at namespace boundaries, provided by cgroup v2, makes it possible to implement a
feature, that benchmarked processes themselves can use cgroups. This also is made possible
by cgroup v2 strictly imposing that limits, set by parent cgroups, need to be respected in
all children cgroups.

BenchExec, now necessitated by processes not being able to run in inner cgroup nodes,
runs in its own cgroup and metrics on itself can also be collected.

cgroup v2 also improves usability and availability of soft limits, that can be used to
communicate to processes that they are reaching, e.g. memory limits, so that they can
potentially react to that, without having to abort the benchmark.

Another big open issue are the missing metrics on memory usage, due to the memory
controller in cgroup v2 no longer providing the information. It could be resolved by imple-
menting support in the kernel for cgroup v2, checking whether the data can be retrieved
with eBPF or that this issue must be solved by other means with further investigation into
this matter.

27





List of Figures

2.1 PSI 10-second example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Example /proc/PID/cgroup . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Example /proc/cgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Shortened cgroup v1 hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Shortened cgroup v2 hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Shortened systemd cgroup hierarchy . . . . . . . . . . . . . . . . . . . . . . . 13

5.1 Quantile plot of CPU time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

29





Bibliography

[1] D. Beyer, S. Löwe, and P. Wendler, “Reliable benchmarking: Requirements and so-
lutions,” International Journal on Software Tools for Technology Transfer (STTT),
vol. 21, no. 1, pp. 1–29, 2019.

[2] P. B. Menage, “Adding generic process containers to the linux kernel,” in Proceedings
of the Linux symposium, Citeseer, vol. 2, 2007, pp. 45–57.

[3] Cgroups(7) linux manual page, 5.13.
[4] R. Rosen, “Namespaces and cgroups, the basis of linux containers,” Seville, Spain, Feb,

2016.
[5] J. Corbet. “A ”kill” button for control groups,” LWN. (2021-05-03), [Online]. Available:

https://lwn.net/Articles/855049/ (visited on 2021-12-27).
[6] “Getting started with psi,” [Online]. Available: https://facebookmicrosites.github.

io/psi/docs/overview.html (visited on 2021-12-27).
[7] “Psi pressure metrics,” [Online]. Available: https://facebookmicrosites.github.

io/cgroup2/docs/pressure-metrics.html (visited on 2021-12-27).
[8] “Control group v1,” [Online]. Available: https : / / www . kernel . org / doc / html /

latest/admin-guide/cgroup-v1/cgroups.html (visited on 2022-01-02).
[9] “Control group v2,” [Online]. Available: https://www.kernel.org/doc/Documentation/

admin-guide/cgroup-v2.rst (visited on 2022-01-02).
[10] ——, “The past, present, and future of control groups,” LWN. (2013-11-20), [Online].

Available: https://lwn.net/Articles/574317/ (visited on 2022-01-02).
[11] ——, “Fixing control groups,” LWN. (2012-02-28), [Online]. Available: https://lwn.

net/Articles/484251/ (visited on 2022-01-02).
[12] R. Rosen. “Understanding the new control groups api,” LWN. (2016-03-23), [Online].

Available: https://lwn.net/Articles/679786/ (visited on 2022-01-02).
[13] “Systemd/news,” [Online]. Available: https://github.com/systemd/systemd/blob/

main/NEWS (visited on 2022-01-09).
[14] D. Walsh. “Fedora 31 and control group v2.” (2019-11-11), [Online]. Available: https:

//www.redhat.com/sysadmin/fedora-31-control-group-v2 (visited on 2022-01-
09).

[15] M. Biebl. “Accepted systemd 247.2-2 (source) into unstable.” (2020-12-21), [Online].
Available: https://tracker.debian.org/news/1204112/accepted-systemd-2472-
2-source-into-unstable/ (visited on 2022-01-09).

[16] L. Märdian. “Systemd enabling cgroup v2 by default (default-hierarchy=unified).”
(2021-08-17), [Online]. Available: https://lists.ubuntu.com/archives/ubuntu-
devel/2021-August/041598.html (visited on 2022-01-09).

31

https://lwn.net/Articles/855049/
https://facebookmicrosites.github.io/psi/docs/overview.html
https://facebookmicrosites.github.io/psi/docs/overview.html
https://facebookmicrosites.github.io/cgroup2/docs/pressure-metrics.html
https://facebookmicrosites.github.io/cgroup2/docs/pressure-metrics.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/cgroups.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/cgroups.html
https://www.kernel.org/doc/Documentation/admin-guide/cgroup-v2.rst
https://www.kernel.org/doc/Documentation/admin-guide/cgroup-v2.rst
https://lwn.net/Articles/574317/
https://lwn.net/Articles/484251/
https://lwn.net/Articles/484251/
https://lwn.net/Articles/679786/
https://github.com/systemd/systemd/blob/main/NEWS
https://github.com/systemd/systemd/blob/main/NEWS
https://www.redhat.com/sysadmin/fedora-31-control-group-v2
https://www.redhat.com/sysadmin/fedora-31-control-group-v2
https://tracker.debian.org/news/1204112/accepted-systemd-2472-2-source-into-unstable/
https://tracker.debian.org/news/1204112/accepted-systemd-2472-2-source-into-unstable/
https://lists.ubuntu.com/archives/ubuntu-devel/2021-August/041598.html
https://lists.ubuntu.com/archives/ubuntu-devel/2021-August/041598.html


Bibliography

[17] A. Suda. “New features in docker 20.10 (yes, it’s alive).” (2020-12-09), [Online]. Avail-
able: https://medium.com/nttlabs/docker- 20- 10- 59cc4bd59d37 (visited on
2022-01-09).

[18] ——, “The current adoption status of cgroup v2 in containers.” (2019-10-29), [Online].
Available: https://medium.com/nttlabs/cgroup- v2- 596d035be4d7 (visited on
2022-01-09).

[19] System.slice(5) manual page, 249.
[20] Systemd.scope(5) manual page, 249.
[21] Systemd.service(5) manual page, 249.
[22] Systemd.special(5) manual page, 249.
[23] “Control group apis and delegation.” (2018-04-20), [Online]. Available: https : / /

systemd.io/CGROUP_DELEGATION/ (visited on 2022-01-09).
[24] Systemd-run(1) manual page, 249.
[25] “The new control group interfaces,” [Online]. Available: https://www.freedesktop.

org/wiki/Software/systemd/ControlGroupInterface/ (visited on 2022-01-09).
[26] L. Poettering. “Cgroup controllers are not activated for the user instance in the uni-

fied hierarchy.” (2018-05-24), [Online]. Available: https://github.com/systemd/
systemd/issues/3500#issuecomment-391675687 (visited on 2022-01-09).

[27] “Cgroups - user delegation,” [Online]. Available: https://wiki.archlinux.org/
title/Cgroups#User_delegation (visited on 2022-01-09).

[28] Systemctl(1) manual page, 249.
[29] Systemd-cgls(1) manual page, 249.
[30] Systemd-cgtop(1) manual page, 249.
[31] Systemd.resource-control(5) manual page, 249.
[32] M. Richter. “World domination with cgroups part 8: Down and dirty with cgroup v2,”

Red Hat Blog. (2020-08-05), [Online]. Available: https://www.redhat.com/en/blog/
world- domination- cgroups- part- 8- down- and- dirty- cgroup- v2 (visited on
2022-01-09).

[33] L. Poettering. “How does hybrid cgroup setup work?” systemd-devel. (2017-11-10),
[Online]. Available: https://lists.freedesktop.org/archives/systemd-devel/
2017-November/039754.html (visited on 2022-01-09).

[34] Proc(5) linux manual page, 5.13.
[35] “[feature request] support for cgroup2,” [Online]. Available: https://github.com/

mininet/mininet/issues/1051 (visited on 2022-01-09).
[36] “Add cgroup v2 support,” [Online]. Available: https://github.com/libcgroup/

libcgroup/issues/12 (visited on 2022-01-09).
[37] “Add cgroup v2 support,” [Online]. Available: https://linuxcontainers.org/lxc/

getting-started/#creating-unprivileged-containers-as-a-user (visited on
2022-01-09).

32

https://medium.com/nttlabs/docker-20-10-59cc4bd59d37
https://medium.com/nttlabs/cgroup-v2-596d035be4d7
https://systemd.io/CGROUP_DELEGATION/
https://systemd.io/CGROUP_DELEGATION/
https://www.freedesktop.org/wiki/Software/systemd/ControlGroupInterface/
https://www.freedesktop.org/wiki/Software/systemd/ControlGroupInterface/
https://github.com/systemd/systemd/issues/3500#issuecomment-391675687
https://github.com/systemd/systemd/issues/3500#issuecomment-391675687
https://wiki.archlinux.org/title/Cgroups#User_delegation
https://wiki.archlinux.org/title/Cgroups#User_delegation
https://www.redhat.com/en/blog/world-domination-cgroups-part-8-down-and-dirty-cgroup-v2
https://www.redhat.com/en/blog/world-domination-cgroups-part-8-down-and-dirty-cgroup-v2
https://lists.freedesktop.org/archives/systemd-devel/2017-November/039754.html
https://lists.freedesktop.org/archives/systemd-devel/2017-November/039754.html
https://github.com/mininet/mininet/issues/1051
https://github.com/mininet/mininet/issues/1051
https://github.com/libcgroup/libcgroup/issues/12
https://github.com/libcgroup/libcgroup/issues/12
https://linuxcontainers.org/lxc/getting-started/#creating-unprivileged-containers-as-a-user
https://linuxcontainers.org/lxc/getting-started/#creating-unprivileged-containers-as-a-user


Bibliography

[38] “Podman - troubleshooting,” [Online]. Available: https://github.com/containers/
podman / blob / 3fac03cf04e68eb3351aff8c33bac6bea85810f6 / troubleshooting .
md#26- running- containers- with- cpu- limits- fails- with- a- permissions-
error (visited on 2022-01-09).

[39] “Run the docker daemon as a non-root user (rootless mode),” [Online]. Available:
https://docs.docker.com/engine/security/rootless/ (visited on 2022-01-09).

[40] J. Corbet. “Extending extended bpf,” LWN. (2014-07-02), [Online]. Available: https:
//lwn.net/Articles/603983/ (visited on 2022-01-09).

33

https://github.com/containers/podman/blob/3fac03cf04e68eb3351aff8c33bac6bea85810f6/troubleshooting.md#26-running-containers-with-cpu-limits-fails-with-a-permissions-error
https://github.com/containers/podman/blob/3fac03cf04e68eb3351aff8c33bac6bea85810f6/troubleshooting.md#26-running-containers-with-cpu-limits-fails-with-a-permissions-error
https://github.com/containers/podman/blob/3fac03cf04e68eb3351aff8c33bac6bea85810f6/troubleshooting.md#26-running-containers-with-cpu-limits-fails-with-a-permissions-error
https://github.com/containers/podman/blob/3fac03cf04e68eb3351aff8c33bac6bea85810f6/troubleshooting.md#26-running-containers-with-cpu-limits-fails-with-a-permissions-error
https://docs.docker.com/engine/security/rootless/
https://lwn.net/Articles/603983/
https://lwn.net/Articles/603983/

	Introduction
	Overview

	cgroup Fundamentals
	cgroup Features
	Subsystems
	kill
	Pressure Metrics

	cgroup v1
	Reasons for cgroup v2
	Multiple Hierarchies
	Processes in Inner Nodes
	Permissions

	Unified Hierarchy
	Resource Constraints
	No Processes in Inner Nodes
	Delegation
	Permission Boundaries
	cgroup v2 Adoption

	cgroup and systemd

	Background on BenchExec
	cgroup Setup
	cgroup Usage

	Changes to BenchExec for cgroup v2
	Requirements
	General Approach
	cgroup Permissions
	Library to interact with systemd
	Available Libraries
	Interaction with systemd

	Differences of Controllers
	PSI

	Evaluation
	Regular Benchmark
	Feature Verification

	Related Work
	Conclusion
	Future Work

	List of Figures
	Bibliography

