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Abstract

Because Automatic Software Verification uses a lot of resources, especially time, we
tried to minimize the used wall-time for a specific verification task by composing
multiple software verifiers into a PARALLEL PORTFOLIO composition. We implemented
this composition in the framework COVERITEAM. This composition runs all given
verifiers in parallel and uses the first produced result as its own result. We evaluated
the composition with a large benchmark set of 8883 verification tasks and the
software verifiers of the SV-COMP 21. With this approach we achieved up to 3
times faster wall-times and 30-60 % reduced energy consumption per score point
compared with each single verifier in the composition. In order to achieve this
results we used four times the number of CPU cores for each verification task. For
this benchmark set we used 8 CPU cores per verification task. In conclusion we
suggest the PARALLEL PORTFOLIO composition whenever a high amount of CPU cores
and at least two different verifiers are available.
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CHAPTER 1

Introduction

Automatic Software Verification is a highly complex branch of computer science.
Its computation requires a lot of resources and clever algorithms. That is why there
are many different tools to solve such verification tasks. These tools have different
strengths in different situations. This leads to situations where one tool is able to
verify a specific software in under one second and another one needs hours for the
same verification. With a different verification problem the positions may change.
It is therefore highly beneficial to try to combine multiple tools to use each of their
strengths.

For this we contribute a composition, the PARALLEL PORTFOLIO, to always use the fastest
verifier. This composition is created and executed in the program COVERITEAM [3].
COVERITEAM provides its own language for composing multiple tools. These tools
are downloaded and executed by COVERITEAM. The PARALLEL PORTFOLIO takes some
tools and executes them in parallel until one tool produces a results, which satisfies
a given condition. Thereupon the other tools will be stopped. We provide two
execution methods for the execution of the PARALLEL PORTFOLIO. One uses MPI and
the other the multiprocessing module of python.

For our evaluation we chose a large benchmark set of 8883 verification tasks and
use different resource limitations. We compared the outcomes to determine which
resource limitation impacts the performance at most. We have also investigated the
performance on a computer cluster.

The goal of this work was to develop a composition, which provides a simple way to
combine verification tools into a PARALLEL PORTFOLIO and compare the performance
with the state of the art software verification tool CPACHECKER.
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1 Introduction

Example 1 PARALLEL PORTFOLIO

Input: Program p, Specification s
Output: Verdict

1: verifier_1 := Verifier("CPAChecker")
2: verifier_2 := Verifier("ESBMC")
3: success_condition := verdict ∈ {TRUE, FALSE}
4: parallel_portfolio := ParallelPortfolio(verifier_1, verifier_2, success_condition)
5: result := parallel_portfolio.verify(p,s)
6: return (result.verdict, result.witness)

Contributions We make the following contributions:

1. We provide a new PARALLEL PORTFOLIO composition in the program COVERITEAM.

2. We provide two execution methods for this PARALLEL PORTFOLIO, the MPI execu-
tion and the fallback execution.

3. We implemented a shutdown procedure for the all actors in COVERITEAM.

4. We provide a detailed evaluation of the PARALLEL PORTFOLIO composition.

Impact We participated with a PARALLEL PORTFOLIO based verifier in the Software
Verification Competition SV-COMP 22 [2]. Our verifier achieved very good results
and a high amount of score points. However, because it is a combination of already
existing tools, it was not included in the ranking of the competition. Nonetheless, it
would have taken 2nd place in many categories in terms of score points.

Additionally our PARALLEL PORTFOLIO was used in the paper "Construction of Verifier
Combinations Based on Off-the-Shelf Verifiers" [4]. In this paper, Beyer, Kanav, and
Richter investigated multiple different compositions of verifiers with varying verifier
amounts. The PARALLEL PORTFOLIO achieved the lowest wall time in their evaluation.

Running example

One of the main ideas behind the PARALLEL PORTFOLIO is the combination of strengths
of multiple verifiers. The two programs while_infinite_loop_3.c 1 and
sanfoundry_10_ground.c 2 located in the SV-Benchmark repository 3 can be
checked against the unreach-call specification. At the SV-COMP 22 [2] both programs
were used. During the competition the verifier CPACHECKER [5] was able solve the first
program while using 5 seconds of CPU time, but timeouted during the validation of
the second program. The verifier ESBMC [12] on the other hand was able to solve the

1https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/main/c/
loops/while_infinite_loop_3.c

2https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/main/c/
array-examples/sanfoundry_10_ground.c

3https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
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second program in less than 1 second of CPU time and timeouted during the valida-
tion of the first one (see sanfoundry_10_ground and while_infinite_loop
at SV-COMP 22). Our PARALLEL PORTFOLIO shown in Example 1 should combine these
two verifiers and be able to verify both programs.

3
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CHAPTER 2

Prerequisites

This chapter summarizes the technological and conceptual prerequisites to create a
parallel portfolio based composition in the program COVERITEAM [3].

2.1 Parallel Portfolio

The term portfolio in general describes a collection of multiple things. For example
in the economy a portfolio "refers to any combination of financial assets such as stocks,
bonds and cash" [23] . In case of arts, portfolio describes a collection of artworks
of an specific artist. With a portfolio of stocks, you want to minimize the risk of
loosing a lot of money, in case one stock is decreasing, therefore you distribute
your resources to a lot of stocks. This approach of risk distribution is also usable in
computer science.

Huberman et al. [17] investigated the advantages of portfolios in context of hard
computational problems. They differentiated between the sequential and the parallel
portfolio. Whereas the sequential portfolio has two or more algorithms, which are
executed independently and concurrently in sequence, the algorithms of the parallel
one where executed in parallel. Each of those algorithms is trying to solve the
same problem. They found mainly two advantages with this approach. First, the
probability of a result was higher than using only one algorithm. Second, they
achieved a potential performance increase. It was especially high in case of the
PARALLEL PORTFOLIO.

Software Verification also includes expensive computations. A software verifier
calculates several program states and checks them against a certain specification. As
a result we decided to use a PARALLEL PORTFOLIO to combine multiple software verifiers
to achieve better execution time and to increase the probability of a produced result.

To use a PARALLEL PORTFOLIO, we implemented a new composition in COVERITEAM.
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2 Prerequisites

This composition takes a set of verifying tools (see Sect. 2.2.1), which receive the
same input and a success condition (see Sect. 3.1). Also they must produce the same
type of output. These tools are executed in parallel and the first produced output is
checked against this condition. If it matches the condition, all other tools are stopped,
and the result is taken as a result of the whole PARALLEL PORTFOLIO composition. If no
tool produces a valid result, an empty result is returned.

2.2 COVERITEAM

This section gives a brief overview of COVERITEAM. For more detailed information
please look at the paper "CoVeriTeam: On-Demand Composition of Cooperative Verifica-
tion Systems" [3].

Artifact

An artifact in COVERITEAM is a file or some result. Artifacts used in this work are:

• Program: A program, which will be checked against a given specification

• Specification: A specification, which maybe the program fulfills. For example,
is there any line in the program not reached

• Verdict: True, in case the specification is fulfilled, false otherwise

• Witness: Detailed result, how the verdict was achieved.

• TestSuite: Tests, which cover multiple test cases

These Artifacts cover the inputs and outputs for Verifiers and Validators in
COVERITEAM.

2.2.1 Actor

Actors act on artifacts. They transform them or create new ones. In other words, an
actor is a tool, which will be executed in COVERITEAM with artifacts as input and new
or changed artifacts as output. COVERITEAM supports three types of actors, the utility
actor, atomic actor, and composition.

2.2.1.1 Atomic actor

Atomic actors are external binaries, which are executed by RUNEXEC which is part
of the benchmarking framework BENCHEXEC [6]. The command line arguments,
download location, allowed resource allocation and version of these programs are
provided by YAML-files. COVERITEAM saves these tools after downloading them in
a cache directory, whose location may be changed by the user. When it comes to
the execution of an atomic actor, RUNEXEC constructs and launches a new process
with the help of C-GROUPS1. This allows RUNEXEC to limit the resources like CPU time,

1https://man7.org/linux/man-pages/man7/cgroups.7.html
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2.3 Message Passing Interface (MPI)

core amount and memory allocation of this process and measure the actually used
resources. After the execution is finished, RUNEXEC collects the produced results and
measurements and returns it to COVERITEAM. The produced results are Artifacts (see
Sect. 2.2).

2.2.1.2 Compositions

A composition is a new actor, which consists of one or (so far) two actors. Since a
composition is a new actor, it is possible create compositions of compositions. At
the moment four different compositions are available:

Sequence A sequential composition does exactly what the title suggests, it exe-
cutes two actors one after another. Thereby it is important, that the outputs of the
first actor are a superset of the inputs of the second one.

Parallel This composition executes two actors in parallel. It is important, that the
inputs do not have a name clash. „A name clash between two sets A and B exists if
there is a name in A that is mapped to a different artifact type in B, more formally:
∃(a, t1) ∈ A; (a; t2) ∈ B : t1 6= t2.“ [3]. The outputs must be disjoint.

If-then-else (ITE) If-then-else requires two actors and a condition. The condition
is evaluated at the start of the composition and if it is true, the first actor will be
executed. Otherwise the second actor will be executed.

Repeat This composition only takes one actor and again a condition. The actor is
executed repeatedly, until the condition evaluates to true.

2.2.1.3 Utility actor

Utility actors manipulate artifacts. For example, they are able to rename or filter
keys in Artifacts.

2.3 Message Passing Interface (MPI)

"MPI is a standardized and portable message-passing system. Message-passing systems
are used especially on distributed machines with separate memory for executing parallel
applications. With this system, each executing process will communicate and share its data
with others by sending and receiving messages." [21]

MPI [14] defines an interface with methods to share data between processes. To use
MPI in a program, first one needs to include/import the interface and then compile it
with the MPI-compiler, a modified version of GCC2. To run the compiled program, the
developer needs an MPI implementation on his system and to launch the program
with the executable of this implementation. Because of the specification of MPI, there

2https://gcc.gnu.org/
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2 Prerequisites

must be an executable called MPIEXEC available. To launch the program, he needs to
call mpiexec your_executable.

Types of inter process communication In MPI several methods for inter process
communication are available, however they can be grouped in the following two
categories:

• 1 to 1 communication: One process sends data to one another process

• collective communication: All processes in a group share data with each other

To communicate with each other, processes use communicators. A communicator
has a unique ID and a group of processes. Every process has a unique ID in each
communicator, therefore one process can have multiple IDs depending which com-
municator it is using to transfer data. To illustrate this, let us consider the following
example:
1 #include <mpi.h>
2 #include <iostream>
3

4 int main()
5 {
6 int my_rank;
7 int world_size;
8

9 int test = 0;
10

11 MPI_Init(NULL, NULL);
12

13 MPI_Comm_size(MPI_COMM_WORLD, &world_size);
14 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
15

16 if (my_rank == 0) {
17 // Only executed in process 0
18 int number = 100;
19 MPI_Send(&number, 1, MPI_INT, 1, 13, MPI_COMM_WORLD);
20 } else if (my_rank == 1) {
21 // Only executed in process 1
22 MPI_Recv(&test, 1, MPI_INT, 0, 13, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
23 }
24 printf("Process %d has stored number %d in variable test", my_rank, test);
25

26 MPI_Finalize();
27 return 0;
28 }

Listing 1: MPI_Send example

After compilation of this code with MPICC, it is executable with the command
"mpiexec -n 4 program_name". This is an example of the expected output:
1 Process 1 has stored number 100 in variable test
2 Process 3 has stored number 0 in variable test
3 Process 0 has stored number 0 in variable test
4 Process 2 has stored number 0 in variable test

Listing 2: Output of Listing 1

8



2.3 Message Passing Interface (MPI)

Every process is running the same code, the only difference is the value of the my_-
rank variable. This means, only process 0 sends the number 100 and only process
1 receives it, because process 0 is calling MPI_Send and process 1 MPI_Recv. All
other processes neither send nor receive a number, so they all output the default
value of test, that is 0. The -n option is used to set the amount of spawned processes.
However, one can also spawn processes during runtime:
1 #include <mpi.h>
2 #include <iostream>
3

4 int main() {
5 int my_rank;
6 MPI_Comm interCommunicator;
7

8 MPI_Init(NULL, NULL);
9

10 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
11

12 printf("Spawner process with rank %d", my_rank);
13 MPI_Comm_spawn(
14 "mpi_hello_world_win.exe", // The program above
15 MPI_ARGV_NULL,
16 3, // Number of spawned processes
17 MPI_INFO_NULL,
18 0,
19 MPI_COMM_SELF,
20 &interCommunicator,
21 MPI_ERRCODES_IGNORE
22 );
23

24 MPI_Finalize();
25 }

Listing 3: MPI_Comm_Spawn example

The output after executing this program with "mpiexec -n 1 program_name"
looks like this:
1 Spawner process with rank 0
2 Process 1 has stored number 100 in variable test
3 Process 2 has stored number 0 in variable test
4 Process 0 has stored number 0 in variable test

Listing 4: Output of Listing 3

There are two points to note. First, the process ID 0 appears two times. Hence the
processes spawned with MPI_Comm_spawn have their own world communicator.
It is possible to address the parent by using MPI_Comm_get_parent. This method
returns a communicator which includes the spawning process. Second, it is possible
to spawn new processes at runtime, which will come in handy later.

9





CHAPTER 3

Implementation

With all the requirements settled, we are now able to have a look at the implementa-
tion of the PARALLEL PORTFOLIO. First, we look at the basic structure of the PARALLEL

PORTFOLIO, then how it is declared in the language. Afterwards we look at the gen-
eration of the actual executed python code. The final sections describes the two
execution modes.

3.1 Basic parallel portfolio actor

Actor

Composition

Sequence

+ a1: Actor
+ a2: Actor

Parallel

+ a1: Actor
+ a2: Actor

Repeat

+ a1: Actor
+ termination_condition

ITE

+ a1: Actor
+ a2: Optional(Actor)

Portfolio

+ actors: List[Actor]
+ termination_condition

Figure 3.1: Variables in composition are init parameters

A PARALLEL PORTFOLIO is a subclass of composition like the four other compositions.
As shown in Fig. 3.1, the PARALLEL PORTFOLIO takes a list of actors and a success
condition.

Type check Every other compositions has a type check defined, for example in
Sequence (see Sect. 2.2.1.2) the outputs of the first actor must be a superset of the
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3 Implementation

inputs of the second one. In the PARALLEL PORTFOLIO, such requirements are simple.
All actors must require the same inputs and produce the same outputs. If this is not
the case, the PARALLEL PORTFOLIO creation would fail because of a language exception.

Success condition As a reminder, the PARALLEL PORTFOLIO runs until one of its
actors has produced a valid result or all actors have finished. The success condition
decides whether a result is valid or not. The standard condition for verifiers, which
we also used in Example 1, requires the result to have a key named verdict and if
its value is true or false, the condition evaluates to true. To use other actors than
verifiers, the user has to specify a custom success condition. This is a string with an
expression and the evaluation is done by pythons own eval-method 1. Due to the
produced result being the only input, the user has to be aware of its content.

3.2 Language extension

3.2.1 The language itself

Compositions are written in a lightweight language provided by COVERITEAM. The
parser for this language is generated by ANTLR [19]. This parser generates executable
python code from the given composition descriptions. The generated python code is
then executed by COVERITEAM. We use a grammar file with the grammar of ANTLR in
version four to define this language. For this work, we added the PARALLEL PORTFOLIO

to the language and implemented its python code generation. Now we explain this
with the help of the following running examples.

1 actor : 'ActorFactory.create(' actor_type ','
2 name=(ID | STRING)
3 (',' version=(STRING | ID))? ')' # Atomic
4 | ID '(' id_list? ')' # FunCall
5 | utility_actor # Utility
6 | 'SEQUENCE' '('actor ',' actor ')'
7 | 'ITE' '(' exp ',' actor (',' actor)? ')'
8 | 'REPEAT' '(' quoted_ID ',' actor ')'
9 | 'PARALLEL' '(' actor ',' actor ')'

10 | 'PARALLEL_PORTFOLIO' '(' actor (',' actor )* (',' exp)')
'

11 | ID # ActorAlias
12 | '(' actor ')' # Parenthesis
13 ;

Listing 5: Part of grammar rules

Language definition Listing 5 shows the grammar rules for actors. The
new PARALLEL PORTFOLIO composition is located in line 10. In its parameters,
at least one actor is required, following actors are comma separated and at
the end a success condition needs to be specified (see Sect. 3.1). The ac-
tual creation of a PARALLEL PORTFOLIO may look like it’s shown in Listing 6.

1See https://docs.python.org/3/library/functions.html#eval
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3.2 Language extension

1 cpachecker = ActorFactory.create(
2 ProgramVerifier, "../actors/cpa-seq.yml", "default"
3 );
4 esbmc = ActorFactory.create(
5 ProgramVerifier, "../actors/esbmc-kind.yml", "default"
6 );
7

8 success_condition = ELEMENTOF(verdict, {TRUE,FALSE});
9

10 portfolio = PARALLEL_PORTFOLIO(
11 cpachecker,
12 esbmc,
13 success_condition
14 );

Listing 6: Portfolio creation in CoVeriTeams language

The example in Listing 6 creates the PARALLEL PORTFOLIO shown in Example 1. The
success condition in this case is true, if there is a key called verdict in the produced
results in CPACHECKER and ESBMC and its value is true or false.
1 def visitParallelPortfolio(self,
2 ctx: CoVeriLangParser.ParallelPortfolioContext):
3

4 self.pyp += "ParallelPortfolio(["
5 for child in ctx.children:
6 # IsInstance needed to support compositions and atomic actors
7 if isinstance(child, CoVeriLangParser.ActorAliasContext):
8 self.visit(child)
9 self.pyp += ","

10 self.pyp = self.pyp[:-1]
11 self.pyp += "]"
12

13 if ctx.exp():
14 self.pyp += ","
15 self.visit(ctx.exp())
16

17 self.pyp += ")"

Listing 7: Parser code of PARALLEL PORTFOLIO

Code generation As mentioned above, the language generator will create python
code from those statements. Listing 7 shows the generator implementation for the
PARALLEL PORTFOLIO. Notice in line 2 the variable self.pyp, which holds the current
generated python code. At the top, the call to the PARALLEL PORTFOLIO constructor
is added with opening square bracket for the start of the actor list, then the ac-
tors need to be parsed. For that purpose we will loop trough every child in this
PortfolioContext and check if this child is an actor. A child in this case is every
type defined in the language. This includes every separating comma, the paranthesis,
actors and the success condition. For every found child the visit method gets called,
recursively parses and appends it to the source code. After that a comma is added.
At last, the comma at the end has to be deleted, which is done in line 9. Now the list
is finished and can be closed. Line 12-14 parses the success condition and appends
it after the actor list. During this parsing, True and False are converted to classes
of BENCHEXEC. Line 16 then closes the call to the constructor.

13



3 Implementation

With this translation the generated python code for Listing 6 looks as follows:
1 cpachecker = ProgramVerifier(
2 "/.../coveriteam/actors/cpa-seq.yml",
3 "default"
4 )
5 esmbc = ProgramVerifier(
6 "/.../coveriteam/actors/esbmc-kind.yml",
7 "default"
8 )
9 portfolio = Portfolio(

10 [cpachecker,esbmc],
11 "verdict in [RESULT_CLASS_TRUE,RESULT_CLASS_FALSE]"
12 )

Listing 8: Translated cvt-code

The first two lines of Listing 6 were translated more or less directly, depending on
the given type in the ACTORFACTORY (in this case ProgramVerifier). To execute this
PARALLEL PORTFOLIO the execute method needs to be called in the cvt-file, which looks
like this:
1 result = execute(portfolio, input_parameters);
2 print(result);

The "input_parameters" are Artifacts (see Sect. 2.2) required for the actors inside
the PARALLEL PORTFOLIO. To see the result, the print statement is needed.

With this implementation we are able to create the PARALLEL PORTFOLIO from Exam-
ple 1. The next section explains the execution of it.

3.3 MPI parallel portfolio execution

There are currently two execution modes for the PARALLEL PORTFOLIO. One is using
MPI (see Sect. 2.3) and the other one the multiprocessing module of python to create
processes. Figure 3.2 shows the spawned processes. Each execution is spawning a
process per actor in the PARALLEL PORTFOLIO. For a PARALLEL PORTFOLIO of n actors (2
in Example 1), the MPI execution spawns n MPI Worker processes and the Fallback
Execution spawns n PYTHON processes. However the MPI execution has two processes
more: The MPI Scheduler and the QueueManager. The next sections describe their
functionality.

3.3.1 Entry in MPI environment

As mentioned above in Sect. 2.3, to use MPI it needs to be executed with an
MPI executable. There must be a call to mpiexec (or mpirun) and because
COVERITEAM is written in python it will look like "mpiexec python-executable
python-file.py". There are two ways to achieve this, one is to launch the whole
COVERITEAM with mpiexec, or to spawn a new process, which is using MPI. The first
approach is not very practical. First, if one wants to use COVERITEAM, one must have
some MPI implementation installed on the system. Otherwise COVERITEAM would not
be able to start, because mpiexec would be missing. To prevent this we could use a
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Figure 3.2: Process spawning at PARALLEL PORTFOLIO execution time

check at the beginning and if there is a PARALLEL PORTFOLIO inside the given cvt-file
we execute it with MPI. This check could be done automatically or by the user. To
rely on the user was no option for us and when done automatically a python process
is started, which would check the need of MPI and then start the real COVERITEAM

process, which is also not ideal. What remains is to spawn a new subprocess with
mpiexec. This subprocess then executes the actors of the PARALLEL PORTFOLIO and
terminates them after a valid result was produced. This is the purpose of the MPI
Scheduler from Fig. 3.2. However because it is a completely new process, it does
not have any information about the current state of the PARALLEL PORTFOLIO, which
brings us to the next problem and the function of the QueueManager.

3.3.2 Process synchronization

The QueueManager is a subclass of python’s BaseManager-class2, which is located
in the multiprocessing.managers package. It creates a TCP server socket and
is able to share python objects between multiple processes. To receive an object from
a BaseManager, a python process has to create its own instance of BaseManager with
the IP-address of the machine, which has created the server at first, and the authen-
tication key, which was used. After the connection it is possible to use the already
created shared objects or build new ones. To share data between the COVERITEAM pro-
cess and the MPI scheduler, only one queue from the multiprocessing-package
is used. Both processes use this queue. That is a simple way to synchronize them,

2https://docs.python.org/3/library/multiprocessing.html
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because the COVERITEAM process sends the PARALLEL PORTFOLIO and the required argu-
ments into the queue and then waits, until a result is put into it. The MPI Scheduler
on the other hand waits after start up on this queue until the PARALLEL PORTFOLIO and
its arguments are available. After it has finished, the produced result is put into the
queue.

3.3.3 Computation

Once the MPI Scheduler has received the PARALLEL PORTFOLIO and its execution
arguments, it creates new instances of MPI Worker for each actor inside the PARALLEL

PORTFOLIO. Then each Worker receives one of those actors with MPI_Send. In case
of Example 1, one is receiving CPACHECKER and the other ESBMC. Subsequently, the
arguments are broadcasted to each MPI Worker with MPI_Broadcast. Now the
worker has everything needed to call the act-method of the actor. But first it creates
a new thread, which listens to a stop signal from the Scheduler, when a valid result
(e.g. it satisfies the success condition) was produced. To receive this stop signal, we
used MPI_Recv with the MPI Scheduler process ID as source and 99 as its tag. After
the thread has started, the actual execution of the actor begins. After the termination
of the actor, the result is sent to the Scheduler, which checks if the received result
satisfies the success condition. In this case, the stop signal is sent to all running
workers and the result is put into the queue. Otherwise, nothing will happen. After
every actor has terminated and no result matches the condition, an empty artifact is
put into the queue.

Preventing busy waiting MPI Implementations are often using busy waiting,
when waiting for a message. Thus, the thread, which called MPI_Recv, would
use the CPU at 100%, checking as fast as possible, if there is a new message with
tag 99 available. That is why we switched to a non-blocking receive and manually
pausing the thread for half a second. It is a minor detail, to stop as fast a possible,
but with the manual pause, the thread is way more efficient in terms of CPU usage
and thus energy consumption.

3.3.4 Process termination

When a worker receives the stop message from the scheduler, it calls the stop-
method of the actor. This performs a clean shutdown, where all reserved resources
are released and the processes are stopped. Before the implementation of the PARAL-
LEL PORTFOLIO, a shutdown was never required. This feature is introduced with this
thesis. There are two categories of shutdowns:

• Composition Shutdown: Each composition must be able to shutdown each of
its actors

• Atomic Actor Shutdown: Atomic actors, as an external program, must be able
to stop

16
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Figure 3.3: States of the atomic actor shutdown

Compositions

Each of the compositions has its own shutdown algorithm, because each composition
treats its actors differently.

Parallel Both actors are executed in parallel, thus it is enough to call their stop
methods.

Sequence Similar to the parallel composition, it is enough to stop both actors.
If the first one is running, it will be stopped, the second starts and is immediately
stopped afterwards. If the second one is running, the stop call to the first one has no
effect and the second one will be stopped.

ITE In this case, we have to check, if there is a second actor available. If so, its like
in sequence, otherwise the only actor is stopped.

Repeat In the Repeat composition, an actor is executed until a certain success
condition is reached. Thus only stopping the actor will not be enough, because it
may start again immediately. The solution is to set a flag, that the composition has
to stop. Now when this flag is set, the success condition will always be true, hence if
the actor is stopped, it would not start again.

17
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Atomic actors

Atomic actors are executed in a RUNEXEC container, which provides a RunExecutor
object. This object has a stop-method, which shutdowns the container and releases
all its reserved resources. Therefore, our first approach was to call this method imme-
diately in the MPI Worker after it received the stop signal from the MPI Scheduler. We
encountered two problems. First, it was possible that the stop signal arrived before
the RunExecutor was created. In this case, COVERITEAM raised an error, because no
RunExecutor was present. Second, it was also possible that the stop signal arrived
during the start-up phase of the actor. In this case the stop signal was ignored. This
caused the tool to finish booting and then not interrupt its execution. We solved this
by defining four states for the atomic actor. Figure 3.3 shows these states and the
behavior of the atomic actor when its stop-method gets called. The act-method
starts the atomic actor. The epsilon transition (ε) in Figure 3.3 denotes the transition
into the state after an unspecified amount of time. For example, the atomic actor
changes from the Executing state to the Idle state after some time when it is finished.
The states are defined as follows:

• Idle: The act-method of the actor has not been called yet or the last execution
has finished. Stop signals are ignored in this state.

• Preparing: The atomic actor is in the start-up phase. A call to the stop-
method of the RunExecutor would be ignored. After receiving a stop signal
the actor switches to the Stopping state.

• Executing: The creation of the RunExecutor has finished and the tool is
running. After receiving a stop signal the stop-method of the RunExecutor
is called. The tools shuts down and the atomic actor switches to state Idle.

• Stopping: The atomic actor is currently starting and will shutdown as soon
as possible. Additional stop signals are ignored. A shutdown is possible after
the tool has finished booting up. After the shutdown the atomic actor switches
to state Idle.

This approach provided a robust shutdown procedure and was able to fix both
problems we had with the first approach.
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Figure 3.4: Process creation in nested PARALLEL PORTFOLIO

3.3.5 Dynamic vs. Static spawning

3.3.5.1 Dynamic spawning

1 cpachecker = ActorFactory.create(...);
2 symbiotic = ActorFactory.create(...);
3 uautomizer = ActorFactory.create(...);
4 esbmc_kind = ActorFactory.create(...);
5

6 // Prepare example inputs
7 prog = ArtifactFactory.create(...);
8 spec = ArtifactFactory.create(...);
9

10 inputs = {'program':prog, 'spec':spec};
11

12 result = execute(
13 PORTFOLIO(
14 cpachecker,
15 symbiotic,
16 PORTFOLIO(
17 uautomizer,
18 esbmc_kind
19 )
20 ),
21 inputs
22 );
23

24 print(result);

Listing 9: Nested PARALLEL PORTFOLIO in COVERITEAM language

For the process spawning in MPI, we use a method called MPI_Comm_Spawn3. This
method is able to spawn new processes during runtime. We explain it with the help

3https://www.open-mpi.org/doc/v4.1/man3/MPI_Comm_spawn.3.php
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of the example shown in Listing 9. This example constructs a PARALLEL PORTFOLIO of
2 verifiers and another PARALLEL PORTFOLIO, which also includes 2 verifiers. With the
dynamic spawning approach, we get the processes shown in Fig. 3.4 The dashed
line indicates one process, which means Worker 3 creates an instance of Scheduler.
The Scheduler itself creates two new processes afterwards. With the dynamic spawn-
ing, new processes will be created when needed. But there are two downsides, for
example, a job scheduling system like SLURM4 may require some additional configu-
ration, because at schedule time, the total amount of processes is not provided. The
second downside we encountered is a problem in some MPI Implementations with
MPI_Comm_Spawn. When we tested the program on a little PC Cluster, it would not
work with OPENMPI version 4.0.3, which was the default released for the OS we used
(Ubuntu 20.04). After upgrading to version 4.0.6., it worked perfectly fine.

3.3.5.2 Static spawning

Static spawning requires the computation of all needed processes before the execu-
tion of the PARALLEL PORTFOLIO and then spawning them at once. This may be better
for job scheduling systems, because the total amount of processes is known before
the execution and it is the standard way to spawn processes, thus there may be less
errors with MPI Implementations. But it requires advanced configuration of the MPI
environment, because now every process has the same world communicator and
is able to send messages to other processes, therefore there is a need to create new
communicators for each PARALLEL PORTFOLIO in the top one, something which is done
automatically with MPI_Comm_spawn. But there are more important downsides,
described in the following (shortened) cvt-file:
1 actor_1 = ActorFactory.create(...);
2 actor_2 = ActorFactory.create(...);
3 actor_3 = ActorFactory.create(...);
4 actor_4 = ActorFactory.create(...);
5

6 portfolio_inputs = {...};
7

8 success_condition = ...;
9

10 nested_portfolio = ParallelPortfolio(
11 actor_3,
12 actor_4,
13 success_condition
14 );
15

16 sequence_with_first_actor = SEQUENCE(actor_1, nested_portfolio);
17 sequence_with_second_actor = SEQUENCE(actor_2, nested_portfolio);
18

19 portfolio_of_sequences = ParallelPortfolio(
20 sequence_with_first_actor,
21 sequence_with_second_actor,
22 success_condition
23 );
24 execute(portfolio_of_sequences, portfolio_inputs);

Listing 10: Sequence with PARALLEL PORTFOLIO inside PARALLEL PORTFOLIO

4https://slurm.schedmd.com/documentation.html
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3.4 Fallback parallel portfolio execution

With static spawning, the amount of required processes must be determined. This
is only possible by iterating through the actors in the top PARALLEL PORTFOLIO and
if it is an AtomicActor (created with ActorFactory) increase the amount of needed
processes by one. In case it is a composition, it is important to know, if there is
any PARALLEL PORTFOLIO inside this composition, and if so, increase the amount
of processes for every AtomicActor and Composition in it. Thus it is like iterating
through a tree. This requires complex code changes in the source code of COVERITEAM,
because either every composition is able to return their actors or it has a recursive
method which returns the count of the needed processes for itself. But this is a
deficient approach for scalability, because now the compositions need to have code
in it, which is specific for the PARALLEL PORTFOLIO, because each compositon has to
search their own actors for PARALLEL PORTFOLIO. However, the worst downside coming
with static spawning are potentially never used processes. If you look at the above
cvt-file, you may notice, there is a possibility that one nested PARALLEL PORTFOLIO is
never used. Given the situation, that actor_1 is way faster than actor_2 (which,
in COVERITEAM, happens very often). It is very likely to happen, that actor_1 and
the nested PARALLEL PORTFOLIO together are terminating faster than actor_2. In this
case, the spawned processes for the second nested PARALLEL PORTFOLIO will not be
used and therefore are wasting system resources.

3.3.6 Conclusion

We think in the context of COVERITEAM, which allows very complex, but also flexible,
compositions, dynamic process spawning is preferred. The first problem with the
need of new communicators in static spawning is not difficult to solve. There are
graph communicators5 in MPI, which would satisfy the needs, but the calcula-
tion of needed processes is against the concept of COVERITEAM. In addition, there is
the potential waste of system resources. Therefore dynamic spawning is the right
solution.

3.4 Fallback parallel portfolio execution

In case there is no possibility to install an MPI Implementation or, for some rea-
sons, MPI4PY is not available, we have provided a fallback execution, which is using
pythons own multiprocessing module. As shown above in Figure 3.2, the struc-
ture is less complicated than the MPI one. The fallback execution is used, if no
mpiexec-executable or no MPI4PY is found. But it is also possible to force the use of
this mode by adding --use-python-process as a parameter to the command
line, when starting COVERITEAM. The execution is very basic, first a queue is created,
which is shared between the spawned and the main processes. Every spawned pro-
cess then executes its own actor, and if a result is produced, it puts it into the queue.
The main COVERITEAM process in the meantime is waiting on this queue for the
produced results. If it receives a new one, the success condition will be evaluated on
it, and if it is true, all processes will be terminated. If no proper result was produced

5https://www.mpi-forum.org/docs/mpi-2.2/mpi22-report/node171.htm#Node171

21

https://www.mpi-forum.org/docs/mpi-2.2/mpi22-report/node171.htm#Node171


3 Implementation

by any of the actors, an empty artifact is returned. Because python uses fork to create
those new processes, there is no need to share the PARALLEL PORTFOLIO between them,
so the QueueManager is not needed. The big downside to the fallback execution is
the missing possibility to run the PARALLEL PORTFOLIO on multiple machines at once.
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CHAPTER 4

Evaluation

In this chapter we will have a look at the performance and possibilities of the PARAL-
LEL PORTFOLIO composition. In order to perform an evaluation as deep as possible we
have limited ourselves to software verifiers as tools inside the PARALLEL PORTFOLIO.
We therefore used only verification tasks as test data.

4.1 Experiment setup

4.1.1 Verifier selection

Beyer et al. [4] investigated parts of the PARALLEL PORTFOLIO. They tested different
selections of verifiers from the SV-COMP 2021 [1]. The best performing selection for a
PARALLEL PORTFOLIO of three verifiers was the selection of CPACHECKER [5], ESBMC [12],
and SYMBIOTIC [7]. For the PARALLEL PORTFOLIO of four verifiers, they added ULTIMATE

AUTOMIZER [15]. We used the same verifiers for our evaluation, therefore every
PARALLEL PORTFOLIO of three verifiers in the following experiments used CPACHECKER,
ESBMC, and SYMBIOTIC. With four verifiers we added ULTIMATE AUTOMIZER.

4.1.2 Benchmark selection

For the benchmarks we chose the ReachSafety1 benchmark set. It includes 8883
different programs and their results, when checked against the unreach call speci-
fication. This specification is a safety property describing that the error location is
never reached [4].

1https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
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4 Evaluation

4.1.3 Execution environment

The benchmarks were executed on the VERIFIER CLOUD2. It uses the following
specifications:

• CPU: 3.4 GHz (Intel Xeon E3-1230 v5) with 8 processing units (4 physical +
hyper-threading)

• RAM: 33 GB

• OS: Ubuntu 20.04

• MPI-Implementation: OPENMPI3 4.0.3

This cloud executes programs inside a BENCHEXEC [6] container. Therefore, we had the
possibility to specify the available resources and measure the actual used resources,
like CPU time, wall-time and memory usage. We used 15 GB as available memory to
get a good comparison of the runs of each single verifier at the SV-COMP 2021 [1]. All
PARALLEL PORTFOLIO runs which used the MPI execution were executed with OPENMPI
4.0.3. The only exception is the cluster experiment (see Sect. 4.6).

4.1.4 Evaluation criteria

We evaluated the performance of the PARALLEL PORTFOLIO in 5 categories:

• achieved total score

• used CPU time

• used wall-time

• used memory

• used energy

Because we use the first valid result we expected very good results in terms of
wall-time. As for CPU time and memory usage higher results were expected. In each
row of the following tables, the best value is marked in bold. However, for marking
the best value the real numbers are used.

Score The score is computed with the same schema as used in SV-COMP [1].
Correct proofs are rewarded with 2 score points, correct alarms with 1 score point,
wrong proofs with −32 score points, and wrong alarms with −16 score points.

2https://vcloud.sosy-lab.org/cpachecker/webclient/help/
3https://www.open-mpi.org//
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Figure 4.1: Wall-time and CPU time per score point

Table 4.1: Comparison of parallel portfolio of different size with CPACHECKER

Verifier
CPACHECKER PARALLEL PORTFOLIO of

3 4

Score 9 040 9 057 9 178
Correct results 5 652 6 129 6 167

Correct proofs 3 516 3 824 3 827
Correct alarms 2 136 2 305 2 340

Wrong results 8 35 31
Wrong proofs 0 21 20
Wrong alarms 8 14 11

Total resource consumption for correct results
CPU time(h) 190 180 220
Wall time (h) 140 48 42
Memory (GB) 7 000 11 000 12 000
Energy (KJ) 7 700 5 400 5 200

Median resource consumption for correct results
CPU time(s) 61 26 38
Wall time (s) 32 7.1 8.0
Memory (MB) 600 530 740
Energy (J) 590 200 250

Total resource consumption per score point
CPU time (s/sp) 380 340 340
Wall time (s/sp) 270 100 79
Memory (MB/sp) 3 000 3 200 3 200
Energy (J/sp) 4 100 2 900 2 500
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4.2 General performance

For the general performance we used a PARALLEL PORTFOLIO with 3 and 4 verifiers
(For verifier selection see Sect. 4.1.1).

Resource limitations

• CPU-Time limit: 15 minutes

• Memory limit: 15 GB

The same limits were used for the run with CPACHECKER.

Interpretation With the score one disadvantage of the PARALLEL PORTFOLIO reveals.
We produce many more correct results than CPACHECKER, but also more wrong re-
sults. This was expected, because we use the fastest produced result and we have no
way to check, if this result is correct with the standard PARALLEL PORTFOLIO. We tried
to minimize the wrong results with a PARALLEL PORTFOLIO, which uses a combination
of a verifier and a validator (see Sect. 4.5). But because of the use of the fastest
result more verifiers in the PARALLEL PORTFOLIO should increase the score, if we have
unlimited resources at our disposal. With limited resources one may think that there
is an optimal ratio of verifier amount and resources. Beyer et al. [4] have found a
good selection of verifiers for these resource limitations, which we used here also.

As mentioned in Sect. 2.1, the main purpose of the PARALLEL PORTFOLIO is to be fast
in terms of wall-time, which is proven by the difference in the wall-time for correct
results compared with CPACHECKER. In terms of CPU time we expected the outcome
to be much higher, because we use more cores at the same time. The relatively low
results can be explained with the low wall-time. The program does not run long
enough per experiment to create high CPU times. However the memory usage of
the PARALLEL PORTFOLIO is higher than of single verifiers.

The most interesting figure is the energy consumption. As mentioned energy con-
sumption does not scale linearly with other used resources. This is shown by the
PARALLEL PORTFOLIO of four actors. Despite the CPU time and the memory usage is
the highest for correct results the energy consumption is the lowest.

Results The PARALLEL PORTFOLIO is fast in terms of wall-time and surprisingly uses
less energy than single verifiers. But it also produces more wrong results. The CPU
time is also lower than expected. However the total score is not as high as intended,
because the wrong results decrease it by a large amount.
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Figure 4.2: Wall-time and CPU time per score point

Table 4.2: Comparison standard execution vs fallback execution

Verifier
PARALLEL PORTFOLIO

3 3 fallback 4 4 fallback

Score 9 057 9 460 9 178 9 443
Correct results 6 129 6 364 6 167 6 363

Correct proofs 3 824 3 992 3 827 3 944
Correct alarms 2 305 2 372 2 340 2 419

Wrong results 35 35 31 33
Wrong proofs 21 21 20 21
Wrong alarms 14 14 11 12

Total resource consumption for correct results
CPU time(h) 180 180 220 200
Wall time (h) 48 61 42 49
Memory (GB) 11 000 11 000 12 000 12 000
Energy (KJ) 5 400 5 300 5 200 5 000

Median resource consumption for correct results
CPU time(s) 26 16 38 27
Wall time (s) 7.1 4.7 8.0 5.4
Memory (MB) 530 430 740 620
Energy (J) 200 120 250 170

Total resource consumption per score point
CPU time (s/sp) 340 290 340 290
Wall time (s/sp) 100 130 79 98
Memory (MB/sp) 3 200 3 000 3 200 2 900
Energy (J/sp) 2 900 2 600 2 500 2 200
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Figure 4.3: Fallback Portfolio vs MPI Portfolio (CPU time)

4.3 Fallback vs MPI execution

To measure the performance differences of the fallback and the MPI execution, we
ran the same benchmarks as in Sect. 4.2 with the fallback execution.

Resource limitations

• CPU time limit: 15 minutes

• Memory limit: 15 GB

Interpretation The most obvious difference is the higher score of the fallback exe-
cution. This is due to the higher amount of correct results, because the wrong result
amount is almost the same.
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Figure 4.4: Fallback Portfolio vs MPI Portfolio (Wall-time)

Another interesting aspect is, while the total CPU time stays about the same, the
increased consumption of total wall time. The explanation for this difference is the in
Sect. 3.3.1 described MPI-Scheduler. This process uses the busy waiting strategy [22]
for waiting at the next result. Therefore it uses a large amount of CPU time and
because we are limiting the CPU time of the benchmarks, the program was stopped
earlier. This effect is shown in Figure 4.3 (c). The difference between the CPU time
of the MPI execution and the fallback execution is constantly increasing, because the
MPI-Scheduler uses CPU time while waiting for new results. Therefore the fallback
execution has more total CPU time available for the verifiers. This also explains the
higher amount of solved problems.

Also we noticed the lower median wall- and CPU time with the fallback execution.
We noticed this behavior earlier during the measuring of wall-time with one single
program. Figure 4.2 and Figure 4.4 indicate that the creation of an MPI environment
and the spawning of MPI processes take more time than spawning python processes.
Both fallback executions need less wall-time for the fast tasks when compared with
the MPI execution. For the heavier tasks the difference becomes less significantly.

Another advantage of the fallback execution is the slightly lower energy consump-
tion. However, this mainly results of the more efficient CPU time usage (see 4.3)
compared to the MPI execution. The fallback PARALLEL PORTFOLIO uses the same or
less amount of CPU time for almost any verification task.

Results The fallback execution is faster, more energy efficient and achieves a better
score. It only lacks the possibility of using multiple machines to run the PARALLEL

PORTFOLIO. But used on a single machine, it is the more efficient execution method.
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Figure 4.5: Wall-time and CPU time per score point

Table 4.3: Comparison of PARALLEL PORTFOLIO with 3 actors

Verifier
PARALLEL PORTFOLIO of 3 actors

base 20 GB 30 Min 20 GB | 30 Min

Score 9 057 9 050 9 529 9 681
Correct results 6 129 6 128 6 404 6 490

Correct proofs 3 824 3 818 4 021 4 087
Correct alarms 2 305 2 310 2 383 2 403

Wrong results 35 35 35 35
Wrong proofs 21 21 21 21
Wrong alarms 14 14 14 14

Total resource consumption for correct results
CPU time(h) 180 180 270 300
Wall time (h) 48 47 73 82
Memory (GB) 11 000 11 000 12 000 14 000
Energy (KJ) 5 400 5 400 8 100 9 000

Median resource consumption for correct results
CPU time(s) 26 26 29 30
Wall time (s) 7.1 7.1 7.6 7.8
Memory (MB) 530 530 560 580
Energy (J) 200 200 220 230

Resource consumption per score point
CPU time (s/sp) 73 73 100 110
Wall time (s/sp) 19 19 27 30
Memory (MB/sp) 1 200 1 200 1 300 1 500
Energy (J/sp) 2 900 2 900 4 300 4 300
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4.4 Variation of memory and time limit

4.4 Variation of memory and time limit

We wanted to know, which of the two limited resources are more important for
the PARALLEL PORTFOLIO. In order to investigate this, we have run several different
benchmarks. We decided to use the PARALLEL PORTFOLIO with three verifiers for those
benchmarks, because with fewer verifiers each of them benefits more from the
increase of memory. Thus we expected more significant differences.

Resource limitations

• CPU-Time limit: 15 minutes, if not said otherwise above

• Memory limit: 15 GB, if not said otherwise above

• Executed with MPI

Interpretation As expected, the PARALLEL PORTFOLIO achieved the highest score,
when given the most resources. However, we did not expect the higher importance
of the CPU time limit compared to the memory limit. Also the increase of the memory
limit while using the same CPU time limit had no effect at all. The seven points
difference in the score is due to the fluctuating results. However, if we increased the
CPU time limit, increasing the memory limit began to have a noticeable effect.

Results The most limiting factor of the PARALLEL PORTFOLIO is CPU time limit.
Given that we run several tools in parallel, we need significantly more CPU time
than running one single verifier. We used 15 minutes for most of the benchmarks
to get a good comparison of single verifiers, because all of those benchmarks were
executed with those limits.
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Figure 4.6: Wall-time and CPU time per score point

Table 4.4: Validating PARALLEL PORTFOLIO

Verifier
Validating PARALLEL PORTFOLIO of 3 actors

base 15 GB | 15 min 20 GB 30 Min 20 GB | 30 Min

Score 9 057 5 100 5 135 5 263 5 356
Correct results 6 129 3 612 3 641 3 747 3 807

Correct proofs 3 824 1 552 1 558 1 580 1 613
Correct alarms 2 305 2 060 2 083 2 167 2 194

Wrong results 35 4 4 4 4
Wrong proofs 21 0 0 0 0
Wrong alarms 14 4 4 4 4

Total resource consumption for correct results
CPU time(h) 180 140 140 190 200
Wall time (h) 48 32 33 45 49
Memory (GB) 11 000 7 900 8 500 9 200 9 900
Energy (KJ) 5 400 3 700 3 900 5 100 5 600

Median resource consumption for correct results
CPU time(s) 26 75 75 77 78
Wall time (s) 7.1 15 15 16 16
Memory (MB) 530 1 200 1 200 1 200 1 300
Energy (J) 200 500 510 510 520

Resource consumption per score point
CPU time (s/sp) 73 98 100 130 140
Wall time (s/sp) 19 22 23 31 33
Memory (MB/sp) 1 200 1 500 1 700 1 700 1 800
Energy (J/sp) 2 900 8 300 8 300 13 000 14 000
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Figure 4.7: Proof tasks solved by the base PARALLEL PORTFOLIO
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Figure 4.8: Alarms tasks solved by the base PARALLEL PORTFOLIO

4.5 The validating portfolio

As mentioned in Sect. 4.2, the PARALLEL PORTFOLIO produces a lot of wrong results.
We tried to minimize those with this experiment. The validating PARALLEL PORTFOLIO

uses a validator after each verifier, which validates the result of the verifier. We
expected a significantly lower amount of wrong results and tested different resource
limitations. We compared all validating PARALLEL PORTFOLIO experiments with the
PARALLEL PORTFOLIO of three verifiers from Sect. 4.2, which is called base in Table 4.4.

Resource limitations
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• CPU-Time limit: 15 minutes, if not said otherwise above

• Memory limit: 15 GB, if not said otherwise above

• Executed with MPI

Interpretation We have significantly fewer wrong results, but at the expense of
performance. The correct results have been almost halved. The remaining 4 wrong
alarms are due to the validator. We cross checked each of those 4 tasks with the
results of SV-COMP 21 [1] and the validator produced the same wrong alarms for 3
tasks during the competition. No result was produced for the remaining task in this
competition, because the witness listing did not succeed.

One indication of those poor outcomes is the median used wall-time for correct
results. It is more than doubled compared with the standard PARALLEL PORTFOLIO. It
seems, that the validator we used for this benchmarks takes more time on average
than the actual verifier. Additionally the used median CPU time is nearly tripled,
which can be explained with the still running verifiers during the validation of a
result from an already finished verifier. For the same reason the median of the used
memory is also higher than normal. All this leads to more than twice the energy
consumption. Interestingly, the total resource consumption is lower than that of the
standard PARALLEL PORTFOLIO.

Another interesting aspect is the low amount of correct proofs (see Table 4.4). While
the amount of correct alarms remains about the same the amount of correct proofs
is less than half that of the base PARALLEL PORTFOLIO. We created two scatter plots
to investigate this. 4.7 shows all correct proof tasks solved by the base PARALLEL

PORTFOLIO. There are a lot tasks which use very little CPU time but timeout in the
validating PARALLEL PORTFOLIO. Figure 4.8 in comparison shows all correct alarm tasks.
Here the amount of timeouting tasks is much lower compared with Figure 4.7. Also
the used CPU time of the validating PARALLEL PORTFOLIO is much closer to the used
CPU time of the base PARALLEL PORTFOLIO. The only difference between the base
and the investigated (15 GB | 15 min) validating PARALLEL PORTFOLIO is the validator
after each verifier. It seems that the validator needs significantly more CPU time in
case of a proof than in case of an alarm.

Results The combination of verifier and validator in the PARALLEL PORTFOLIO is
very expensive, but it also reduces the produced wrong results to a minimum. And
again the increase of CPU time is more beneficial than the increase of the memory
limit.
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Table 4.5: Running PARALLEL PORTFOLIO on a cluster

Verifier
PARALLEL PORTFOLIO of

3 4 cluster

Score 9 057 9 178 9 227
Correct results 6 129 6 167 6 681

Correct proofs 3 824 3 827 4 114
Correct alarms 2 305 2 340 2 567

Wrong results 35 31 66
Wrong proofs 21 20 32
Wrong alarms 14 11 34

Wall time for correct results
Wall time (h) 48 42 42
Median Wall time (s) 7.1 8.0 5.7
Total Wall time (s/sp) 19 16 16

4.6 Cluster run

At last we investigated the performance of the PARALLEL PORTFOLIO when executed
on a cluster of multiple PCs. Our test setup consisted of four computers with the
following specifications:

• CPU: 3.4 GHz (Intel i7-6700) with 8 processing units (4 physical + hyper-
threading)

• RAM: 33 GB

• Network: 1 GBit/s Ethernet

• OS: Ubuntu 20.04

• MPI-Implementation: MPICH4

4https://www.mpich.org/
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Each run had limited resources on the host machine. Since we execute the runs with
RUNEXEC we were able to limit the resources only on the machine, which starts the
run.

Resource limitations

• CPU-Time limit: 30 minutes

• Memory limit: 30 GB (10 GB per verifier)

• Executed with MPI

Verifier selection As we had significantly more resources at our disposal, we
chose all available verifiers from the SV-COMP 20215 for the PARALLEL PORTFOLIO.
Each verifier had a total of 10 GB of memory at its disposal and each machine was
running 3 of them.

Interpretation RUNEXEC is capable of measuring the used resources on one machine
only, therefore we dropped the CPU time, memory and energy consumption for this
experiment. These values would not have been meaningful.

Since the PARALLEL PORTFOLIO uses the fastest result, we expected a lower wall-time
compared to previous runs. Given a machine with endless resources, the wall-time
should always decrease or at least remain the same. Interestingly the total wall-time
for correct results was the same compared with the 4 verifier PARALLEL PORTFOLIO.
This can be explained by the lower verifier count on each machine, therefore the
comparsion with the 3 verifier PARALLEL PORTFOLIO is more meaningful here. The
median wall-time decreased significantly compared with both PARALLEL PORTFOLIO,
because some of the now included verifiers are much faster in some cases. This is
particularly visible in Figure 4.9

Despite being faster, the score of the experiment was disappointing. Although it
solved a lot more verification tasks, it also produced almost double amount of
wrong results. It even falls behind the PARALLEL PORTFOLIO executed with the fallback
execution (see Sect. 4.3).

Results To quadruple the available resources has only led to faster wall-time and a
slight increase of score. The experiment solved the most problems, but also produced
the most errors. Therefore the results seem to be disappointing. But because we
used the best combination of verifiers with the previous experiments, there was
little room for improvement. Our selected verifiers (see [4] for more information)
were chosen to complement each other. This selection took a lot of time. If this
time is not available, a kind of brute force approach is possible. In this case, all
verifiers are selected. The PARALLEL PORTFOLIO produces promising results even with
this approach. A remaining disadvantage is the high number of false results. To

5https://sv-comp.sosy-lab.org/2021/
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minimize this number, the validating PARALLEL PORTFOLIO remains to be tested on a
cluster (see Sect. 5.2).

4.7 Reflection

The use of MPI At the start of this work we chose MPI as framework to spawn
processes as it provides an easy way to exchange messages between those processes.
These new processes should execute the tools of COVERITEAM and send the results
back to one specific process. For this result sending we needed the exchange of
messages. Additionally MPI allows the execution on PC Cluster, which was another
objective for this work. However to use MPI we needed some sort of bridge between
the MPI functions interface, which is only available in C, C++, and Fortran. We chose
MPI4PY ( [8] [9] [10]) as bridge. Furthermore, we needed an MPI implementation to
execute the program. This implementation and MPI4PY have to be installed on the
system and are difficult to ship with COVERITEAM. Therefore, we chose to implement
the fallback execution which only uses features integrated in python. We then
discovered the increased performance of the fallback execution compared to the
MPI execution on a single machine described in Sect. 4.3. One could think that the
MPI execution is obsolete now, but in our evaluation we used an already optimized
selection of verifiers (see Sect. 4.1.1 and [4]). Without an optimized selection one
might want to execute a lot of tools in parallel on multiple machines to get many
result with a minimum of preparation time. However, the MPI execution should not
be used, when the PARALLEL PORTFOLIO is executed on a single machine.
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CHAPTER 5

Conclusion

5.1 Conclusion

We were able to achieve the main goal. The PARALLEL PORTFOLIO provides very short
wall-times and outperforms each single standalone tool within the composition.
Furthermore, despite using more CPU time and memory it saves a significant
amount of energy, when compared with single tools. However, its high amount of
wrong results makes its usefulness difficult in some situations. In total the PARALLEL

PORTFOLIO produces results up to 3 times faster than single verifiers while its energy
consumption is 30-60 % lower. The only downsides are more wrong results and more
required CPU cores to work properly. Therefore we think, if a result is required fast,
the PARALLEL PORTFOLIO is always the preferred choice. Also the fallback execution,
which was designed to simplify the use of the PARALLEL PORTFOLIO due to the omitted
need of MPI, was a success. It performed even better than the standard execution,
but it obviously lacks the ability to run on a cluster. It should be noted, that the
performance of the PARALLEL PORTFOLIO strongly depends on the selected tools. It
is up to the user to select the best tools for their tasks. If it is not possible to select
the best tools the user has the ability to use an arbitrary amount of tools inside the
PARALLEL PORTFOLIO and execute it on a cluster.

We hope our PARALLEL PORTFOLIO will increase the productivity in the field of software
verification through faster wall-times, while also helping to protect the planet,
because of the lower energy consumption.

5.2 Future Work

We tested the performance of the PARALLEL PORTFOLIO on a cluster of multiple ma-
chines. The performance was disappointing, mainly due to many wrong results. We
also tested a composition called validating PARALLEL PORTFOLIO. In this composition
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5 Conclusion

each verifier result was checked by a validator. This composition also performed
poorly due to the limited amount of resources. We will investigate different vali-
dating PARALLEL PORTFOLIO and their execution on clusters in the future. We hope to
achieve a high amount of correct results with little to no amount of wrong results in
reasonable wall-time.

40



Bibliography

[1] D. Beyer. Software verification: 10th comparative evaluation (SV-COMP 2021).
In Tools and Algorithms for the Construction and Analysis of Systems, pages 401–422.
Springer International Publishing, 2021.

[2] D. Beyer. Progress on software verification: SV-COMP 2022. In Proc. TACAS (2),
LNCS 13244. Springer, 2022.

[3] D. Beyer and S. Kanav. COVERITEAM: On-demand composition of cooperative
verification systems. In Proc. TACAS. Springer, 2022.

[4] D. Beyer, S. Kanav, and C. Richter. Construction of Verifier Combinations Based
on Off-the-Shelf Verifiers. In Proc. FASE. Springer, 2022.

[5] D. Beyer and M. E. Keremoglu. CPACHECKER: A tool for configurable software
verification. In Proc. CAV, LNCS 6806, pages 184–190. Springer, 2011.

[6] D. Beyer, S. Löwe, and P. Wendler. Reliable benchmarking: requirements and
solutions. International Journal on Software Tools for Technology Transfer, 21(1):1–29,
Nov. 2017.

[7] M. Chalupa, T. Jašek, J. Novák, A. Řechtáčková, V. Šoková, and J. Strejček.
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