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Abstract

With the further development of communication systems, which are becom-
ing increasingly complex, the number of faults in the software of these sys-
tems is also rising. To be able to keep up with this growth, fault localization
techniques are becoming increasingly important. Researchers or research
groups proposing a new technique for fault localization usually evaluate it
on programs with known faults. The main goal of our approach is to create
a benchmark set, that can be used to evaluate these techniques. We achieve
this goal by creating V-FIT, Verified Fault Injection Tool. It combines the
two verifiers CPAchecker and UAutomizer to verify a given subset of
safety tasks from the SV-COMP benchmark set and includes the fault in-
jection tool Coccinelle to inject the faults. V-FIT verifies each file after
injection again and creates a new fault localization benchmark set, consisting
of a sensible folder structure and for each injected fault a metadata file and
two files specifying the fault and the exact location. Furthermore, we eval-
uate the fault localization benchmark set by doing a quantitative analysis
to show the performance of V-FIT and a qualitative analysis to examine the
weaknesses and strengths of the created benchmark set. In total, V-FIT only
processed 3 percent of the subset of tasks from the SV-COMP benchmark
set successfully, but nevertheless, a total of 858 fault injections were created
and thus a basis for further work was created.
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1 Introduction

In the meantime, we are dependent on software in almost every sector. The
rise of software usage and adoption leads to more and more increase in scale
and complexity. This boosts the number of faults in programs. Finding the
bugs in a program takes a lot of time and costs a lot of money [19]. Fault
localization, which involves determining the location of the fault, was pre-
viously a manual task and therefore very time-consuming. Moreover, the
manual Fault Localization depends on the experience, judgment and intu-
ition of the developer who searches for the fault. Because of the time and
cost involved, there is a lot of research on automating fault localization [19].
Furthermore, this fact established the development of fault localization tech-
niques. The evaluation of these techniques is quite difficult because there
exist only a few benchmark sets to evaluate them.
Our goal with this approach is to create a Benchmark set for fault local-
ization to evaluate these techniques. To reach this goal we created V-FIT,
Verified Fault Injection Tool, to inject the faults into given C programs from
the SV-COMP benchmark set, an already existing benchmark set. We call
these programs in the following base files. In the first step, one base file is
verified by two verifiers, CPAchecker [4] and UAutomizer [9], to prove
its validity.

Program 1: Example of a base file

1 int abs ( int x ) {
2 int abs = 0 ;
3 i f ( x < 0) {
4 abs = −x ;
5 } else {
6 abs = x ;
7 }
8 return abs ;
9 }

Program 2: Fault injection into a mu-
tant

1 int abs ( int x ) {
2 int abs = 0 ;
3 i f ( x < 0) {
4 abs = +x ;
5 } else {
6 abs = x ;
7 }
8 return abs ;
9 }

A simple example of a base file is provided in Program 1, where one can see
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a method to calculate the absolute value of a given number. Afterward, the
fault injection takes place. In our work, we accomplish that with the help of
Coccinelle [11], a fault injection tool. Program 2 shows the base file after
the fault injection. We call this file mutant. In this case, all occurrences of
the - symbol are replaced by a + symbol. This example shows, that even a
small change alters the complete behavior of the program.
In our approach, we injected more complex faults, which we explain in detail
in Chapter 3.
Fault localization techniques usually output lines where they suspect the
fault. We created a .diff file, an example can be seen in Program 3, to
evaluate these techniques by checking if the output lines of the technique
match the lines in the .diff file. The .diff file includes the base file name,
the mutant file name and the changes. If there is more than one fault in-
jected in the base file, for each fault injection, a mutant and a .diff file are
created, separately.

Program 3: Point out the fault location in a .diff file

1 d i f f −−g i t a/example . c b/example .m
2 index c7b7b30 . . 2 19290 e 100644
3 −−− a/example . c
4 +++ b/example .m
5 @@ −1,7 +1,7 @@
6 int abs ( int x ) {
7 int abs = 0 ;
8 i f ( x < 0) {
9 − abs = −x ;
10 + abs = +x ;
11 } else {
12 abs = x ;
13 }

After the fault injection, eachmutant is verified by CPAchecker andUAu-
tomizer again, to prove themutant as invalid. If this is the case, we generate
a .yml file, to store the metadata, an example can be seen in Program 4. In
this file, the format version, the data model, and the programming language
is specified. Furthermore, the mutant name, the .diff file name and the
properties are mentioned. For our benchmarks, we only use the property
unreach call, explained in Chapter 3.

Program 4: Metadata stored in a .yml file in the fault localization benchmark
set

1 fo rmat ve r s i on : ’ 2 . 0 ’
2
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3 i n p u t f i l e s : sanfoundry 24−1 1 . c
4
5 d i f f f i l e : sanfoundry 24−1 1 . d i f f
6
7 p r op e r t i e s :
8 − p r o p e r t y f i l e : . . / p r op e r t i e s /unreach−c a l l . prp
9 expe c t ed ve rd i c t : f a l s e
10
11 opt ions :
12 language : C
13 data model : ILP32

All the produced files, the mutant, the .diff and the .yml file are stored in
our new fault localization benchmark set.
In this thesis, we present the process of creating this new fault localization
benchmark set by using V-FIT, its performance, as well as the evaluation of
the fault localization benchmark set by a quantitative and qualitative anal-
ysis.
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2 Related Work

As mentioned in Chapter 1, there is a lot of research on fault localization.
Fault localization techniques are mostly evaluated by using artificial faults
and not real faults. One interesting evaluation of fault techniques shows, that
artificial faults differ from real faults [15]. They evaluated 7 fault localization
techniques on both, artificial and real faults. They used 2995 artificial faults
in 6 real-world programs and 310 real faults in the same programs. They
replicated previous studies on evaluating fault localization techniques with
artificial faults and confirmed 70 % of the results, 30 % were falsified. An-
other interesting fact was, that the results of the previous studies on artificial
faults were statistically up to 60 % insignificant on real faults and the other
40 % were falsified.

The Common Vulnerabilities and Exposures, CVEs, is a database of pub-
licly known security vulnerabilities on the Internet. This repository can be
used, for example, for intrusion detection, security information management,
or vulnerability assessment. One tool for vulnerability localization in CVEs
is called VulnLoc 1. It automatically reveals vulnerabilities in one given
exploit with high accuracy [17]. The approach examined 43 CVEs arising in
large real-world applications. VulnLoc identified vulnerability locations in
about 88 % of the given CVEs. The tool includes on the one hand the fuzzer
ConcFuzz, which takes a vulnerable program and an exploit as input. It
produces a test case for each vulnerability or runs into a timeout. On the
other hand, it includes a ranker, which provides necessity and sufficiency
scores for each location. This combining of directed test-generation tech-
niques with statistical localization allows vulnerability localization in large
real-world programs.

We also want to mention a database and extensible framework to enable
controlled testing studies for Java programs, Defects4J2 [10]. Defects4J

1https://github.com/VulnLoc/VulnLoc
2https://github.com/rjust/defects4j
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contains 357 real bugs from 5 real-world open-source programs. The frame-
work contains artifacts and bug metadata for each bug. These files include
revisions from the programs version control system, a patch of isolated bugs,
which is the difference between the bug and the fix for it and a list of indi-
vidual tests that expose the bug. For each test, they store the name, root
cause and stack trace. Furthermore, they emphasize extensibility as the main
feature, because of the ability to add additional bugs easily to the programs.
This is possible because Defects4J builds on top of the program’s ver-
sion control and build systems. With Defects4J it is possible to enable
reproducible studies in software testing research. The framework contains
artifacts and bug metadata for each bug. These files include revisions from
the program’s version control system, a patch of isolated bug, which is the
difference between the bug and the fix for it and a list of individual tests that
expose the bug. For each test, they store the name, root cause and stack
trace.
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3 Background

In the following section, we describe all tools and techniques that are nec-
essary to understand our approach. First of all, we address the two used
verifiers CPAchecker [4] and UAutomizer [9]. Afterward we deal with
the fault injection tool Coccinelle [11] and the SV-COMP benchmark set
[1]. As a last, we provide an overview of different fault types.

3.1 CPAchecker

For our approach, we could use any software verifier that participates in SV-
COMP 2023. One of the used verifiers so far is CPAchecker, a formal
verification framework [4]. CPA stands for configurable program analysis.
It is a concept to combine data flow analysis with model checking [3]. We
choose this verifier because overall it was the third-best verifier of SV-COMP
2023, the 12th Competition on Software Verification [1], so we can trust the
developers of this tool and use it off-the-shelf to verify our benchmarks.
The second best verifier at SV-COMP 2023 was PeSCo [16], a machine
learning approach that uses CPAchecker as a base verifier in six different
configurations. This algorithm selection is unnecessary for our approach,
therefore we decided to not use this verifier.

3.2 UAutomizer

The second and last Verifier we use is UAutomizer [9]. It verifies safety
properties based on an automata-theoretic approach to software verification.
It participated also at the SV-COMP 2023 and was the best verifier overall
[1]. Thats the reason why we choose this verifier to proof our benchmarks.
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3.3 Fault Types

We use specific types of Faults for the fault injection. We choose them from
the most frequent fault types proposed by a field data study with 668 soft-
ware errors found in 12 widely used software systems [7].

Figure 1: Fault types overview for possible fault injection [13]

For our approach, we used four of the twelve proposed faults presented
in Figure 1. The first is MFC, Missing Function Call, which affects function
calls that do not return any value or do not make use of the return value.
Second, there is MVIV, Missing Variable Initialization using a Value, which
is dedicated to variables that are not assigned by a value. MVAV, Missing
Variable Assignment using a Value, refers to variables whose assignment by
a value is missing. The next is MVAE, Missing Variable Assignment using
an Expression, the same as the one before, only an expression is used for the
assignment of the variable. Fault Type MIA, Missing IF construct Around
statements, describes that only a statement exists but there is a need for
an if construct. When there is no if construct and no within statements,
its MIFS, Missing IF construct plus Statements. MLC, Missing AND/OR
clause in branch condition, which refers to loops and if constructs that lack an
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AND/OR clause. In addition, there is MLPA, Missing small and localized
part of the algorithm. It explains the missing of a brief, location-based part of
the program. The WVAV Fault Type, Wrong Value Assigned to Variable,
describes that the value of a variable is not assigned correctly. When the
parameter of a function contains a wrong variable its the WPFV, Wrong
Variable used in Parameter of Function call Fault Type. As last WAEP,
Wrong Arithmetic Expression in Parameter of Function Call, displays also a
parameter of a function but refers to a within wrong mathematical statement.
For our approach we started a sample run with all different fault types and
on the base of this we decided on four of them. We inject MIA, MVAE,
MVAV and WVAV in the tasks given to our program, because they differ
from each other and we thus achieve a great diversity in our new benchmark
set. In Chapter 5 is explained how we inject these fault types by using
Coccinelle in detail.

3.4 Coccinelle

To inject a fault in the given base file, we use Coccinelle [11]. It is an open-
source software for automated rewriting of C code. Coccinelle provides
the Semantic Patch Language to create transformations or desired matches
in C Code, named semantic patches [14]. A semantic patch consists of a
sequence of rules, each of which begins with context information denoted by
a pair of @@s, one can see in Program 5. The context information declares
a set of metavariables, which can be any term of the kind specified in its
declaration (identifier, expression, etc.). In our example, there are only five
statement metavariables declared. The transformation rule is represented by
a term with modifiers - and + at the beginning of the line to indicate the
code to be removed or added, respectively. Furthermore, the question marks
before the second till the fifth statement display that these statements are
optional, the first is required. This shows that for the MIA fault type we
only inject this fault into if constructs including one to five statements.

Program 5: Semantic patch given by a Coccinlle template

1 @@
2 statement s1 , s2 , s3 , s4 , s5 ;
3 @@
4 (
5 − i f ( . . . ) {
6 s1
7 ? s2
8 ? s3
9 ? s4
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10 ? s5
11 −}
12 )

Because of the comprehensible syntax and clear structure of these semantic
patches, Coccinelle fits perfectly to inject our faults into the base files of
the SV-COMP benchmark set.

3.5 SV-COMP Benchmark Set

To create a new fault localization benchmark set we use a selected part of
tasks of the SV-COMP benchmark set. This is a collection of verification
tasks for evaluating the effectiveness and efficiency of state-of-the-art verifi-
cation technology. We chose this set because everybody can contribute and
the category Reachsafety, which we are using consists of many sub-categories.
After several research and development groups have submitted tasks, they
were checked and probably removed, because of no property encoded or un-
known architecture. Some tasks may contain compiler warnings or memory
model fails, so they were technically improved. Therefore the set is qualita-
tively high and fits perfectly for our approach.
Furthermore, it was the set used for the International Competition on Soft-
ware Verification SV-COMP 2023 and was also part of the 5th International
Competition on Software Testing, Test-Comp 2023 [2], a comparative evalu-
ation of automated test creation tools, which take place annually.

3.5.1 Structure

In this section, we describe the structure of the SV-COMP benchmark set.
Due to its large scope, we only present the parts of the set that are relevant
for our approach.

15



Figure 2: Excerpt of the SV-COMP benchmark set folder structure

The folder structure starts with the folder sv-benchmarks followed by
/c, which specifies the programming language type of the files included,
which can be seen in Figure 2. Next exists a sub-category, in our example
/array-examples, which describes the included files in more detail.
Lastly, we got the .yml file and the related .c or .i file, or both. The .c

extension is for not preprocessed files and the .i extension for preprocessed
files. In our approach we use the given input file, specified in the .yml file,
regardless of the indicated file extension, this is why we call the files base files.

Program 6: Metadata stored in a SV-COMP benchmark .yml file

1 fo rmat ve r s i on : ’ 2 . 0 ’
2
3 i n p u t f i l e s : ’ sanfoundry 24 −1. i ’
4
5 p r op e r t i e s :
6 − p r o p e r t y f i l e : . . / p r op e r t i e s /no−over f l ow . prp
7 expe c t ed ve rd i c t : t rue
8 − p r o p e r t y f i l e : . . / p r op e r t i e s / te rminat ion . prp
9 expe c t ed ve rd i c t : t rue
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10 − p r o p e r t y f i l e : . . / p r op e r t i e s /unreach−c a l l . prp
11 expe c t ed ve rd i c t : t rue
12
13 opt ions :
14 language : C
15 data model : ILP32

The metadata is represented by the .yml file, an example can be seen in
Program 6. First, it includes the string format version. Second, the program
files to be executed and third the specified properties. For our approach, we
focus on the unreach-call property. It means that, if the expected verdict
flag is set to true, a certain function call must not be reachable in the base
file. As last it displays options including language type, in our case the C
programming language and data model, either 32 or 64-bit architecture.
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4 Creating a Benchmark set us-
ing VFIT

In this section we describe the basic workflow of V-FIT, Verified Fault Injec-
tion Tool. Afterward we give a detailed explanation of the fault localization
benchmark set we generated.

Figure 3: V-FIT step by step
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4.1 V-FIT Basic Workflow

For our approach we design a program and call it V-FIT, Verified Fault Injec-
tion Tool. First of all, we filter tasks of the SV-COMP benchmark set that
fit our requirements. The tasks must have the specification unreach-call as
described in Chapter 3. After the generation of this subset of tasks, V-FIT al-
lows us to verify the base file with, so far, CPAchecker and UAutomizer,
as one can see in the first step of Figure 3. If both verifiers prove the base
file to be valid, we continue with the second step in Figure 3, to inject the
fault given by a Coccinelle file. Coccinelle then generates as many
mutants as faults are injected in the base file. When this process is done,
for each mutant file a .diff file is created to store the changes separately.
Then in the third step in Figure 3, each mutant is checked by CPAchecker
and UAutomizer again, and if both verifiers assessed it as invalid, for each
mutant, a new .yml file is created as one can see in the fourth step in Fig-
ure 3. This shows that we designed a wrapper to combine the two verifiers
and Coccinelle to generate our new fault localization benchmark set.
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4.2 Fault Localization Benchmark Set Struc-

ture

Figure 4: Fault localization benchmark set folder structure

We sort our results in a folder structure inspired by the SV-COMP bench-
marks set. However, it differs in that for our purpose we start the struc-
ture with a folder named like the fault type we injected. In our example,
which can be seen in Figure 4 it is the MIA fault type. Continuing there
is fl-benchmarks/c/, array-examples/sanfoundry 24-1 as in the SV-
COMP benchmark set, only the prefix differs from sv to fl. We choose this
structure because for future work there could be added more programming
languages. Afterward, the sub-categories describe the purpose of the included
files in more detail. In our example, it is array-examples/sanfoundry 24-1.
Lastly, we got the .yml file and the related .diff file, and the .c or .i mu-
tant. The .c extension is for not preprocessed files and the .i extension
for preprocessed files, the same as in the SV-COMP benchmark set. The
filenames consist of the parent sub-directory name and the mutant index
number as a suffix before the extension.
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4.3 Included Files in the Fault Localization

Benchmark Set

4.3.1 YAML File

The Meta Data is represented by a .yml file. In comparison to the .yml file
in the SV-COMP benchmark set, it has the produced .diff file after the
input files entry and all unnecessary property specifications are deleted, as
one can see in Program 7. Deletions are highlighted in red and bold, and
insertions in green and cursive. Important here is that the input file changes,
because of the various mutants created. As one can see, we added a number
before the extension to exactly label the mutant.

Program 7: Comparison of the SV-COMP benchmark and fault localization
benchmark metadata

1 d i f f −−g i t a/sv−example . yml b/ f l −example . yml
2 index 8 ce06b6 . . f 469 f 48 100644
3 −−− a/sv−example . yml
4 +++ b/f l−example .yml
5 @@ −1,14 +1 ,12 @@
6 fo rmat ve r s i on : ’ 2 . 0 ’
7
8 − i n p u t f i l e s : ’ sanfoundry 24 −1. i ’
9 +input f i les : sanfoundry 24−1 1 . c
10 +d i f f f i l e : sanfoundry 24−1 1 1 . d i f f
11
12 p r op e r t i e s :
13 − p r o p e r t y f i l e : . . / p r o p e r t i e s /no−over f l ow . prp
14 − e x p e c t e d v e r d i c t : t rue
15 − p r o p e r t y f i l e : . . / p r o p e r t i e s / terminat ion . prp
16 − e x p e c t e d v e r d i c t : t rue
17 − p r o p e r t y f i l e : . . / p r o p e r t i e s /unreach−c a l l . prp
18 − e x p e c t e d v e r d i c t : t rue
19 p r o p e r t y f i l e : . . / p r op e r t i e s /unreach−c a l l . prp
20 + expected verdict : fa l se
21
22 opt ions :
23 language : C
24 data model : ILP32

4.3.2 DIFF File

Because there is a seperate .diff file for each mutant, the file shows us the
compared files and afterward the index hash, which can be seen in Program 3.
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Then it shows for the one file a + and for the other a - to signal in which
file there were deletions and extensions. The first digit after the @-sign in
the next line displays how many lines in the first file are changed and the
digit after the comma indicates how many characters are changed. Finally,
the modified code appears with - for a deletion and + for an extension.

4.3.3 Mutant File

The mutant difference to the base file is that it contains the fault, of course.
Important is that for each fault injection, there exists a separate textitmu-
tant. For example, there are nine if statements in the base file, and the
fault type is MIA, then every if statement, except the whithin statement, is
deleted. V-FIT thus produces nine mutants, each for every deleted if state-
ment.

4.4 Approach Advantages

For our Evaluation, V-FIT is also integrated into BenchExec, a framework
for reliable benchmarking [5].
One advantage of our approach is that it is arbitrarily expandable. We can
easily add other verifiers to prove the tasks.
Another great advantage is that, assuming more and more research and de-
velopment groups contribute to the SV-COMP benchmark set, our fault
localization benchmark set grows simultaneously. Of course, it has to be
executed.
Furthermore, through Coccinelle our newly created set is extended by a
semantic component.
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5 Implementation

The Code structure and implementation process, as well as the correct ex-
ecution of V-FIT, this chapter will focus on. Furthermore we will describe
how we implemented the cocinelle template files to inject the faults. The last
topic, we will explain, are the major challenges during this process.

Figure 5: V-FIT main process in detail
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5.1 V-FIT Detail Structure

V-FIT is written in Python and has three Python files included. The vfit.py
file is the main file and is responsible for command line parsing, verifier cre-
ation, file transfer and controller tasks. Both next files are included in a src

folder. First there is verifier.py, which contains the template for a Python
class called Verifier. It receives the execution command for the specified
verifier and executes it. The last file is fl inject.py. Its main purpose
is the creation of the fault localization benchmark set folder structure, the
mutants, the .diff and the .yml file. Furthermore, it deletes the created
files and folders, if the verification process failed.
The process starts with command line parsing. The various options we will
explain in the next section in detail, because in this section we will focus
on the main option available, which one can see in Figure 5. This figure
is designed to better understand the following process. We start with the
verification of the base file, extracted from the SV-COMP benchmark set.
CPAchecker is the first verifier the base file has to pass. We check the
output text of CPAchecker for the verification result, and continue only
if the result is TRUE, otherwise we exit the program and log the failure.
After that, we let UAutomizer verify the base file. Again, we only pro-
ceed, if the verification result turns out to be true. If this is not the case,
we log the failure and exit the program. Now that the base file has passed
both verifiers, we start creating the fault localization benchmark set folder
structure, an excerpt of this structure can be seen on Figure 4. Next we
generate the mutants by handing over the .cocci template and the base file
to Coccinelle. We store the generated mutants in our newly created fault
localization benchmark set folder structure and also create a .diff file, can
be seen at Program 3, in the same folder. The just now stored mutants are
verified again with the aim of proving the existence of a fault. We iterate
over each mutant and check it with CPAchecker. If the result is TRUE,
we delete all generated files and new folders, exit the program and log the
failure. If it is FALSE, we continue with handing the mutant over to UAu-
tomizer. Here is the same case, when UAutomizer verifies a mutant to
TRUE, all generated files and folders are deleted, the program is exited, and
the failure logged. The other case, if UAutomizer also verifies the pro-
gram to be FALSE, we generate a .yml file, which can be seen in Program 7.
This file is also stored in the created folder structure of the fault localization
benchmark set, and the process is done.
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5.2 Command Line Arguments

Table 1: Survey of the different command line options

argument input description

–collect folder path, output file
name

generates a file containing a list of
.yml files

–template .cocci file template generates mutants

–data model data mode type specifies data model type

–processAll file including list of
.yml files

executes verifiers to check the
base files for each .yml file in
the list. Creates fault localiza-
tion benchmark set structure and
stores generated files in it.

–yml .yml file to process similar to –processAll, but only
processing one file

–c .c file to process similar to –yml but getting the
base file directly as input

In Table 1, we give an overview of the different command line options in
V-FIT. The --collect option enables us to iterate over the SV-COMP
benchmark set and search for .yml files that meet our requirements. These
are the property unreach call exists and the expected verdict flag is set to
true. As one can see in Table 1 --collect takes two arguments, folder path
and output file name. The folder path is the parent folder of the given Bench-
mark set, in our case the sv-benchmarks folder displayed in Figure 2 and the
output file name, which is variable. V-FIT then iterates recursively through
the files and searches for the specified .yml files. Afterward it creates a list
and writes it to an output file named by the given file name. After each .yml

file in the output file, a line break is created.
In order to use Coccinelle, the --template option offers the opportunity
to provide the .cocci template for the fault injection.
To specify the data model, we can use the --data model option, either 32
or 64 bit architecture.
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The --processAll, in combination with the --template, flag iterates over
the created .yml file list and executes the steps mentioned in Section 5.1 for
each .yml file.
V-FIT provides the --yml option to specify a specific .yml file to process.
The --c argument takes a specific .c file to run our tool on.
A combination of --c, --template and --data model is used to run the
tasks for our evaluation.

The following code snippet shows an example run of V-FIT:

python3 vfit.py --c example.c --template example.cocci --data model

<data model type>

First we use Python version 3.10 to run our vfit.py file. The flag --c

is used to provide the base file, the --template flag for the Coccinelle
template and the --data model flag to insert the desired data model type.

5.3 Coccinelle Mutant Templates

For our approach, we created four .cocci templates, each for another fault
type. The challenge was to create not a single mutant, including all faults in
the base file, as Coccinelle usually does, but generate mutants for every
injected fault in the base file. Due to this, we created a new template, which
creates multiple mutants. It is a combination of the .cocci template of a
given fault type and a mutate.cocci template to do the changes one at a
time and safe them to different mutants. This template was written in Ocaml
and in the following, we will explain how we merge these two templates to
one. For the sake of simplicity, we call the .cocci template for the given
fault file 1, which one can see in Program 5 and the mutate.cocci template
file 2.
file 2 has three rounds included, marked by surrounded @@’s. In the fist and
the second round, we implemented the same, so we just explain on of them.
The third round is a bit different because here the actual fault injection takes
place. In rounds one and two, we add the metavariables, as one can see in
the following code snippet:

28 @r1 depends on !after_start@

29 position p;

+ 30 statement s1,s2,s3,s4,s5;

31 @@
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In our case, the metavariable consists of the five statements. Notice, that
the metavariable position p, which is already given in file 2, is important for
the following.
The next step is including our transformation rule from file 1 to file 2. In
the following code snippet, we show the added rule:

+ 34 (

+ 35 if(...){

+ 36 s1

+ 37 ? s2

+ 38 ? s3

+ 39 ? s4

+ 40 ? s5

+ 41 }@p

+ 42 )

Notice, in the lines 35 and 41 we deleted the - from file 1 and furthermore
added @p to mark the position of the sematic patch, explained in Chapter 3
after the closing brackets from the if statement.
As already mentioned, we skip the second round, because it it similar to the
first.
What we added in the third round can be seen in the next code snippet:

+ 34 (

+ 35 -if(...){

+ 36 s1

+ 37 ? s2

+ 38 ? s3

+ 39 ? s4

+ 40 ? s5

+ 41 -}@p

+ 42 )

Only in this round did we include the code snippet from file 1 to file 2 with-
out changes.

Now the new template file is created and ready to run in V-FIT.
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5.4 Challenges

The implementation of V-FIT confronted us with a number of challenges.
Our goal was to implement as much as necessary and as little as possible. To
combine CPAchecker, UAutomizer, Coccinelle, and the SV-COMP
benchmark set in three Python files was quite difficult. The reading and
writing from and into files was one of the most tim-consuming tasks. First
to get the .yml files, fulfilling the requirements of the SV-COMP benchmark
set, second to get the correct information out of the .yml file, third to use the
Coccinelle template properly, and last to generate the fault localization
benchmark set structure with the correct name convention.
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6 Evaluation

The combination of CPAchecker1 and UAutomizer2 with Coccinelle3

is one major goal of V-FIT4. To create the fault localization benchmark set
with tasks of the SV-COMP benchmark set5 is another great success. In
this chapter, we look at our results in detail by doing a quantitative and
qualitative analysis to examine the performance of V-FIT and the quality of
our new benchmark set. To have a look at the results in detail, we provide
the raw data in an archive in Zenodo [6], an online repository that enables
the exchange of publications and associated supporting data [18].

6.1 Setup

For our approach, we use a subset of tasks from the SV-COMP benchmark
set, which we already described in Chapter 3. The subset consists of only
tasks with the unreach call property.

Setup: The machine is an Intel Xeon E3-1230 v5 @ 3.40 GHz with 8 cores.
For our approach we use only 4 cores.

Included are the following task sub-categories from the SV-COMP bench-
mark set:

• ReachSafety-Arrays

• ReachSafety-BitVectors

• ReachSafety-ControlFlow

1https://github.com/sosy-lab/cpachecker
2https://github.com/ultimate-pa/ultimate
3https://github.com/coccinelle/coccinelle
4https://gitlab.com/sosy-lab/software/fault-injection
5https://github.com/sosy-lab/sv-benchmarks
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• ReachSafety-ECA

• ReachSafety-Floats

• ReachSafety-Heap

• ReachSafety-Loops

• ReachSafety-ProductLines

• ReachSafety-Recursive

• ReachSafety-Sequentialized

• ReachSafety-XCSP

• ReachSafety-Combinations

• ReachSafety-Hardware

• ConcurrencySafety-Main

• SoftwareSystems-AWS-C-Common-ReachSafety

• SoftwareSystems-BusyBox-ReachSafety

• SoftwareSystems-coreutils-ReachSafety

• SoftwareSystems-DeviceDriversLinux64-ReachSafety

• SoftwareSystems-DeviceDriversLinux64Large-ReachSafety

• SoftwareSystems-uthash-ReachSafety

To produce our fault localization benchmark set, we benefit fromBenchExec6

[5], a framework for reliable benchmarking. This gives us the advantage of
defining resource usage, automatically executing commands on large sets of
input files and the generation of interactive tables and plots for the results
afterward. For the execution of one set we define the limit specifications in
a XML file provided by BenchExec.

Time Limit: 1800 seconds (30 minutes)
Memory Limit: 15 GigaByte
CPU Cores: 4

6https://github.com/sosy-lab/benchexec
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We inject four different fault types with Coccinelle, as already described
in Chapter 3. For each fault type, we execute our program with a set of 6790
files in total from the tasks mentioned above. We use the V-FIT configura-
tion, explained in detail in Chapter 5.

6.2 Results Overview

In Table 2, we summarize the main results of the processing. Unfortunately,
only 36% of the base file verifications succeeded. This, of course, shrinks our
final benchmark set.
It is quite interesting that overall, 61079 mutants were produced. The great
difference from Mutants produced and Mutants verified valid, is at-
tributable to the tasks that run into timeout, out of memory or a verifcation
process failure. Of course, the larger the base file, the more mutants are
produced, but also the time and memory consumption increases. In Mu-
tants verified valid, we only count the mutants that have a related .yml

file. Important to notice is that in the Mutants verified valid are tasks
included, which run into a timeout due to the fact that the timeout could
be after creating a bunch of .yml files. Because all mutants for one task are
generated before the related .yml file, and then a timeout occurs, neither the
related .yml files are generated, nor the mutants are deleted.
The great number of results in WVAV, Mutants produced, and Mutants
verified valid is due to the fact that the fault given by WVAV. A wrong
value assignment is much more frequent than the other fault types.
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Table 2: Results overview

MIA MVAE MVAV WVAV Overall

Timeout 426 1820 1792 584 17%

Out of memory 195 195 199 201 3%

Done 6169 4775 4799 6005 80%

Base file verified valid 2367 2379 2371 2548 36%

Completely succeeded tasks 340 119 49 180 3%

Mutants produced 2284 3327 3259 52209 61079

Mutants verified valid 321 131 50 356 858

6.3 Quantitative Analysis

In the following section, we do some quantitative analysis based on the results
of our processed data. In Figure 6 one can see how much CPU time each
task required. The x-axis represents the time spent in seconds in the range
0 - 1800, until a timeout occurs. The y-axis shows the number of tasks
processed. We used only Mutants verified valid for this graph. Because
we run V-FIT for every fault type on the task selection of the SV-COMP
benchmark set tasks seperately, we split up the data and sort it into the
underlying fault types, MIA, MVAE, MVAV, and WVAV.
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Figure 6: CPU time consumption of successfully completed mutants

Interesting is the fact that most of the tasks only needed under approxi-
mately 250 seconds to proceed completely. After that time, about 250 tasks
proceeded. This is due to the fact, that most of the tasks produced only one
or a few mutants. Approximately 100 tasks, so the minor part, take about
250 to 1800 seconds to proceed, because of the vast amount of mutants a
larger base files produces.
Another outcome is that a larger quantity of the MIA tasks took 1250 to
1800 seconds to proceed, compared to the other injected fault types. This is
because the MIA fault is the most complex fault type of the four. Therefore
the fault injection consumes more time.

6.4 Qualitative Analysis

In the following section, we want to show the weaknesses and strengths of
the new fault localization benchmark set. In order to do this, we pick four
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mutants, to show the potential of the new set. For the sake of clarity, we
choose the shortest files possible, because there are also files with over 8000
lines of code.

6.4.1 Weaknesses

Program 8: MVAV fault type in-
jected to show the weaknesses

1 i n t main ( )
2 {
3 f l o a t x , y , z , r ;
4 − x = 1 e7 f ;
5 y = x + 1 . f ;
6 z = x − 1 . f ;
7 r = y − z ;
8 VERIFIER assert ( r ==

2 . f ) ;
9 re turn 0 ;

10 }

Program 9: MVAE fault type in-
jected to show the weaknesses

1 i n t main ( )
2 {
3 double x , y , z , r ;
4 x = 1e8 ;
5 y = x + 1 ;
6 z = x − 1 ;
7 − r = y − z ;
8 VERIFIER assert ( r ==

2 . ) ;
9 re turn 0 ;
10 }

In this subsection, we describe the weaknesses of our approach.
Our goal is to create a Benchmark set for fault localization. We want to
simplify the evaluation of fault localization techniques. Therefore, we have
the .diff files to determine the exact location of the fault and the related
fix. But what if there is another solution to the fault possible, such as just
reverse the Coccinelle injection. Of course, there is always another possi-
ble solution for example, deleting all lines of code would lead to a successful
verification of the program. It is important to notice that we want only fault
fixes that retain the semantic of the given base file. In Program 8, we see one
line deleted by Coccinelle. The fault type injected is MVAV, because x

and its value are deleted. Another solution is to just insert the value of x for
all instances of x. So x is never used, and the program works again. Another
example next to it is Program 9. It shows the deletion of the variable r

assigned by the expression y - x. To not reverse the Coccinelle injection
to fix the fault, one could initialize r = 2. in line 7, and the fault is also
fixed.
This problem shows that our approach performs poorly for some base files

in providing all fixes possible and therefore the evaluation of fault localiza-
tion techniques could be difficult, because maybe they provide one correct
solution, but not the reverse Coccinelle injection. Because this problem
streches almost over the entire set, we provide a solution at Section 6.5.
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6.4.2 Strengths

This subsection describes the strengths of our approach.
We provide two examples of the fault localization benchmark set, where the
fault injection was successful.
First, there is a example from the robustness analysis of finite precision im-
plementations, by Goubault and Putot [8]. We provide only the necessary
lines, so this is not the entire code. As you can see in Program 10, we have
two Doubles, S and I, given. They are then calculated in different ways. If
I is greater than or equal to 2, a different calculation is made, than if I is
lower than 2.

Program 10: MIA fault type injected mutant to show the strength

1 double sq r t2 = 1.414213538169860839843750;
2 i n t main ( )
3 {
4 double S , I ;
5 I = VERIFIER nondet double ( ) ;
6 a s sume abo r t i f n o t ( I >= 1 . && I <= 3 . ) ;
7 − i f ( I >= 2 . ) S = sq r t 2 ∗ (1.+( I /2.− 1 . )

∗(.5−0.125∗( I /2.−1.) ) ) ;
8 − e l s e S = 1.+( I −1.) ∗ (.5+( I −1.) ∗ (−.125+(I −1.)

∗ .0625) ) ;
9 + i f ( I >= 2.) {}

10 + else {}
11 VERIFIER assert (S >= 1 . && S <= 2 . ) ;
12 re turn 0 ;
13 }

This example shows perfectly the fault injection with the fault type MIA,
because the statements in the if and the else blocks are deleted. This
shows, that the fault injection worked and the benchmark is correct.

Program 11: MVAE fault type injectedmutant to show the strength

1 i n t main ( )
2 {
3 unsigned i n t i = 0 ;
4 unsigned i n t j = 0 ;
5 unsigned i n t k = 0 ;
6 whi l e ( k < 0 x 0 f f f f f f f ) {
7 i = i + 1 ;
8 j = j + 2 ;
9 − k = k + 3;
10 VERIFIER assert ( k == ( i + j ) ) ;
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11 }
12 }

The next example is a benchmark used to verify Chimdyalwar, Bharti, et
al. ”VeriAbs: Verification by abstraction (competition contribution).” from
the International Conference on Tools and Algorithms for the Construction
and Analysis of Systems [12], one can see in Program 11. In this example,
one can see the fault injection of the fault type MVAE. In line nine, one
can see the deletion of the variable k together with its initialization. The
fault was injected perfectly because k is used in the VERIFIER assert()

method, but after fault injection, k is neither declared, nor initialized.
These examples show that the fault injection works perfectly, and with the
given .diff file, there is a way to determine the exact position of the fault.
Furthermore, there is a solution for the fault given by the reverse Coc-
cinelle injection.

6.5 Future Work

With our approach, we created only the base for additional research, and
there are many possibilities for proceeding further. In this chapter, we want
to present ideas for further research.

6.5.1 Increase Verifiers

At SV-COMP 2023 alone, 52 verifiers participated. For V-FIT, we only use
CPAchecker and UAutomizer so far for the verification task before and
after the fault injection. This could be changed by adding more verifiers to
V-FIT. The implementation is very simple if the verifiers have a command
line interface. Then only the code structure has to be added to vfit.py and
also the correct parameters have to be provided. This extension would not
only increase the quality of verification, but even the quality of the entire
fault localization benchmark set. As a side effect, the additional verifiers
would be tested for correctness.

6.5.2 Raise templates

Moreover, additional Coccinelle templates could be created. So far, we
use the fault types MIA, MVAE, MVAV, and WVAV as inspiration for
the Coccinelle templates. As described in Chapter 3, there exist eight
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other fault types, which could be implemented as a Coccinelle template.
Of course, one can use their own fault types and implement them.
The mutant.cocci file, as mentioned in Chapter 5, could be automated by
a Python file, so one can insert the preferred template into this file and get
the generated mutant.cocci template. This approach would increase the
amount of results and the diversity in the fault localization benchmark set.

6.5.3 Extend Benchmark Set

In our approach, we use the SV-COMP benchmark set and generate the
fault localization benchmark set from it. The fault localization benchmark set
could be extended by taking another Benchmark set, assuming that this set
also contains files written in the C programming language. And then running
V-FIT over it to generate more fault localization benchmarks. This would
increase the quantity and, moreover, the diversity of the FL-Benchmark set.

6.5.4 Insert Programming Languages

Until now, all base files we hand over to V-FIT are written in the C pro-
gramming language. At the beginning of this work, we did not know about
Coccinelle and thought about injecting the fault on our own. Fortunately
Coccinelle also supports fault injection for other languages, so it could
be used for fault injection in the programming language Java, for example.
To implement this tool in V-FIT would greatly extend the fault localization
benchmark set. The folder structure in the fault localization benchmark set
is already given, as one can see in Figure 4.

6.5.5 Synchronize Benchmark sets

Another opportunity is, to update our fault localization benchmark set im-
mediately, if there is a new contribution to the SV-COMP benchmark set, of
course, V-FIT has to run again to update the fault localization benchmarks
as well. This could be automated by synchronizing the two Benchmark sets.
The advantage is, that the fault localization benchmark set grows together
with the SV-COMP benchmark set.
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6.5.6 Provide Open Source

If V-FIT and the FL-Benchmark set would be putted open-source at the
free disposal, other research groups and developers may benefit from this
proposal. Furthermore the SV-COMP benchmark set is also open-source.
This enhancement would also improve the reputation of V-FIT as well as
from the fault localization benchmark set.

6.5.7 Enable Contribution

In addition to the open-source provision approach, it could be enabled to
contribute to the FL-Benchmark set in the form of adding other fault fixing
solutions. This would increase the number of possible solutions to a fault
and therefore contribute to solving the problem mentioned in Section 6.4.

6.5.8 Improve Fault Localization

Previously, our approach only provides the .diff and the mutant files for
fault localization. V-FIT could be combined with fault localization tech-
niques to improve the quality.
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7 Conclusion

Fault localization techniques are difficult to evaluate because of the lack of
benchmark sets, which provide benchmarks including faulty programs with
the fault location given. In this approach, we presented V-FIT, or Verified
Fault Injection Tool. Using this tool, we verified tasks of the given SV-
COMP benchmark set using CPAchecker and UAutomizer, we injected
four different types of faults usingCoccinelle and verified the output again.
Thereby, we created the FL-Benchmark set, including the folder structure,
inspired by the SV-Benchmark set, a mutant file for each fault injected, as
well as a .diff file for the exact fault location and a .yml file for metadata.
To produce our results, we ran V-FIT on BenchExec with 6790 sub tasks
of the SV-COMP benchmark set for each of the four fault types and set a
time limit of 1800 seconds per task. Our evaluation shows the benefits and
drawbacks of our tool, we can only successfully inject faults in 3% of the
tasks yet and 858 mutants were produced. Although this might seem little,
it shows the potential. Further improvements and adjusted time limits will
increase the numbers. We also investigated the strengths and weaknesses.
We suffer from an old problem that it is not easy to decide what a real bug
fix is. In the future, we allow crowd sourcing on our benchmarks to make
them more robust and less prone to biases. The benchmarks set should
grow dynamically and with the help of the community. We could also find
strengths in our approach. The advantage of our work is that the fault
injection works perfectly with four different fault types, so we produced a
diverse new benchmark set. Furthermore, we could determine the exact
location of the fault and provide a solution to fix it.
Our approach created a solid basis for further work, because now people can
build on the benchmark set. This is the first large benchmark set for C
language that is community based.
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