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Abstract

With increasing software complexity, scalable and precise verification is essential,
especially in safety-critical areas. Distributed Summary Synthesis (DSS) supports
scalability by enabling parallel processing of program segments (blocks). However,
it faces limitations in achieving early-stage abstraction due to the inherent laziness
of Predicate Analysis, which only refines abstractions when errors are detected. This
thesis addresses this by integrating Data-Flow Analysis (DFA) into DSS, enhancing
the initial information shared among program blocks to potentially accelerate and
improve verification. Implemented in CPAchecker, DFA runs in parallel with Predicate
Analysis, providing coarse summaries that strengthen the preconditions for successor
blocks. Experimental evaluation using SV-COMP 2024 benchmarks, however, indicated
that while DFA integration occasionally improved verification coverage, it also intro-
duced additional resource demands. This increase in CPU time, wall time and memory
usage, due to message handling and serialization and deserialization overhead, limited
the number of programs that could be verified compared to the DSS implementation
with only predicate analysis. This trade-off suggests that additional optimizations
are needed to reduce performance costs and better harness the potential of DFA for
scalable and effective verification.
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1 Introduction

In today’s digital world, software systems are integral to daily life, making their relia-
bility and correctness, especially in safety-critical areas, crucial. Software verification
ensures that software behaves as intended, preventing costly errors or catastrophic
failures [10].
As software systems grow larger and more complex, scalability becomes a major chal-
lenge for verification. Distributed Summary Synthesis (DSS) [5] addresses this by
dividing the program into smaller, manageable units, or blocks, and verifying each
block independently. Each block functions as a separate verification task, with its
own precondition, postcondition, and a block summary. This division enables parallel
processing, where each block can be verified on separate workers.
In DSS, the analysis operates in two directions: top-down and bottom-up. In the top-
down approach, preconditions are refined as each block propagates its postcondition
(summary of its verified state at exit) to its successor blocks, providing them with
information that helps them establish more accurate preconditions. Conversely, in the
bottom-up approach, if a block reaches a violation state that contradicts the program’s
safety specifications, it computes a "violation condition" at its entry point, which is
then sent back to predecessor blocks. If this violation condition propagates all the way
back to the program entry, an unresolvable error is confirmed, indicating the program
is unsafe. If all blocks complete their analysis without forwarding a violation, the
program is deemed safe.
The current DSS implementation relies primarily on Predicate Analysis to verify each
block. However, this approach has limitations. Predicate Analysis is thorough but lazy,
as it only refines summaries when it detects an error condition. Consequently, blocks
without errors pass only trivial information to their successors, which slows down
verification in the early stages.
This thesis explores an enhancement to DSS by integrating Data-flow Analysis (DFA)
alongside Predicate Analysis. DFA provides quick, coarse summaries of each block’s
state, supplying initial information about variable values and constraints. At the start
of the verification process, DFA runs on each block in parallel with Predicate Analysis.
These summaries are then shared with successor blocks, which can use this information
to strengthen their preconditions. This integration potentially accelerates verification
by enabling each block with predecessors to begin with useful starting information.
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1 Introduction

1 int main() {
2 int x = 0;
3 int y = 2;
4 if (y == 2) {
5 x = 100;
6 y--;
7 } else {
8 y = 100;
9 x--;

10 }
11 assert(x > y);
12 }

(a) Example program in C

x = 0
y = 2

A

[y ̸= 2]
y = 100

x = x − 1

B
[y = 2]
x = 100

y = y − 1

B2

[x > y]
safe

B3

[x <= y]
error

B4

(b) Example block graph

Figure 1.1: Program with example decomposition into five blocks

The example in Figure 1.1 illustrates this process with a simple program divided
into five blocks. DFA is run on each block to provide quick, initial summaries. For
instance, when DFA runs on block A, it determines that at block exit, x = 0 and y = 2.
This information is then passed to blocks B and C, allowing them to strengthen their
preconditions. Blocks B and C now assume x = 0 and y = 2 at their entry points. In
parallel, Predicate Analysis checks each block for potential error states. In this example,
only block E reaches an error state, prompting it to compute a violation condition at
its entry location, which it then sends to its predecessor blocks, B and C. In the next
iteration, Predicate Analysis is run again on B and C with their updated precondition
and the communicated violation condition. Given that y = 2, it becomes clear that
block C is not reachable because the condition y ̸= 2 is not satisfied. Conversely, block
B is reachable since y = 2 holds true, and Predicate Analysis confirms that the assertion
y < x is not violated at the block exit. This combined analysis allows us to conclude
that the entire program is safe, but with fewer iterations compared to using Predicate
Analysis alone.
The primary contribution of this work is the extension of Data-Flow Analysis (DFA) to
a distributed analysis within DSS. To enable DFA to communicate across blocks, we
implemented a serialization and deserialization process for its results, which allows
them to be transmitted efficiently between blocks. Additionally, we integrated this dis-
tributed DFA into the existing DSS implementation, running it with Predicate Analysis
to provide quicker, coarse summaries at the beginning of the analysis.
We evaluated the extended DSS implementation by comparing it to the current DSS
implementation on a set of benchmark programs. The results revealed that, while some
programs benefitted from the DFA summaries and were verified in less time, the addi-
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1 Introduction

tional serialization and deserialization of DFA results increased resource consumption.
This added overhead led to fewer programs being correctly verified, showing that while
DFA provides the analysis with more information, it also introduces challenges that
negatively impact the overall verification performance.
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2 Related Work

2.1 Adjustable Block-Encoding (ABE)

ABE [1] builds on existing techniques for software model checking, such as Single-Block
Encoding (SBE) and Large-Block Encoding (LBE) [6], by providing a flexible framework
that allows for adjustments between these two approaches and beyond. In SBE the
predicate abstraction is computed after every single program operation, leading to a
large number of expensive theorem prover calls. In LBE the abstraction is computed at
function calls or at head locations of loops. LBE therefore already significantly reduces
the number of abstraction steps by combining multiple operations into a single block.
ABE unifies these two approaches by introducing the block-adjustment operator, which
allows for flexible configuration of the number of operations encoded in one formula
per abstraction step. ABE has shown to be more efficient than SBE and LBE, as it can
adapt to the program structure and the desired level of precision.

Both, DSS and ABE share the fundamental idea computing an abstraction only
at certain points in the program. Additionally, unlike ABE, which analyses blocks
in a hierarchical manner, DSS emphasizes parallelism. Each block’s summary can
be computed immediately, without waiting for predecessor blocks to complete their
analysis.

2.2 Block-abstraction Memoization (BAM)

BAM [12] divides the CFA of a program into blocks, which may represent bodies of
functions, nested loops or other repetitive structures that can be encountered multiple
times throughout execution. The partition of the CFA is required to be either nested
or disjoint, ensuring that blocks either do not overlap or one is fully contained within
another. For each block, BAM computes an abstract reachability tree (ART) which can
be reused in future executions of the same block. During the analysis of a block, BAM
weakens the abstract state by reducing it to only the variables relevant to the current
block, thus minimizing complexity. Afterwards, the abstract state is strengthened by
restoring the information about the variables outside of the block.

Similar to ABE, BAM also supports the sequential analysis of blocks with a predecessor-
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successor relationship. Additionally, blocks that are in no direct predecessor-successor
relationship can be processed simultaneously, which allows for some degree of paral-
lelism.

2.3 Combining Data-flow Analysis with Predicate Abstraction

There already exists research, which has explored the combination of data-flow anal-
ysis with predicate abstraction to improve the efficiency and precision of software
verification. Traditional predicate abstraction techniques, although powerful, can be
computationally expensive due to the number of iterations needed to refine the ab-
straction and eliminate spurious counterexamples. Data-flow analysis, on the other
hand, provides a more scalable solution but often lacks the precision required for
path-sensitive verification.

"Predicated lattices" [7] is a concept which enhances traditional data-flow analysis
by incorporating predicates. This technique partitions the program state using a set
of predicates and tracks different lattice elements for each partition. By integrating
data-flow facts with predicates, this approach achieves greater precision than standard
data-flow analysis. The key benefit lies in its ability to reduce false positives by avoiding
imprecisions that arise from infeasible paths. This method has shown significant
improvements in verification times, as fewer iterations are required compared to purely
predicate-based analyses.

Statically computed invariants can be used to strengthen the transition relation at
different program locations [9]. Their approach introduces octagonal invariants into
the predicate abstraction and refinement loop, which helps reduce spurious counterex-
amples and the number of refinement iterations. By efficiently discovering invariants
at each program location, the abstract model becomes more precise, leading to fewer
refinement steps and reduced computational overhead.
This thesis explores the idea of generating stronger preconditions by using the informa-
tion of data-flow analysis to improve the efficiency of the predicate abstraction within a
block.
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3 Background

3.1 Control Flow Automaton (CFA)

A CFA is a directed graph which shows the control flow of a program. The nodes of the automa-
ton represent the different locations in the program and the edges represent transitions.

Definition 1 (CFA). A CFA is formally defined as a triple CFA = (L, l0, G), where L
represents a finite set of program locations and l0 ∈ L is the start location marking the
entry point of the program being analysed. The set G comprises all possible edges,
with each edge g = (l, o, l′) ∈ G being an element of L × Op × L. This indicates that
executing operation o at location l transitions the program to location l′. For the sake of
simplicity, we assume that an operation can either be an assumption, such as [y <= 3],
or a variable assignment, like x = 0.

Figure 3.1 shows a CFA which has been constructed from the given example program.
The start node l0 represents the program’s entry point. After performing the initial
operation x = 0, the program counter moves to the subsequent node in the CFA. When
a conditional statement is encountered, there are two possible paths, resulting in a
branching at l2: either y ̸= 2 or y = 2.

3.2 Configurable Program Analysis (CPA)

Definition 2 (CPA). A CPA [4] D = (D,⇝, merge, stop) comprises an abstract domain
D, a transfer relation⇝, a merge operator merge, and a termination check stop.

The next section explains each of these four components of a CPA in more detail.

3.2.1 Components of a CPA

Abstract Domain
The abstract domain D = (C, E , J·K) consists of a set C of concrete states, a semi-lattice
E , and a concretization function J·K. The semi-lattice E = (E,⊔,⊤,⊑) includes a set
E of elements, a top element ⊤ ∈ E, a partial order ⊑⊆ E × E, and a join operator
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3 Background

1 int main() {
2 int x = 0;
3 int y = 2;
4 if (y == 2) {
5 x = 100;
6 y--;
7 } else {
8 y = 100;
9 x--;

10 }
11 assert(x > y);
12 }

(a) Example program in C

l0start

l1

l2

l3

l4

l5

l6

l7

l8 l9

x = 0

y = 2

[y ̸= 2] [y = 2]

y = 100

x = x + 1

x = 100

y = y − 1

[x > y] [x <= y]

(b) Example CFA

Figure 3.1: Example program with corresponding CFA

⊔ : E × E → E. The elements of E are the abstract states. The concretization function
J·K : E → 2C maps each abstract state to the set of concrete states it represents.

Transfer Relation
The transfer relation⇝⊆ E × G × E maps each abstract state e to potential new abstract
states e′ as abstract successors of e. Each transfer is labeled with a control-flow edge g.

We write e
g
⇝ e′ if (e, g, e′) ∈⇝, and e⇝ e′ if a g exists such that e

g
⇝ e′.

Merge Operator
The merge operator merge : E × E → E combines the information of two abstract states
into one. The result of merge(e, e′) can range between e′ ≤ e ≤ ⊤, meaning the merge
operator weakens the second abstract state e′ based on the first e. If we do not want to
merge, we use mergesep(e, e′) = e′; if the merge operator should have the same effect as
the join operator we use mergejoin(e, e′) = e ⊔ e′.

Stop Operator
The stop operator stop : E × 2E → B takes an abstract state e and a set of reached
abstract states R. Its configuration determines wether to continue with the exploration
of the abstract state e. In this work we use the stopsep(e, R) operator, which checks if
there exists an abstract state e′ in the set of reached states R such that e′ subsumes the
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3 Background

Algorithm 1 CPA Algorithm [4]
Input: A configurable program analysis D = (D,⇝, merge, stop) and an initial

abstract state e0 ∈ E
Output: a set of reachable abstract states
Variables: a set reached of elements of E, a set waitlist of elements of E

1: waitlist := {e0}
2: reached := {e0}
3: while waitlist ̸= ∅ do
4: pop e from waitlist
5: for each e′ with e⇝ e′ do
6: for each e′′ ∈ reached do
7: enew := merge(e’, e”)
8: if enew ̸= e′′ then
9: waitlist := (waitlist ∪ { enew }) \ {e”}

10: reached := (reached ∪ { enew }) \ {e”}
11: end if
12: end for
13: if ¬stop(e’, reached) then
14: waitlist := waitlist ∪ { e’ }
15: reached := reached ∪ { e’ }
16: end if
17: end for
18: end while
19: return reached

current state e. If such a state exists, the analysis can stop exploring e further, as its
behaviour has already been captured by e′.

3.2.2 CPA Algorithm

The CPA algorithm (Algorithm 1) operates by initializing both a waitlist and a reached
set with the initial abstract state e0. The algorithm continues processing as long as
there are elements in the waitlist. In each iteration, an element is removed from
the waitlist (Line 4), and its abstract successors are computed by using the transfer
relation. In Line 7, the algorithm attempts to merge each successor successor e′ with
any corresponding element already present in the reached set. If the merge results in a
new element, the original element in the reached set is replaced by the merged result
(Line 10).

8
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In Line 13, the stop operator is invoked to decide if the newly computed successor
should be added to the waitlist for further exploration. This process repeats until the
waitlist is empty, signifying that all reachable abstract states have been fully explored.
The algorithm then returns the set of reached abstract states.

3.2.3 Composite Program Analysis

A Composite CPA is a program analysis, which allows different CPAs to be combined
within one CPA and is formally defined as C = (D1, D2,⇝×, merge×, stop×) and con-
sists of two CPAs D1 and D2, sharing the same set of concrete states C. The composite
operators ⇝×, merge×, and stop× are derived from the corresponding components
of both CPAs and manage how information from both analyses is combined without
directly manipulating the internal details of the individual CPAs.
The composite CPA shares a set of concrete states C, with E1 and E2 representing
the abstract states of the individual analyses. The product domain D× = D1 × D2 is
computed by taking the direct product of the two domains. It operates on the product
lattice which is constructed from the abstract states of each CPA. To ensure that the
composite analysis represents all concrete states that are valid in both analyses, the
concretization function J·K× is defined as the intersection of the concretization functions
of the individual analyses.

Strengthening Operator
The strengthening operator ↓: E1 × E2 → E1 refines the abstract state of the domain D1

of the first CPA. It does so by taking an abstract state e1 ∈ E1 and utilizes information
from an abstract state e2 ∈ E2 of another CPA to further refine e1. The resulting abstract
state ↓ (e1, e2) represents a more constrained set of concrete states than the original e1,
i.e., J↓ (e1, e2)K ⊑ Je1K.

3.2.4 Data-flow Analysis (DFA)

DFA is a technique which tracks the flow of data through a program’s control flow
graph. Typically, the goal is to gather coarse information about variable values at
various points in the program. In this work, we focus on a specific form of DFA
where the analysis targets intervals over program variables. Formally, this DFA can be
described as a CPA with dynamic precision adjustment (CPA+) [3]. CPA+ extends the
standard CPA framework by introducing a set of precisions and a precision adjustment
function. In the context of CPA, precision refers to a finite set of predicates that controls
the coarseness of the over-approximation of the abstract states. The CPA used in this
CPA+ framework is the interval CPA I, where the abstract domain consists of intervals
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3 Background

over program variables. In the following, we will elaborate on the components of this
interval CPA+ I, including the abstract domain, transfer relation, merge operator, and
stop operator, as well as the precision adjustment.

Abstract Domain
The abstract domain in the Invariants CPA is based on expressions over intervals. Each
abstract state is represented as a mapping function M : X → Expr, where X is the
set of program variables and Expr is the set of arithmetic expressions. Since we work
with the C programming language, the operators follow their C semantics, meaning
that operators like bitwise shifts ≪ and ≫ exhibit behaviour according to the rules
of C, such as shifting beyond the width of the data type. Expr can include binary
expressions, unary expressions, program variables and disjunctions of intervals and
is recursively defined as Expr ⊆ ((Expr × B × Expr) ∪ (U × Expr) ∪ X ∪ I). The set of
supported binary operators B consists of +, ∗, /, %,=,<,∧, |,∨, &,∧,≪,≫,∪ and the
set of supported unary operators U consists of ¬,∼,−. I is the set of disjunctions of
intervals which are represented as [u, l] with u, l ∈ Z ∪ {∞}. For instance, an abstract
state could map an integer variable x to an interval like x → [1, 10], indicating that the
variable x can take any value within range between 1 and 10.

Transfer Relation
The transfer relation of the Invariants CPA is responsible for updating the abstract
state of the program variables as the program transitions from one location to another
through the control flow edges, which can be either assignments or assumptions. The
transfer relation applies these operations to modify the abstract state mappings accord-
ingly. In the case of an assignment like x := x + 1, the transfer relation updates the
current abstract state for x by adjusting its expressions, such as from x → [1, 10] to
x → [2, 11]. Similarly, for assume edges, the transfer relation constrains the abstract
state based on the condition specified in the assume statement. For instance, if the
assume statement is x > 4 and the current abstract state is x → [1, 10], the abstract
successor state computed by the transfer relation will be x → [5, 10].

Precision
The precision used in the CPA+ I is defined as a triple π = (Y, n, w) where Y is a subset
of program variables which are labeled as important, n is the maximum nesting depth
of expressions. A higher nesting depth allows for a more precise representation of the
relations between the variables. Finally, w is a boolean indicating wether widening
should be applied. Each abstract state e is paired with a precision π.

10
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Merge Operator
The merge operator of CPA+ I an perform two key strategies, depending on the pre-
cision of the analysis: union and widening. Two abstract states are merged if their
interval expressions match over all important variables. When merging occurs, the
union of the interval expressions is taken. This means that for each variable, the
resulting state will represent the combined range of values from both abstract states.
For instance, if one state maps x → [1, 5] and another maps x → [6, 10], the merged
state will map x → [1, 10]. The widening operation further relaxes the abstraction by
assigning a single, overapproximated interval to a variable by computing the upper
and lower bounds of the intervals of the two states. For example, if a variable x was
mapped to [1, 10] in one state and [11,20] in another, after widening x might be mapped
to [1, ∞] ensuring that further refinement stops and the analysis can terminate.

Stop Operator
In the context of CPA+ I the stopsep operator is used. This operator checks wether there
exists an abstract state e′ ∈ R from the set of previously reached states R that subsumes
the current state e. If such a state exists, the exploration of e can stop, as it is already
represented by e′ and therefore the current state is not added to the waitlist.

Precision Adjustment Function
The precision adjustment function of CPA+ I dynamically refines or relaxes the pre-
cision during the analysis. In can modify the set of important variables, adjust the
allowed formula nesting depth, or disable widening. For example, if the analysis finds
an error path, the precision can be refined by adding all the variables that occur in
assumes to the set of important variables.

3.2.5 Predicate Analysis

The Predicate CPA P uses predicate abstraction to represent program states. It can
also be defined as a CPA+ P = (P, π,⇝, merge, stop) where π ⊂ Π denotes the set
of precisions which are used to construct abstract states. This is achieved by over-
approximating concrete states. This section describes the components of Predicate CPA
[1], including the abstract domain, transfer relation, merge operator, and stop operator.

Abstract Domain
The abstract domain of Predicate CPA is defined by sets of predicates, each of which
describes properties of the concrete states. Due to the use of adjustable-block encoding
(ABE), where predicate abstraction is only computed at specific program locations, the
abstract state e is defined as the four-tuple (l, ψ, lψ, φ). Here, l represents the current pro-
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gram location, ψ is the abstraction formula, which is a combination of predicates from
the precision ϕ, lψ refers to the location where the abstraction was last computed. Path
formula φ holds the path conditions leading to the abstract state. The semi-lattice used
in the Predicate Analysis is defined as E = (E,⊔,⊤,⊑), where ⊤ = (l⊤, true, l⊤, true)
represents the top element of all abstract states from E. The partial order ⊑ is defined
as (l1, ψ1, lψ1 , φ1) ⊑ (l2, ψ2, lψ2 , φ2) if (e2 = ⊤)∨ ((l1 = l2)∧ (ψ1 ∧ φ =⇒ ψ2 ∧ ϕ2)). The
join operator ⊔ computes the least upper bound of two abstract states based on the
partial order.

Transfer Relation
The transfer relation defines how abstract states are updated as the program transi-
tions from one location to another through a control-flow edge g = (l1, o, l2) ∈ G. It
contains all triples with (e, g, e′) where e = (l1, ψ1, lψ, φ1) and e′ = (l2, ψ2, lψ, φ2). The
block-adjustment operator blk(e, g) which maps a CFA edge to true or false, determines
wether a computation of an abstract state is required. The strongest postcondition
operator SPo computes ψ2 as the strongest boolean combination of predicates in ϕ

after applying the operation o. In this case, the path formula is reset to φ2 = true. If
no abstraction is required, the path formula is updated, and the location of the last
computed abstraction lφ remains the same.

Merge Operator
In the case of two abstract states (l1, ψ1, lψ, φ1) and (l2, ψ2, lψ, φ2) sharing the same
location l1 = l2, the same abstraction formula ψ1 = ψ2, and the same abstraction point
lψ, their path formulas are combined using a disjunction φ1 ∨ φ2. If these conditions
are not satisfied, the second abstract state is taken as the result of the merge operation.

Stop Operator
The stop operator of the Predicate CPA checks wether the current state e is subsumed
by any state already in the reached set R. If there exists a state e′ in R that already
covers e, meaning e ⊑ e′ holds, the exploration of the current state is terminated.

Counterexample-Guided Abstraction Refinement (CEGAR)
CEGAR is a technique that can be used together with Predicate Analysis to refine
the precision that define the abstraction. The analysis starts with a simplified, coarse
abstraction and refines this abstraction based on the results of the analysis. When a
violation of the property being verified is found, an error path is generated. This path
represents the sequence of steps that lead to the violation.
If the error path corresponds to an actual error in the program, the analysis reports
the violation. However, sometimes the error path does not represent a real error in
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3 Background

Actor 1 Actor 2

Actor 4 Actor 3

Figure 3.2: Actor model with four actors each communicating by broadcasting messages
to every block within the model including itself

the program’s execution. This is known as a spurious counterexample. A spurious
counterexample arises when the abstraction is too coarse, meaning it simplifies the
program so much that the error path which is found is not feasible. In such cases, the
analysis refines the abstraction by adding more detail, ensuring that the same spurious
path will not be explored again. This refinement process continues until the analysis
either proves the absence of errors or finds an error path that is feasible.

3.3 Actor Model

The actor model [8] is a framework for concurrent computation where "actors" are
independent units of computation that communicate through message passing. Each
actor processes messages asynchronously and can modify its own state, send messages
to other actors, and create new actors.
In the context of DSS, the actor model is used to implement distributed verification
tasks, where each block of the program is handled by an actor that communicates its
results via postcondition or violation condition messages to other actors. Figure 3.2
shows an example of an actor model with four actors, where the boxes represent the
actors and the arrows specify the channels through which messages can be passed.

3.4 Distributed Summary Synthesis (DSS)

DSS [5] extends CPA by decomposing the program into smaller, independent verification tasks
(blocks) and distributing these tasks across multiple actors, allowing for parallel verification.
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3 Background

3.4.1 Decomposition of CFA

Definition 3 (Block). Given a CFA P = (L, l0, G) a block can be viewed as a weakly
connected subgraph b = (Lb, Lentry, Lexit, Gb) with nodes Lb ⊆ L, edges Gb ⊆ G, an
entry node lentry and an exit node lexit. Typically, none of the predecessors of Lentry and
none of the successors of Lexit are included within Lb of block B. In case of a block
covering a full loop, the loop head functions as both the entry and exit node of the
block.

Definition 4 (Block-Adjustment Operator). The Block-Adjustment Operator, denoted
as blk : G → {true, f alse}, maps each edge of the CFA g = (l, o, l′) to either true or
f alse. If the operator returns true for an edge, this indicates that the edge marks the
end of the current block, and any outgoing edge of the target node l′, begins a new
block. Conversely, if the operator returns f alse, the edge is part of the current block.
Two trivial concrete definitions of the Block-Adjustment Operator are blksbe, which
always returns true, meaning each block consist of a single program operation, and
blk f alse, which always returns false leading to the entire program being treated as a
single block.

Definition 5 (Block Graph). A Block Graph B = (B, GB) is a directed Graph with a
set of blocks B as nodes and a set of directed edges GB ⊂ B × B between them.

Definition 6 (Valid Decomposition of CFA). A decomposition of a CFA is valid if and
only if for each node l of the resulting block graph B it holds that either l only appears
in a single block or l is the node that connects block b with all its successor blocks. In
that case l is the exit node of b and the entry node of each successor block of b.

3.4.2 Block Merging

Block merging is a strategy aimed at optimizing the number and size of blocks in the
block graph. The objective is to reduce the number of blocks by alternately merging
either horizontally or vertically until the number of blocks converges to a desired target
number or until no further merges can be performed. The following defines the two
types of block merges.

Definition 7 (Horizontal Merge). A horizontal merge can be performed when both
the entry and exit location of two blocks are the same. Formally, consider two
different blocks with identical entry and exit locations b = (Lb, lentry, lexit, Gb) and
b′ = (Lb′ , lentry, lexit, Gb′). The resulting block b = (Lb ∪ Lb′ , lentry, lexit, Gb ∪ Gb′) is the
horizontal merge of b and b′.
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Definition 8 (Vertical Merge). A vertical merge of two blocks is possible when the exit
location of one block matches the entry location of another block. Formally, given two
blocks b = (Lb, lentry, lexit, Gb) and b′ = (Lb′ , l′entry, l′exit, Gb′), a vertical merge is possible
if lexit = l′entry. Also, for a vertical merge to be valid, block b must be the only block in
the block graph with lexit as its exit location, and block b′ must be the only block with
l′entry as its entry location. The resulting block b′′ = (Lb ∪ Lb′ , lentry, l′exit, Gb ∪ Gb′) is the
vertical merge of b and b′.

3.4.3 Message Passing in DSS

Definition 9 (Message). To enable communication between the blocks b ∈ B, we define
messages M. A message m ∈ M is a triple T × B × C, where τ ∈ T = {τpost, τvcond}
represents the type of the message. The type determines the content of the message:
τpost is used for transporting postconditions, which are sets of abstract states associated
with a block, while τvcond is used for conveying violation conditions, which are sets
of target-reaching states. The message also contains the actual content ζ ∈ C, which
can either be a postcondition or a violation condition, depending on the type τ, and
b ∈ B refers to the block from which the message is sent. Packed objects, such as sets
of abstract states, are denoted with a subscript M. For example, {e}M indicates that the
set {e} has been packed into a message.

3.4.4 Distributed Configurable Program Analysis

A Distributed CPA D = (D, packPost, packVcond, unpackPost, unpackVcond) ex-
tends the conventional CPA by also defining how to pack abstract states E into messages
and unpack messages into abstract states. The operator packPost : 2E × B → 2M is
responsible for packing a set of abstract states which belong to block b ∈ B, into a
set of postcondition messages. Conversely, the operator unpackPost : 2M × B → 2E

unpacks a set of postcondition messages into abstract states. Similarly, the operator
packVcond : 2E × B → 2M is used to pack target-reaching states into violation-condition
messages. The counterpart operator unpackVcond : 2M × B → 2E unpacks violation-
condition messages and restores the abstract states representing the target-reaching
states.

Distributed Predicate CPA
The Distributed Predicate CPA functions by running predicate analysis with CEGAR
on each blocknode of the distributed CPA. Predicate analysis is performed locally at
each blocknode, deriving predicates using CEGAR to iteratively refine the abstraction
at that block. This approach has been implemented in the current system, where DSS
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Algorithm 2 DSS(b, Eb
0, φ,A,D) [5]

Input: Block b, initial states Eb
0 ⊆ E, specification φ, reachability analysis A, and

distributed CPA D = (D, packPost, packVcond, unpackPost, unpackVcond), where E
denotes the set of abstract states and π0 = ∅ is an initial precision for D

1: Tφ := {e ∈ E | e ̸|= φ}
2: post := [(τpost, b′, Eb

0)M | b′ ∈ B]
3: vcond := [(τvcond, b′, ∅M) | b′ ∈ B]
4: while true do
5: m := nextMessage()
6: if m = (τpost, b′m, ·) then
7: post := [(τpost, b′, ·) ∈ post | b′ ̸= b′m] ◦ [m]

8: end if
9: if m = (τvcond, b′m, ·) then

10: vcond := [(τvcond, b′, ·) ∈ vcond | b′ ̸= b′m] ◦ [m]

11: end if
12: Rstart := {(e, π0) | e ∈ unpackPost(post, b)}
13: T := unpackVcond(vcond, b) ∪ Tφ

14: R := Ab(D, Rstart, Rstart, T)
15: ER := {e | (e, ·) ∈ R}
16: V := {e ∈ ER | JeK∩ JTK ̸= ∅}
17: if V ̸= ∅ then
18: broadcast packVcond(V, ER, b)
19: else
20: broadcast packPost({e ∈ ER | e located at lexit}, b)
21: end if
22: end while

takes the Distributed Predicate CPA as an argument. The communication between
blocknodes occurs via message passing. If the predicate analysis detects that the
specification is violated, a violation-condition message is sent to predecessor blocks,
signalling a potential error. Conversely, if the specification is satisfied at a blocknode,
a postcondition message is sent to successor blocks to indicate that the analysis has
successfully verified that portion of the program.

3.4.5 Distributed Summary Synthesis Algorithm

The DSS algorithm (Algorithm 2) operates by exchanging postconditions and violation
conditions between the blocks to refine the analysis. The algorithm takes as input a
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Algorithm 3 packPostA(Ein, b)
Input: Set Ein of abstract states, block b
Output: A single message representing
the least upper bound of Ein

1: return {(τpost, b, {⊔Ein})M}

Algorithm 4 packVcondA(V, ER, b)
Input: Set V of reached target states,
reached states ER, block b
Output: A single message representing
all violation conditions for V

1: W :=
⋃

e∈V ω(cex(v, ER), v)
2: return {(τvcond, b, WM)}

Algorithm 5 unpackPostA(Mpost, b)
Input: List Mpost of messages, block b
Output: Least upper bound of abstract
states

1: states := {}
2: for (τpost, b′, AM) ∈ Mpost do
3: if b′ ∈ predecessors(b) then
4: states := states ∪ A
5: end if
6: end for
7: if states = {} then
8: return {⊤}
9: end if

10: return {⊔ states}

Algorithm 6 unpackVcondA(Mvcond, b)
Input: List Mvcond of messages, block b
Output: Set of target states for block b

1: T := {}
2: for (τvcond, b′, WM) ∈ Mvcond do
3: if b′ ∈ successors(b) then
4: T := T ∪ W
5: end if
6: end for
7: return T

block b, its initial abstract states Eb
0, the specification φ, a reachability analysis A, and a

distributed CPA D, which defines the packing and unpacking of messages.
The process begins by initializing the target states Tφ as all abstract states that violate
the specification φ, along with empty lists for postconditions and violation-condition
messages for each predecessor block b′. These lists will hold the most recent messages
sent by other blocks.
The algorithm then enters a loop (Line 4) where it waits for the arrival of messages
using the function nextMessage(). When a message m = (τ, b′m, ·) arrives, the algorithm
distinguishes between two types of messages. If the message is a postcondition message
τpost, the algorithm updates the list of postconditions by removing the old postcondition
for block b′m and adding the new postcondition (Line 7). If the message is a violation-
condition message τvcond, the list of violation conditions is updated in the same way
Line 10.
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Table 3.1: Run of DSS with Predicate Analysis

A B C D E
Rstart0 {pc = l0} {pc = l2} {pc = l2} {pc = l7} {pc = l7}
T0 {pc = l9} {pc = l9} {pc = l9} {pc = l9} {pc = l9}

proof proof proof proof violation
I0 ⇒ broadcast ⇒ broadcast ⇒ broadcast ⇒ broadcast ⇒ broadcast (τvcond, E,

(τpost, A, {pc = l2}M) (τpost, B, {pc = l2}M) (τpost, C, {pc = l7}M) (τpost, D, {pc = l7}M) {pc = l7 ∧ x <= y}M)

Rstart1 {pc = l0} {pc = l2} {pc = l2} {pc = l7} {pc = l7}
T1 T0 T0 ∪ {pc = l7 ∧ x ≤ y} T0 ∪ {pc = l7 ∧ x ≤ y} T0 T0

violation proof
I1 idle because noch change ⇒ broadcast (τvcond, B, ⇒ broadcast (τpost, C, idle because no change idle because no change

{pc = l2 ∧ y ̸= 2 ∧ x ≤ 99}M) {pc = l7 ∧ x > y}M)

Rstart2 {pc = l0} {pc = l2} {pc = l2} {pc = l7 ∧ x > y} {pc = l7 ∧ x > y}
T2 T1 ∪ {pc = l2 ∧ y ̸= 2 ∧ x ≤ 99} T1 T1 T1 T1

proof proof proof
I2 ⇒ broadcast (τpost, A, idle because no change idle because no change ⇒ broadcast ⇒ broadcast

{pc = l2 ∧ y = 2 ∧ x < y}M)

Rstart3 {pc = l0} {pc = l2 ∧ y = 2 ∧ x < y} {pc = l2 ∧ y = 2 ∧ x < y} {pc = l7 ∧ x > y} {pc = l7 ∧ x > y}
T3 T2 T2 T2 T2 T2

proof proof
I3 idle because no change ⇒ broadcast ⇒ broadcast (τpost, C, idle because no change idle because no change

(τpost, B, {pc = l7 ∧ x > y}M) {pc = l7 ∧ x > y}M)

Fixpoint reached ⇒ Program safe

In Line 12, the algorithm unpacks the postconditions (Algorithm 5) into abstract states,
adding them to the initial precision π0 for block b. It also unpacks the violation-
condtion messages into target states (Algorithm 6) and adds them to the set T of target
states, which also includes the original target states Tφ (Line 13).
After unpacking the messages, the algorithm runs the reachability analysis A on the
current block b, starting from the unpacked postconditions and considering both the
initial states and those in the waitlist. This analysis computes the set of reachable states
R within the current block. This set is then used to extract the reachable abstract states
ER and the set of violated target states V. If V is not empty, the algorithm proceeds to
broadcast the packed violation conditions (Algorithm 4) to the predecessor blocks of b
(Line 18). In the case of V being empty, a stronger postcondition for the successor blocks
of b is constructed, packed into a message (Algorithm 3) and broadcasted (Line 20).
The algorithm continues in this manner, iterating through the blocks and refining the
analysis by sharing postconditions and violation conditions between the blocks until
all reachable states and potential violations have been fully explored.

3.4.6 Example Run of DSS with Predicate Analysis

The following illustrates the workings of the DSS algorithm with Predicate Analysis
on the program corresponding to the CFA shown in Figure 3.1. Initially the CFA is
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Figure 3.3: Linear Decomposition of Example Program

decomposed into blocks, where each block consists of a precondition, a block summary,
which is computed using Craig Interpolation [11], and a violation condition. Each block,
therefore, represents an independent verification task on which Predicate Analysis is
iteratively run to further refine these components. For the sake of simplicity, we omit
the possibility of integer overflows, as the implementation fully supports all required
features. Additionally, we assume that, on every block, the same amount of time is
consumed for running the analysis and message processing.

Decomposition
A valid decomposition of the CFA in Figure 3.1 is shown in Figure 3.3. The block graph
is a result of the linear decomposition strategy, where each block consists of paths
through the CFA where no branching occurs. Block A contains the initial part of the
program where the variables x and y are initialized. Blocks B and C represent the two
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branches after the initial block: one where y ̸= 2 and another where y = 2. Block D and
Block E represent the final states of the program which contain the assume statement.
In block D the condition x > y holds, which satisfies the program’s specification. Block
E however, contains the error state l9, which when reached violates the specification of
the program.

Analysis
Table 3.1 outlines the results of the DSS algorithm (Algorithm 2) with Predicate Anal-
ysis applied to the program. This table tracks the refinements of the preconditions,
block summaries, and target states for each block node after every iteration. The
preconditions are the initial abstract states for each block, while the postconditions
are the abstract states after the analysis has been run. The block summaries are the
results of the analysis, and the violation conditions are the target states that violate
the specification. The table shows the results of the analysis after each iteration, with
the initial abstract states for each block in the first row and the final results in the last
row. The table demonstrates how the analysis refines the abstract states and block
summaries through each iteration, leading to the final results.

Iteration 0. The analysis on each block start at the block entries with no initial in-
formation about the program state, therefore initial states Rstart0 are equal to the start
node of each block. The target states T0 for analysis is the location l9 of the failed
assertion. Only the analysis on block E reaches a target state (violation) from which
a violation condition is computed: If, at block entry l7, condition x ≤ y holds, the
program violates the specification. The violation condition is packed into a message,
denoted with a subscript M, and broadcasted to all predecessor blocks. The analyses
of all the other blocks reach no target states (proof) and therefore compute the trivial
summary of location at their block exits and broadcast these summaries as their post-
conditions to all blocks.

Iteration 1. The predecessor blocks of E, B and C update their target states (T1) with the
information of the violation condition message from E. Running analysis on block B
results in a violation due to the fact that x could be less than y. From that a violation
condition is computed and communicated to its predecessor block A. The analysis on
block C does not reach a target state and therefore computes a postcondition with the
trivial summary of the block exit. The analysis on block C does not reach any target
state and computes the summary l7 ∧ x > y which is communicated to all its successor
blocks. All the other blocks, A, D and E are idle because they did not receive any new
information.
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Iteration 2. After receiving the post condition message from C, the successor blocks
D and E update their initial reached sets Rstart2 . Block A adds the information of the
violation condition message given by B to its target state T2. The analysis on block A
shows that the target state cannot be reached, therefore a summary is computed and
broadcasted to its successors. Blocks B and C did not receive any new information and
are idle. The analyses on block D and E show that after updating their initial sets still
no target states are reached.

Iteration 3. The blocks where the initial reached set and the target states did not
change, namely A, D and E, are idle. The analyses on blocks B and C show that no
target states are reached. Because the last broadcast of each block is a proof a fixed
point is reached, the analysis terminates and the program is deemed as being safe.
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This chapter introduces the distributed data-flow analysis CPA and its integration into Dis-
tributed Summary Synthesis. The integration allows for an earlier top-down collaboration
between the blocks by using the results of the data-flow analysis to strengthen the postconditions
of the blocks and therefore the preconditions of the successor blocks.

4.1 Motivation

In the current implementation of DSS, Predicate Analysis is run on each block using
CEGAR, meaning the abstraction is only refined in the case of a target state being
reached or an error location being found. Because of this, blocks without an error state
only provide trivial summaries to their successor blocks in the beginning of the analysis.
Data-Flow Analysis, though less precise, can compute coarse quickly at summaries at
the start of the analysis. The idea is to initially also run Data-Flow Analysis on each
block to compute stronger postconditions. By communicating these summaries to their
successor blocks, the precondition of the successor blocks can be strengthened.

4.2 Definition of Distributed Data-Flow Analysis

The distributed Data-Flow Analysis can be defined as a distributed CPA

DI = (I, packPostI, unpackPostI, packVcondI, unpackVcondI)

with I being the invariants CPA defined in Section 3.2.4. The pack and unpack operators
additionally define how the abstract states E of the invariants CPA I are packed into
messages and unpacked from messages. The following paragraphs will discuss the
pack and unpack operators of the distributed Data-Flow Analysis CPA.

The Pack Operator packPostI

The packPost operator of the distributed Data-Flow Analysis extracts all the invariants
states Ein at the final location lexit of the block b and computes the least upper bound.
This information is packed into a postcondition message to be communicated between

22



4 Distributed Data-Flow Analysis in DSS

the blocks. Specifically, the packPost operator works by summarizing all the invariants
states which were computed at block exit into one message that can be passed along.

packPostI : 2E × B → 2M

packPostI(Ein, b) = {(τpost, b, {⊔Ein}M)}

The Unpack Operator unpackPostI

The unpackPost operator of DI is responsible for unpacking a set of postcondition
messages into invariants states. Every block which receives a post condition message
from its predecessor blocks unpack the messages by joining all the invariants states
and computing their least upper bound. If there is no such message from a predecessor
block„ the unpackPost operator returns the top element ⊤ of the abstract domain of I,
namely a mapping function, in which every tracked variable is mapped to the interval
[−∞, ∞].

unpackPostI : 2M × B → 2E

invariantsStates(Mpost, b) :=

{⋃{A | (τpost, b′, AM) ∈ Mpost, b′ ∈ pred(b)}, if ∃(τpost, b′, AM) ∈ Mpost, b′ ∈ pred(b)

{⊤}, if no such b′ exists

unpackPostI(Mpost, b) = {
⊔

invariantsStates(Mpost, b)}

The Pack Operator packVcondI

The packVcond operator is responsible for packing violation conditions into messages
that can be communicated to the predecessor blocks. In the context of the distributed
DFA, the packVcond operator is defined as always returning the empty set, because
there is no bottom-up communication of violation conditions in the distributed DFA.

packVcondI : 2E × 2E × B → 2M

packVcondI(V, ER, b) =

The Unpack Operator unpackVcondI

The unpackVcond operator also always returns the empty set, because within the
distributed Data-Flow Analysis CPA, there are no violation condition messages passed
during the analysis.

unpackVcondI : 2M × B → 2E

unpackVcondI(Mvcond, b) = {}
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Table 4.1: Run of DSS with Predicate Analysis strengthened by Data-Flow Analysis

A B C D E
Rstart0 {pc = l0} {pc = l2} {pc = l2} {pc = l7} {pc = l7}
T0 {pc = l9} {pc = l9} {pc = l9} {pc = l9} {pc = l9}
resultd f {pc = l2 ∧ x = 0 ∧ y = 2} {pc = l7 ∧ y = 100} {pc = l7 ∧ y = 1 ∧ x = 100} {pc = l8 ∧ x > y}

proof proof proof proof violation
I0 ⇒ broadcast (τpost, A, ⇒ broadcast (τpost, B, ⇒ broadcast (τpost, C, ⇒ broadcast ⇒ broadcast (τvcond, E,

{pc = l2 ∧ x = 0 ∧ y = 2}M) {pc = l7 ∧ y = 100}M) {pc = l7 ∧ y = 1 ∧ x = 100}M) (τpost, D, {pc = l7}M) {pc = l7 ∧ x <= y}M)

Rstart1 {pc = l0} {pc = l2 ∧ x = 0 ∧ y = 2} {pc = l2 ∧ x = 0 ∧ y = 2} {pc = l7 ∧ y = 100} {pc = l7 ∧ y = 100}
∪{pc = l7 ∧ y = 1 ∧ x = 100} ∪{pc = l7 ∧ y = 1 ∧ x = 100}

T1 T0 T0 ∪ {pc = l7 ∧ x ≤ y} T0 ∪ {pc = l7 ∧ x ≤ y} T0 T0

proof proof
I1 idle because noch change ⇒ broadcast (τpost, B, ⇒ broadcast idle because no change idle because no change

{ f alse}M) (τpost, C, {pc = l7 ∧ x > y}M)

Rstart2 {pc = l0} {pc = l7 ∧ x > y} {pc = l7 ∧ x > y} {pc = l7 ∧ x > y} {pc = l7 ∧ x > y}
T2 T1 T1 T1 T1 T1

proof proof
I2 idle because no change idle because no change idle because no change ⇒ broadcast ⇒ broadcast

Fixpoint reached ⇒ Program safe

4.3 Adjustment of the DCPA Algorithm

The results of the data-flow analysis are integrated into the existing predicate analysis
by adding the distributed invariants CPA DI to the composite CPA C of the current
implementation of DSS. The transfer relation of the predicate CPA P strengthens their
results with formula reporting states. Because the invariants state falls into that category,
the strengthening happens automatically by forming a conjunction of the formulas of
all formula reporting states at the block exit. To optimize the DCPA algorithm, the
invariants state is excluded from the wrapped states in C when the predicate state at
the block end is an abstraction state. This adjustment prevents unnecessary invocations
of the strengthening function.

4.4 Example Run of DSS with Predicate Analysis strengthened
by Data-Flow Analysis

To better illustrate the benefits of integrating Data-Flow Analysis into DSS, we will walk
through an example run of DSS with Predicate Analysis, but this time strengthened
by the results of DFA. The setup will be the same as in Section 3.4.6, but this time we
will also run DFA on each block. The results of the DFA will be used to strengthen the
postconditions of the blocks.

Analysis
Iteration 0. The start of the analysis mirrors the steps from Section 3.4.6. The initial
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abstract states for each block correspond to the start node of each block. The target
state T0 for analysis remains the location l9 where the assertion failure occurs. The
analysis on block E reaches a target state (violation) from which a violation condi-
tion is computed, packed in a violation condition message and broadcasted to all its
predecessor blocks. Simultaneously, DFA is run on each block. The DFA computes
summaries, which are then be communicated to the successor blocks. For block A the
DFA computes following condition that holds at block exit: pc = l2 ∧ x = 0 ∧ y = 2.
This information is used to strengthen the postcondition of block A and is commu-
nicated to its successor blocks B and C. Running DFA on block B provides blocks D
and E with the information that at its block exit y has the value 100. On block C, DFA
computes the following postcondition: pc = l7 ∧ y = 1 ∧ x = 100. This information
already indicates that the assertion cannot fail, when the program path leads through
block C, because at its block exit x is definitely greater than y.

Iteration 1. In this iteration the effect of the DFA results on the analysis becomes
clear. Each block starts with a stronger precondition because of the information pro-
vided by the predecessor blocks. The target states of blocks B and C are updated with
the communicated violation condition of E just like in the example run without DFA.
Now when running predicate analysis on block B no target states in T1 are reached.
Due to the contradiction of y = 2 and y ̸= 2 the analysis computes the summary false.
With the updated initial reached set Rstart1 the analysis on block C also does not reach
any target states. The summary of block C is computed as pc = l7 ∧ x > y. The analysis
on block D and E are idle because they haven’t received any new information.

Iteration 2. Only D and E received new information from their predecessor blocks. The
analysis shows that this does not change the fact that no target state is reached. All the
other blocks are idle because their initial reached set and target states haven’t change.
The analysis therefore reaches a fixpoint because the last broadcast of each worker does
not contain a violation condition. After only two iterations it is shown that the program
is safe.
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In this chapter we will discuss the details of the implementation of the Distributed
Data-Flow Analysis CPA, which is implemented in CPAchecker [4], a configurable
software verification framework written in Java.

5.1 Distributed Data-Flow Analysis

5.1.1 Serialization of Invariants State

In this section, we describe how the invariants state is serialized to communicate the
results of the DFA between the blocks within the block graph. The serialized state
contains a boolean formula, a variable types map, and an abstraction strategy that
allows the receiving successor block to accurately reconstruct the invariants state passed
through a message.

Visitor Pattern for Serialization
The visitor pattern in java is used to add new behaviour to existing object structures
without modifying the structures. The visitor pattern is implemented by defining a
visitor interface which declares a visit method for each type of object in the object
structure. The object structure is then defined by a class which implements the accept
method. The accept method is used to call the visit method of the visitor. The visitor
pattern is used to traverse the object structure and to call the visit method of the
visitor[.]Visitor

Serialization of Boolean Formula
The boolean formula stored in the invariants state captures the relationships between
and the possible values of the tracked variables at the end of a block. For serialization,
the SerializeBooleanFormulaVisitor class (Figure 5.1) is used to traverse the
boolean formula, such as Equal and LessThan, and translates each into a string repre-
sentation defined in the Operation enum. For instance, a logical "and" operation is
transformed into "&&.la" and a logical "or" operation is transformed into "||.lo". This
approach allows for easy adjustments to the string representation of each operation
and operand. After traversing the boolean formula, the serialized formula is stored in
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SerializeBooleanFormulaVisitor
- numeralVisitor: NumeralFormulaVisitor<CompoundInterval,
String>

+ visit(pEqual: Equal<CompoundInterval>): String
+ visit(pLessThan: LessThan<CompoundInterval>): String
+ visit(pAnd: LogicalAnd<CompoundInterval>): String
+ visit(pNot: LogicalNot<CompoundInterval>): String
+ visitFalse(): String
+ visitTrue(): String

<<interface>>
BooleanFormulaVisitor

implements

Figure 5.1: UML diagram of implementation of the boolean formula visitor

SerializeNumeralFormulaVisitor

+ visit(pAdd: Add<CompoundInterval>): String
+ visit(pAnd: BinaryAnd<CompoundInterval>): String

. . .
+ visit(pVariable: Variable<CompoundInterval>): String
+ visit(pIfThenElse: IfThenElse<CompoundInterval>): String
+ visit(pCast: Cast<CompoundInterval>): String

<<interface>>
NumeralFormulaVisitor

implements

Figure 5.2: UML diagram of implementation of the numeral formula visitor

the BlockSummaryMessagePayload object.

Serialization of Variable Types Map
The variable types map associates the memory locations of the tracked variables with
their type. The serialization of the variable types map is necessary to reconstruct the
invariants state of the block. For this, each key-value pair is brought into a string
format where ".ti" separates the memory location from its type. All these pairs are
then joined by "&&". To serialize the memory location the qualified name, which
includes the variable name and the function in which it is located, is used. Similiar to
the boolean formula, the type is serialized by traversing through the CType with the
SerializeCTypeVisitor (Figure 5.3). The serialized map is added as an own entry
in the BlockSummaryMessagePayload.

Serialization of Abstraction Strategy
The abstraction strategy of the invariants state determines how and when the analy-
sis transitions between abstract states. There are predefined strategies, such as ALWAYS,
ENTERING_EDGES and NEVER, in the AbstractionStrategiesFactories enum.
For the serialization we rely on the method which returns the string representation of the
used abstraction strategy. Again, this is stored in the BlockSummaryMessagePayload
as a separate entry.
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SerializeCTypeVisitor

+ visit(pArrayType: CArrayType) : String
+ visit(pPointerType: CPointerType) : String
+ visit(pFunctionType: CFunctionType) : String
+ visit(pSimpleType: CSimpleType) : String
+ visit(pCompositeType: CCompositeType) : String
+ visit(pProblemType: CProblemType) : String
+ visit(pTypedefType: CTypedefType) : String
+ visit(pVoidType: CVoidType) : String
+ visit(pBitFieldType: CBitFieldType) : String
+ visit(pElaboratedType: CElaboratedType) : String
+ visit(pEnumType: CEnumType) : String

<<interface>>
CTypeVisitor

implements

Figure 5.3: UML diagram of implementation of the cType visitor

After adding each component, which is necessary to reconstruct the invariants state,
to the BlockSummaryMessagePayload, the payload is built and can be sent to the
successor blocks.

5.1.2 Deserialization of Invariants State

The deserialization process is responsible for reconstructing the serialized invariants
state from the Block Summary Message Payload received by each block. The boolean
formula, variable types map and abstraction strategy are extracted from the payload
and used to restore the serialized invariants state.

Deserialization of Boolean Formula
The StringToBooleanFormulaParser interprets the serialized boolean formula
string and reconstructs the logical structure. Using a bracket stack, the parser keeps
track of the nested structure of the formula and applies the Operation enum symbols
to identify each operation and operand. For example, "&&.la" would be recognized as
a logical "and" between two conditions and therefore restore the original structure of
the boolean formula.

Deserialization of Variable Types Map
The variable types map is reconstructed by splitting the serialized string at each "&&"
to separate entries, and then again at ".ti" to extract the qualified name and type of
each variable. Each qualified name is then converted back to a memory location and
the type is restored by using the CTypeParser class, which works similar to the
StringToBooleanFormulaParser.
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--predicateAnalysis-block
--option distributedSummaries.worker.forwardConfiguration=config/

distributed-block-summaries/predicateAnalysis-dataFlow-block-
forward.properties

<path to program>

Figure 5.4: Configuration to run the distributed predicate analysis with DFA

Deserialization of Abstraction Strategy
The abstraction strategy is restored by using the valueOf method which is defined
in the AbstractionStrategiesFactories enum. The string representation of the
abstraction strategy is used to create the same abstraction strategy as the one used in
the serialized invariants state.

5.2 Limitations

This described implementation has some limitations, which might be impacting the
overall performance of the approach. First, the invariant state is computed exclusively
at the end of each block and is used to strengthen the predicate state only when it
is an abstraction state. This approach results in some inefficiencies, as it necessitates
recomputation at the end of each block rather than at more strategically defined stages
of the analysis.
Furthermore, while the data-flow analysis (DFA) is intended to run primarily at the
beginning of the analysis to provide a robust postcondition for each block, it currently
executes in each iteration. This setup is particularly complex for loop structures, where
blocks reference themselves, complicating the restriction of DFA to initial iterations.
Restricting DFA to the beginning of the analysis, especially in loops, would require
additional refinement to avoid added computational overhead.
Finally, there are specific limitations in the implementation of the CType visitor. For
CompositeType, the serialization process currently excludes its members, leading to
incomplete representations when complex data types are used. Similarly, for elab-
orated types, complex types are not serialized. During development, cyclic depen-
dencies—such as a composite type containing a pointer referencing one of its own
types—caused infinite recursion in the visitor class. While this issue could be mitigated
by introducing a mapping mechanism that pairs each type name with its serialized
CType, such a solution would add significant overhead for a relatively minor gain, and
thus was not included in this implementation.
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5.3 Configuration

In CPAtextscchecker, a configuration already exists for running the standard predi-
cate analysis within DSS. To integrate DFA alongside predicate analysis, we created a
custom forward configuration that extends the existing setup. In this new configura-
tion, the invariants CPA is added to the composite CPA to enable DFA. Additionally,
other options are set to manage how the forward analysis is configured, such as when
strengthening should be applied or how abstract states should be merged. These
configurations allow DFA to run concurrently with predicate analysis. To execute the
distributed predicate analysis with DFA, we simply have to set the new forward config-
uration in the command line as shown in Figure 5.4. Additionally, users can specify a
decomposition strategy other than the default merge decomposition by setting the op-
tion distributedSummaries.worker.decompositionStrategy to the desired
strategy.
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6.1 Experimental Setup

For the evaluation, we conduct a series of experiments to compare the performance of
DSS with and without data-flow analysis. The following hardware configuration was
used for the experiments:

• CPU Model: Intel Xeon E3-1230 v5 @ 3.40 GHz

• Memory Limit: 15 GB

• CPU Cores: 8

Each run was given a time limit of 900 seconds, with a hard time limit of 1000 seconds.
The maximum heap size allocated for each run was 13 GB.

We ran a total of 3402 tasks using the following test-sets of the SV-COMP 24 [2]
benchmarks1:

• SoftwareSystems-AWS-C-Common-ReachSafety

• SoftwareSystems-BusyBox-ReachSafety

• SoftwareSystems-coreutils-ReachSafety

• SoftwareSystems-DeviceDriversLinux64-ReachSafety

• SoftwareSystems-DeviceDriversLinux64Large-ReachSafety

• SoftwareSystems-uthash-ReachSafety

• ReachSafety-ProductLines

All experiments are conducted using revision 8c6ce7f1 of CPAchecker
2. The complete

set of artifacts, including experimental data and configurations, can be found on Zen-
odo3.

1https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/commit/5c2dfcdb832719de3145e5ed3ba88550cd076eef
2https://gitlab.com/sosy-lab/software/cpachecker/-/tree/8c6ce7f1d85b88cd60786bab6902b5e311ed3738
3https://doi.org/10.5281/zenodo.13959611
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(a) CPU time (b) Wall time (c) Memory usage

Figure 6.1: Comparison of resource consumption between DSS with and without DFA.

6.2 Research Questions

The integration of DFA into DSS presents opportunities for improved resource efficiency,
enhanced verification coverage, and reduced communication overhead. However, the
additional computational requirements, message exchanges, and serialization and
deserialization overheads introduced by integrating DFA may also present challenges.
To explore both the benefits and limitations of integrating DFA into DSS, we evaluate
the discussed approach by answering following research questions:

RQ 1: Change of Resource Consumption. How does the integration of Data-Flow
Analysis into the Distributed Summary Synthesis (DSS) framework impact re-
source consumption, particularly in terms of CPU time, wall time, and memory
usage?

RQ 2: Change of Verification Coverage. Are there programs that benefit uniquely
from either the standard predicate analysis or the predicate analysis strengthened
by Data-Flow Analysis? What characteristics define these programs?

RQ 3: Change of Message Overhead. How does the integration of Data-Flow Analy-
sis affect the communication overhead in DSS?

6.3 Experimental Results

In this section, we analyse the experimental results we obtained from running DSS with
and without DFA on the tasks mentioned above. The aim of running these experiments
is to evaluate how the integration of DFA impacts resource consumption, verification
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(a) Serialization Time (b) Deserialization Time (c) Proceed Time

Figure 6.2: Comparison of Serialization and Deserialization time.

coverage, and message overhead in DSS. By plotting the results in scatter plots, we
compared both configurations across multiple metrics, with each point representing a
program that was verified correctly by both configurations. Each scatter plot shows the
results of DSS with DFA on the x-axis and without DFA on the y-axis. The diagonal
line represents the case where both configurations perform equally well.

6.3.1 Change of Resource Consumption

The scatter plots in Figure 6.1 illustrate the impact of DFA on CPU time, wall time, and
memory usage. The following passages examine each of these aspects in detail.

CPU Time
The scatter plot for CPU time in Figure 6.1a shows that DSS with DFA generally re-
quires more CPU time than without DFA. This is indicated by the majority of points
lying below the diagonal. This becomes especially evident for programs which already
required a significant amount of CPU time without DFA. The increase in CPU time is
likely due to the additional cost of serializing and deserializing the invariants state. The
plots in Figure 6.2a and Figure 6.2b show how much more time is spent on serialization
and deserialization with DFA. Moreover, the proceed operator, which determines the
continuation of analysis by checking the termination condition, takes up significantly
more time with DFA. This is shown in Figure 6.2c.
While there are a few instances where DSS with DFA completes with less CPU time, on
average DSS with DFA requires more CPU time than DSS without DFA. This highlights
a clear short coming: while DFA provides the analysis with more information, the
introduced overhead is too big.
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Wall Time
The scatter plot for wall time in Figure 6.1b reveals a similar pattern to that observed
with CPU time. Wall time measures the actual elapsed time to verify a program from
start to finish. As with CPU time, DSS with DFA generally results in longer wall
times, indicated by the clustering of points below the diagonal. This increase is very
likely due to the additional overhead introduced by DFA, including serialization and
deserialization of the invariants state and the costly proceed operator. The difference
becomes more pronounced for tasks that already required significant wall time without
DFA, suggesting that, for complex programs that are already time-intensive, DFA’s
added information comes with a time cost that is no longer beneficial for the overall
program analysis.

Memory Usage
The scatter plot for memory usage in Figure 6.1c shows that DSS with DFA generally
consumes more memory than the configuration without DFA, as indicated by the
clustering of points below the diagonal. The integration of DFA introduces a consistent,
moderate increase in memory usage across all programs, due to additional messages
generated early in the analysis. These messages that hold the serialized invariants state,
holding the boolean formula, variable types map and abstraction strategy, add to the
memory demand to each program. However, the increase in memory usage is relatively
minor compared to the impact on CPU and wall time.

Summary
The integration of DFA into DSS generally increases resource consumption. Both CPU
time and wall time show significant increases, particularly for more complex programs,
due to the overhead from DFA computations and communication. While memory usage
also increases with DFA, this impact is relatively minor compared to CPU and wall
time. Overall, while DFA provides the analysis with more information, it introduces
noticeable resource costs.

6.3.2 Change of Verification Coverage

To assess the impact the integration of DFA might have on the verification coverage, we
compared the number of programs successfully verified with and without DFA. Out of
6402 tasks, the configuration without DFA was able to verify 887 programs correctly,
while with DFA, the number was lower at 672 correctly verified tasks (Table 6.1). This
difference indicates that the added computational overhead through the serialization
and deserialization of the invariants state and the additional messages exchanged
between the workers reduces the number of programs that can be verified within
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Table 6.1: Results of verified programs with and without DFA

Result DSS with DFA DSS without DFA
correct true 600 808
correct false 72 79
incorrect true 0 14
incorrect false 1 1

Table 6.2: Sample of programs which were able to be verified only via Predicate Analysis
using Data-Flow Analysis

Task Statusnew CPU Timenew (s) Wall Timenew (s) Statusold

32_1_cilled_ok_nondet_linux-3.4-. . . true 738 135 TIMEOUT
32_1_cilled_ok_nondet_linux-3.4-. . . true 745 99.7 TIMEOUT
minepump_spec2_product03.cil.yml true 803.81 122.88 TIMEOUT
minepump_spec2_product04.cil.yml true 694.88 107.68 TIMEOUT
minepump_spec2_product11.cil.yml true 760.97 117.19 TIMEOUT

resource limits.
In terms of soundness, Table 6.1 shows that the integration of DFA does not introduce
any new incorrect verification results. Both configurations have a single incorrect false
verification verdict. This consistency confirms that the integration of DFA does not
compromise the soundness of the analysis.
Further analysis revealed that the benefits and limitations of DFA integration are pri-
marily observed within the mine pump system, a subset of the product lines category.
This system includes two sets of programs where DFA proved advantageous, namely
programs that could only be verified with DFA and would otherwise timeout (Ta-
ble 6.2), and programs that were verified faster with DFA than without it (Table 6.3).
This suggests that DFA’s initial coarse summaries help prune infeasible paths early in
the verification process. By providing concrete interval summaries at the block exit,
DFA can reveal certain variable constraints that make some blocks logically unreachable.
As a result, Predicate Analysis can skip these blocks or paths without fully exploring
them, reducing the overall required computation and refinement steps. This early path
pruning is especially beneficial in programs with simple branching conditions, where
eliminating a few paths can significantly reduce verification complexity.
However, the mine pump category also included nearly a hundred programs that could
be verfied without DFA but led to timeouts when DFA was integrated. A plausible
explanation is that DFA’s precise interval summaries make it challenging for Predicate
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Table 6.3: Sample of programs which were verifed quicker (shorter wall time) using
Predicate Analysis strengthened by Data-Flow Analysis

Task Wall Timenew (s) Wall Timeold (s)
minepump_spec2_product05.cil.yml 94.31 126.57
minepump_spec2_product06.cil.yml 72.07 93.42
minepump_spec3_product20.cil.yml 37.70 60.91
minepump_spec3_product52.cil.yml 23.71 31.23
minepump_spec3_product59.cil.yml 43.67 51.77

Analysis to find suitable over-approximations. The results of the DFA often represent
concrete ranges that are difficult for Predicate Analysis to abstract effectively, leading
to repeated refinement steps. These additional refinement steps result in higher compu-
tational cost and more messages being exchanged, which ultimately can lead to more
timeouts.
These results indicate that while DFA improves efficiency in certain cases, its integra-
tion can introduce excessive overhead in more complex scenarios where generalizing
detailed interval data can be counterproductive.

6.3.3 Change of Message Overhead

To examine how DFA changes the message overhead, we compared the number of sent
and received messages for both configurations, as shown in Figure 6.3. The scatter
plot reveals distinct patterns in the behaviour of message exchange depending on the
complexity of the programs.
For simpler programs, where fewer messages are already exchanged, DFA further
reduces the number of sent and received messages. This suggests that DFA allows
these programs to reach verification conclusions more efficiently, requiring less com-
munication between blocks. In the middle range of program complexity, there is little
change in the number of messages exchanged with and without DFA. However, for
more complex programs, those with numerous blocks or many loops, the integration
of DFA leads to a noticeable increase in message overhead.
These observations suggest that while DFA can reduce message overhead for simpler
programs, it may introduce additional overhead for more complex programs. One
potential explanation could be that DFA, by tracking and providing concrete values
in the form of intervals, might lead to more detailed states. This added detail could
challenge Predicate Analysis when it attempts to maintain a suitable level of abstraction.
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(a) Sent Messages Comparison (b) Received Messages Comparison

Figure 6.3: Comparison of Sent and Received Messages.

6.3.4 Threats to Validity

This section addresses potential limitations and sources of bias in the experimental
results, focusing on external and internal validity.

External Validity
Our evaluation uses a subset of tasks from the SV-COMP 2024 [2] benchmark set. While
this is a widely accepted collection, it may not fully represent the range of real-world
programs, which could limit the generalizability of our findings. Additionally, since
our implementation relies on CPAchecker’s predicate analysis, results may vary if
applied to different verification tools or configurations.

Internal Validity
Several factors could influence the accuracy of our results. Our implementation may
contain undetected bugs and still has limitations (Section 5.2), which can lead to unex-
pected results. Additionally, measuring CPU time per thread could lead to minor timing
inaccuracies because the measurement happens at the CPU core, which is difficult
and can therefore be inaccurate. Finally, the non-deterministic scheduling of message
processing may introduce some variability in analysis duration because the order in
which messages are processed can have an impact on the duration of the analysis.
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7 Conclusion

In this thesis, we extended Data-Flow Analysis to operate as a distributed analysis
within the Distributed Summary Synthesis framework. The primary contributions of
this work comprise the formal definition of distributed DFA and its implementation
in CPAchecker. This in turn required developing a serialization and deserialization
process for the invariant states. Additionally, we introduced a new configuration that
integrates DFA into the existing DSS setup. By running DFA in parallel with Predicate
Analysis, blocks can generate quick, coarse summaries for their successors at the start
of the analysis, potentially enhancing the efficiency of DSS.
DFA was shown to be beneficial only in specific cases, where its early summaries
might have helped streamline verification by pruning infeasible paths. This allowed
some programs to be verified quicker with DFA than without DFA, and, in other
cases, enabled successful verification where Predicate Analysis alone would have timed
out. However, in more complex programs, DFA’s detailed intervals seemed to require
more refinement steps and memory, which likely contributed to increased timeouts.
Despite these variations, the integration of DFA did not compromise soundness, as
both configurations produced consistent verification outcomes.
Furthermore, deficiencies of the current implementation, such as incomplete support
for certain data types, may have influenced these results. Addressing these limitations
could improve verification coverage and performance.
Overall, the findings of this thesis suggest that although DFA has potential benefits
for verification in some contexts, its integration in DSS requires careful balancing
of the level of provided information and resource consumption. Future work could
explore ways to adjust DFA’s detail level to reduce unnecessary overhead or apply DFA
selectively in parts of the program where it is most useful.
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Abbreviations

ABE Adjustable Block-Encoding

SBE Single-Block Encoding

LBE Large-Block Encoding

BAM Block-abstraction Memoization

DFA Data-flow Analysis

CPA Configurable Program Analysis

CFA Control Flow Automaton

CEGAR Counterexample-Guided Abstraction Refinement

CPA+ CPA with dynamic precision adjustment

DSS Distributed Summary Synthesis
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