INSTITUT FUR INFORMATIK

Ludwig-Maximilians-Universitdt Miinchen

AUTOMATED TASK GENERATION
FOR THE VERIFICATION OF C
PROGRAMS

Integration of Verification-Task Generation
into the C Build Process

Ibrahim Durmuscelebi

Bachelor Thesis

Supervisor Dr. Thomas Lemberger

Submission Date 20.04.2025

Statement of Originality

English:
Declaration of Authorship

I hereby confirm that I have written the accompanying thesis by myself, without
contributions from any sources other than those cited in the text and acknowledg-
ments. I used ChatGPT to generate and improve wordings of single sentences and
small paragraphs. I used GitHub Copilot to suggest small snippets of code.

Deutsch:
Eidesstattliche Erklarung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstiandig verfasst habe
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.
Ich habe ChatGPT genutzt, um Formulierungen einzelner Satze und kleiner Absitze
zu erstellen und zu verbessern. GitHub Copilot habe ich verwendet, um kleine
Code-Snippets vorschlagen zu lassen.

Miinchen, 20.04.2025 Ibrahim Durmuscelebi

Abstract

Verification tasks for software analyzers typically require a single-file input
that includes all necessary headers and parameters. Currently, this prepara-
tion is often done manually, which is time-consuming and creates more errors.
HarnessForge is a verification task generator, which partially addresses this chal-
lenge by automating the creation of single-file verification tasks from multi-file
projects. However, in its current state, HarnessForge requires users to manually
identify and incorporate compile-time parameters into the execution command,
adding complexity and increasing the risk of misconfiguration. This thesis
extends HarnessForge to also record and integrate compile-time parameters,
ensuring that headers, arguments, and other parameters are included auto-
matically. As a result, developers can more easily use state-of-the-art analysis
tools on complex projects without manual setup, advancing the adoption and
reliability of automated verification solutions. The enhanced version of Har-
nessForge is evaluated on three large-scale real-world projects, demonstrating
its effectiveness and compatibility with complex software systems.

1ii

CONTENTS

Contents

Contents
List of Figures
1 Introduction
1.1 Motivation e e e e e
1.2 Mitigating ManualInput
1.3 Scope e
14 Internal Tests. o o v i i e
1.5 Evaluation e
1.6 Related Work e
2 Background
21 CompilewithClang
22 BuildwithMake.
2.3 Building Compilation Databases with Bear
3 Contribution
3.1 BearlIntegration
32 ExtractJSON e
3.3 ProjectConfigFile YAML
3.4 Features e
4 Evaluation
4.1 Intel-TDX o o e e
42 Coreutils e
43 AWSC-CommOn v v v v v it e e e e e e e e e
5 Future Work
5.1 Support for Projects with Existing main () Functions
5.2 Filtering of System Paths and Libraries
6 Conclusion

Bibliography

11
11
12
13

17
17
17
19
20

23
23
24
27

31
31
31

33

35

Vi LIST OF FIGURES

List of Figures

1.1 Comparison of verbose and minimized Intel-TDX verification commands 2

1.2 Example of an overview of the initial approach using -MJ arguments . . 4
1.3 Example of an overview of the final goal approach 4
1.4 Project Structure for Multi-File Testing 6
2.1 Process Flow for bear —-- make with Makefile, header.c and include.c 15

3.1 System workflow demonstrating the impact of the ——non-interact
option after JSON database extraction. 20

1 Introduction

1.1 Motivation

Testing software comprehensively to ensure the absence of bugs is a significant chal-
lenge, as software bugs are often considered inevitable. Software verification tools
like HarnessForge aim to address this by providing automated model-checking and
test-generation capabilities. However, the current implementation of HarnessForge
requires significant manual input, such as specifying build parameters, source files,
and include directories, which can introduce human errors into the verification pro-
cess. The goal of this thesis is to automate these manual steps, enabling verification
tasks to be generated with minimal user intervention, as illustrated in Figure 1.1. The
left side of the figure highlights the complexity and verbosity of a typical manual
command, requiring users to specify numerous directories, parameters, and macros
individually. By contrast, the right side demonstrates the potential for simplifica-
tion through automation, encapsulates the same functionality with significantly
reduced effort. Beyond this, another key objective is the evaluation and selection
of tools for recording build parameters, identifying the most suitable option for
integration with HarnessForge. The selected tool will then be implemented and
integrated into the system, ensuring compatibility with GNU Make and potentially
other build systems. Finally, real-world validation will be conducted through case
studies on large-scale projects, demonstrating the effectiveness and usability of the
enhanced HarnessForge in handling complex verification tasks. By automating the
discovery of dependencies such as headers, include files, and other configuration
parameters directly from the source code, we can reduce the risk of human errors
and streamline the verification process. Automation is particularly crucial for C pro-
grams, which are widely used in industrial applications where correctness is critical.
Many C-based systems operate in safety-critical environments, such as automotive,
medical, or aerospace industries, where software errors can have catastrophic conse-
quences [5,10,13]. By improving HarnessForge’s automation, this work contributes
to making verification more robust and practical for such critical applications.

2 CHAPTER 1. INTRODUCTION

harnessforge create-task \
formal/config/*.yml \
--sre-dir src/ \
--src-dir include/auto_gen/ \
--src-dir formal/src/ \
--override-dir formal/tdx_override/ \
-D "FAULT_SAFE_MAGIC_INDICATOR=0xFFOFOFOFOFOFOFFF" \
-D "TDX_MODULE_BUILD_DATE=20240801" \
-D "TDX_MODULE_BUILD_NUM=0"\
-D "TDX_MINOR_SEAM_SVN=0"\

-D "TDX_MODULE_MAJOR_VER=1"\
-D "TDX_MODULE_MINOR_VER=5"\
-D "TDX_MODULE_UPDATE_VER=5"\
-D "TDX_MODULE_INTERNAL_VER=0"\ harnessforge create-task \

-D "TDX_MODULE_HV=0"\ ——p formal/config/*.yml \

-D "TDX_MIN_UPDATE_HV=0"\ -- make

-D "TDX_NO_DOWNGRADE=0"\
-D"_NO_IPP_DEPRECATED"\
-D "TDXFV_NO_ASM"\

-l "include/" \

-l "sre/"\

-| "src/common™ \

-1 "src/common/helpers” \

-I "src/common/metadata_handlers" \

-1 "src/td_dispatcher” \

-1 "src/td_transitions" \

-I "src/vmm_dispatcher" \

-I "libs/ipp/ipp-crypto-ippcp_2021.7.1/include" \
-I "formal/include”

Figure 1.1: Comparison of verbose and minimized Intel-TDX verification commands

1.2 Mitigating Manual Input

The primary objective of this thesis is to integrate automation into the Harness-
Forge toolchain. The process begins with the identification and extraction of all
necessary build parameters, such as header files, include directories, macros, and
other compile-time elements from the C source files under verification. Existing
mechanisms, such as the use of ~MJ arguments in the C programming language, are
explored to achieve this. Instead of executing the entire build process at once, we first
run the -MJ command, which generates a JSON compilation database containing
essential build parameters. This database includes information about the -I (include
directories) and -D (macro definitions) parameters, ensuring that all necessary de-
pendencies and configurations are captured. Once this database is created, the actual
HarnessForge process is executed, extracting the required information directly from
the JSON compilation database rather than relying on manual input. This two-step
approach allows for greater flexibility, improves automation, and minimizes the risk
of missing or incorrectly specified parameters Figure 1.2. The initial step involves
parsing the build process to identify all dependencies and configurations required
for verification. This includes headers, macros, and dynamic variables. For macros
or variables that are predefined, the system prompts the user to confirm or modify
their values as needed to ensure flexibility and accuracy. Once all dependencies are
identified, the extracted information is structured into a JSON format compatible
with HarnessForge. However, rather than being directly used for verification, this

1.2. MITIGATING MANUAL INPUT 3

JSON data is utilized to generate a project-config.yaml file. This configuration file
encapsulates all necessary parameters for the verification process. The HarnessForge
verification task is then executed using this project-config.yaml, rather than directly
from the database. Additionally, the project-config.yaml provides three options for
handling the extracted build parameters: (E) Edit, (U) Use, and (D) Dismiss. These
options allow users to either modify the configuration before execution, directly use
it as generated, or discard it entirely. This intermediate step enhances modularity and
ensures that the verification setup remains adaptable and reproducible Figure 1.3.
The appropriate option is selected based on the mode in which HarnessForge is
running, ensuring flexibility and control over the verification setup. More details on
these modes and their functionality will be discussed in Section 3.3.

To achieve the automated extraction and organization of build parameters, this thesis
evaluates and implements one of the following existing tools: Bear, One-Line-Scan,
or CodeChecker.

Each of these tools offers unique capabilities:

* Bear! specializes in capturing build parameters through the interception of
build commands, producing a JSON compilation database that is widely
compatible with static analysis and verification tools. Its primary focus is on
capturing build parameters without introducing additional functionalities,
making it lightweight and efficient for this specific purpose. This aligns di-
rectly with the objective of extracting compile-time parameters to automate
verification tasks.

* One-Line-Scan? is a versatile tool that hooks into the compilation process,
wrapping calls to the compiler with other tools. It facilitates not only the
extraction of build parameters but also enables projects to be compiled for
fuzzing with AFL or for static code analysis with tools like CBMC. While it
offers broader capabilities, its additional features introduce complexity that
may be unnecessary for the sole purpose of extracting build parameters.

* CodeChecker” is an extensive analyzer tooling, defect database, and viewer
extension for static and dynamic analysis tools. It supports multiple analyzers,
provides web-based report storage, and includes command-line tools for com-
prehensive analysis management. Although CodeChecker can extract build
parameters, its comprehensive nature and focus on defect management make
it more complex and resource-intensive compared to Bear.

Among these, Bear is the most suitable candidate for integration, as it aligns directly
with the goals of dependency discovery and JSON-compatible output generation
without introducing unnecessary complexity.

Simplify Build Command

To simplify the process of defining verification tasks, the command structure was
extended to include a -- flag after the configuration file. This flag, along with the

lhttps://github.com/rizsotto/Bear
2https://github.com/awslabs/one-line-scan
Shttps://github.com/Ericsson/codechecker

https://github.com/rizsotto/Bear
https://github.com/awslabs/one-line-scan
https://github.com/Ericsson/codechecker

4 CHAPTER 1. INTRODUCTION

make command, serves to streamline the process by referencing the configuration file
containing the details of the target C file, associated methods, and other parameters.
The code dynamically checks for the presence of the -- flag. If detected, the system
verifies if additional compile arguments are provided. All additional parameters
will also be added to the command after make This mechanism enables seamless
integration with the Bear library for the next step. By automating and unifying
these steps, the thesis achieves its primary goal of simplifying the preparation of
verification tasks. The exact command structure of the goal, as implemented:

harnessforge create-task <config-file> <options> —-
<build command>

Create Task Command

(config file)
JSON igi ot
- - - - Verificati
MJ C-File -l and -D ———Create JSON—— (Includes, Headers, Macros, Source |«==Get ArgumentS==p Run Harnessforge s er!rlacsa:(lon

command N N N
Directories, Source Files)

Figure 1.2: Example of an overview of the initial approach using -MJ arguments

oo mmmmmmmm e o
Run build command i Compile JSON ;
N —— 1

with Bear ' DB

SEREONIIEIaIIIE J

|

|
1 i Extract Includes,
1

Headers, Src-Dir &
v

Macros
|
I
I
I
|

harnessforge create-task
<config-file> <options> -- make
<params>

User Prompt
USE (u)
EDIT (e)

DISMISS (d) € = = = P

PROJECT YAML

i 1

i H

i 1

i H

i i

i H

| Remaining Task H Single File
_________ e Generation —TP| Verification Task

i 1

A4

project-config.yaml

Figure 1.3: Example of an overview of the final goal approach

1.3 Scope

The scope of this thesis focuses on automating the process of preparing verification
tasks in HarnessForge for C programs. The main objective is to integrate the nec-
essary features so that all required arguments and configurations (e.g., sources,
includes, and other C-specific arguments) are automatically identified and ap-
plied, enabling HarnessForge to execute verification with a single command.

1.4. INTERNAL TESTS 5

1.3.1 Features to Implement

¢ Automate the extraction of required dependencies, such as headers, macros,

and include directories, from the source code.
¢ Implement a mechanism to detect and record compile-time arguments using

methods like -MJ, or by leveraging existing tools such as Bear, One-Line-Scan,

or CodeChecker for build parameter extraction.
¢ Automatically structure the parameters into a JSON format and integrate them

with HarnessForge.
¢ Ensure that the system handles interactive prompts for dynamic variables

(e.g., macro overrides) where necessary or automatically add a value to those

macros.
* Write Test’s like multifile Projects (e.g., Intel TDX) with Makefiles.
¢ Implement a feature that allows the tool to run in a non-interactive mode

—--non-interact within CI pipelines. When this mode is enabled, the tool
should execute without prompting the user for any input, using default con-
figurations. If ~—non-interact is not specified, the tool should run in its de-
fault mode, prompting the user to review and modify the project-config.yaml
file, not only for macros but for any configurable parameters before proceeding
with the verification task.

1.3.2 Features to Ignore

* Performance Optimization: Initially, the focus is on ensuring correctness and
usability, not on optimizing runtime performance. A delay of a few seconds is
acceptable as long as the verification process works reliably.

* Non-C Languages: The thesis specifically targets C programs, excluding adap-
tations for other programming languages.

¢ Advanced User Interface: The focus is on command-line functionality rather
than developing a graphical interface.

1.4 Internal Tests

To support the verification of complex, multi-file projects (e.g., Intel TDX) using
Makefiles, a structured testing methodology is established. The goal was to assess
how well HarnessForge could handle multi-file C programs while ensuring com-
patibility with real-world build systems. A dedicated project and test structure was
designed, incorporating essential components such as header files, a main function,
and configurable compilation flags. This structure allowed for modular testing,
ensuring that dependencies between files were properly captured. The test setup
involved defining and including header files, compiling the project with Makefiles,
and leveraging the -MJ option to extract build parameters. The detailed project
structure of this internal test is presented in Figure 1.4.

1.4.1 Initial Testing and Build Parameter Extraction

The first phase of testing focused on determining whether -MJ could effectively cap-
ture the necessary compilation metadata. The test cases were designed to simulate

6 CHAPTER 1. INTRODUCTION

real-world scenarios where conditional compilation flags and cross-file dependen-
cies play a crucial role. The use of macros (ONE_FLAG) within the tests allowed
validation of dynamic compilation settings. After verifying the feasibility of -MJ,
we introduced Bear, an essential tool for extracting compilation commands in more
complex environments. Bear was employed to generate compilation databases,
which provided a structured way to collect all necessary build parameters. This step
was critical, as real-world projects often involve intricate build systems that rely on
multiple dependencies and dynamic configurations.

1.4.2 Test Coverage and Configuration

The created test consisted of a C program with an associated configuration file to
ensure that all relevant parameters were correctly captured within the HarnessForge
workflow. The successful execution of this test confirmed that multi-file project
verification with Makefiles could be integrated into the automated task generation
pipeline. With these insights, the methodology was refined and extended, ensuring
that the verification approach remains scalable and adaptable for more complex
real-world projects. The results validated the feasibility of using HarnessForge for
multi-file program analysis while maintaining compatibility with various build
environments.

test_root/
. _configs/
test_config.yaml
| _src/
test.c
. _include/
L,header.h
| Makefile

Figure 1.4: Project Structure for Multi-File Testing

1.5 Evaluation

1. Can the required dependencies (headers, macros, and compile-time arguments)
be accurately and automatically extracted from C source files using the —~MJ
argument or an equivalent method?

2. Does the automated process reliably create a verification task that works
without manual input for a wide range of real-world C projects?

3. Can the enhanced HarnessForge successfully verify software in environments
supported by Intel TDX, Coreutils and AWS C Commons?

4. Are we obtaining the same compile-time parameters and results with a differ-
ent build system (e.g., Make, Ninja)?

1.6. RELATED WORK 7

1.6 Related Work

In the domain of automated software verification for C programs, several tools and
frameworks have been developed to enhance code reliability and detect potential
errors. This chapter discusses notable tools and methodologies, highlighting their
functionalities and distinguishing them from the approach proposed in this thesis.

CBMC and Klever: Manual Verification Challenges for Linux

CBMC * is a prominent tool that verifies C programs by checking for violations of
specified assertions. It translates the program into a formula, enabling the detection
of errors such as buffer overflows and pointer safety violations. CBMC is recognized
for its precision and robustness, and it has been applied to real-world software,
including parts of the Linux kernel [11].

Klever is designed to facilitate the application of automatic software verification
tools to large-scale industrial C programs. It addresses challenges such as envi-
ronment modeling, specification of requirements, and verification of multiple ver-
sions and configurations. Klever aims to reduce the effort required for verifying
critical software components in industries like operating systems and embedded
systems [13].

However both Systems needs a lot of human input and neither tool automates the
discovery of compile-time parameters. This manual setup is time-consuming and
error-prone.

CBMC in AWS: Scaling Formal Verification

AWS data centers rely on boot code as the first code executed, making it difficult
to test due to its low-level nature and hardware dependencies [7]. CBMC has been
applied to address these challenges, providing formal verification techniques to
ensure memory safety and correct execution of such critical low-level code [7, 11].
AWS has extended its use of CBMC beyond boot code verification, integrating
formal verification into its broader development workflows. AWS has developed a
systematic methodology for applying symbolic model checking to a wide range of
C-based systems, including custom hypervisors, encryption libraries, boot loaders,
and IoT operating systems [6].

SV-COMP: Competition on Software Verification

The Competition on Software Verification (SV-COMP) is an annual event that eval-
uates and compares the performance of software verification tools. It provides a
comprehensive benchmark suite for C and Java programs, facilitating the assessment
of tool capabilities in detecting errors and verifying program properties. SV-COMP
serves as a valuable resource for understanding the state-of-the-art in software veri-
fication [2]. One of the most prominent tools developed and extensively evaluated
within the SV-COMP community is CPAchecker, a configurable software verification

“https://github.com/diffblue/cbme

https://github.com/diffblue/cbmc

8 CHAPTER 1. INTRODUCTION

framework. The recent release of CPAchecker 3.0 highlights significant advance-
ments in configurable program analysis, focusing on precision and scalability for
industrial-scale verification tasks [1].

In addition, Beyer and Lemberger’s comparative study, "Software Verification: Test-
ing vs. Model Checking," presents a comprehensive evaluation of the strengths and
limitations of testing and model checking techniques in software verification [3].
This work underscores the importance of combining multiple approaches to achieve
thorough verification results, particularly in complex or safety-critical systems.

Moving Fast with Software Verification at Facebook

Facebook’s Infer tool demonstrates how static analysis can be integrated into fast-
paced software development workflows. Designed to detect issues such as null
pointer exceptions and resource leaks, Infer enables ongoing verification as part of
continuous integration pipelines. It operates by analyzing code changes incremen-
tally, allowing developers to catch potential defects early in the development process
without significantly impacting build times. This incremental analysis reduces the
overhead of full program verification while ensuring that critical bugs are identified
before deployment. This approach illustrates how verification can be automated
and scaled effectively, aligning with the goals of these thesis. [4]

MAGIC: Efficient Verification of Sequential and Concurrent C Programs

Modular Analysis of proGrams In C ° tool applies a structured approach to software
verification by simplifying complex programs into smaller, more manageable repre-
sentations. It achieves this by using predicate abstraction, a technique that replaces
detailed program states with abstract logical expressions that capture essential pro-
gram behaviors [9]. Additionally, it refines these abstractions incrementally based on
verification feedback, ensuring that only relevant program details are considered [5].
MAGIC focuses on dynamically refining predicates to improve verification effi-
ciency, whereas this work concentrates on automating the extraction and integration
of compile-time parameters to streamline verification task generation. Both ap-
proaches contribute to reducing manual effort and increasing scalability in software
verification but address distinct aspects of the process—MAGIC at the abstraction
refinement level and this thesis at the verification setup level.

Frama-C: Modular Verification through Plug-in Architecture

Frama-C ° is a comprehensive source code analysis platform designed for the ver-
ification of industrial-scale C programs. It provides a suite of plug-ins that facili-
tate static analysis, deductive verification, and testing, particularly for safety- and
security-critical software. The platform enables collaborative verification by inte-
grating these plug-ins atop a shared kernel and data structures, all adhering to a
common specification language [10].

Shttps://www.cs.cmu.edu/~chaki/magic/
6https ://frama—-c.com

https://www.cs.cmu.edu/~chaki/magic/
https://frama-c.com

1.6. RELATED WORK

The extensibility of Frama-C allows for various verification strategies to be applied
based on the specific needs of a project. Its modular nature supports a combination
of formal methods, enabling integration with different verification frameworks.

11

2 Background

The development and verification of C programs demand efficient compilation,
building, and automation processes. These tasks are critical for ensuring correctness
and consistency. As this thesis focuses on automating the build parameters for
HarnessForge, it requires an integrated understanding of compilation, building,
and automation. Together, these processes form the foundation for automated task
generation for the verification of C Programs.

2.1 Compile with Clang

Clang is a modern compiler for the C family of programming languages, developed
as part of the LLVM project !. Renowned for its modular design, fast compilation,
and detailed diagnostics, Clang is designed to support modern C standards while
producing high-quality intermediate representations (LLVM IR) [14]. These IRs form
a program for analysis, enabling advanced optimization techniques and precise
transformations, which are integral to tasks like code certification and verification.
By leveraging LLVM'’s infrastructure, Clang provides developers with a powerful
and extensible toolchain for building, analyzing, and certifying C programs.

The following example illustrates a typical use of the Clang compiler to compile a C
source file:

clang -I <include_dir> -D <macro_definition> -o <output_file>
<source_file>

In this general command:

* -I <include_dir> specifies the directory containing header files to include
during compilation.

* -D <macro_definition> defines a preprocessor macro to be used in the
compilation process.

* —0 <output_file> specifies the name of the output file (e.g., an executable
or object file).

® <source_file> represents the C source file to be compiled.

1https ://1lvm.org/

https://llvm.org/

12 CHAPTER 2. BACKGROUND

With -MJ flag

As the main goal of this thesis is to build the compile commands in JSON format,
Clang provides the -MJ flag for this purpose. The -MJ flag allows for automatic
generation of a compilation database entry during the build process. This eliminates
the need for manual entry of compilation parameters into a JSON file, ensuring
accuracy and efficiency.

The following example demonstrates how Clang can be used to generate a JSON
entry for a compilation database during the build process with -MJ flag:

clang -MJ <output_json> -I <include_dir> -D <macro_definition>
-0 <output_file> <source_file>

This command is similar to the general compilation command described earlier, but
with the addition of the -MJ <output_json> flag, which specifies the name of
the JSON file where the compilation entry will be stored. The resulting JSON file
might look as follows:

"directory": "harnessforge/test/tasks/with-header",

"file": "src/header.c",

"output": "/var/folders/b0/zrd4pr31j7cldrf/T/header-50bl65.0",

"arguments": [
"/opt/homebrew/Cellar/11vm@15/15.0.7/bin/clang-15",
"_xa" ,
"——sysroot=/Library/Developer/CommandLineTools/SDKs/
MacOSX14.sdk",
"src/header.c",
n_gn ,
"/var/folders/b0/zrdpr31j7cldrf/T/header-50bl65.0",
n_tn ,
"includes",
n_pn ,
"ONE_FLAG=200",
"-mlinker-version=1022.1",
"-mmacos-version-min=14.0.0",
"-stdlib=libc++",
"-—target=arm64-apple-macosx14.0.0"

1

}

O 0 N Ul W N

[I S R N e R R = Y
N P © O 0 N1 & U b= W IN =P O

The JSON file contains all necessary parts of the build command, including directo-
ries, macros, source files, and flags. Although we would get all the parameters in the
JSON file, we still have to enter the build parameters in the -MJ command manually,
which shows us the necessity of using an automated build parameter extraction
tool.

2.2 Build with Make

Build tools are essential for transforming source code into executable programs,
automating tasks such as compiling code, linking libraries, and packaging binaries.
One of the most widely used build automation tools in C programming is Make,

2.3. BUILDING COMPILATION DATABASES WITH BEAR 13

[8] which simplifies dependency management and streamlines the generation of
executables. Make operates through the use of a Makefile, a configuration file that
defines the rules and dependencies required for building and linking the project [12].
This approach allows developers to handle complex build workflows in an efficient
and organized manner, reducing manual effort and ensuring reproducibility. Below
is an example Makefile used for the build process:

Compiler and Flags
CC = clang
CFLAGS = —-Wall -Wextra -D ONE_FLAG=200 -I includes

Target executable
TARGET = header_test

Source files
SRCS = src/header.c
OBJS = $(SRCS:.c=.0)

_ =
= O O 00NN U W N

—_
N

Dependency files
DEPS = $(OBJS:.o=.d)

== =
Q1 = W

src/header.o: src/header.c
Build the target
all: $(TARGET)

== = =
O 0 NN

$ (TARGET) : $(OBJS)
$(CC) $(CFLAGS) -o $@ $7

N NN
N = o

Generate object files and dependency files

o)

.0: %.C
$(CC) $(CFLAGS) -MMD -MP -c $< -o $@

NN NN
N G = W
oe

Include dependency files
—include $ (DEPS)

N NN
o 0 N

Clean up build artifacts
clean:
31 rm -f $(TARGET) $(OBJS) $ (DEPS)

@
o

The Makefile includes all the necessary build parameters, such as include directories,
macro definitions, source files, compiler flags, and dependency rules, which are
essential for correctly building a project. It automates the process of compiling source
files into object files, linking them into an executable, and generating dependency
files to manage build relationships efficiently. Additionally, the Makefile contains
a clean target, which simplifies the removal of build artifacts, ensuring a clean
and reproducible build environment. Its flexibility allows for easy modifications
and extensions, such as adding support for debug or release builds, customizing
compiler flags, or incorporating additional tools like linters or formatters.

2.3 Building Compilation Databases with Bear

Bear is an open-source tool designed to simplify the generation of compilation
databases, which are critical for tools that analyze or manipulate code 2. By inter-

2https://github.com/rizsotto/Bear

https://github.com/rizsotto/Bear

14 CHAPTER 2. BACKGROUND

cepting the build process, Bear automates the creation of a JSON file, eliminating the
need for manual configuration and ensuring compatibility with Clang. Bear works
seamlessly with build systems like Make. When paired with Make, Bear captures
all the commands, includes, and flags used during the build process, ensuring a
complete and accurate representation of the compilation workflow. This makes it
more convenient compared to the -MJ flag, which requires manual configuration
and separate execution for each source file. The use of Bear is especially beneficial
for this thesis, as it automates the generation of build parameters required by Har-
nessForge. By reducing manual effort and minimizing errors, Bear streamlines the
verification process and ensures consistency in build workflows. Using Bear with
Make significantly simplifies the build command. Instead of specifying individual
commands and parameters:

bear -- make

JSON file generated by Bear:

1 [

2 {

3 "arguments": [

4 "/opt/homebrew/opt/11lvm@1l5/bin/clang",

5 "-Wall",

6 "-Wextra",

'7 "_D",

8 "ONE_FLAG=100",

9 "_I",

10 "includes",

11 "_c",

12 Iliolll

13 "src/header.o",

14 "src/header.c"

15 1,

16 "directory": "harnessforge/test/tasks/with-header",

17 "file": "harnessforge/test/tasks/with-header/src/header.c",
18 "output": "harnessforge/test/tasks/with-header/src/header.o"
19 }

N
(=}

The JSON output is nearly identical to what is generated using the -MJ flag, with
slight differences. However, the key build parameters, such as includes, flags, and
source files, remain the same. This consistency allows seamless integration with
HarnessForge, enabling easier and more automated verification processes without
requiring manual input.

At the end of this section, a figure illustrates the connection and process flow
between bear -- make, compilation, and building, showcasing how these elements
work together Figure 2.1.

2.3. BUILDING COMPILATION DATABASES WITH BEAR

i Subprocess: make | ¢——p! Makefile i

clang - ¢ header.c -0 clang - c include.c -o
header.o include.o

Figure 2.1: Process Flow for bear --

Bear logs each
command

v

15

(e.g., compiler, flags)

JSON with
commands

make with Makefile, header.c and include.c

17

3 Contribution

The primary contribution of this thesis is the enhancement of HarnessForge to fully
automate the generation of verification tasks for C programs, eliminating the need
for manual configuration of compile-time parameters, as illustrated in Figure 1.1.
This section provides a detailed explanation of the steps and methods undertaken
to achieve this objective and emphasizing the practical implementation. The exact
command structure of the implemented solution is as follows:

harnessforge create-task <config-file> <options> —--
<build command>

3.1 Bear Integration

Bear operates as an external process within the code. The command used to invoke
Bear is as follows:

bear --output <json-file> —-- <build command>

In this command, bear is invoked with the —~output option, specifying a temporary
JSON file (json_f1ile) to store the compilation details. The —- flag separates Bear-
specific options from the subsequent build tool and its command, which is defined
by the user along with any additional compile-time arguments, as specified in the
original HarnessForge command. The external process workflow simultaneously
builds the C project and generates the JSON file through Bear. During this process,
Bear intercepts the build execution by wrapping the make command and capturing
all relevant details, including source file paths, include directories, macros, and
compiler flags. It is also ensuring that the build is executed correctly and without
errors, guaranteeing the accuracy and reliability of the generated JSON file. The
resulting JSON file, created as a temporary artifact, serves as an essential input for
preparing verification tasks.

3.2 Extract JSON

The next step in the workflow involves processing the JSON file generated during
the build process to extract critical compilation parameters, such as include directo-
ries and macro definitions. These parameters are essential for accurately recreating
the original build environment within the verification tasks. The extracted data is

18 CHAPTER 3. CONTRIBUTION

structured into a NamedTuple and subsequently passed to the verification task
generator. To ensure the JSON file is correctly parsed, trailing commas are removed
from its content. This precaution is necessary because the -MJ flag in Clang some-
times appends a trailing comma in the JSON output, which can result in invalid
JSON formatting. By addressing this issue, the system ensures robust handling
of the generated data. For multi-file projects, the JSON file can contain numerous
entries, each corresponding to a separate compilation command. To manage this
complexity, additional checks ensure that duplicate entries, such as —I include paths
or —D macros, are not redundantly added. This is particularly important because
the same —include or -macro may be required for different files in a project, and
adding duplicates could lead to unnecessary clutter in the JSON file or errors during
processing. Additionally, the source file is included by checking each argument,
where one of them corresponds to the . c file. Since the file is explicitly added as
sources, it ensures correct handling of source file locations within the verifica-
tion setup. Additionally, the system accounts for variations in how arguments are
provided, such as "-I src/includes" versus "-Isrc/includes™ or similar
patterns for macros. Both formats are checked and processed to ensure that all
relevant values are correctly captured and included in the final verification task
preparation. This flexibility guarantees compatibility with various argument styles,
ensuring the JSON database reflects the actual build configuration accurately. For
example, in the Intel-TDX project, the JSON output exceeds approximatly 50,000
lines. To illustrate this complexity, just the first two arguments from the JSON file
might look like:

1 {

2 "arguments": [

3 "/usr/bin/clang-15",

4 n_cn,

5 "CMakeCCompilerId.c"

6 1,

7 "directory":
"/mnt /macfiles/intel-tdx/libs/ipp/ipp-crypto-ippcp_2021.7.1/

8 _build/CMakeFiles/3.28.3/CompilerIdC",

9 "file":
"/mnt/macfiles/intel-tdx/libs/ipp/ipp-crypto-ippcp_2021.7.1/

10 _build/CMakeFiles/3.28.3/CompilerIdC/CMakeCCompilerId.c"

1 by

12 {

13 "arguments": [

14 "/usr/bin/clang++-15",

15 "*C",

16 "CMakeCXXCompilerId.cpp"

17 I

18 "directory":
"/mnt/macfiles/intel-tdx/libs/ipp/ipp-crypto-ippcp_2021.7.1/

19 _build/CMakeFiles/3.28.3/CompilerIdCXX",

20 "file":
"/mnt/macfiles/intel-tdx/libs/ipp/ipp-crypto-ippcp_2021.7.1/

21 _build/CMakeFiles/3.28.3/CompilerIdCXX/CMakeCXXCompilerId.cpp"

22 1,

Such large files necessitate iterating through all arguments to ensure that every
relevant include path and macro definition is captured. This approach ensures that

3.3. PROJECT CONFIG FILE YAML 19

even in projects with extensive build environments, the workflow reliably extracts
the required information.This process not only eliminates manual effort but also
minimizes the risk of errors, ensuring that verification tasks reflect the actual build
context, thus enhancing the reliability of the analysis.

3.3 Project Config File YAML

Once the necessary compilation parameters have been extracted from the JSON file,
the next step involves generating a project-config.yaml file. This YAML configu-
ration file serves as an intermediate representation that encapsulates all essential
parameters required for the verification process. Rather than directly using the ex-
tracted JSON data, the system translates it into a structured YAML format, ensuring
compatibility with HarnessForge while maintaining modularity and reusability.

YAML instead of JSON?

Although the extracted compilation database is stored in JSON format, YAML is
preferred for configuring verification tasks due to its improved readability, human-
editability, and flexibility in defining structured configurations. YAML files allow for
better organization of nested settings and enable additional manual modifications
when necessary. For further details of the manual interaction, see: Non Interactive.

Ensuring correctness

To ensure correctness, a YAML preview step is introduced, allowing the user to
inspect the generated configuration. The user is presented with the newly created
project-config.yaml and has the following options:

¢ Use (u) — Accept the file and proceed with the verification task.

* Edit (e) - Modify the YAML file before execution.

* Dismiss (d) — Reject the new file and use the previously existing configuration,
if available.

The following preview demonstrates how this step appears:

Preview of the YAML that will be created:

sources:

- src/with-header.c
source_dirs:

- src

includes:

— includes

defs:

- ONE_FLAG: 100
override dir: '’

Do you want to use (u) this YAML, edit (e) it, or dismiss to

20 CHAPTER 3. CONTRIBUTION

use existing config (d)?

This mechanism is essential because the project-config.yaml file may be empty
if a new build is not created or if an existing build is reused (object, dependency
files not cleaned), potentially leading to issues. Rather than enforcing automatic
cleanup of old builds, the approach ensures greater flexibility by allowing users to
dynamically manage configurations before verification begins. Through the YAML
preview step, users can inspect the generated configuration and make informed
decisions. If the file is empty or incorrect, the edit option allows for modifications,
while dismiss enables the use of a previously existing configuration. This process
ensures that users remain fully aware of the state of the configuration file and have
complete control before proceeding with the verification task.

3.4 Features

User Prompt

Extract FLAGS —-non-interact —FALSE—yp Use (u) —d—p. YAML existing — TRUE— j

from JSON DB
Dismiss (d)

: u_J_ --e : i
<options> 3 . E old YAML
: v ! I

TRUE 1
v Continue with the ! |

| extracted Flags EDIICR FALSE
| '
|
| i v
| ; YAML existing FALSE-p New YAML E »| Run Remaining Task
i [i
| TRUE E ?
l '
CRASH
| [_crasi] |
e o oo e oo o e e e J
| I
- _ - - - L ___ _J

Figure 3.1: System workflow demonstrating the impact of the -~-non-interact
option after JSON database extraction.

To enhance the usability and functionality of HarnessForge, several new features
were added to make the tool more efficient, user-friendly, and adaptable for different
use cases While the focus of this thesis is on ensuring correctness and reliability for
C program verification tasks, features such as performance optimization, support
for non-C languages, and advanced user interfaces were deliberately excluded to
maintain this focus.

3.4.1 Non-Interactive Mode

A significant addition is the ~—non-interact option, which enables a fully au-
tomated execution mode, eliminating the need for user interaction. This feature is

3.4. FEATURES 21

particularly beneficial for integration into automated workflows, such as continuous
integration (CI) pipelines, where manual input is neither feasible nor desirable. To
ensure correctness and avoid inconsistencies, non-interactive mode enforces strict
handling of the project-config.yaml file. Before a new configuration file is
created, a check is performed to determine whether an existing version is present. If
a pre-existing project-config.yaml file is detected, execution is immediately
aborted, and an error is raised. This precaution prevents outdated configurations
from being inadvertently reused, ensuring that each verification task starts with
an accurate and up-to-date setup. If no prior configuration file is found, a new
project-config.yaml is automatically generated using the extracted parame-
ters from the JSON database. This guarantees that the verification task is always
executed with a clean and reproducible configuration, preventing potential mis-
matches between previous builds and the current analysis. By strictly enforcing
this approach, non-interactive mode ensures reliability and consistency in veri-
fication workflows. Figure 3.1, illustrates how configuration files are handled in
non-interactive mode.

23

4 Evaluation

In this section, the enhanced HarnessForge is evaluated based on its ability to
extract compile-time parameters and generate verification tasks automatically. The
evaluation consists of two main parts: First, tests are conducted using simplified
default parameters and GNU Make to verify the correctness and completeness of the
extracted dependencies. Second, real-world projects are analyzed to assess the tool’s
robustness and adaptability across different build systems, including CMake and
Ninja. The primary focus is on determining whether the verification tasks generated
by HarnessForge can be executed without manual intervention. We deliberately
ignore detailed performance metrics such as execution time or CPU usage. Instead,
the emphasis lies on functional correctness and automation.

To conduct these experiments, an Ubuntu environment (24.04.1 LTS) ! is used with
x86_64 architecture running on Docker 29.0 and 16GB of RAM. This setup is chosen
because, running the experiments in a controlled Linux-based containerized envi-
ronment ensures consistency and minimizes issues related to platform-dependent
dependencies. Additionally, the following tools were used:

Tool Version

Bear 3.1.5 https://github.com/rizsotto/Bear
GNU Make | 4.3 https://www.gnu.org/software/make
CMake 3.28.3 https://cmake.org

Tools used for evaluation

4.1 Intel-TDX

The Intel TDX project 2 is a large-scale, security-critical codebase developed to
support Intel’s Trusted Domain Extensions (TDX) technology. It provides infrastruc-
ture for secure virtual machine isolation by enabling hardware-enforced trusted
execution environments. The project includes a wide range of low-level C compo-
nents, such as boot logic, memory management, and cryptographic primitives, and
spans hundreds of source files with complex hardware interactions. Building and

lhttps://www.ubuntu.com/
2https ://www.intel.com/content/www/us/en/developer/tools/
trust-domain-extensions/overview.html

https://github.com/rizsotto/Bear
https://www.gnu.org/software/make
https://cmake.org
https://www.ubuntu.com/
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/overview.html

24 CHAPTER 4. EVALUATION

compiling such a project is non-trivial, as it typically requires carefully configured en-
vironments, platform-specific dependencies, and custom toolchain setups—making
it difficult to replicate or verify outside of its intended development context. It’s size
and complexity make it an ideal target for evaluating verification tools on realistic,
production-grade systems®. Already successfully tested with HarnessForge, the
Intel TDX project is revisited in this evaluation to assess the effectiveness of the
automated parameter extraction process and since the necessary configurations for
predefined methods are available, this project serves as a benchmark for testing the
automated parameter process. This benchmark is particularly important because
running Bear on the Intel TDX build generated a compile database file containing
over 57,000 lines, including numerous repeated -D and -I flags. Manually identifying
the relevant arguments for HarnessForge from this massive and redundant output
would be highly time-consuming and error-prone. By contrast, the automated pa-
rameter extraction process integrated into HarnessForge is able to efficiently filter
out duplicates and extract only the essential arguments, significantly accelerating
the setup of verification tasks and ensuring correctness with minimal manual effort.

Results

To keep the evaluation concise, the full output is not included here due to its size.
The automated process generated significantly more information than the manually
specified parameters. This was expected, as the extraction directly lists individual
source files rather than relying on broader source directory definitions. Additionally,
in contrast to the manual setup, the automatically extracted configuration included
130 macro definitions beginning with __ FILENAME__, which were not required
for verification and had to be removed manually. The configuration also included
irrelevant system directories, such as /usr/cmake/modules and x11, which were
likewise removed to avoid conflicts during verification. Although the extracted
configuration was more extensive and required manual refinement, the edit func-
tionality of HarnessForge’s project-config.yaml feature enabled easy cleanup
of unneeded entries. After removing these unnecessary components, the result-
ing configuration performed as expected, and the verification process completed
successfully. This highlights the value of the editing step in managing large-scale
projects, where the initial compile database can exceed 57,000 lines and still result
in over 1,000 lines after extraction and deduplication—making selective manual
cleanup an essential part of the workflow.

4.2 Coreutils

GNU Coreutils * is a collection of fundamental command-line utilities for Unix-like
operating systems. These tools provide essential functionalities for file manipulation,
text processing, and system management, including commands such as 1s, cp, mv,
and rm. One of the utilities in Coreutils is cat, which is used to read and concate-
nate files. The cat command prints the content of files to standard output and is

Shttps://github.com/intel/tdx-module
4https://www.gnu.org/software/coreutils/manual/coreutils.pdf

https://github.com/intel/tdx-module
https://www.gnu.org/software/coreutils/manual/coreutils.pdf

4.2. COREUTILS 25

commonly used for viewing file contents, combining multiple files, or redirecting
output. A basic example of using cat is:

echo "Hello, World!" > test.txt
cat test.txt

The first command creates a file named test.txt and writes the text "Hello, World!"
into it. The second command (cat test.txt) attempts to display the contents of test.txt.

4.2.1 Building Coreutils

To ensure consistency with the Intel-TDX evaluation, Coreutils was built in the same
controlled environment. Unlike typical software projects structured around a single
entry point, Coreutils consists of numerous independent utilities, each containing
itsownmain () function. The Makefile for this project is particularly large—around
28,000 lines—which made the build process complex and error-prone. Given the
importance of Coreutils as a widely used system utility suite, extra care was taken to
verify each build step to ensure correctness and reproducibility for later verification
tasks. During the process, it is discovered that building the entire project is not
necessary for our purposes. Since the evaluation focuses on the cat . c component,
the command make src/cat is used to compile only the relevant parts of the
project. This approach significantly simplifies the build process and ensures that
only the necessary files and dependencies for cat . c are included.

4.2.2 Creating task-config.yaml forcat.c

After successfully building Coreutils, a task configuration file (task-config.yaml)
is created specifically for the verification of the cat . c component. This configura-
tion defines the verification setup by specifying the relevant source files, dependen-
cies, and verification properties. In HarnessForge, each verification task is generated
as a single file containing its own main () function. Due to this, the original main ()

method from cat . ¢ cannot be directly used as the entry point for verification and
the function name had to be changed (in our case: to __main ()), as it would cause
a conflict. Therefore, the verification setup explicitly defines an alternative start-
ing point, selecting the function next_line_numin cat.c. Using this function
as the entry point ensures the verification task remains conflict-free and correctly
structured for HarnessForge’s single-file verification process.

4.2.3 Baseline verification with manually configured parameters

To validate the correctness of the generated verification setup, the process is first
executed using manually configured parameters. Identifying the correct parameters
requires several manual steps, including inspecting the source files to determine
which headers were included and locating the corresponding include directories.
Additionally, it is necessary to identify all relevant macro definitions used in the code.
This process is time-consuming and requires close attention to detail, as each missing
include or macro definition would result in verification failure. However, through

26 CHAPTER 4. EVALUATION

manual inspection and iterative refinement, all necessary parameters are eventually
identified. Once the complete set of dependencies, macros, and source files are
provided, the verification succeeded. This manually assembled configuration serves
as the baseline for evaluating the effectiveness and completeness of the automated
extraction process.

4.2.4 Automated Parameter Extraction

To evaluate the automated extraction capability, the verification process is repeated
using the enhanced version of HarnessForge. Similar to previous evaluations, the
build is performed using the command in Section 3, and the parameters are automat-
ically captured by Bear and integrated into the generated project-config.yaml.
This automation significantly accelerated the overall setup process, as it eliminated
the need to manually inspect source files for include paths, macros, and depen-
dencies. Instead of spending time navigating the codebase to collect the necessary
parameters, the relevant data is extracted automatically and structured into a us-
able configuration file. In the case of Coreutils, Bear generates a compile database
of approximately 18,000 lines—even though only the cat . c utility is built and
evaluated. Considering that Coreutils consists of more than 100 similar utilities, a
complete build would have resulted in a vastly larger and more complex compile
database. The automated parameter extraction integrated into HarnessForge greatly
simplifies this complexity by focusing on the specific build invocation and filtering
out irrelevant data, making the verification setup more efficient and scalable.

Results

The results confirm that the automated extraction correctly identifies essential depen-
dencies and configurations from the targeted source file. This verifies the practical
benefit of performing verification tasks individually on self-contained programs,
rather than on the entire source directory structure. Unlike the Intel-TDX evaluation,
no unnecessary system directories are included in the configuration. However, a
few irrelevant dependencies are still present. For example, both base32.c and
base64 . c are listed as source files, even though only one of them is typically used
depending on the system configuration. These kind of redundant entries are manu-
ally removed during refinement. This issue arises because the compilation and the
resulting compile database created by Bear are driven by the Makefile, which, as de-
scribed above, spans over 28,000 lines. Due to its size and complexity, it is practically
infeasible to trace exactly why certain files are included in the compile database.
Nevertheless, the required adjustments in this evaluation are minor compared to the
extensive clean-up required for Intel-TDX, demonstrating the relative simplicity and
effectiveness of automated parameter extraction in modular, utility-based projects
like Coreutils.

4.3. AWS C-COMMON 27

4.3 AWS C-Common

AWS C-Common?® is a foundational C library developed by Amazon Web Services,
providing low-level functionality such as memory management, string handling,
linked lists, hash tables, and other utility functions. It plays a critical role in the
AWS C SDK ecosystem by offering standardized, efficient, and reusable components
that are shared across multiple AWS libraries and services. This modularity ensures
consistency, performance, and maintainability in high-scale cloud environments. In
this evaluation, the focus is placed on the command_line_parser. c file, which
provides a utility for parsing command-line arguments in a safe and structured
manner. It includes functionality to handle argument tokens, option parsing, error
detection, and value extraction. This component is used in AWS projects that require
reliable and predictable command-line input handling. Verifying this module is
particularly useful for evaluating how well automated parameter extraction works
on components that operate independently but still follow complex internal logic
and platform abstractions. Its modular nature and integration into AWS tooling
make it a representative candidate for testing real-world verification workflows
with HarnessForge.

4.3.1 Building AWS C-Common

AWS C-Common is successfully built in the same controlled environment used
for previous evaluations. Similar to the Coreutils project, attempts to verify the
entire source directory resulted in errors due to conflicts and complexities. Therefore,
verification is limited to individual source files, ensuring a targeted and conflict-
free approach. Unlike standard C projects, the build setup of AWS C-Common
introduces additional complexity. The project does not place its Makefiles and build
configurations directly in the main source directory. Instead, it expects the build
to be performed from a separate directory. This non-standard structure requires
adjustments to the usual build and extraction process, making the setup more
involved than typical flat-directory C projects. Despite this, it is possible to build the
project using both the make and ninja build systems. To evaluate flexibility and
compatibility, both build methods are tested. However, unlike in Coreutils, there is
no interactive utility like cat to test post-build functionality. In this case, verification
relies entirely on the assumption that the internal unit tests included in the build
system passed and that the generated binaries are structurally valid. This makes the
verification process more abstract and dependent on internal correctness rather than
observable output behavior.

4.3.2 Manual Parameter Extraction

As described in the Coreutils: Baseline verification with manually configured param-
eters, manual parameter extraction for AWS C-Common also involves inspecting
the source file to identify the required include paths and macro definitions. The
necessary parameters are extracted by directly examining the dependencies within

Shttps://github.com/awslabs/aws-c—common

https://github.com/awslabs/aws-c-common

28 CHAPTER 4. EVALUATION

command_line_parser.c and ensuring that only relevant flags and paths are
included. Unlike in Coreutils, however, there is no need to modify or bypass a
main () function. Since AWS C-Common is structured as a utility library rather
than a collection of executable programs, its source files are not organized around
entry points. This simplified the manual verification setup slightly and reduced the
need for structural workarounds.

4.3.3 Automated Parameter Extraction with make

For AWS C-Common, the full make build command is executed to capture the
build parameters. The generated project-config.yaml configuration initially
included not existing paths, such as bin/system_info/include, and all source
files from the project. These unnecessary paths are manually removed, and the
source files are refined to include only the specific targeted file (command_line_-
parser.c) required for verification. After these adjustments, the configuration is
successfully verified, accurately matching the manual baseline.

YAML file generated with the make build command:

sources:
- source/allocator.c

- bin/system_info/print_system_info.c
source_dirs:
- source

- tests

- build/tests

- tests/logging

- bin/system_info

includes:

source/external/libcbor

include

build/generated/include

tests

bin/system_info/include

defs:

- _ GCC_HAVE_DWARF2_CFI_ASM: 1

— AWS_AFFINITY_METHOD: AWS_AFFINITY_ METHOD_PTHREAD_ATTR
- AWS_PTHREAD_GETNAME_TAKES_3ARGS: 1

O N Ul W N =

[S I S R N e T R e
N P © O 00 NI O U b= W IN = O
[N

override_dir: '’

N
@

4.3.4 Automated Parameter Extraction with ninja

Similarly, the ninja build system is utilized to evaluate automated parameter ex-
traction. Like the make build, the configuration generated by ninja included all
source files within the project and irrelevant paths, which had to be manually refined.
After removing these unnecessary paths and specifying only the targeted source file,
the refined configuration matched the manually configured baseline, confirming suc-
cessful and accurate automated parameter extraction and verification using ninja .
The only difference was that the parameters in the project-config.yaml were
not in the same order, which was not important.

4.3. AWS C-COMMON

YAML file generated with the ninJja build command:

1 sources:

2 - source/arch/intel/asm/cpuid.c

3 e

4 - bin/system_info/print_system_info.c
5 source_dirs:

6 - source

7 e

8 — tests

9 - build/tests

10 - tests/logging

11 - bin/system_info

12 includes:

13 - source/external/libcbor

14 - include

15 - build/generated/include

16 - tests

17 - bin/system_info/include

18 defs:

19 — AWS_AFFINITY_METHOD: AWS_AFFINITY_ _METHOD_PTHREAD_ATTR
20 — AWS_PTHREAD_GETNAME_TAKES_3ARGS: 1
21 e

22 override_dir: '’

31

5 Future Work

5.1 Support for Projects with Existing main () Functions

As demonstrated in the Coreutils evaluation, projects that define their own main ()
function cannot be directly verified using the current HarnessForge setup, which
generates its own main () entry point as part of the task generation process. This
results in compilation or linking conflicts, requiring manual intervention—such
as selecting a different function as the entry point, modifying the source code, or
refactoring verification targets. These workarounds are not ideal and reduce the
level of automation HarnessForge aims to provide. Future work should focus on
extending HarnessForge’s capability to support real-world software projects with
existing main () methods. Potential improvements include automatically renam-
ing or wrapping existing entry points or modifying the task generation logic to
dynamically integrate user-defined entry functions.

5.2 Filtering of System Paths and Libraries

During automated parameter extraction, especially with the make build system,
system directories such as /usr/include/x11, /usr/cmake/module, and other
unrelated system paths are often included in the generated configuration. These
directories are usually unnecessary for the verification task and can introduce irrele-
vant, duplicated, or conflicting dependencies—leading to cluttered configurations
and increased risk of verification errors. This issue was particularly noticeable in real
world projects. Future improvements should aim to integrate a filtering mechanism
into the extraction pipeline to automatically detect and exclude system paths and
libraries that are not directly relevant to the target verification task. Such filtering
could be based on project-specific include hierarchies, known system paths, or
pattern matching for exclusion.

33

6 Conclusion

The automated task generation for the verification of C programs significantly
improved the usability of HarnessForge and marks a major step toward fully au-
tomating verification setup for complex codebases. By removing the need for manual
specification of compile-time parameters, the extended version of HarnessForge
streamlines the process and reduces sources of human error.

This enhancement not only accelerates the verification of multi-file projects but
also increases reliability by ensuring consistent and complete extraction of essential
parameters. Overall, the automation introduced in this work contributes to making
verification processes faster, more scalable, and better suited for real-world software
systems.

BIBLIOGRAPHY 35

Bibliography

[1]

[5]

D. Baier, D. Beyer, P. Chien, M. Jakobs, M. Jankola, M. Kettl, N. Lee, T. Lem-
berger, M. L. Rosenfeld, H. Wachowitz, and P. Wendler. Software verifica-
tion with cpachecker 3.0: Tutorial and user guide. In A. Platzer, K. Y. Rozier,
M. Pradella, and M. Rossi, editors, Formal Methods - 26th International Sympo-
sium, FM 2024, Milan, Italy, September 9-13, 2024, Proceedings, Part 1I, volume
14934 of Lecture Notes in Computer Science, pages 543-570. Springer, 2024.

D. Beyer. State of the art in software verification and witness validation: SV-
COMP 2024. In B. Finkbeiner and L. Kovdcs, editors, Tools and Algorithms for the
Construction and Analysis of Systems - 30th International Conference, TACAS 2024,
Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2024, Luxembourg City, Luxembourg, April 6-11, 2024, Proceedings, Part
II1, volume 14572 of Lecture Notes in Computer Science, pages 299-329. Springer,
2024.

D. Beyer and T. Lemberger. Software verification: Testing vs. model check-
ing - A comparative evaluation of the state of the art. In O. Strichman and
R. Tzoref-Brill, editors, Hardware and Software: Verification and Testing - 13th
International Haifa Verification Conference, HVC 2017, Haifa, Israel, November 13-15,
2017, Proceedings, volume 10629 of Lecture Notes in Computer Science, pages
99-114. Springer, 2017.

C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca, P. W.
O’Hearn, I. Papakonstantinou, J. Purbrick, and D. Rodriguez. Moving fast with
software verification. In K. Havelund, G. J. Holzmann, and R. Joshi, editors,
NASA Formal Methods - 7th International Symposium, NFM 2015, Pasadena, CA,
USA, April 27-29, 2015, Proceedings, volume 9058 of Lecture Notes in Computer
Science, pages 3-11. Springer, 2015.

S. Chaki, E. M. Clarke, A. Groce, J. Ouaknine, O. Strichman, and K. Yorav.
Efficient verification of sequential and concurrent C programs. Formal Methods
Syst. Des., 25(2-3):129-166, 2004.

N. Chong, B. Cook, J. Eidelman, K. Kallas, K. Khazem, F. R. Monteiro,
D. Schwartz-Narbonne, S. Tasiran, M. Tautschnig, and M. R. Tuttle. Code-
level model checking in the software development workflow at amazon web
services. Softw. Pract. Exp., 51(4):772-797, 2021.

B. Cook, K. Khazem, D. Kroening, S. Tasiran, M. Tautschnig, and M. R. Tuttle.
Model checking boot code from AWS data centers. Formal Methods Syst. Des.,
57(1):34-52, 2021.

36

[8]

[9]

[10]

[11]

[12]

[13]

[14]

BIBLIOGRAPHY

S. I. Feldman. Make-a program for maintaining computer programs. Softw.
Pract. Exp., 9(4):255-65, 1979.

C. Flanagan and S. Qadeer. Predicate abstraction for software verification.
In J. Launchbury and J. C. Mitchell, editors, Conference Record of POPL 2002:
The 29th SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Portland, OR, USA, January 16-18, 2002, pages 191-202. ACM, 2002.

E. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski. Frama-c:
A software analysis perspective. Formal Aspects Comput., 27(3):573-609, 2015.

D. Kroening and M. Tautschnig. CBMC - C bounded model checker - (com-
petition contribution). In E. Abraham and K. Havelund, editors, Tools and
Algorithms for the Construction and Analysis of Systems - 20th International Con-
ference, TACAS 2014, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014. Proceedings,
volume 8413 of Lecture Notes in Computer Science, pages 389-391. Springer, 2014.

D. H. Martin,]. R. Cordy, B. Adams, and G. Antoniol. Make it simple: an empir-
ical analysis of GNU make feature use in open source projects. In A. D. Lucia,
C. Bird, and R. Oliveto, editors, Proceedings of the 2015 IEEE 23rd International
Conference on Program Comprehension, ICPC 2015, Florence/Firenze, Italy, May
16-24, 2015, pages 207-217. IEEE Computer Society, 2015.

E. Novikov and I. S. Zakharov. Verification of operating system monolithic
kernels without extensions. In T. Margaria and B. Steffen, editors, Leveraging
Applications of Formal Methods, Verification and Validation. Industrial Practice -
8th International Symposium, ISOLA 2018, Limassol, Cyprus, November 5-9, 2018,
Proceedings, Part IV, volume 11247 of Lecture Notes in Computer Science, pages
230-248. Springer, 2018.

M. Schordan, D. Beyer, and 1. Bojanova. Software verification tools (track
introduction). In T. Margaria and B. Steffen, editors, Leveraging Applications
of Formal Methods, Verification and Validation: Tools and Trends - 9th International
Symposium on Leveraging Applications of Formal Methods, ISOLA 2020, Rhodes,
Greece, October 20-30, 2020, Proceedings, Part IV, volume 12479 of Lecture Notes
in Computer Science, pages 177-181. Springer, 2020.

	Contents
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Mitigating Manual Input
	1.3 Scope
	1.4 Internal Tests
	1.5 Evaluation
	1.6 Related Work

	2 Background
	2.1 Compile with Clang
	2.2 Build with Make
	2.3 Building Compilation Databases with Bear

	3 Contribution
	3.1 Bear Integration
	3.2 Extract JSON
	3.3 Project Config File YAML
	3.4 Features

	4 Evaluation
	4.1 Intel-TDX
	4.2 Coreutils
	4.3 AWS C-Common

	5 Future Work
	5.1 Support for Projects with Existing main() Functions
	5.2 Filtering of System Paths and Libraries

	6 Conclusion
	Bibliography

