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CEGECoRe: Finding Precise Error Conditions
Using CPAchecker

ABSTRACT

Since we rely on software for almost every aspect of life, it is vital to be able to trust the
software, especially in safety-sensitive systems where software failures can lead to critical
consequences. Finding a precise description of error paths in software systems can prove
to be quite helpful for developers, considering that most of the existing techniques, like
testing and formal verification, provide incomplete error paths, leading to residual defects
that are hard to trace back and fix when debugging, if the software error conditions are
only partially known and described.

In this thesis, we introduce CEGECoRe - Counter Example Guided Error Condition
Refinement - a CEGAR-based approach integrated into CPAchecker, that aims to iden-
tify and find a precise error condition of C programs. CEGECoRe extends traditional
CEGAR to iteratively find and analyze concrete counterexamples, extract error traces
from them via SMT solving techniques like quantifier elimination and instrumenting the
program to exclude them from future iterations. Thus refining an evolving error condi-
tion until convergence, that is until no further counterexamples are found and the pro-
gram can be proven safe under the exclusion of the final error condition. The evaluation
on 1188 SV-COMP benchmark tasks compares CEGECoRe against DescribErr. While
DescribErr achieves a broader overall coverage, in terms of task count, CEGECoRe
demonstrates complementary strengths by covering 64 tasks that DescribErr did not.
The results highlight the potential of counterexample-driven error condition synthesis.
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1 Introduction

Overview

Modern software systems are increasingly becoming more critical to everyday life, es-
pecially in safety-sensitive domains, where even minor errors can lead to catastrophic
failures. Despite the increasing need for robust and reliable software, it is often the case
that such measures are not adapted by the industry. This is due to the fact that software
system are growing in size and complexity in a such rapid rate, that trying to identify
all errors within a system is becoming a very tedious and practically infeasible task for
developers to do manually. Traditional error-analysis methods (e.g. testing) often fall
short by identifying only a subset of the error paths. This incomplete identification
can result in accumulation of undetected errors in large systems, which trickles down
the development life-cycle and can cause subsequent residual defects that are very hard
to catch and repair later on; such weaknesses in software system increases the overall
maintenance time and costs [1].

In this context, automatically finding precise error conditions, which is a condition
that accounts for all error-inducing inputs in a software program, becomes a challenging
task. We aim to tackle this task by introducing a CEGAR [2] based approach integrated
into CPAchecker [3], a novel and state of the art framework and tool for formal soft-
ware verification and program analysis, based on the concept of Configurable Program
Analysis (CPA). CPAchecker provides a great platform that supports various analysis
techniques in the software verification domain such as SMT solving techniques, abstrac-
tion, model-checking, counterexample-guided refinement and much more.

In our methodology, we define an error condition (EC) as a sequence of statements
that precisely describe error behaviors of a program, more formally, it is a finite logical
formula that represents exactly and only all error-inducing inputs in a program.

To illustrate our approach, consider Figure 1.2. In this simple C program, an integer
variable x is nondeterministically assigned, and two error conditions are specified in two
locations in the program. For this example, the expected precise error condition is:

z <0V (zrmod2=0) (1.1)

This condition precisely captures all inputs that would trigger an error in this program,
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int x = __VERIFIER_nondet_int () ;
// EC -> x is negative
if (x < 0) {
// Error State 1
reach_error () ;
return 1;

Py, 9, ECy

A No CEX

Precise EC
Found

}

// EC -> x is even

if (x % == 0) {

// Error State 2
reach_error () ;
return 1;
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Figure 1.1: CEGECoRe Workflow Figure 1.2: Simple C Program Example
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i.e., when the reach__error function is reached (either when x is negative or when x is
even).

CEGECoRe

We call our approach CEGECoRe (Counterexample Guided Error Condition Refine-
ment). In CEGECoRe we strive to automatically synthesize a precise error condition
for a given C program Py and a specification ¢, where  represents the unreachability
property (i.e., no execution should reach reach__error). However the approach is not
limited to synthesize conditions for unreachability errors, but can be extended to other
verification properties used in SV-COMP, by replacing and adjusting property ¢ to other
software verification properties like no-overflow and valid-memsafety [4].

In Figure 1.1, we demonstrate the workflow and the main components of CEGECoRE.
Starting with the inputs to the algorithm, we assume that Py is an unsafe program,
meaning that there exists a counterexample CEX for Py, where CEX is an execution
path that violates the input property (. The initial error condition, denoted as ECy, is
simply true, implying that no error-inducing inputs are excluded at the start.

Our approach then proceeds by entering a CEGAR-like iterative refinement loop. In
each iteration, the following steps are performed:

1. CEGAR Loop: The analysis starts by entering the traditional CEGAR loop,
which aims to eliminate spurious counterexamples until a concrete counterexample
CEX is found or the program is proven safe. This loop consists of the following
steps:


https://sv-comp.sosy-lab.org/2025/

a)

1 Introduction

Predicate Abstraction and Model-Checking: The first step is to over-
approximate the behavior of the program Py by computing an abstraction of
its concrete state space through predicate analysis [5]. The analysis starts
with a finite set of predicates m (precision), which is derived from concrete
executions of the program at the current location and is initially very coarse.
The abstract states are represented as formulas over these predicates in the
precision 7 for each program location. Over-approximation means that the
abstraction may include some spurious behaviors (paths that are infeasible
in the actual concrete program) but guarantees that no real error paths are
missed. Using CPAchecker we perform a reachability analysis on the ab-
stracted program.

Feasibility Check: Once an abstract error state (counterexample CEX)
is reached in the reachability analysis, the CEX path is reconstructed in
the concrete program Py and it is checked for its feasibility (whether it is a
spurious or a real counterexample) using SMT solving methods [6].

Precision Refinement: If the SMT solver deem the found C'EX to be real,
then it is returned. However if the CEX is spurious, we want to exclude
it from the next CEGAR iteration. This exclusion is done by refining the
precision 7, which involves adding new constraints (predicates) to it. These
predicates can be derived from the counterexample CEX via techniques like
Craig’s interpolation [7]. After the precision refinement, the process is re-
peated with the new precision until the the property ¢ is proven safe for
program Py or a concrete counter example is found.

2. EC Refinement: Since we assume that an error state exists in Py, we will even-
tually find a real counterexample CEX from the CEGAR loop. Upon finding
CEX, the approach excludes it from the next CEGECoRe iteration, essentially
complementing CEGAR and eliminating concrete counterexamples. This exclusion
is done by extracting information (predicates) from CEX via SMT solving tech-
niques and adding it to the previous error condition, thus refining it and making
it more precise. We introduce three different refinement strategies:

a)

b)

Generate Model Refiner: In this strategy, an SMT solver is used to com-
pute a model for the counterexample CEX. For instance, in our simple
example 1.2, the SMT solver might find the model x = —1.

AlISAT Refiner: Rather than stopping at a single model, the AIISAT re-
finer attempts to enumerate all satisfying models for the counterexample
CEX (e.g., set of models z = —1,2 = =2,z = —3,...). AlISAT restricts the
solution search space and tries to recognize patterns from satisfying models
candidates and generalize the condition offering more efficiency to the triv-
ial model generation that might not terminate for a formula with infinite
satisfying assignments.

Quantifier Elimination Refiner: This strategy leverages quantifier elim-
ination techniques in SMT solving and manipulates and transfers a formula
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with quantifiers into an equivalent formula with those quantifiers removed,
which is then easier to analyze. In our example, let the condition (x < 0) be
reformulated with an existential quantifier over integers,

keZ(z=kAk<0)

in the theory of linear integer arithmetic (LIA), the quantifier is eliminated
trivially because k is redundant, this produces:

QFEGk e Z(x=kNk <0)=(z<0)

This describes then all negative integers and the error condition (z < 0) can
derived through this elimination of the quantifiers.

Each of these refinement strategies find a solution in the form of a predicate that
satisfies the concrete counterexample CEX. The found predicate is then added to
EC; and excluded from the next iteration. The analysis is then re-run with the
same property ¢, the updated error condition, denoted as EC; and the (remaining)
program FP;, which is the original program Py excluding the error inducing inputs
covered by the current error condition EC};, ensuring that in the next iteration a
new concrete counterexample is found.

3. Termination: The refinement loop repeats until no further concrete counterex-
amples are found (CEGAR termination), indicating that the program, under the
accumulated error condition EC, is safe and EC' is precise, or until a preset time
limit is reached.

The entire CEGECoRe approach is implemented in Java and integrated into CPAchecker.
CPAchecker offers a a great environment and starting point for our work, its modular
architecture allows us to build in our technique in an non-complicated manner. Pre-
liminary experiments on SV-Benchmarks indicate that our method is competitive with
existing approaches such as DescribErr [8]. In a larger context, CEGECoRe can offer
improvements in error detection and debugging efficiency.

The remainder of this thesis is organized as follows:

o Chapter 2 (Related Work): Provides an overview of existing techniques in
error analysis that are similar to our work and how our proposed approach fit
within the broader context of software verification and debugging.

o Chapter 3 (Background): Introduces the theoretical foundations, including
CPA, SMT solving, and the principles of CEGAR, necessary to understand our
approach.

o Chapter 4 (CEGECoRe): Details the CEGECoRe approach, including the

three different refinement strategies.

o Chapter 5 (Implementation): Describes the implementation of the CEGECoRe
approach in CPAchecker.
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o Chapter 6 (Evaluation): Presents the experimental evaluation of the approach
on SV-Benchmarks and compares its effectiveness and efficiency against DescribErr.

o Chapter 7 (Conclusions and Future Work): Summarizes the contributions
of the thesis, discusses its limitations, and outlines directions for future research.



2 Related Work

There has been a lot of research over the past years that have addressed the challenge
of identifying error paths. An invariant by definition is a logical property or condition
that holds throughout a specific phase or sequence of operations within a program or
algorithm. When a program’s execution reaches a point where an invariant is not main-
tained, it may indicate a bug within the code. This is why, synthesizing invariants that
capture error behaviors in a program, can be of great importance when it comes to
debugging and proving the correctness of a program. Broadly speaking, the techniques
used for finding program invariants can be split into two main categories: dynamic and
static.

Dynamic invariant detection is a technique, which involves instrumenting a program
to track and monitor the values of variables during the execution time. By running the
program on a diverse set of test cases and then monitoring the behavior of the values, it
it possible to observe some reoccurring patterns and then infer the invariants from those
patterns [9]. The DAIKON system [10], for example, is a great tool that applies the
dynamic invariant approach, where the tool executes the program and observes the values
of its variables and then suggests a likely set of candidate invariants (or properties) that
holds at a certain point in the program. Various approaches (e.g., IDiscovery [11], PIE
[12], ICE [13], NumlInv [14], SymInfer [15]) have made improvements on DAIKON, by
building on top of it, usually starting with a dynamic inference of candidate invariants
and then statically verifying that they hold for all inputs. IDiscovery technique for
instance, integrates a feedback loop of new test case generated by symbolic execution
of the instrumented code to further refine the generated set of candidate invariants.
Although dynamic invariants detection approaches have been successful and are generally
efficient and can handle expressive invariants, they are highly dependent on the quality
of the test cases, and they frequently generate spurious invariants that may not apply
to all possible inputs.

Static methods on the other hand, deduce invariants without executing the program
itself, but rather by analyzing the source code or an abstracted model of the source code.
Several approaches have applied static invariants synthesis with algorithms like abstract
interpretation [16], symbolic analysis [17] and constraint or template-based synthesis
[18].
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Another static approach that is becoming more common in recent times, is the use
of counterexamples to guide the refinement of abstractions, which is also the key idea
behind our approach CEGECoRe. CEGAR |[2] is a verification technique that starts with
a coarse abstraction of the system and incrementally refines it based on counterexamples.
When an error is detected in the abstract model, the corresponding counterexample
is checked for feasibility in the concrete system. If it turns out to be spurious, the
abstraction is refined—typically by adding new predicates—to eliminate the spurious
behavior. This iterative process continues until either a real counterexample is found or
the system is proven to be error-free.

This iterative approach has been integrated into several systems and verification tools.
These methods however are mostly focused on refining the state-space abstraction rather
than refining and finding a precise error conditions. Our approach utilizes CEGAR to
find concrete counterexamples and then iteratively excluding them from the program,
complementing CEGAR, which excludes and eliminates spurious counterexamples. The
refinement loop in our approach is implemented within CPAchecker and leverages SMT
solving techniques like quantifier elimination and AIISAT algorithms in order to synthe-
size the error condition, which is our motivation for CEGECoRe.



3 Background

To understand the contributions of this thesis, we first define the fundamental concepts
and tools that our approach build on.

3.1 Control Flow Automaton (CFA)

A software program can be modeled in many different ways. Source code for example
is human friendly and is a suitable format for developers to read and write, whereas
compiled binary code is machine friendly and more suitable for a computer to execute.
A control flow automaton (CFA) is a directed graph representation of a program. CFA
is a tuple of P = (L, lp, G) where

o L={lp,...,l,} is finite set of program locations, modeling the program counter.
e lp € L representing the program entry.

e Set G C L x Op x L represents all the control-flow edges, modeling all possible
transitions between two locations in L, where Op represents a program’s operation,
which is generally an assumption (e.g., [x > 0]) or an assignment (e.g., z = 0;)
statement.

Figure 3.1b represents the constructed CFA of an example piece of code in figure 3.1a.

3.2 Program Property

To verify a program’s correctness, it is essential to define what "correct” means by spec-
ifying the properties to be proven. Let ¢ € ®, where ® denotes the set of specification
formulas describing the intended behavior of the program. These properties fall into two
categories: implicit and explicit. Implicit properties capture general defects that are uni-
versally undesirable (such as out-of-bounds indexing, arithmetic overflows, null pointer
dereferences, deadlocks, and resource leaks), while explicit properties are tailored to a
program’s specific functional requirements and are defined using assertions that ensure
certain conditions hold at designated locations in the program.
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if (x > 0) {

e==
} o - y=2ty;
else {x++;} 00 = Qe
y o= 2
while (y < x) {
y =y *x 2 (b) Corresponding CFA representation of the
} code.

(a) Piece of C code.

Figure 3.1: Comparison between the C code and its Control Flow Automaton (CFA)
representation.

In a Control Flow Automaton (CFA), assertions are modeled as conditional branches
leading to an error location I, € L if the condition fails. Multiple assertions can share
this error location [, to indicate failures. We can then define a formal verification, as
the task of determining the reachability of an error location I, within the CFA. And
we consider a program to be safe if the error location is unreachable; otherwise, it’s
considered unsafe [19].

The properties addressed in our approach fall under the category of ACTL (All Com-
putation Tree Logic) properties. ACTL is a subset of Computation Tree Logic (CTL)
[20] that includes only universal path quantifiers, such as AG (for "always globally") and
AF (for "always eventually"). These operators express that a certain condition holds on
all possible execution paths of the program. For example, a property like AG —error
asserts that the error state is never reached on any execution path. This aligns with
our focus on safety properties, where the goal is to ensure that "something bad never
happens" across all possible executions.

3.3 Software Verification

Software verification is the process of ensuring that a software system meets specified
requirements and it serves the purpose it was designed for. This process includes various
techniques, including testing, static analysis, and formal methods, that help in verifying
the correctness of the software [21].

3.3.1 Model Checking.

In software verification model checking [22, 23] is a static formal verification technique,
that involves creating a finite abstract state space model of a software system and au-
tomatically and systematically verifying whether a certain specification or property is
violated in the given system. Model checkers are usually associated with high precision,
i.e. a correct verification result, but on the expense of time, because model checking ex-
plores the whole state space and keeps track of each distinct execution path (no merging



3 Background

CFA Error location I,

—)I Model Checking |(—

\4 \4
Unsafe (false verdict)
+ Counterexample

Safe (true verdict)

Figure 3.2: Model Checking

of different paths). This path-sensitivity allows for more precise verification, especially
when checking for property violation.

If there exists no path that starts from the initial state(s) of the CFA and leads to a state
with error location [, € L (violation of the specified property), the verification verdict is
true, implying that the program is safe. However if there exists such a path and [, € L
can be reached, the verification verdict is false, implying the program is unsafe for the
specified property and this path is returned as proof, also referred to as counterexample
3.2.

3.3.2 Program Analysis.

Program analysis [23] in software verification is another formal static verification tech-
nique. It starts similar to model checking with an over-approximat-ion of the program’s
behavior without executing it . But rather than exhaustively exploring every distinct
execution path as in model checking, program analyzers use methods like abstract inter-
pretation [16] and data-flow analysis to propagate and combine (merge) abstract state
information in the CFA edges. This merge is done at control-flow join points using a join
operator. This merging of states and summarizing of the behavior of multiple paths into
one increases the efficiency and the scalability of the verification process, especially on
larger programs, where model-checking becomes practically infeasible due to the state
space explosion. However this over-approximation costs the losing of precision.

10
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3.4 Configurable Program Analysis (CPA)

3.4.1 CPA Definition

Configurable Program Analysis (CPA) [24] is a unifying framework that bridges both
concepts of model checking and program analysis (mentioned in 3.3).

CPA defines an abstract domain to represent program states, a transfer relation to
propagate these states along a CFA, and operators (such as merge and stop) to manage
state combination and termination. By tuning these operators, CPA can be configured
to merge information for efficiency or maintain distinct execution paths for higher pre-
cision. This flexibility allows the analysis to balance scalability with accuracy, adapting
to the specific verification needs of a software system. In essence, CPA serves as the the-
oretical foundation that enables the integration and comparison of different verification
approaches within one coherent framework. Formally denoted a CPA C is a four tuple
(D, ~», merge, stop) and operates on a CFA (L,ly,G). Each component in the CPA is
explained below:

Lattice Before defining the components of the CPA, we provide the definition of lat-
tices. Let E be a set equipped with a partial order C. This partial order is defined by
the following properties:

o Reflexivity: Vee E:eC e.
o Transitivity: Ve, e/, ¢’ e E: eCe N/ Ce’" =cCe".
o Antisymmetry: Ve,e' e E: eC e AN/ Ce=e=¢.

If every subset of E has a least upper bound, then the structure (E,C, L, T) is called a
semi-lattice. For any two elements e, ¢/ € E, the join operator LI yields their least upper
bound, and the top element T is an upper bound for every element in E (formally, one
may define T = |J E). This lattice structure is essential in abstract interpretation as it
guarantees that the abstract domain has a well-defined notion of combining information
and that the analysis will eventually converge.

Abstract Domain. The abstract domain is defined as
D = (C,& [,
where:
o (' is the set of concrete states.
o £=(E,T,L,C, 1) forms a semi-lattice (a special case of a lattice):

— F is the set of abstract states.

— The relation C C F x E is a preorder operator (i.e., it is reflexive and transi-
tive) which orders abstract states by their precision (with more precise states
being “lower” in the order).

11
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— The join operator Ll : £ x F — E computes the least upper bound of two ab-
stract states with respect to E. This operator is commutative, associative,
and idempotent—properties that ensure that combining abstract states is
both well-defined and robust.

— T € E is the least precise (or most general) abstract state representing the
entire state space, and L € F is the most precise (or often infeasible) state.

o« The concretization function [] : E — 2° maps an abstract state to the set of
concrete states it represents.

Transfer Relation. The transfer relation ~»: E x G x E describes how abstract states
evolve as control flows through the program. For an abstract state e € E and a CFA
edge g € G with (g = (I, op, I')), the relation computes all the corresponding abstract
successor states €’ that overapproximate the effect of executing the operation op on edge

. op
e. We denote this as: e ~~ €.

Merge Operator. The merge operator, merge : E x E — FE, is used to combine two
abstract states when execution paths converge. In the context of the underlying lattice
(E,C,U, T), the merge operator is implemented as an upper-bound operator — typically
the join operator L. In other words, when merging e and ¢’ (with e, e’ € E), we require
that both states are subsumed by their merge, i.e.,

e C merge(e,e’) and € C merge(e,e).

This ensures that the combined abstract state is at least as general as each individual
state, thereby preserving soundness while reducing the overall number of states.

Stop Operator. The stop operator, stop : Ex2F — {true, false}, determines whether
a newly derived abstract state should be added to the waitlist. One implementation is
to check this new state is already covered by an existing state in the reached set. A
Formally, for a new abstract state e € E and a set of reached states R C FE, if there
exists an €’ € R such that

eC ¢,

then stop(e, R) returns true. This use of the lattice order C explicitly connects the lattice
structure to CPA, and prevents redundant exploration by halting further refinement of
abstract states that do not add new information.

3.4.2 Abstract State, Abstract Path and Counterexample

Abstract State. An abstract state is an element e € E in the abstract domain D that
encapsulates the current program location along with a Boolean formula (or similar rep-
resentation) summarizing the relevant properties of program variables in that location.
The concretization function [e] maps e to the set of concrete states represented.

12
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Abstract Path. An abstract path is a sequence of abstract transitions induced by a
corresponding sequence of CFA edges. Formally, given a sequence of CFA edges

(lo,op1,11), (Ii,0p2,12), ..., (ln—1,0pPn,lp),

the corresponding abstract path is

1) 19} opn
60 ﬂ) el ﬁ) e L> €n7
where ¢eq is the initial abstract state and each e; is computed using the transfer relation

D,

Counterexample. A counterexample is defined as an abstract path that leads to an
error state—i.e., an abstract state e, € E at an error location [, such that the corre-
sponding concrete states in [e.] violate the specified property. Since counterexamples are
defined over sequences of CFA edges, mapping back to a concrete execution is straight-
forward by following the transfer relation along these edges.

3.4.3 Reachability Analysis

Reachability analysis is the process of computing the set of states that can be reached
from a given initial state by repeatedly applying the transfer relation. Formally, for a
CPA C = (D, ~-, merge, stop) and the abstract domain D = (C, &, [-]), with ey € E
being the initial abstract state corresponding to the initial concrete state at the initial
location [y of a Control-Flow Automaton (CFA) (L, ly, G). The reachable set R is the
smallest set satisfying:

ep € R and VeER,Vgerithegge', ¢ €R.

This computation is performed iteratively using the transfer relation, merge, and stop
operators until a fixed point is reached.

3.4.4 Abstract Reachability Graph (ARG)

An Abstract Reachability Graph (ARG) is a helpful graphical representation of the ab-
stract space. In an ARG, each node represents an abstract state, while each directed
edge corresponds to an abstract transition e < ¢/ defined by a CFA edge. An ARG
is used to identify execution paths that leads to error states (i.e. counterexamples). If
ARG contains a path ending in an abstract state at an error location in the program,
there is a corresponding execution path in the concrete program (which can be feasible
and infeasible).

3.4.5 CPA Algorithm

The CPA algorithm [24] performs reachability analysis on a control-flow automaton
(CFA) by iteratively computing and merging abstract states. Initially, both the waitlist
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Algorithm 1: CPA Algorithm adapted from [24]

Input : (D, ~», merge, stop): a CPA
Input : ey € E: initial abstract state (where E is the lattice of D)
Input :cfa: CFA (needed for the ~)
Output: R: reached set (all reachable abstract states)
Result : all reachable abstract states

1 waitlist = {ep};

2 reached = {ep};

3 while waitlist # () do

4 choose e € waitlist;
5 waitlist = waitlist \ {e};
6 for each €' such that e ~ €' do
7 for each €” € reached do
8 enew = merge(e’,e"’);
9 if epew # €’ then
10 waitlist = (waitlist U {epew}) \ {€”};
11 reached = (reached U {epew}) \ {€"};
12 end
13 end
14 if —stop(e’, reached) then
15 waitlist = waitlist U {€'};
16 reached = reached U {€'};
17 end
18 end
19 end

20 return reached,

and the reached set contain the initial abstract state ey. In each iteration, an abstract
state is removed from the waitlist and its successors are computed using the transfer
relation, which captures the effect of program operations. Each computed successor is
then merged with every state in the reached set using the merge operator; if the merge
operator produces a new state, the corresponding element in the reached set is updated
accordingly.

The stop operator then determines whether this new state is already covered by an
element in the reached set (with respect to the lattice order C). It is crucial that the
stop operator is configured properly, because one could for example set stop(e, R) to
always return true—causing the algorithm to terminate immediately—this would result
in only a trivial abstraction and not compute the necessary over-approximation of the
reachable state space. The algorithm terminates when the waitlist is empty, yielding an
over-approximation of all reachable abstract states, as illustrated in Algorithm 1.
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3.5 Predicate Analysis

Predicate analysis is a program analysis that applies predicate abstraction [5], which is
a technique that simplifies program verification by mapping the (possibly infinite) set of
concrete states into a finite abstract domain defined by a fixed set of logical predicates
over the variables that appears in the program. The basic idea of predicate abstraction
is that instead of inspecting individual values of variables (e.g. x = 1,y = 2), values are
grouped together into equivalence classes. This means that for example any value of x
that is smaller than the value of y satisfies (z < y) and can be considered as equivalent
under one abstract state represented by the predicate (z < y). Therefore in predicate
analysis instead of tracking concrete values of x and y, one might only track if (z < y)
holds or not, reducing the state space from infinite value pair of z and y to two abstract
states (z < y) or ~(z < y).

In predicate analysis, the precision 7 is a finite set of predicates that determines the
granularity of the over-approximation of abstract states. Techniques such as counterex-
ample guided abstraction refinement (CEGAR) and interpolation can dynamically refine
this precision during analysis and lazy abstraction refinement allows various precisions
at different program locations, but for simplicity a fixed set of predicates is assumed
throughout the analysis [23].

Predicate Abstraction Example. Consider the simple C program shown in 3.3.
In this example, the initial value of x is nondeterministic. A predicate abstraction
might select the predicate set

T={pr:x>0,p:x=0},
and define the abstraction function as

1 ifecl=(z>0), ; 1 ifeE(z=0),

ar(c) = (b1, by), with by =
0 otherwise, 0 otherwise.

For instance, if the nondeterministic input yields x = 1, then
aﬂ(l) = (17 0)7

indicating that > 0 holds. In the true branch of the if statement, the operation
x =1z — 1 produces z = 0, and hence

ar(0) = (0,1).

This abstract state corresponds to an error since the assertion assert(x != 0) is vi-
olated. Predicate analysis in CPAchecker would detect this error path and, through
refinement if necessary, determine that the property does not hold.
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extern int __VERIFIER_nondet_int ();
int main() {
int x = __VERIFIER_nondet_int () ;
if (x > 0) {
x = x - 1;
} else {
x = x + 1;
}
assert(x != 0);
return O;
+

Figure 3.3: Simple Example Program for Predicate Abstraction

3.5.1 Predicate Analysis CPA

In our approach we focus on predicate based abstraction and in order to realize this, we
define predicate analysis as its own CPA, taken from [23]. Predicate CPA is represented
as a four-tuple:

Cpred = (Dpred, ~pred, METGepred, StoPpred) operated on a CFA = (L, ly, G),

with precision 7w defined as a finite set of predicates over program variables X, with
false € m. Given a set r C 7, we denote ¢, as a conjunction of all predicates in r,

or = N\per P> With @ = true.

Abstract Domain. The abstract domain Dpreq = (C, Epred, [-]pred) is based on the
idea of representing regions by conjunctions of predicates. Where the components of the
domain are defined as follows:

o ( represents the concrete states.

o The semi lattice Epreq = (2“, C, U, T), where the partial order C is defined by

r C o' if r D¢/, In this ordering, a set with more predicates represents a stronger
(i.e., more constrained) abstraction since the conjunction of predicates in r implies
the conjunction in any  C r. The least upper bound of two abstract states is
given by their intersection, i.e., 7 L7’ = r N r’. Top element T = (), meaning least
constraint on an abstract state, so that all concrete states are considered.

e The concretization function is defined as
[[Tﬂpred = {C eC | c ): Qpr}a

maps abstract states to concrete states, where, as mentioned earlier, ¢, is a con-
junction of all predicates in r, with ¢y = true.

16



3 Background

Transfer Relation. The transfer relation ~~p.eq relates an abstract state r C 7 and a
control-flow edge g € G to a successor state r’. There is a transfer

g /
T ~pred T

if the strongest post-condition post(ip,, g) is satisfiable and if 7/ is the largest subset of
7 such that, for each predicate p € r/, the abstraction satisfies

©r = pre(p,g),

where pre(p, g) denotes the weakest precondition for the predicate p with respect to the
edge g. The operators post and pre are defined so that

[post(p,9)] ={cd € C|IceC:cL  and ¢ = ¢},

[pre(p,g)) ={ceC |3 eC:c ¢ and ¢ = o).

In practice, the Cartesian abstraction allows these checks to be implemented with sepa-
rate entailment queries for each predicate in 7.

Merge Operator. The merge operator mergepreq is defined as mergese,, meaning
that abstract states are mot merged when the control flow converges. Each abstract
state is maintained separately to preserve the precision necessary for accurate analysis.

Stop Operator. Similarly, the stop operator stoppreq is defined as stopsep. This oper-
ator checks for termination by considering each abstract state individually, ensuring that
the analysis stops when every concrete state is covered by some abstract state without
merging distinct paths.

3.6 Craig Interpolation

Craig interpolation [7] is used to extract new predicates for refinement when a spurious
counterexample is detected. Suppose we have two formulas ¢1 and ¢o (derived from
different segments of an execution trace) such that their conjunction is unsatisfiable:

p1 A o is unsatisfiable.
A Craig interpolant [ is a formula that satisfies:
1. ¢1 = I (every model of ¢; satisfies I),
2. I A @9 is unsatisfiable, and
3. I only contains symbols common to both ¢; and s.

In our context, ¢; might represent the accumulated conditions along a path leading to a
potential error, while @9 represents the remaining part that leads to an error state. The
interpolant I captures the missing information—i.e., the necessary condition that inval-
idates the error path. By adding the predicates from I to the precision, the abstraction
is refined to eliminate the spurious counterexample.
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3.7 SMT Solving

Satisfiability Modulo Theories (SMT) [25, 6] solving works by determining whether a
boolean formula is satisfiable (i.e. has a solution (model)) within a context of specific
first order theories e.g., linear arithmetic, bit-vectors, arrays). Given a boolean formula

@ in a theory T with variables x1, ..., x,, an SMT solver determines whether there exists
an interpretation I (a model) that assigns values to variables such that
IEr o,

where =7 denotes satisfaction under theory T'. If ¢ is satisfiable, the solver may also
perform additional tasks such as model generation, enumerating all satisfying assign-
ments (AlLISAT), or eliminating quantifiers. If ¢ is unsatisfiable however, the solver can
perform additional checks (e.g., interpolation, unsat-core, etc).
In software verification, SMT solvers such as MathSAT [26] and Z3 [27] integrate these
techniques to reason about different complex verification tasks.

In our context, SMT solvers are used to find models for path formulas represent-
ing concrete counterexamples. Essentially finding input value assignments to program
variables that induce an error in the program.

3.7.1 Model Generation

When an SMT solver determines that formula ¢ is satisfiable, it can generate a model
M, which is one possible solution to ¢ (assignment of values to the free variables in
the formula). Formally, a model M for a a formula ¢ in theory T is a function M :
Var(p) — Dp, where Dy is the domain of T' (e.g., integers for linear arithmetic) and
Var(p) denotes the free variables in ¢. M satisfies ¢ (we write M |71 @) if substituting
each variable x; with M (x;) makes ¢ true under 7.

Example: For a given formula ¢ in linear integer arithmetic set to:
(x>0)A(z<2),

an SMT solver might return a model M with M = {z — 1}.

3.7.2 AlISAT

AIISAT extends model generation by enumerating all possible satisfying assignments
(models) for a given formula. Formally, given a formula ¢, the AIISAT procedure returns

a set:
{Ml,MQ,...,Mk} where Vi:MZ‘ }:TQD and VZ#]MZ#M],

Example: For the formula:

AlISAT returns:
{M; ={x — 0}, My = {x — 1}}.
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For formulas over finite domains or with a finite number of satisfying assignments, All-
SAT can, in principle, enumerate all models.

3.7.3 Quantifier Elimination

Quantifier elimination transforms a formula with quantifiers into an equivalent quantifier-
free formula within the same logic theory (i.e. removing quantifiers while preserving sat-
isfiability). Quantifier elimination become very important when formulas contain quanti-
fiers, because the solving process becomes significantly more complex and by eliminating
quantifiers the SMT solver can work with simpler quantifer-free formulas. For a formula

p(r) =y (x,y),

a quantifier elimination procedure produces a quantifier-free formula ¢(x) such that for
all M : Var(¢) — Dr,

MEr ¢ < IM':Var(e) — Dy st. M' Er ¢ and M'(x) = M (x).

In order to achieve this elimination of quantifiers, different SMT solvers employ differ-
ent strategies and algorithms for different theories, each with advantages and disadvan-
tages regarding computation complexity (e.g., virtual substitution [28, 29], cylindrical
algebraic decomposition (CAD) [30]).

Example: Consider the formula
p(r) =3y (" =2 Ay =0).
Step by step elimination:
1. Solve y> =z :y = /x or y = —/.
2. With y > 0, only y = /z is valid.
3. v/z is a real number only if 2 > 0.
4. Thus, the quantifier-free equivalent is > 0.

Quantifier elimination yields the quantifier-free formula = > 0.
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3.8 Counterexample-Guided Abstraction Refinement

3.8.1 CEGAR Definition

Counterexample-Guided Abstraction Refinement (CEGAR) [2] is an iterative approach
used in software verification to progressively improve an abstract model until the prop-
erty  is either proven to hold or a concrete counterexample is identified, as illustrated
in Figure 3.4.

In our context, we use CEGAR with a predicate CPA for the abstraction and model
checking. Given a predicate CPA (C;? .q as defined in 3.4.1, where 7q is the initial coarse
precision (a fixed, small set of predicates), program P and a property ¢, the CEGAR
loop proceeds as follows:

1. Abstraction and Model-Checking: Analyze P using (C;?ed. This produces
an abstract model of P, denoted as M. The analysis then represents M as an
abstract reachability graph (ARG) and performs a reachability analysis on it. If
the analysis discovers an error path (counterexample) CEX in M, then this path

is extracted as a candidate witness for a violation of ¢.
op1 op2 op
CEX =eg — €1 — ++ — Cerror
where sq is an initial abstract state and se¢;-or 1S an abstract error state.

2. Feasibility Check: The crucial step is to determine if the abstract counterexam-
ple CEX corresponds to a real execution in the concrete model M.

Reconstruct a concrete path from CEX using the (C;‘T)ed

function and check its feasibility (via an SMT solver, 3.7). There are two cases
from this model check:

domain’s concretization

o If the counterexample C'E X, is feasible (i.e., there is a genuine concrete cor-
responding execution path), then ¢ is violated, the algorithm terminates and
this path of CE X, is reported.

e If the counterexample C'F X is spurious, formally if any state s; for 1 <i <mn
along CEX, = eg =25 1 225 ... 22 ¢ is empty (i.e., it does not correspond
to any concrete execution path in P), then the abstraction is too coarse and
the precision 7 should be refined. Spurious counterexamples arise because the
abstraction process may have introduced behaviors not present in the original

system due to the loss of precision.

3. Precision Refinement: When a spurious counterexample is detected, a refine-
ment operator is invoked. This refinement involves distinguishing between concrete
states that were previously grouped into the same abstract state. Depending on
the abstraction analysis used, there are different algorithms that can implement
this refinement operator (e.g. partitioning abstract states) [2]. In our analysis
we use predicate abstraction, one way to implement this refinement process is by
adding new predicates to the precision leading to a finer grained abstraction that
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eliminates such spurious behaviors. This is because the analysis of CE X can re-
veal some conditions or expressions that were not tracked by the current precision
but are essential to differentiate between concrete states along the path. Such
predicates capture these conditions and are found using techniques like computing
weakest preconditions or using Craig’s interpolation 3.6.

Formally we can denote:
refine: T x P — P

where T is the set of error traces representing the abstract path extracted by
the analysis. Given the spurious trace 7 € T and the current precision ;, the
refinement operator computes an updated precision 7,41, where:

Tit1 = T U AT,

where Am represents the additional predicates that rule out the spurious error.
Note that CPAchecker utilizes lazy abstraction [31], that allows different precisions
m; for each program location [ and the refinement process adds a new predicate
p; € Am to only those locations I; where the interpolant I; includes p;. This way
the abstraction is kept as coarse as possible where the precision is unnecessary.

4. Termination: A refined abstraction is then recomputed by re-running the predi-

cate CPA with the new precision (C;’;‘gé. This iterative process of of abstract model
checking, counterexample validation, and refinement continues until convergence,
i.e., until either a feasible counterexample is found (indicating a concrete error) or
the property ¢ is verified safe with no counterexample discovered in the program

P.

3.8.2 Correctness of CEGAR

This iterative process guarantee that for an abstract model M of a given program P
under precision 7, if CEGAR terminates, i.e., returns a counterexample CFEX, then
CEX is a feasible path in P violating a given safety property ¢ (proof in [2]).

3.8.3 Example CEGAR Iteration

Consider the simple C program in Figure 3.5, we follow each step of a single CEGAR
iteration on this program:

1. Abstraction and Model-Checking: The analysis begins by abstracting P using
an initial (coarse) set of predicates, say mo = { * > 0}. An abstraction function
« is applied and maps concrete states to abstract states (elements of the abstract
domain D) by tracking which predicates hold. For example, if z =1 then «(1) =
{z > 0}. The abstract model is constructed via a CPA-based reachability analysis
that uses the transfer relation to propagate these abstract states. In our example,
the branch if (x > 0) is considered, and in the true branch the assignment z =
x — 1 is applied, potentially leading to an abstract state where x could be 0 (i.e.,
the condition = > 0 no longer holds).
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Figure 3.4: CEGAR Workflow adapted from [32].

2. Counterexample Extraction: An error is signaled in the abstract model when
an abstract state at an error location (where the assertion assert(x != 0) fails)
is reached. A counterexample C'E X is then extracted as a sequence of CFA edges:

(lo,0p1,11), (I1,0p2,12),

where [y is the initial location, op; corresponds to the nondeterministic assignment
to x, and ops corresponds to taking the true branch followed by z = « — 1. This
path leads to an abstract state representing x = 0.

3. Feasibility Check: The extracted counterexample C' E X is then validated against
the concrete semantics using an SMT solver. The solver checks if there exists a
concrete execution that follows the CFA edges in CE Xy and ultimately produces
a state where x = 0 (violating assert(x != 0)). If no such concrete execution
exists, the counterexample is deemed spurious.

4. Precision Refinement: When the counterexample is spurious, the precision is
refined using Craig’s interpolation to capture the missing distinctions. For in-
stance, the refinement might add a predicate such as < 0 or provide a more
precise separation between the cases x > 0 and x = 0. The abstract model is
then recomputed with the updated predicate set w1, which eliminates the spurious
counterexample. The CEGAR loop is repeated with the refined precision until
either a concrete counterexample is found or the program is verified to be safe.
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extern int __
int main() {

int x

if (x > 0

X = X

}

// Error:
assert (x
return O;

3 Background

VERIFIER nondet_int () ;

__VERIFIER_nondet_int () ;

) {

if x becomes 0O, the assertion fails.
I= 0);

Figure 3.5: Simple Example Program for CEGAR.
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4 Counterexample-Guided Error
Condition Refinement

(CEGECoRe)

Based on the provided material and presented theory in the background chapter, we want
to now propose a new approach for synthesizing error conditions within CPAchecker. We
introduce Counterexample-Guided Error Condition Refinement (CEGECoRe).

4.1 Overview

Traditional CEGAR terminates upon proving that a specification is not violated in a
program or upon finding the first concrete counterexample (CEX), providing partial in-
sights into error conditions. This suffices for proving unsafety of a program, but it fails to
provide a complete characterization of all error-inducing inputs. CEGECoRe addresses
this gap by extending the CEGAR loop and iteratively finding concrete counterexamples
and refining an error condition (EC') that precisely captures all violating inputs. In this
chapter we will discuss mainly the FC Refinement component of CEGECoRe, which
is essentially the main component extending and complementing traditional CEGAR,
which we have thoroughly discussed in section 3.8. Then we discuss some theoretical
insights about the approach, its limitations and potential adaptation of the framework.

4.2 CEGECoRe Framework

CEGECoRe’s workflow, Figure 4.1, can be formalized as an iterative process that in-
creasingly build a precise error condition. We start with inputs similar to CEGAR,
an input program Py, a specified property ¢ (e.g., unreachability) and we introduce an
evolving error condition at iteration ¢ and denote it with EC;. EC; is a predicate that
represents the set of inputs to Py, that lead to an error after i refinement iterations.
Formally, we can view EC; as a formula over the program’s input variables. For the
CEGAR loop we use a predicate CPA C™ .. as defined in 3.8, with my as the initial

pred’
coarse precision representing the initial abstraction model of Fp.
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Py, 0, EC)

Instrument EC Exclusion

Counterexample Precise EC

Feasibility Check

Concrete
CEX

Figure 4.1: CEGECoRe Workflow (Expanded)

o Initialization: We start with the most general (coarsest) assumption about error
inducing inputs. Initially, no specific inputs have been identified as causing errors,
so the error condition is set to ECy = true. This true predicate implies that at the
start we do not exclude any input, because every input is potentially error-inducing
since we have no information yet (i.e., we start with an over-approximation that
includes all inputs until we start the refinement cycle). Note that in this initial iter-
ation we place no restrictions on the program’s inputs or behaviors (Pp is analyzed
in its original form).

e CEGAR loop: We enter the traditional CEGAR loop, 3.8, which iteratively
refines M; until either P; is safe under , in which case the algorithm terminates
and the found EC; is returned (note that if this happens in the first iteration of
CEGECoRe (i.e., P; = Py) then EC; = ECjy = true, implying that no input to Py
violates property ), or a feasible concrete counterexample CEX; is found in F;.

e Error Condition Refinement: The main step in CEGECoRe is to refine the
error condition EC; using the concrete counterexample information. Intuitively,
since CEX; is a real failing execution, it provides evidence of a particular error-
inducing condition on the inputs. CEGECoRe extracts a logical predicate ; that
generalizes the input conditions of this counterexample via a chosen refinement
strategies (discussed in the next section), and then incorporates 1); into the error
condition which then will be excluded in the next iteration. Formally, let 1); be
a predicate over the input variables such that v; is satisfied by the input assign-
ment(s) in CEX;. We refine the error condition by adding this predicate as a
disjunct to the previous EC;_1. We update:

EC; = EC;—1 V 1

Initially EC(y was true (over-approximating all possibilities). After the first coun-
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terexample, we set ECy = true V 11, which is logically equivalent to ;. Thus
EC) effectively becomes 1, capturing the condition under which the first coun-
terexample CEX; occurred. If a second counterexample is found, we extract
1o from it, and update the error condition again, ECy = 1)1 V 3. In general,
EC, = 91 Vb V -+ V o, will represent the accumulated disjunction of all dis-
covered error predicates up to iteration k. This means that any input satisfying
EC} is either one of the previously found error-inducing cases or falls into an error
scenario equivalent to one of them.

It is crucial for the refinement step to also restrict the program from finding the
same predicate 1; again in the next iteration. In order to achieve this exclusion
of 1);, we constrain the program’s input any input satisfying 1; is not considered
again. In practice, this can be done by instrumenting the program or the analysis
with an assumption that ~EC; = =(¢1 V 92 V --- V 1) holds (i.e. disallow the
already found error conditions for subsequent runs), or by modifying the model
checker to treat paths satisfying predicates in F'C; as already explored. Thus, we
obtain a "new" program F;;; = P; with inputs restricted to those not satisfying
1;. This ensures that the next CEGAR iteration will search for new concrete
counterexamples outside the already known error condition region.

The refinement of EC' is guided by SMT-based predicate extraction from the coun-
terexample. CEGECoRe can employ one of three strategies to derive 1; from the
counterexample C'EX;. We formalize these strategies in the next section. After
refining £C and excluding 1; from the program, CEGECoRe repeats the loop. A
new CEGAR search on the restricted program P;y; is performed to find another
concrete counterexample outside of the already explored error paths . Each new
concrete counterexample then yields another predicate to add to EC. We continue
iterating this counterexample-guided manner.

e Termination: CEGECoRe terminates when after some iterations n the CEGAR
loop reports that the (remaining) program P, (representing the original program
with all inputs satisfying EC),, excluded) is safe, meaning no further counterex-
ample (feasible error path) exists under the current input restrictions (—EC),).
This implies that all error-inducing inputs have been accounted for by EC),, since
the only way P, can be safe is if every input that would cause an error has been
excluded.

Upon termination we conclude that EC), is a precise error condition for the pro-
gram, i.e., for any initial state or input xg that satisfies EC,,, the program will
reach an error (¢ is violated), and for any x¢ not satisfying EC,, the program is
safe (  is not violated). In the best case scenario, assuming that enough time and
solver power are provided to find all concrete counterexamples, CEGECoRe’s final
output is an FC), that exactly describes the program’s erroneous behavior.

The CEGECoRe algorithm is summarized as pseudo code in Algorithm 2.
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Algorithm 2: CEGECoRe Algorithm
Input : p: program
@: safety property (e.g., unreach__call)
Output: ec: final refined error condition

1 ec = true;
2 while true do
3 verdict, cex = CEGAR(PredicateCPA, p, p);
if verdict == false then
condition = extract ondition(CET);
ec = ecV (condition);
p = restrictprogram (P, condition)
else if verdict == true then
‘ return —ec;
10 else
11 L return Failed,;

© W N o otk

4.3 Refinement Strategies for Error Conditions

The main challenge in CEGECoRe is computing a suitable predicate 1; from each found
concrete counterexample. Various strategies can offer trade-offs between generalization
and complexity of the extracted predicate. In CEGECoRe we explore three refinement
strategies for synthesizing predicates from counterexamples:

o Generate Model Refiner: extract a single concrete model (assignment) from
the counterexample.

e AIISAT Refiner: enumerate multiple satisfying assignments for the counterex-
ample’s path condition to derive a more general predicate.

¢ Quantifier Elimination Refiner: eliminate existential quantifiers from the path
formula to obtain a general condition characterizing the error.

Each strategy starts from the path formula or counterexample formula that led to the
error and yields a predicate that will be used to refine EC. We now describe each
strategy formally and provide a small illustrative example.

4.3.1 Generate Model Refiner

In this strategy, we use an SMT solver to compute one satisfying assignment (model)
for the counterexample’s path condition (recall that a counterexample C EX corresponds
to a path through the program with certain branch conditions). From this path, we can
derive a logical formula ¢ that must hold for the path to be feasible, we also refer to
this path as formula path. For instance, if along the counterexample path the program
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made a branch decision if (x > 0) and later if (y == z + 1), etc., then the formula path
¢ might look like ((z > 0) A(y = x + 1) A---) up to the point of reaching the error.
Now because CEX is a real execution (delivered by CEGAR), ¢ is satisfiable. We define
a model M as a mapping from variables to values such that M = ¢ (path formula ¢
holds holds under that assignment of values).

Using the SMT solver, the Generate Model Refiner obtains one such model M; for
the path formula ¢ of the counterexample CEX;. Formally, let Var(¢) be the set of
free variables (e.g., input variables) in the path formula. The solver returns a model
M; : Var(¢) — D (where D is the domain, e.g., integers) such that M; = ¢. This model
provides a specific valuation for the inputs that triggers the error path.

We then derive the predicate ; from this model by capturing those concrete values
as equalities (or as a conjunction of literals). Essentially, 1; is the conjunction of z = v
for each input variable x assigned value v by M;. This means that, v; represents exactly
that single combination of inputs.

For example, lets suppose CEGAR has delivered a counterexample with formula path
¢:(x>0)A(x <5). The SMT solver might return the satisfying model M : z — 1
(assigning value 1 to x). The Generate Model strategy would then take M and form the
predicate ¢ : (x = 1). This predicate 1 is true for the program input of the variable
x = 1, which indeed is an input that led to the error in this counterexample. We add
1) to the error condition EC' to record that input = 1 causes an error and in the next
iteration, the program analysis will exclude = 1 from consideration (restricting the
program so that —(x = 1) holds).

Discussion: The generate model strategy is the most specific form of refinement.
It tries to enumerate all possible models by focusing on one concrete input scenario at
a time. It has the advantage that it is very cheap computationally (just one model
generation) and straightforward (any SMT solver can provide a model for a satisfiable
formula). However, the extracted predicate 1); we add is very narrow, meaning it is too
specific, it may represent just one point in the input space. If there are many inputs
that cause similar errors, the generate model refiner will require many iterations to find
all of them. In the worst case of infinitely many error-inducing inputs (e.g., an entire
range of integers), this strategy alone would not terminate or would enumerate satisfiable
models endlessly. For example, if the error condition in reality is x < 0 (any negative z
causes an error), the generate model refiner might first add x = —1, then x = —2, then
x = —3, and so on, never generalizing to the condition x < 0. Thus, while this strategy
is quite simple and sound (every predicate it adds truly corresponds to a real error input
by construction), it might produce a very large or even infinite refinement sequence for
programs with wide range of error conditions.

4.3.2 AlISAT Refiner

Instead of searching for a single model that satisfies the counterexample formula path,
the AIISAT refiner strategy tries to cover all satisfying assignments for the formula
path. The term AIISAT refers to the procedure that attempts to enumerate all solutions
(satisfying assignments) for a satisfiability problem within some bounds. Formally, given
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a formula ¢ (formula path of counterexample), an AIISAT procedure will return a set of
models My, Ms, ..., My such that for each M;, M; |= ¢, and for any possible assignment
M that satisfies ¢, M is equivalent to one of the returned M; (i.e., the set is covering all
satisfying assignments up to some equivalence), 3.7. For formulas over finite domains,
AIISAT can enumerate all models exhaustively; for infinite domains or large solution
spaces, typically AIISAT will either return a representative subset or use a symbolic
representation to implicitly represent infinite groups of solutions.

In CEGECoRe, the AIISAT refiner uses an SMT solver (with designated AIISAT al-
gorithms) to cover multiple satisfying assignments for the counterexample path formula,
rather than just one. The idea is to capture a broader region of the error condition in
one refinement step. Once a set of models M, ..., M} is obtained, the solver then gen-
eralizes these concrete assignments into a single predicate v; that is satisfied by all of
them. There are various generalization techniques and algorithms and each SMT-solver
(e.g., Z3 [27], MATHSAT [26]) implements it differently. For instance, given models

x = —2,0,2, one trivial generalization is the disjunction that exactly enumerates them:
(x = =2)V(x = 0)V(z = 2). This disjunction covers those specific cases but is obviously
incomplete (it misses © = 4, x = —4, etc.). Another straightforward example, consider a

case where the only safe input is a specific value and every other value causes error (e.g.,
a path formula with branch if(z! = 1) leading to an error). If the the AISAT yielded
models {x = -1,z =0,z = 2} for ¢, the solver might recognize that all those values
share the property = # 1 and return ¢ : © # 1. This ¢ would be true for x = —2,0,2
(and for all other values except 1), representing all error-inducing inputs in this scenario.
Therefore, ¢ generalizes the finite set of models into a potentially infinite condition (e.g.,
x # 1 covers an infinite set of integers). This shows how AILSAT can lead to predicate
covering broader set of assignments. In general, the AIISAT refiner aims to converge
much faster on the final error condition by adding a stronger predicate than a single
point. Fewer CEGECoRe iterations are needed if each added 1; covers a broad set of
error-inducing inputs.

Discussion: The benefit of AIISAT refinement is that it can dramatically reduce
the number of iterations by covering many input cases at once. It leverages the solver
to explore the solution space of the path formula more thoroughly. However, it comes
with a cost. Enumerating many models can be expensive, especially if the solution
space is large. AlISAT procedures may struggle or even not terminate on formulas
with infinitely many solutions unless heuristics or bounds are used. Moreover, in a lot
of cases generalizing from a set of models to a more precise predicate is non-trivial.
This means the procedure could end up simply listing many models without finding
a nice pattern, which still requires multiple disjuncts (essentially, it becomes similar
to the Generate Model Refiner, but enumerating all models in one iteration). Despite
these challenges, when successful, AIISAT-based refinement can quickly zero down on
conditions like “x < 0” or “x # 1” that cover infinitely many concrete cases, therefore
greatly accelerating the convergence of EC.
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4.3.3 Quantifier Elimination Refiner

The third strategy uses logical quantifier elimination (QE) to derive the predicate ;.
Quantifier elimination is a technique from logic and SMT solving that, given a for-
mula with existential or universal quantifiers, produces an equivalent formula with those
quantifiers removed.

In CEGECoRe, we typically consider the existential scenario: the counterexample
indicates the existence of certain variable values that lead to error. For example, reaching
an error might imply that “there exists some intermediate state or some input values
such that conditions X, Y, Z hold”. If we express the condition for the error path as an
existential formula, quantifier elimination can sometimes produce a clearer description of
the inputs, that is easier to analyze. Formally, suppose the path formula can be written
in the form:

Q0($1,...,$m) EHyla-"7yn\11($17'-'>ym7y1>'"7yn)

where 1, ..., x,, are the input (free) variables and y1, ..., y, are existentially quanti-
fied variables introduced, for example, as witnesses for some conditions (they could repre-
sent nondeterministic choices or intermediate values on the path). The solver can ap-
ply quantifier elimination to produce an equivalent quantifier-free formula U (z, ..., )
that depends only on the z variables. This quantifier-free formula W is logically equiva-
lent to the existence of some y making W true, i.e., U(z) holds if and only if there exists
a y such that W(z,y) was true. In essence, ¥(x) characterizes exactly those z for which
the path to error is feasible.

A classic example of quantifier elimination is over arithmetic constraints. Suppose
during the counterexample path, a condition appears Jy; (y% = ) A (y > 0) to witness a
square root computation (this the same as saying “there exists a y such that y = /7).
The presence of 3y makes the formula more complex to reason about directly in terms
of . Applying quantifier elimination could yield an equivalent formula without y. In
this example, the result would be = > 0, since the condition “there exists a real y > 0
with 2 = z” is true exactly when z is non-negative. Thus, ¥(z) is > 0. In the error
condition context, if a counterexample formula path required the existence of some value
to satisfy a constraint, QF gives us a direct constraint on the input.

Discussion: Quantifier elimination can be seen as a more symbolic form of general-
ization compared to AIISAT. Instead of enumerating models, it manipulates the formula
to abstract away details. When it succeeds, it often produces a very clean predicate (like
x < 0, or x4y > 100, etc.) which can immediately capture an entire infinite set of
inputs. This can make CEGECoRe converge in very few iterations. For example, if the
first counterexample path already contains enough information, quantifier elimination
might yield the full error condition in one iteration (though this is optimistic). The
downside however is that quantifier elimination is not always available or efficient for all
theories. It may fail or produce extremely large formulas for complex conditions (e.g.,
non-linear arithmetic, bit-level operations, or data structures), and not all SMT solvers
support quantifier elimination for all theories. Therefore, this strategy although can
be very powerful and efficient (in terms of extracting predicates) but its applicability
depends on the nature of the path formula.

30



4 Counterexample-Guided Error Condition Refinement (CEGECoRe)

These strategies are not mutually exclusive, they can be chosen based on the situation.
One could try a cheap model generation first, and if progress is slow, switch to an AIISAT
or QE approach for stronger predicates. In CEGECoRe design, all three strategies are
approaches to implement the extract ongition(cex) functionality in 2, each with its pros
and cons.

4.4 Theoretical Analysis

Now that we have described the itterative approach of CEGECoRe, we discuss some
theoretical properties of the approach, namely convergence and correctness of the error
condition.

4.4.1 Convergence of the Error Condition

By convergence, we mean that the error condition EC; reaches a fixed point as i grows:
eventually EC),+1 = EC, for some n, and the algorithm terminates. In practice, conver-
gence is detected when an iteration of the CEGAR loop yields no new counterexample,
indicating no further error scenarios to discover. At that point, £C,, no longer changes
(no new ¢ to add). In the worst case, CEGECoRe could enumerate many distinct coun-
terexamples without repetition. If that set is infinite and no generalization is made, the
process might not converge quickly (or at all). However, if CEGECoRe is able to find a
general enough predicate before resources are exhausted, it will converge.

When CEGECoRe does terminate at iteration n, we have a final error condition EC,,.
This EC), is a disjunction of all ¥; . . . ¢, found. No further counterexample exists outside
EC,, because if an input outside EC,, could produce an error, the CEGAR loop would
have found a concrete counterexample for it before terminating. Thus, we can conclude
that EC),, cannot be improved and it is considered the fixed-point error condition.

Note that convergence in CEGECoRe is in concept analog to how CEGAR’s abstraction
refinement converges. In CEGAR, either the abstraction becomes precise enough to
prove safety or a concrete counterexample is found; in CEGECoRe, either the error
condition becomes comprehensive enough to cover all error-inducing inputs (allowing
the remainder of the state space to be proven safe) or the process continues to find new
counterexamples. In both cases, if the procedure terminates normally, we reach a fixed
point that represents a precise solution to the problem.

4.4.2 Soundness and Correctness of CEGECoRe

CEGECoRe inherits the soundness of the CEGAR loop for counterexample discovery.
That is, any concrete counterexample it finds is a real error in the program (because of
the feasibility check in each iteration). When the algorithm terminates with a final error
condition EC,, this EC), is guaranteed to represent only error-inducing inputs and to
include all such inputs. We can argue about this in two cases:
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o EC, covers only error-inducing inputs (no false positives): Each predicate
1; added to EC' came directly from a feasible counterexample. That means for each
1, there was an actual execution of the program where v; held on the input and the
program reached an error. If the final EC,, is the disjunction ¥ Vipa V- - -V, then
for any input that satisfies EC),, it satisfies at least one 1);, which means that input
will follow the corresponding error path and reach an error state. This ensures the
soundness of the error condition (it never over-approximates beyond actual
errors).

e EC, covers all error-inducing inputs (no false negatives): If the algorithm
terminated, it means the last CEGAR check found no counterexample outside
the current EC,,. Similarly, the program P, with inputs restricted to —~FEC,, was
verified safe. This implies that any input not satisfying EC),, cannot lead to an
error (otherwise that input would be part of a concrete counterexample outside
EC),). This means that ~FC,, describes the region of the input space that is
entirely safe.

Because of the two previous arguments, we can say the final FC,, is a complete
and correct error condition for the program. CEGECoRe provides in a sense, a
certificate of "unsafety" that is stronger than a single counterexample, but rather it
provides a formula that characterizes all real counterexamples. This result can be
very useful for understanding the program’s behavior or for documentation, since
it tells us under what condition the program fails.

Note that if the original program was actually safe from the start (no real coun-
terexample exists), CEGECoRe would detect that through the initial CEGAR loop
and terminate immediately, usually returning ECy = true ( there are no error-
inducing inputs). It is more interesting to consider an unsafe program, where
CEGECoRe’s output is meaningful. In both cases, the procedure’s outcome is
sound: either “no error inputs” (safe program) or a precise description of error
inputs.

4.5 Limitations and Considerations

Despite the conceptual strength that CEGECoRe offer, the approach has several prac-
tical limitations.

e« Dependency on SMT Solvers: CEGECoRe heavily depends on SMT solvers
not just to check feasibility of paths, but also to perform complex tasks like All-
SAT and quantifier elimination. The effectiveness of each refinement strategy is
therefore restricted by what the solver being used can do and how powerful it is.

¢ Performance and Scalability: Model checking the program for new counterex-
amples iteratively can be time-consuming, especially if there are many distinct
error inputs. Each CEGAR is potentially expensive, and doing it repeatedly adds
overhead. In the case of only excludes a very small portion of the state space the
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total runtime can blow up (For example when using the trivial generate-model
strategy on a program with many failing cases).

Interpretation of the Error Condition: Although the goal is to find a “precise”
error condition, the final formula EC), could be very large or complex. It might be
a long disjunction of many predicates, which could be hard to interpret and make
sense of. Nevertheless we can look at EC),, even when complex, as formal artifact
that can be further analyzed and simplified in post processing.

Termination: Although in theory, if we have powerful enough procedures, CEGE-
CoRe should eventually find all counterexamples and deliver a precise error condi-
tion, in practice the algorithm might not terminate, because resource limits (time
and memory) might cause the process to stop early.

Choosing a Refinement Strategy: The "correct" choice of a refinement strategy
in each CEGECoRe iteration depdends on the problem at hand. Each of the
three might perform better on some problems and worse on others. A potential
improvement could be adding heuristics to distinguish problem types and choosing
a fitting refinement strategy, which we know performs better for that certain type
of problem.
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This chapter presents the implementation details of the CEGECoRe algorithm within
CPAchecker. Building upon the theoretical foundation discussed in previous chapters.
Here we concentrate on the design of the software components that enable counterexample-
guided error-condition refinement. The implementation was done as an extension to
CPAchecker’s existing architecture, emphasizing its modularity and reusability. In par-
ticular, we introduce several key Java classes and interfaces, such as FindErrorCondition,
CompositeRefiner and Refiner, that together orchestrate the CEGECoRe refinement
loop. We also discuss how multiple refinement strategies (Generate Model, AIISAT, and
Quantifier Elimination) are realized, and how they interact through a composite design.

Figure 5.1 provides a high-level UML diagram of these components and their interac-
tions.

5.1 Overview of the Main Components and Class Archi-
tecture

FindErrorCondition. The implementation introduces a new CPAchecker algorithm
called FindErrorCondition (in package core.algorithm.preciseErrorCondition).
This class is the entry point for CEGECoRe, coordinating the overall refinement loop.
The FindErrorCondition class implements CPAchecker’s Algorithm interface so that
it can plug into the CPAchecker verification workflow like any other algorithm. Inter-
nally, it wraps a standard verification algorithm (usually CPAchecker’s predicate analy-
sis) to perform safety checking on the program while refining the error condition. Key
fields of FindErrorCondition include: a reference to the underlying Algorithm and
ConfigurableProgramAnalysis (CPA) being used to find counterexamples, a LogManager
for logging, and a FormulaContext for managing formula-related objects (solver and for-
mula manager). It also maintains configuration options such as maxIterations (to limit
the number of refinement iterations, if desired), refiners (an array specifying which re-
finement strategies to use), parallelRefinement (a boolean flag to run strategies in
parallel or sequentially), refinerTimeout (time limit for each refinement step), and
withFormatter (whether to pretty-print the final error condition formula for readabil-
ity). These options are annotated with CPAchecker’s @0ption mechanism and are in-
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Figure 5.1: UML class diagram of key components in CEGECoRe’s implementation and
their interactions

jected from the configuration, allowing easy tuning via configuration files. For example,
by default the refiners option might include two strategies (e.g. Quantifier Elimination
and AlISAT) and parallelRefinement=true, but a user can choose a single strategy
or sequential mode by changing these options.

FormulaContext. The FormulaContext is another important class in the implemen-
tation. It serves as a container for all formula-related utilities needed during refinement.
Specifically, FormulaContext holds a reference to the underlying SMT solver and the
path formula manager. In CPAchecker, the predicate analysis uses a PathFormulaManager
to convert program paths into logical formulas (path formulas) and a Solver to de-
cide satisfiability. The FormulaContext encapsulates a Solver instance (along with
its FormulaManager) and a PathFormulaManager, as well as the CFA (control-flow au-
tomaton) of the program and some configuration/logging objects. By bundling these
into one context, we can easily pass FormulaContext to each refiner, ensuring they all
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use a consistent view of the solver and formula creation utilities. Note that CEGECoRe
may use multiple solver instances, the main CPAchecker analysis might use one SMT
solver (e.g., MathSATS5 for interpolation), while a specific refiner (Quantifier Elimina-
tion) might require another solver (Z3). The FormulaContext class provides a method
createContextFromThis(String solverName) to spawn a secondary context with a
different SMT solver. For example, the QuantifierEliminationRefiner uses this to
obtain a Z3-based context for performing quantifier elimination (since MathSAT5 does
not support that operation). All refiners share the original FormulaContext (and any
secondary contexts created from it), instead of each creating their own solver, which
ensures consistency (the same logical formulas can be translated and reused) and avoids
unnecessary overhead.

CompositeRefiner. The CompositeRefiner class is central to our design. It im-
plements Refiner and internally manages a set of actual refinement strategy instances.
During initialization, CompositeRefiner uses the provided array of RefinementStrategy
(an enum listing available strategies, e.g., GENERATE_MODEL, ALLSAT, QUANTIFIER_ELIMINATION)
to create the corresponding refiner objects via a factory (RefinerFactory.createRefiner(...)).
For each strategy, an appropriate Refiner implementation is constructed and stored in
a map (keyed by the strategy enum). For example, if configured, it will instantiate a
GenerateModelRefiner, an Al1SatRefiner, and/or a QuantifierEliminationRefiner.
All of these share the same FormulaContext (passed in the constructor) so they operate
on the same formula space.

During the refinement loop, when FindErrorCondition calls compositeRefiner.re-
fine(counterexample), the CompositeRefiner decides which mode to use based on how
many strategy instances it has and the parallelRefinement flag. We implemented
three modes of operation in CompositeRefiner

1. The single mode is the simplest: if only one refinement strategy is configured, the
composite directly delegates to it. This mode has minimal overhead and is ideal
when evaluating or using a single strategy in isolation.

2. In sequential mode, multiple strategies are available, but only one is executed at
a time. Each strategy is applied to the counterexample in sequence, with timeout
per strategy. If the first fails, the next is tried, and so on, until one succeeds or
all fail. This mode increases robustness without incurring the CPU overhead of
parallelism and is especially useful when some strategies perform better on certain
kinds of counterexamples. The trade-off is longer runtime, but determinism and
low resource usage make this a practical default in constrained environments.

3. The parallel mode runs all configured strategies simultaneously and uses the result
from the first one that finishes successfully. A fixed thread pool launches each
refinement task, and an ExecutorCompletionService monitors their progress. If
one strategy succeeds, the others are cancelled to conserve resources. This mode is
the most aggressive in resource consumption but often yields the fastest wall-clock
time.
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5.2 Refinement Strategies and Solver Integration

we implemented three distinct refinement strategies as separate classes, each conforming
to the Refiner interface: GenerateModelRefiner, AllSatRefiner, and QuantifierElimina-
tionRefiner. Each strategy uses the SMT solver in a different way to extract predicates
(i.e., candidate formulas) from the counterexample, reflecting the approaches described
theoretically in Section 4.3. Below we describe each strategy’s purpose and inner work-
ings, and how they leverage SMT solver capabilities. All strategies operate on the feasible
counterexample path provided (we assume the counterexample is concrete or has been
confirmed by CPAchecker’s feasibility check, so a model for the path exists in principle).
Three refinement strategies are implemented:

¢ GenerateModelRefiner: This is the simplest strategy, focusing on one coun-
terexample input at a time. The GenerateModelRefiner uses the solver’s model
generation capability to obtain a concrete assignment for the program’s input
variables that leads to the counterexample. In implementation, we take the path
formula for the counterexample’s error path (a Boolean formula encoding all as-
sumptions along that path) and assert it to the solver. Because the counterexample
is an actual bug witness, this formula is satisfiable. We then query the solver for
a model (truth assignment) of the formula. The solver (e.g., MathSAT5 or Z3)
provides values for each variable in the formula; we are particularly interested in
the input (nondeterministic) variables. The refiner collects the model assignments
for any input-related variables — for example, if the program has a nondet input x
and in the counterexample x = 5, the model will include z85. These assignments
are then combined into a single formula m (essentially a conjunction of equali-
ties capturing this input). In our implementation, we identify inputs by naming
conventions (e.g., variables containing “_nondet” in their names are treated as
nondet inputs, as is common in SV-COMP) and conjoin their model values: e.g.,
nondetl = 5 A nondet2 = 0 A ... for all such inputs. This formula m represents
one particular error-inducing input. The error condition refinement is then simply
to exclude this input in the future. We do so by negating m and conjoining it to
the growing error-condition exclusion formula: FC := EC A —m. Intuitively, we
tell the verifier “forbid this specific input combination, and then try again.” The
GenerateModelRefiner sets its RefinementResult status to SUCCESS whenever it
successfully obtains such a model and updates the exclusion formula. On the next
iteration, the program with the new assumption —m will force the analysis to find
a different counterexample (if any exist) that violates the property. Over multiple
iterations, this will enumerate distinct error-causing inputs one by one.

e AIlISAT Refiner: The AllSatRefiner class implements a refinement strategy
that generalizes over sets of counterexample inputs by enumerating satisfying as-
signments using the SMT solver’s AIISAT functionality. Upon receiving a coun-
terexample, it constructs the corresponding path formula and extracts a set of
Boolean atoms (e.g., (x > 0)), which represent conditions that distinguish dif-
ferent potential input behaviors. These atoms are passed to the solver, which
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iteratively enumerates all satisfying combinations of them that make the path fea-
sible. Each such combination is treated as a separate model, represented as a
conjunction of literals, and collected using a custom A11SAT callback. The dis-
junction of all these model formulas captures the full input space leading to the
error along that path. This combined formula is then negated and added to the
growing error condition, excluding a broad set of inputs in one refinement step.
This approach is efficient when the number of distinct input conditions is small,
but can be expensive or infeasible if the space is large or continuous.

e Quantifier Elimination Refiner: we rely here on the SMT solver’s ability to
perform quantifier elimination. In QuantifierEliminationRefiner it is a bit
more complex internally, because it uses two solver contexts. The main CPAchecker
analysis is using MathSAT5 (which does not support quantifier elimination on
arbitrary formulas), so we create a secondary Solver context with a solver that does
(e.g., Z3). We then translate the counterexample path formula into the language
of that solver. This translation adds overhead and complexity to the strategy,
especially when the path formula we are dealing with is quite large. The path
formula is essentially 3(v) : P(x,v) where x are input variables and v are other
existentially quantified variables (program variables along the path, which can
be considered existentially quantified since the path’s feasibility guarantees their
existence). We then task the solver to eliminate those existential variables, yielding
a quantifier-free formula ®(x) over only the inputs. In practice, Z3 provides APIs
to eliminate quantifiers for certain theories (e.g. linear integer arithmetic) or uses
heuristics (qe tactics) to produce an equivalent formula without the quantified
vars. We apply a variable partition, we instruct the elimination procedure to
treat all variables that are not inputs (not containing “_nondet” in their name)
as quantified, and preserve the input ones. The result is a formula QFE(z) that
implies the path. After obtaining this result from Z3, we translate it back into
the primary solver (so that it can be used with the same FormulaManager as the
rest of the analysis). This translation back adds another layer of complexity and
sometimes fail because the quantifier elimination has modified the path formula
and thus the syntax of the quantified formula in the solver Z3 language is also
changed and the translation fails because parts of the syntax are not recognized
by the original solver (i.e., MATHSAT5). The obtained QFE(x) is expected to be
TRUE for exactly those input assignments that satisfy the counterexample’s path
constraints. We then exclude it by conjoining =QFE(x) to the error condition. If
Z3 times out, or if it throws an exception (e.g., if the theory is too complicated
for elimination), the QuantifierEliminationRefiner will fail for that iteration.
We chose Z3 as the quantifier-elimination solver because of its robust support for
quantifiers and is supported by CPAchecker.

Each strategy is encapsulated in its own class and interacts with the FormulaContext.
The choice of Z3 for quantifier elimination is deliberate: Z3 supports quantifier elim-
ination in the theory of linear arithmetic and integrates smoothly with CPAchecker’s
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formula infrastructure, whereas alternatives like MathSATS5 lack reliable quantifier elim-
ination capabilities.

5.3 Configuration Options
CEGECoRe exposes several parameters through CPAchecker’s configuration system:
e findErrorCondition.maxIterations: Limits the number of refinement steps.

e findErrorCondition.refiners: Specifies the set of refinement strategies to use
(GENERATE_MODEL, QUANTIFIER__ ELIMINATION, ALLSAT).

e findErrorCondition.parallel: Enables parallel execution mode if multiple re-
finers are specified.

o findErrorCondition.timeout: Sets a timeout (in seconds) per refiner.
o findErrorCondition.gSolver: Selects the SMT solver for quantifier elimination.

e findErrorCondition.withFormatter: Enables pretty-printing of the final error
condition.

These options affect the performance of the algorithm. For instance, enabling parallel
refinement improves coverage but incurs higher CPU usage. Choosing a timeout that
is too low may prevent powerful strategies like QE from succeeding, while increasing it
can lead to higher solve times. Additionally, CEGECoRe keeps the global CPAchecker
configurations such as the overall wall-clock timeout, memory limits, and the underlying
CPA configurations.

In 5.2 is an example of CEGECoRe run command.

bin/cpachecker --heap 10000M --timelimit \
--option cpa.predicate.memoryAllocationsAlwaysSucceed=true \
--predicateAnalysis \
--option analysis.algorithm.findErrorCondition=true \
--option findErrorCondition.refiners=QUANTIFIER_ELIMINATION \
--option findErrorCondition.withFormatter=true \
--option cpa.predicate.memoryAllocationsAlwaysSucceed=true \
--spec test/programs/benchmarks/properties/unreach-call.prp \
--64 test/examples-findErrorCondition/program.c

Figure 5.2: Example Run command for CEGECoRe
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In the following chapter, we present the evaluation of the proposed CEGECoRe ap-
proach. The evaluation is centered on the following main research questions (when
referring in this chapter to a task being "solved', we mean that the approach managed
to find a precise error condition):

« RQ1 (Effectiveness & Uniqueness): How many SV-COMP tasks can be
solved (that is, for how many tasks a precise error condition can be found) by
the CEGECoRe approach compared to the sister approach DescribErr? And can
CEGECoRe solve tasks that DescribErr can not?

« RQ2 (Efficiency): How does the resource consumption (in terms of CPU and
wall time) of the CEGECoRe approach compare to DescribErr?

« RQ3 (Refinement-Strategy): How do the different refinement strategies imple-
mented in the CEGECoRe approach in CPAchecker behave when trying to identify
precise error conditions?

CPAchecker [33] is an open-source verification tool and framework that implements
the CPA concept (described in 3.4) in Java to analyze C programs. It transforms the in-
put source code into a CFA and applies configurable program analyses to systematically
explore the abstract state space for property violations. Depending on its configuration,
CPAchecker can operate in a mode that efficiently merges states for scalability for ex-
ample for very large and complex programs or in a highly precise mode that preserves
distinct execution paths, similar to model checking.

6.1 Experimental Environment

Benchmark Set

The experiments are conducted on the widely used SV-Benchmarks suite, which provides
of a comprehensive set of C programs for evaluating software verification tools and
methods. In this collection of C programs, we examine the ReachSafety category, which
comprises of the following subcategories:
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e ReachSafety-BitVectors

e ReachSafety-Combinations

¢ ReachSafety-ControlFlow

e ReachSafety-ECA

o ReachSafety-Floats

o ReachSafety-Hardware

e ReachSafety-Heap

¢ ReachSafety-Loops

¢ ReachSafety-ProductLines

o ReachSafety-Sequentialized

o ReachSafety-XCSP

e SoftwareSystems-AWS-C-Common-ReachSafety
e SoftwareSystems-BusyBox-ReachSafety

e SoftwareSystems-coreutils-ReachSafety

o SoftwareSystems-DeviceDriversLinux64-ReachSafety

o SoftwareSystems-uthash-ReachSafety

Here, a program error is indicated by the reach__error function, serving as an equiv-
alent to assert(0), such an error is flagged, when this function is reached by a program
execution. Each of these tasks has an assigned label, called expected wverdict, which
specifies whether the task is expected to produce a true or false result by the verifier.

Since we are interested in finding error conditions of programs, we examine only the
programs with false expected verdict; we find 3131 such tasks. From this set of programs,
we exclude 1820 tasks, because their CPAchecker’s predicate analysis delivers a different
result from the assigned expected verdict. This happens due to errors or timeouts in
CPAchecker. In order to have fair comparison between the two approaches we want to
evaluate the same set of tasks, we perform an intersection on the two sets and the result
is 1188 total tasks. These tasks cover various categories (for example, device-driver
benchmarks, memory safety tasks, and crafted examples like AWS C-common harnesses
and RERS problems) in SV-Benchmarks, providing a broad assessment of CEGECoRe’s
ability to find precise error conditions.
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Run Configuration

All experiments were conducted utilizing the BenchExec benchmarking framework [34],
which facilitated the reliable execution and concurrent monitoring of our tests across
multiple cloud-based machines. BenchExec simplifies the adjustment of run configu-
rations and resource allocations through a definition of an XML file, and provides an
understanding of the results via interactive tables and plots. For the configuration of
our experiments we have specified that the analysis in CPAchecker[3] is invoked with
a wall-time limit of 900 seconds and a hard time limit of 1000 seconds, along with a
memory limit of 7 GB per task. The configuration mandates the use of 2 CPU cores
and targets machines with an Intel Core i7-6700 @ 3.40 GHz and running on operating
system Ubuntu 22.04.

It is important to note that the DescribErr results, with which we draw our compar-
isons, employed a significantly extended wall-time timeout of 12,000 seconds per run, as
well as the utilization of eight processing units and a 31 GB memory limitation. Due
to the time constraints of this thesis, we have been unable to execute the CEGECoRe
approach under identical conditions. This is why, we have opted to exclude certain runs
(tasks) from the DescribErr results that exceeded a duration of 900 seconds in order to
ensure an equivalent comparison between the two approaches. Nonetheless, we express
a keen interest in exploring and examining the outcomes of the CEGECoRe approach
under similar configuration settings in future research.

6.2 Results Overview

We first present an overview of the outcomes across all tasks, highlighting how many
tasks were solved by each approach, as well as how often they timed out or crashed.
A task is considered solved for CEGECoRe if the tool managed to refine an error con-
dition successfully (outputting “true” at the end, meaning no further counterexamples
exist under the derived condition), and for DescribErr if it outputs “false (precise error
condition)” (meaning it produced a precise error condition). Table 6.1 summarizes the
performance of each refinement strategy of CEGECoRe and each variant of DescribErr
on the 1188 tasks. We report the number of tasks solved, its percentage out of the
overall task set and the number of tasks that resulted in timeouts or errors (unexpected
failures).

Looking at the table 6.1, several high-level observations can be made. DescribErr
solved a substantially larger fraction of tasks than CEGECoRe. The best DescribErr
configuration (Template-based) managed to produce precise error conditions for 327
tasks ( 27.5% of the total), whereas the best single CEGECoRe strategy (Generate
Model) solved 107 tasks ( 9.0%). Even when considering all strategies, CEGECoRe’s
overall coverage is much lower, if we combine CEGECoRe’s results (i.e., count a task as
solved if any of the strategies solved it), the total unique tasks solved by CEGECoRe
is 150 (12.6%). In contrast, DescribErr’s collectively solved 399 unique tasks (about
33.5%). This indicates that CEGECoRe is currently less effective (in terms of tasks
solved) than the DescribErr approach (we will analyze potential reasons under RQ1).
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Approach (Strategy) Solved Tasks Timeouts Errors/Crashes
CEGECoRe — Generate Model 107 (9.0%) 682 399
CEGECoRe — AISAT 28 (2.4%) 845 315
CEGECoRe - Quantifier Elimination 70 (5.9%) 618 500
DescribErr - Counterexample 292 (24.6%) 700 196
DescribErr - Interval 299 (25.2%) 703 186
DescribErr - Template 327 (27.5%) 429 432

Table 6.1: Overall results for CEGECoRe (with All-SAT, Model-generation, and
Quantifier-Elimination refiners) vs. DescribErr. Timeouts indicate the num-
ber of tasks that exceeded the set CPU limit. Other Failures include runs
that crashed or ran out of memory before completion.

In terms of timeouts, both approaches have a significant number, showcasing the diffi-
culty of the problem and the strict time limit. CEGECoRe’s strategies timed out on the
a large portoion of tasks. For instance, AIISAT refinement hit the timeout on 845 tasks —
this is unsurprising, as enumerating many models can be very slow. The Quantifier Elim-
ination strategy timed out on 618 tasks, and Generate Model on 682 tasks. DescribErr’s
counterexample and interval strategies timed out on roughly 700 tasks each, similar to
CEGECoRe’s numbers, but the template strategy has a notably lower timeout count
(429). The error cases include cases like crashes (recorded as segmentation faults ), Java
exceptions (for example, “ERROR (interpolation failed)” in some Generate Model runs,
or an “EXCEPTION” in Quantifier Elimination if Z3’s API threw an error), and as-
sertion violations. For CEGECoRe-Quantifier Elimination, in particular, 5 tasks ended
with out-of-memory (OOM) errors and a few with unhandled exceptions, indicating the
heavy memory usage of quantifier elimination on some inputs. CEGECoRe-AlISAT and
CEGECoRe-Generate Model both saw a significant number of segmentation faults (233
and 328 respectively), likely stemming from low-level issues in the SMT solver or the
JavaSMT layer when handling numerous queries.

In summary, DescribErr solves more tasks overall, while CEGECoRe in its current
state suffers from many timeouts. However, CEGECoRe’s different strategies have man-
aged to solve (i.e., find a precise error condition) some tasks that DescribErr did not
which is an improvement and a potential to leverage both approaches to get a more
comprehensive precise error condition. Another important detail to recall is that the set
time limit for CEGECoRe was only 900s, which for strategies like quantifier elimination
on a complex very long task might not be sufficient.

6.3 RQ1: Effectiveness & Uniqueness, CEGECoRe vs. De-
scribErr

The evaluation shows that DescribErr outperforms CEGECoRe in terms of solved tasks,
Figure 6.1. DescribErr (in its best configuration) solved 327 tasks, whereas CEGECoRe
(best single strategy solved 107, and even combining all strategies yields 150 in com-
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Figure 6.1: Tasks solved by all strategies Figure 6.2: Unique tasks solved by each
approach

parison to the 399 of DescribErr). This answers RQ1 in favor of DescribErr: it can
find precise error conditions for a significantly larger portion of tasks. The difference
is quite pronounced — roughly, DescribErr covered about one-third of the tasks, while
CEGECoRe covered about one-eighth.

There are a few potential reasons for this discrepancy. CEGECoRe’s approach, by
design, requires multiple iterations of counterexample generation and refinement. If
a single iteration is computationally expensive or the number of counterexamples is
large, it may not complete within the 15-minute time limit. DescribErr, in contrast,
attempts to infer the error condition directly, for example template-based analysis uses
predefined logical formula structures (e.g., linear inequalities or boolean predicates) that
can efficiently capture complex input conditions when the true error condition matches
the structure of a template. Particularly in structured domains like RERS or ECA,
where CEGECoRe struggles.

In many tasks, CEGECoRe generated one or a few counterexamples but failed to reach
a fixed-point before timing out. Meanwhile, DescribErr’s template analysis could infer
the complete condition in a single, although sometimes costly, inference step. More-
over, DescribErr exhibits greater robustness—it handles failures gracefully and times
out cleanly, whereas CEGECoRe experienced more solver crashes, reducing its effective
coverage.

However, CEGECoRe showed unique strengths on 64 tasks that DescribErr could
not solve, as shown in Figure 6.2. These tasks often involved low-level harnesses or
negated preconditions, such as in certain aws-c-common or device-driver benchmarks,
where CEGECoRe’s counterexample-guided refinement allowed it to succeed. Although
less effective overall, CEGECoRe demonstrates clear complementary capabilities by solv-
ing some tasks that static inference methods like DescribErr could not.
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6.4 RQ2: Efficiency, CEGECoRe vs. DescribErr

To evaluate efficiency, we compared CEGECoRe and DescribErr based on CPU time,
memory usage, and how effectively each tool used its time limit (900s for CEGECoRe
and 7200s for DescribErr) 6.3. On average, CEGECoRe was much faster for the tasks it
solved: AIISAT completed in 5.95 seconds, GenerateModel in 51.97 seconds, and Quan-
tifier Elimination (QE) in 62.25 seconds. DescribErr’s strategies, in contrast, consumed
significantly more time per solved task, averaging 179.72 seconds (Counterexample),
143.78 seconds (Interval), and a significant 2703.46 seconds for the Template strategy.

Similarly the memory usage results follows this trend. CEGECoRe stayed within
modest bounds (averaging 260 MB), while DescribErr consumed substantially more
memory, particularly in the Template strategy ( 1.7 GB). However, these resource dif-
ferences correlate with coverage, DescribErr solves more tasks overall (potentially more
complex ones), justifying its higher consumption. When both tools solve the same task,
CEGECoRe can be marginally faster ,though not by a large or consistent margin.

The results show that for RQ2: CEGECoRe is more time and memory-efficient on
tasks it can solve, but these tend to be trivial cases. DescribErr, especially with its
template approach, is slower and more resource-intensive per solved task but delivers
results for a broader and harder range of programs. Therefore, from a perspective
of prioritizing outcome over runtime, DescribErr currently offers better efficiency in
practice. However, CEGECoRe shows promise particularly in some specific cases. There
are potential improvements and further optimizations that might yield better results.

6.5 RQ3: Refinement-Strategy Comparison

Figure 6.4 shows that the three refinement strategies in CEGECoRe (Generate Model,
AlISAT, and Quantifier Elimination) own complementary strengths. Generate Model
was the most effective, solving 107 tasks. Its basic and simple idea made it a reliable,
especially for easy to moderate sized error input spaces. Therefore enumerating them
and excluding one counterexample at a time worked in these cases. Despite its low
overhead, it did run into timeouts on tasks with very large or infinite error spaces, where
it could not refine quickly enough. Still, it had fewer crashes than the more complex
strategies, making it a good candidate as a baseline strategy for CEGECoRe.

Quantifier Elimination (QE) solved 70 tasks, fewer than Generate Model, but it per-
formed especially well on benchmarks where the error condition could be symbolically
captured. In such cases, QE often completed the refinement in a single step, leveraging
73’s built-in quantifier elimination. However, it also showed a high failure rate, with over
600 timeouts and numerous solver errors, Table 6.1, typically on tasks involving complex
formulas, non-linear arithmetic, or large variable scopes. Despite this, QE contributed
36 uniquely solved tasks and overlapped with Generate Model in 26 tasks, highlighting
its ability to solve problems that Generate Model could not. The four tasks solved by
all three strategies were mostly trivial cases.

AIISAT had the weakest performance, solving only 28 tasks, with just 3 solved uniquely.
Its poor results were likely due to model enumeration overhead, when faced with many
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satisfying assignments, the AIISAT solver could not terminate or crashed.

The Venn diagram in Figure 6.4, shows that no single strategy could cover all solvable
tasks. Out of 150 tasks solved by CEGECoRe in total, 60 were solved only by Generate
Model, and 36 only by QE showcasing the difference in types of problem that each of
them can solve. A smart composite refinement approach here is if we ideally run QE
and AIISAT in parallel and falls back to Generate Model. This could achieve full cov-
erage under time constraints. The current evaluation highlights the value of combining
strategies rather than relying on any one alone for every CEGECoRe iteration. It also
suggests future directions (i.e., improving AIISAT’s efficiency, optimizing QE’s stability,
and integrating adaptive strategy selection based on task characteristics.3)

6.6 Threats to Validity

Benchmark Selection Bias (External Validity): We performed our experiments
on SV-COMP benchmarks, which are well-known and varied, but our results might not
generalize to all possible programs (e.g., industrial code bases or on other properties like
memory safety, not just reachability). We also use CPAchecker, which is an award win-
ning verification tool and framework, namely we rely on CPAchecker predicate analysis
its implementation of the CEGAR loop for our implementation. However taking the
concept of CEGECoRe over to other verification tools, might yield different results.

Configuration and Implementation Factors (Internal Validity): The CEGECoRe
implementation is a prototype in CPAchecker. The many crashes indicate there is room
for improvement. It’s possible that with bug fixes CEGECoRe would solve additional
tasks (some tasks may have actually been solvable but crashed midway). Small changes
like solver version or different CPU could potentially also impact which tasks time out.
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We assumed that when the result of the analysis was "true" (i.e., the program deemed
safe by CPAchecker’s predicate analysis), it indeed found a precise error condition. We
did not manually validate each reported condition for precision. It is possible (though
unlikely with a tool like CPAchecker) that a reported error condition is not 100% precise.
We trust the tools’ internal checks — e.g., CEGECoRe would only output “true” after
a final verification that no further counterexample is found. However, any unsoundness
of the tool would violate our assumptions. Given the soundness of the CPAchecker
framework, which have been used in competitions and is highly regarded in the field, we
are confident in the soundness of our results.

Resource Limits: We have chosen 900s and 7GB as run configuration for CEGECoRe.
CEGECoRe might have solved a few more tasks if given more time (some runs had re-
maining counterexamples but ran out of iterations/time). Therefore, the exact numbers
may vary with different assignment of time and memory limits per run. In theory, given
infinite time CEGECoRe would eventually find all error conditions, since it is complete.
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7.1 Summary

In this thesis, we introduced CEGECoRe, a novel counterexample-guided refinement ap-
proach for synthesizing precise error conditions in software verification, and integrated it
into the CPAchecker framework. Unlike traditional CEGAR, CEGECoRe continues re-
fining after discovering the first counterexample, aiming to characterize all failing inputs
through iterative abstraction. We implemented three SMT-based refinement strategies
(Generate Model, AIISAT, and Quantifier Elimination) within a modular CompositeRe-
finer, enabling flexible sequential or parallel configuration of the refinement step. The
technical integration required careful management of formula contexts and solver in-
teractions to ensure both correctness and extensibility. This allowed CEGECoRe to
produce concrete, verifiable error condition formulas on real-world C programs.

Our evaluation on 1188 SV-COMP benchmarks shows that while the sister approach
DescribErr achieves higher overall coverage, CEGECoRe contributes in a different as-
pect, it managed to solve 64 tasks that DescribErr did not. Each CEGECoRe strategy
showed different strengths. Generate Model was the most reliable, QE was effective
on arithmetic-heavy inputs, and AIISAT had limited but sound performance. Although
CEGECoRe faced scalability challenges, especially with timeouts and solver failures, it
demonstrated that iteratively finding concrete counterexamples, refining the error con-
dition and excluding them from future runs, can successfully synthesize error conditions.
This highlights CEGECoRe’s complementary value and supports its integration as part
of a diversified verification pipeline.

7.2 Future Work

There are several promising directions to extend CEGECoRe. We believe that a key
opportunity is extending the refinement loop duration, repeating experiments with a
2-hour time limit (as used by DescribErr) could uncover CEGECoRe’s ability to solve
harder tasks it currently times out on.

One potential improvement is adaptive strategy selection. As we have seen each strat-
egy works well on different types of problems. A potential version of CEGECoRe could
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include a mechanism to dynamically choose or prioritize strategies based on feedback.
For example, if a counterexample’s path formula is purely linear arithmetic, favor quan-
tifier elimination. If it’s largely Boolean with many combinations, perhaps try AIISAT
or a BDD-based refiner. If it’s very complex or unknown, start with model enumeration
to gather more data. Initial ideas were discussed, for example using simple heuristics on
the formula structures. Implementing this could improve performance and potentially
reduce unnecessary timeouts.

Another direction that is interesting to explore, is to develop additional or improved
refinement strategies. For instance, a smarter AIISAT that can integrate heuristics on
how to better generalize the condition after finding a few satisfying models. Another
example could be to focus on developing a smarter refinement strategy, such as coun-
terexample clustering (i.e., using a technique (potentially with CEGAR as well) to find
multiple concrete counterexamples first and then try to learn and infer a general condi-
tion that covers them).

7.3 Data-Availability-Statement

All data generated or analyzed during this study are available as supplementary material.
In particular, the detailed results outputted by CPAchecker. In the .CSV files once find
the outcomes and resource usage per task as well as the configuration and run command.
The plotted graphs discussed in this chapter have been also provided (merged in one
pdf). This allows independent verification of our results and further exploration. The
CEGECoRe implementation has been integrated into CPAchecker’s open-source which
can be found under the FindErrorCondition branch.
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