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Abstract

Software verification has the goal to minimize the risk of software failures with
negative consequences. The classical approach to this is deductive verification,
which requires considerable involvement from developers. Automatic verification
tools seek to automate this process, but there is still a gap between the capabilities
of deductive and automatic software verification.

CPACHECKER is an automatic verification framework that combines various formal
verification approaches through the concept of Configurable Program Analysis (CPA).
The Predicate CPA for predicate abstraction in CPACHECKER solves a verification
task through the construction of an Abstract Reachability Graph (ARG).
Functions that operate on cumulative properties over arrays could previously not
be verified by CPACHECKER when using predicate abstraction. We propose an
extension to the Predicate CPA that uses manually generated lemmas to successfully
solve the abstraction step for such verification tasks.

The lemmas are provided to CPACHECKER by the user through a witness file. Dur-
ing an abstraction step all relevant lemmas are added to the first-order formula
that is then solved by the SMT solver. We evaluate the performance of our imple-
mentation using the benchmarking tool BENCHEXEC. With our prototype we are
able to compute the Boolean predicate abstraction for programs that operate on the
minimum, maximum and sum of arrays. We show that without a lemma witness
the same programs cannot successfully be verified with predicate abstraction in
CPACHECKER.
We analyze possible causes for the current limitations of our prototype. For future
work we propose the integration of a dedicated ACSL-Parser to improve current lim-
itations of the parsing of a lemma witness. We also suggest to extract our approach
into its own Higher Order Abstraction CPA.
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Zusammenfassung

Software Verifikation hat zum Ziel, das Risiko von Softwarefehlern mit negativen
Konsequenzen zu minimieren. Der klassische Ansatz hierfür ist die deduktive Veri-
fizierung, welche erhebliches Mitwirken von Entwicklern erfordert. Automatische
Verifizierungswerkzeuge versuchen diesen Prozess zu automatisieren, aber es gibt
noch immer eine erhebliche Lücke zwischen den Fähigkeiten von deduktiver und
automatischer Softwareverifizierung.

CPACHECKER ist ein automatisches Verifizierungsframework, das verschiedene
formale Verifizierungsansätze durch das Konzept der configurable program anal-
ysis (CPA) kombiniert. Der Predicate CPA für predicate abstraction löst eine
Verifizierungsaufgabe durch die Konstruktion eines abstract reachability graph (ARG).
Funktionen, die auf kumulativen Eigenschaften von Arrays operieren, konnten
bisher von CPACHECKER nicht durch prediate abstraction verifiziert werden. Wir
schlagen einen Erweiterung des Predicate CPA vor, die manuell erstellte Lemmata
nutzen kann, um den Abstraktionschritt für solche Programme erfolgreich zu lösen.

Die Lemmata werden CPACHECKER vom Nutzer durch eine witness Datei zur Verfü-
gung gestellt. Während eines Abstraktionsschrittes werden alle relevanten Lemmata
der Formal erster Ordnung hinzugefügt, welche dann durch den SMT-Solver gelöst
wird. Mit unserem Prototypen sind wir in der Lage, die Boolean predicate abstrac-
tion für Programme zu berechnen, die auf dem Minimum, Maximum oder der
Summe von Arrays operieren. Wir zeigen, dass dieselben Programme ohne einen
lemma witness nicht erfolgreich durch predicate abstraction in CPACHECKER veri-
fiziert werden können.
Wir analysieren mögliche Ursachen für die aktuellen Limitierungen unseres Pro-
totypen. Für zukünftige Arbeiten schlagen wir die Integration eines dedizierten
ACSL-Parsers vor, um derzeitige Limitierungen des Parsen eines lemma witness zu
verbessern. Außerdem schlagen wir vor, unseren Ansatz in einen eigenen Higher
Order Abstraction CPA zu extrahieren.
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CHAPTER 1

Introduction

Program code is written by humans and is therefore subject to human error.
If such an error affects a critical infrastructure system, the consequences can
be disastrous. A prominent example for a critical software failure is the Altona
Railway Software Glitch [18] of 1995 that stopped all train traffic at one major
German railway hub for a duration of four days. On Sunday March 12, 1995 the
existing switch tower at Hamburg-Altona was replaced by a fully computerized
system manufactured by Siemens that was incompatible with the preexisting
one. Immediately upon startup the central computer failed. Because there was
no manual mode the operators had no choice but to turn off the whole system
and close the station. At the time, a combined 130.000 daily passengers moved
through the station to use national and international long distance connections,
regional trains and local rapid transit. The bug at fault for the failure was not
detected until Tuesday evening and could only be fixed by Wednesday morning.
Eventually, its cause was determined to be a programming error in a routine that
was supposed to handle stack overflows. Limited traffic at the station picked
up again on Wednesday afternoon but it took several days until the station
was operating at full capacity again. A minor programming error rendered one
of the biggest transit hubs of the country useless for several days and subse-
quently negatively impacted public opinion of the computerization of infrastructure.

For many software projects, similar to the infrastructure system deployed in
Hamburg-Altona, the C programming language [52] is to this day a popular
choice. C is a low-level language that allows for fast and efficient access of
hardware resources, which makes it a good choice for the software components of
Cyber-Physical-Systems [17]. At the same time, the low-level nature of C means that
it offers little protection from programming errors.
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1 Introduction

If we want to minimize the risk of catastrophic software failures, we must ensure
that a given computer program is free of errors. Two different approaches to achieve
this are software testing and software verification. While software testing can help
us find bugs in our software it cannot prove their absence. Software verification
however can prove that a certain program fulfills its specification.

A classical approach to software verification is through deductive verification [37], a
process that is based on logical inference about verification contracts. Deductive
verification is very powerful to prove the formal correctness of properties but it is
also a very involved process that requires considerable effort from developers. Even
though tools such as FRAMA-C [23] or DAFNY [46] support deductive verification
it still requires a lot of time and effort from software developers. For this reason,
automatic verification tools seek to automate the process of software verification to
reduce the needed effort and make it feasible for usage a greater number of projects.
Ultimately, this improves the quality of deployed software.

One such tool for the automatic verification of C code is CPACHECKER [11].
CPACHECKER is easily configurable and expandable and makes it possible to
use the same verification framework for a variety of formal approaches [8], like
bounded model checking, k-induction or predicate abstraction. The concept at
the core of CPACHECKER is that of Configurable Program Analysis (CPA) [9]. A
CPA defines the abstract domain and the operators that the CPA algorithm calls
to solve a verification task. As a result a new CPA can be created by providing a
concrete implementation for these interfaces. Similarly, already existing CPAs can
be combined into composite CPAs that provide new functionality. For example the
CPA for Predicate Abstraction [8, 56] that we will be referring to in the following
chapters is a composite of one CPA that tracks the program counter and one CPA
performs the predicate abstraction [34].
The current state of predicate abstraction in CPACHECKER can verify some
properties of iterative loops. However, loops that deal with cumulative properties
of arrays, can not yet successfully be verified by CPACHECKER when using
predicate abstraction, because we cannot sufficiently express those properties as
abstraction predicates. In the deductive verification tool FRAMA-C we can verify
these same array properties through contract based verification. This is a gap in the
capabilities of deductive and automatic verification tools. In this thesis we propose
an extension to predicate abstraction in CPACHECKER with which we can compute
the abstraction step for functions that operate on arrays. Our prototype adds
user generated lemmas that provide the necessary definitions to the abstraction
predicates, so that the SMT solver has all the context to compute a new abstraction.

Chapter 2 presents a selection of interesting related work and Chapter 3 introduces
the theoretical background for predicate abstraction in CPACHECKER. In Chapter 4
we describe our implementation which we evaluate in Chapter 5. In Chapter 6
we discuss the current limitations of our prototype. Afterwards, we give some
suggestions for future work in 7. Finally, we summarize the content of this thesis in
Chapter 8.
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CHAPTER 2

Related Work

In this chapter, we present some relevant work that relates to the content of this
thesis. First, we discuss formal methods, which are the basis for software verification.
Then, we give an overview of deductive verification and relevant tools. Finally, we
consider automatic verification, predicate abstraction and decidability of arrays.

Formal methods are the basis for modern day software verification. Floyd and
Hoare [33, 39] introduced a formal logic to verify the correctness of a program S
through a Hoare triple {P}S{Q} with a precondition P and a postcondition Q. In
Guarded commands, non-determinacy and formal derivation of programs [27] Dijkstra
introduced predicate transformer semantics as a method to solve a Hoare triple.
If the execution order of the program is forwards the predicate transformer is the
strongest postcondition [30], if the execution order is backwards it is the weakest
precondition [28]. Predicate abstraction in CPACHECKER makes use of the strongest
postcondition to verify a program.

Hoare logic and predicate transformer semantics are the basis for the field of
deductive software verification for which the paper Deductive Software Verification: From
Pen-and-Paper Proofs to Industrial Tools [37] gives a summary from its beginnings
in the 1960’s to modern day industrial verification tools. The first deductive
verification tool was ANNA [47] for the language Ada, then came EIFFEL [50] as the
first contract based verification tool. Some tools that are still relevant today are the
Java Modeling Language JML [41, 45], KEY [1] and the proof assistant ISABELLE [57].
DAFNY [46] is a programming language that requires verification alongside the
writing of the program code. The DAFNY source code can then be compiled into
popular programming languages like Java, JavaScript, C#, Python and Go.
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2 Related Work

Another contract based tool is for the deductive verification of C code is FRAMA-
C [22, 23]. The paper An Exercise in Mind Reading: Automatic Contract Inference for
Frama-C [3] presents the FRAMA-C plugin SAIDA that can automatically infer ACSL-
Annotations [7, 22] for all helper functions of a given C program. SAIDA takes as
input a C program with an already annotated main function as the entry point and
a specification as input and transfers it into constrained horn clauses (CHC) [26].
The plugin is intended to automate the very difficult and time intensive process of
manually constructing contracts for every function.
Program specifications are often written in high-level languages like first order
logic to express the intended program behavior correctly and precisely. However,
the solvers used as the back-end of a verification tool often do not support the
complex constructs of the specification language. The paper Automatic Program
Instrumentation for Automatic Verification [2] presents MONOCERA, a framework
to automatically translate rich program specification into a low-lever verification
language consisting of program independent instrumentation operations. The
proposed language contains instrumentation operators to represent universal and
existential quantifiers and can handle arrays and array aggregation. Because the
implementation is based in constrained horn clauses [26], it is available for a variety
of CHC-based verification tools like JAYHORN [42], KORN [31], RUSTHORN [48],
SEAHORN [35], and TRICERA [32].

Automatic verification tools like CPACHECKER [8, 9, 11], SLAM [5, 6] or BLAST [10]
aim to reduce the overhead of deductive verification through automation. There
are several approaches to automatic software verification that are implemented in
CPACHECKER and related tools. Bounded model checking can be used by CBMC [20],
ESBMC [21], LLBMC [53] and SMACK [51]. Unbounded model checking can be done via
k-Induction [55] in tools like CBMC [20], ESBMC [21], PKIND [43] and 2LS [16]. A
different approach to automatic verification from model checking is through an over
approximation of the state space, either by predicate abstraction [34] or the IMPACT

algorithm [49]. Predicate abstraction is usually combined with counter example
guided abstraction refinement (CEGAR) [19] and lazy abstraction [38]. CPACHECKER

combines all of the afformentioned approaches to automatic software verification
within an unified framework. Towards Practical Predicate Analysis [56] introduces
predicate abstraction for CPACHECKER by implementing the Predicate CPA, which
we build upon in this thesis. The following paragraphs give an overview over a
selection of papers that also use predicate abstraction.

The paper Automatic Predicate Abstraction of C Programs [4] presents the tool C2BP [5]
as part of the SLAM toolkit. The implementation is the first algorithm that can
automatically construct a predicate abstraction for device drivers as well as array
and pointer manipulating programs written in C.
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In Experience with Predicate Abstraction [25], the authors present Murφ−− a simplifica-
tion of the Murφ language. Through their implementation, they are able to verify the
FLASH multiprocessor cache coherence protocol and Dijkstra’s on-the-fly garbage
collection algorithm [29]. Furthermore, the implementation offers limited support
for quantifiers.

The majority of efforts to develop SMT-solving to support arrays has been focusing
on safety properties. Regular Abstractions for Array Systems [40] combines string
rewriting systems [15] with a new predicate abstraction to verify safety and
liveness properties over arrays. The paper Constructing Quantified Invariants via
Predicate Abstraction [44] presents a predicate abstraction that constructs a formula
of universally quantified variables. This abstraction can be used to describe large
memories, buffers and arrays.

To express the properties of arrays in first-order logic, we need quantifiers which
makes the full first-order theories of arrays undecidable [16] in SMT-solving. Array
Folds Logic [24] defines a new logic called AFL that can express properties over
arrays that had not previously been covered by decidable fragments of array
theories and cannot be expressed in first-order logic. Other papers that deal with
the decidability of array properties are Verification Decidability of Presburger Array
Programs [54], What’s Decidable About Arrays? [16] and What Else Is Decidable about
Integer Arrays? [36].
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CHAPTER 3

Background

The main components of CPACHECKER are a Configurable Program Analysis (CPA) [8]
and the CPA Algorithm. To solve a verification task the CPA Algorithm uses
operators whose concrete implementation is provided by a possibly composite CPA.
The CPA for predicate abstraction is a composite CPA that constructs an Abstract
Reachability Graph (ARG) [8] by mapping abstract states over predicates to concrete
locations in the programs Control Flow Automaton (CFA) [8]. Our implementation
makes changes to one of the component CPAs for predicate abstraction, the Predicate
CPA.
In this chapter we introduce the operators of the Predicate CPA and explain their
roles in constructing the ARG. In Chapter 4 we present the changes that we make
to the Predicate CPA with which we build upon the theoretical background given
in this chapter. During the evaluation of our approach in Chapter 5 we discuss
the limitations of our prototype. We analyze possible causes for these limitations
in Chapter 6. To understand the limitations and how they can be improved it is
important to know the theoretical background we introduce in this chapter.

In Sect. 3.1 we introduce the Control Flow Automaton (CFA) which represents concrete
locations in the source code in CPACHECKER. Sect. 3.2 gives a short introduction
for the CPA Algorithm. We explain the concept of Configurable Program Analysis in
Sect. 3.3 and define the operators for the Predicate CPA in Sect. 3.3.1. In Sect. 3.4 we
give an example for the usage of the operators from Sect. 3.3.1 by constructing the
ARG for an example program.
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3 Background

3.1 Control Flow Automata

The representation of the source program in CPACHECKER is a Control Flow
Automaton (CFA) [8]. A CFA A = (L, linit ,G) is a directed graph with the nodes repre-
senting program locations from the set L and its edges from the set G representing
operations between two program locations. The initial location linit ∈ L is the entry
point of the program or function. An operation along a CFA edge G ⊆ (L×Ops×L)
can either be an arithmetic assignment over integers or an assume operation over a
predicate of variables from the program.

The CFA in Fig. 3.1represents the function maxArray(int* a, int l, int i) from
the C program maxArray.c in Listing 1. The function takes as input an array of
unsigned integers a, the length of the array l and an index i between zero and the
length of the array. It computes the maximum value of the array by iterating over all
elements in a in ascending order and comparing the current element to the previous
maximum m. The program reaches an error state, if the maximum after completion
of the loop is smaller than the array element at index i. Otherwise it returns the
maximum m of the array.
We want to prove with predicate abstraction in CPACHECKER, that the error state
in line 16 can never be reached and as a consequence the correctness of the com-
puted maximum. To achieve this goal we assign the external predicates 1 <= j
<= l and m = Max(a,j) to the head of the while loop in line 9. The inductive
predicate Max(A,I) is defined as Max(A,0) = A[0] and Max(A,I) = A[I] >
Max(A,I-1) ? A[I] : Max(A,I-1).

Listing 1 C program that finds the maximum from an array

1 int maxArray(int* a,unsigned int l, unsigned int i) {
2 int j = 0;
3 unsigned int m = a[0];
4 while(j < l) {
5 if(a[j] > m) {
6 m = a[j];
7 }
8 j = j+1;
9 }

10 if(m < a[i]) {
11 reach_error();
12 return -1;
13 }
14 return m;
15 }

8



3.1 Control Flow Automata

l7start

l8

l9 while π(l9) = {1 ≤ j ≤ l,m = Max(a, j)}

l10

if

l11

l13

l15 if

l16 ERROR

l17

l19

l20

int j = 0;

int m = a[0];

[j < l]

![a[j] > m]

[a[j] > m]

m = a[j];

++j;

![j < l]

![m < a[i]] [m < a[i]]

reach_error();

return -1;

return m;

Figure 3.1: CFA representing the function from Listing 1

9



3 Background

3.2 CPA Algorithm

The CPA algorithm [8] shown in Algorithm 1 uses a CPA D = (D,Π,⇝
,merge,stop, prec) and an initial abstract state einit with precision πinit as in-
put. The algorithm returns a set of all reachable abstract states. The implementation
for the merge operator merge, the stop operator stop, the precision adjustment
operator prec and the transfer relation⇝ is provided by the CPA D. We discuss the
definition of the operators for predicate abstraction in Sect. 3.3.1.

While the set waitlist is not empty, the algorithm takes an abstract state e with
precision π from the waitlist and calls the precision adjustment operator prec on it.
At an abstraction location the prec operator computes a new abstraction state with
an updated precision. At other locations it leaves the abstract state e unchanged.
Then the algorithm calls the transfer relation to calculate all abstract successors of
the precision adjusted abstract state ê. Each abstract successor is merged with every
abstract state within the reached set. If the merged state differs from the one in
reached, the new state replaces the old one in both the waitlist and reached sets.
The stop operator decides whether the abstract successor e′ of ê is implied by another
abstract state from the reached set. If this is the case, e′ does not need to be explored
further. Otherwise it gets added to both the reached set and the waitlist.
When all abstract states from the waitlist have been evaluated, the algorithm returns
the set of reachable abstract states. If the final reached set does not contain an abstract
error state then the error location of the CFA can not be reached while executing the
program.

Algorithm 1 CPA+(D,einit ,πinit), taken from [8]

waitlist := {(einit ,πinit)}
reached := {(einit ,πinit)}
while waitlist ̸= /0 do

pop (e,π) from waitlist
(ê, π̂) := prec(e,π ,reached)
for all e′ with ê⇝ (e′, π̂) do

for all (e′′,π ′′) ∈ reached do
enew := merge(e′,e′′, π̂)
if enew ̸= e′′ then

waitlist := (waitlist ∪{(enew, π̂)})\{(e′′,π ′′)})
reached := (reached ∪{(enew, π̂)})\{(e′′,π ′′)})

if not stop(e′,{e|(e, ·) ∈ reached},π̂) then
waitlist := waitlist ∪{(e′, π̂)}
reached := reached ∪{(e′, π̂)}

return {e|(e, ·) ∈ reached}

10



3.3 CPAchecker’s Predicate Abstraction

3.3 CPAchecker’s Predicate Abstraction

The CPA for predicate abstraction is a CPA that is composed of the Location CPA L
that tracks the program counter and the Predicate CPA P that operates on abstract
states [8] of predicates over the program domain. Combining the Location CPA L
with the Predicate CPA P produces an Abstract Reachability Graph (ARG) [8] that
stores the predecessor-successor relationship between abstract states and maps those
abstract states to concrete program locations. This way we can determine if and on
which program path a program location is reachable at runtime.
The definition for the operators of the Predicate CPA P is given in Sect. 3.3.1 and the
resulting ARG for the function maxArray Fig. 3.1 is explained in Fig. 3.2.

3.3.1 The Predicate CPA

The Predicate CPA P = (DP,ΠP,⇝P,mergeP,stopP, precP) [8] defines the transfer
relation and the operators merge, stop, prec of the CPA algorithm for an abstract
state e = (ψ, lψ ,φ). An abstract state is a representation of all concrete states that
fulfill the conjunction of the abstraction formula ψ and the path formula φ which
are first order formulas over variables from the program. The abstraction formula
is computed by the predicate precision adjustment operator prec only at certain
interesting program locations while the path formula is updated by every call of
the predicate transfer relation⇝P. The abstraction location lψ stores the location at
which the current ψ was computed. If an abstract state is of the form e = (ψ, lψ , true)
it is called an abstraction state, otherwise it is called an intermediate state.

Definition 1 (Predicate Transfer Relation). The transfer relation⇝P [8] computes the
abstract successor state e′ = (ψ, lψ ,φ ′) for an abstract state e = (ψ, lψ ,φ) and a CFA
edge (li,opi, l j) by applying the strongest-postcondition operator SPopi(φ) [30] for
the operation opi to the path formula φ of e.

(ψ, lψ ,φ)⇝P ((ψ, lψ ,φ ′),π) for a CFA edge (li,opi, l j)

The operation opi along the edge can either be an arithmetic assignment x := e of a
value to a program variable or an assume statement over a predicate p over program
variables:

SPx:=e(φ) = ∃x0 : φx→x0 ∧ (x = ex→x0)

SP[p](φ) = φ ∧ p

Definition 2 (Merge Operator). If two abstract states have the same abstraction
formula ψ and the same abstraction location lψ they can be merged into one abstract
state with the new path formula φ being the disjunction of the two original path
formulas.

mergeP((ψ1, l
ψ

1 ,φ1),(ψ2, l
ψ

2 ,φ2),π) (3.1)

=

{
(ψ2, l

ψ

2 ,φ1 ∨φ2) if(ψ1 = ψ2)∧ (lψ

1 = lψ

2 )

(ψ2, l
ψ

2 ,φ2) otherwise
(3.2)

11



3 Background

Definition 3 (Stop Operator). The stop operator stopP [8] determines whether an
abstract state e = (ψ, lψ , true) is implied by an abstract state e′ = (ψ ′, l′ψ , true) from
the reached set. If the abstract state e is already covered by the reached state e′ it
does not need to be explored further.

stopP((ψ, lψ ,φ),R,π) (3.3)

=

{
∃(ψ ′, lψ ′

,φ ′) ∈ R : φ ′ = true∧ (ψ, lψ ,φ)⊑P (ψ
′, lψ ′

,φ ′) if φ = true
f alse otherwise

(3.4)

With the partial order ⊑P defined as: (3.5)
(ψ1, l

ψ

1 ,φ1)⊑P (ψ2, l
ψ

2 ,φ2) = ((ψ1 ∧φ1)⇒ (ψ2 ∧φ2)) (3.6)

Definition 4 (Precision Adjustment Operator). The predicate precision adjustment
operator precP [8] performs a Boolean predicate abstraction at certain program loca-
tions of interest. In our case for the function maxArray these abstraction locations are
the head of the while loop in line 9 and the call of the error function reach_error()

in line 16.
At an abstraction location the predicate precision adjustment takes an abstract state e,
a predicate precision π [8] and the reached set R and returns an abstraction state and
an updated precision. The new abstraction formula ψ is the result of the Boolean
predicate abstraction (φ)

π(l)
B and the new abstraction location is the current location.

precP((ψ, lψ ,φ),π,R) (3.7)

=

{
(((ψ ∧φ)

π(l)
B , l, true),π) if blk((ψ, lψ ,φ), l)

((ψ, lψ ,φ),π) otherwise
(3.8)

The block adjustment operator blk [8] decides, whether an abstraction step should
be performed for an abstract state at the current program location. Common choices
are blkl f and blkl :

blkl f =

{
true at loop heads, function calls and return statements, lerr

f alse otherwise
(3.9)

blkl =

{
true at loop heads and lerr

f alse otherwise
(3.10)

(3.11)

If blk returns true the Boolean predicate abstraction (π ∧φ)
π(l)
B is computed by an

SMT solver by solving the equation:

(ψ)
ρ

B = ψ ∧
∧

pi∈ρ

(vpi ⇔ pi) (3.12)

For the example program maxArray.c with blkl the precision adjustment is calcu-
lated at the head of the while loop in line 9 and the error location in line 16. An
example for this is given in Sect. 3.4.

12



3.4 Example

e0 : (l7,(true, l7, true))

e1 : (l8,(true, l7, j0 = 1))

e2 : (l9,(1 ≤ j ≤ l ∧m = Max(a, j−1), l9, true))

e3 : (l10,(1 ≤ j ≤ l ∧m = Max(a, j−1), l9, j0 < l))

e5 : (l11,(1 ≤ j ≤ l ∧m = Max(a, j−1), l9, j0 < l ∧a[ j0]> m0))

e6 : (l13,(1 ≤ j ≤ l ∧m = Max(a, j−1), l9, j0 < l ∧ (a[ j0]≤ m0 ∨m1 = a[ j0])))

e4 : (l15,(1 ≤ j ≤ l ∧m = Max(a, j−1), l9, j0 ≥ l))

e7 : (l19,(1 ≤ j ≤ l ∧m = Max(a, j−1), l9, true))

Figure 3.2: ARG for the CFA locations from Fig. 3.1

3.4 Example

We want to construct the abstract reachability graph Fig. 3.2 for the function
maxArray Fig. 3.1. At the start of our analysis the reached set R and the waitlist both
contain only the initial ARG state e0 : (l7,(true, l7, true)). After a couple iterations
of the CPA algorithm we arrive at the configuration reached = {e0,e1,e2,e3,e4} and
waitlist = {e3,e4} where the intermediate state e3 : (l10,(1 ≤ j ≤ l ∧m = Max(a, j −
1), l9, j0 < l)) should be evaluated next. If we look at the CFA Fig. 3.1 we can
see that line 10 is an if-statement with the outgoing edges (l10,a[ j] > m, l11) and
(l10,¬(a[ j]> m), l13). Applying the transfer relation for each of those CFA edges to
the ARG state e3 : (l10,(1≤ j ≤ l∧m=Max(a, j−1), l9, j0 < l)) produces the following
successor states:

e5 = (l11,(1 ≤ j ≤ l ∧m = Max(a, j−1), l9, j0 < l ∧a[ j0]> m)) (3.13)
e′6 = (l13,(1 ≤ j ≤ l ∧m = Max(a, j−1), l9, j0 < l ∧a[ j0]≤ m)) (3.14)

Applying the transfer relation again to e5 produces the successor:

e′5 = (l13,(1 ≤ j ≤ l ∧m = Max(a, j−1), l9, j0 < l ∧a[ j0]> m∧m1 = a[ j0])) (3.15)
(3.16)
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3 Background

The states e′5 and e′6 share the same program counter, abstraction formula and
abstraction location which means they can be merged into the ARG state e6.

mergeARG(e′5,e
′
6,) = (l13,(1 ≤ j ≤ l ∧m = Max(a, j−1), l9,φ ′

5 ∨φ
′
6)) (3.17)

= (l13,(1 ≤ j ≤ l ∧m = Max(a, j−1), l9, j0 < l ∧ (a[ j0]≤ m0 ∨m1 = a[ j0])))
(3.18)

The successor state e′′6 of e6 along the CFA edge (l13, j = j+1, l9) is:

e′′6 = (l9,(1 ≤ j ≤ l ∧m = Max(a, j−1), l9, j0 < l ∧ (a[ j0]≤ m0 ∨m1 = a[ j0])∧ j1 = j0 +1))
(3.19)

Line 9 as the head of the while loop is an abstraction location. Therefore the precision
adjustment operator will perform a Boolean abstraction for the ARG state e′′6 and
the precision π(l9) = {1 ≤ j ≤ l,m = Max(a, j−1)}. For this we need the abstraction
formula ψ to be instantiated with the oldest variables from the path formula φ . For
each predicate from π we introduce a fresh variable vpi that is true if and only if the
instantiated predicate pi ∈ π is true. Each predicate pi needs to be instantiated with
the newest variables from φ .

(ψ ∧φ)
π(l9)
B = 1 ≤ j0 ≤ l ∧m0 = Max(a, j0 −1) (3.20)

∧ j0 < l ∧ (a[ j0]≤ m0 ∨m1 = a[ j0])∧ j1 = j0 +1 (3.21)
∧ (vp1 ⇔ 1 ≤ j1 ≤ l ∧ vp2 ⇔ m1 = Max(a, j1 −1)) (3.22)

The first predicate vp1 evaluates to true.

1 ≤ j0 < l ∧ j1 = j0 +1 ⇒ (vp1 ⇔ 1 ≤ j1 ≤ l) = true (3.23)

The second predicate vp2 also holds.

m1 = a[ j1 −1]∧a( j1 −1)> Max(( j1 −1)−1)∨m1 = Max(( j1)−1) (3.24)
∧ j1 = j0 +1∧m0 = Max(a, j0 −1)∧ (a[ j0]≤ m0 ∨m1 = a[ j0]) (3.25)

⇒m1 = a[ j0]∧a[ j0]> m0 ∨m1 = m0 ∧ (a[ j0]≤ m0 ∨m1 = a[ j0]) (3.26)
⇒(vp2 ⇔ m1 = a[ j0]∧a[ j0]> m0 ∨m1 = m0) = true (3.27)

The resulting ARG state is e′2 = (l9,(1 ≤ j ≤ l ∧m = Max(a, j−1), l9, true). This state
is already covered by the state e2 from the reached set, so there is no need for
e′2 to be unrolled further. The stop operator returns true and the state e′2 does
not get added to the reached set and the waitlist. The analysis continues with
reached = {e0,e1,e2,e3,e4,e5,e6} and waitlist = {e4}. So far we have determined that
the precision π(l9) holds for the while-loop that calculates the maximum of an ar-
ray. Now we are looking at an abstract at line 15 after the while-loop. We want to
determine if the next abstraction location, the reach_error() call in line 16 is
reachable at runtime.

14



CHAPTER 4

Approach

In Chapter 3 we have discussed the CPA Algorithm and its operators mergeP, stopP
and precP and the transfer relation⇝P as they are defined for the Predicate CPA in
Sect. 3.3.1. As an exemplary use for these operators, in Sect. 3.4 we have constructed
the Abstract Reachability Graph (ARG) for the function max-array() from Listing 1.
At an abstraction location, the precision adjustment operator precP computes the
Boolean predicate abstraction (ψ)

ρ

B by solving Eq. (4.1). In this equation the primary
formula ψ is the conjunction of the abstraction formula as an instantiated formula and
the path formula which is always instantiated. For every relevant predicate form the
predicate precision we initialize a fresh symbolic variable vpi . For each predicate we
then build an equivalence between the symbolic variable vpi and its symbolic atom pi,
which is the definition of the predicate. For our example function max-array() the
symbolic atom from our predicate witness Listing 2 is m == _L_MAX(a,j).

(ψ)
ρ

B = ψ ∧
∧

pi∈ρ

(vpi ⇔ pi) (4.1)

To solve this step for our example function that calculates the maximum of an array
we need to expand Eq. (4.1) with a set of lemmas L that provide the definition
of the inductive predicate _L_MAX that is called by the predicate. To make sense
of the lemmas that might appear in the abstraction formula we conjunct the set
of lemmas L with the primary formula ψ . For each predicate pi ∈ ρ we need the
corresponding lemmas li j ∈ L. All variables that appear in the predicate lemmas
need to be instantiated with the same values as the corresponding variables from
the predicates which gives us Eq. (4.2):

(ψ)
ρ

B = (ψ ∧
∧
L

)∧
∧

pi∈ρ

((vpi ⇔ pi)∧
∧

l j∈L

li j) (4.2)
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4 Approach

To solve the Boolean predicate abstraction a user provided predicate needs
to be supplemented by a set of also user generated lemmas. Providing user
generated predicates via a witness file was already possible in the current state
of CPACHECKER but providing additional lemmas was not. The changes to
CPACHECKER that we propose with this thesis make it possible to use lemmas to
successfully compute a Boolean predicate abstraction that can otherwise not be
solved via predicate abstraction.

The lemmas need to be provided to CPACHECKER via manually generated witness
files as described in Sect. 4.1. The content of these witnesses then needs to be
made part of the CPACHECKER class PredicatePrecision. The parsing of the
lemmas to our max-array() function poses some challenges with the current state
of CPACHECKER which will be discussed in Sect. 4.2. With the lemmas part of
the PredicatePrecision, some additions need to be made to the implementation
of the PredicatePrecisionAdjustment class, so the lemmas can be used to success-
fully solve an abstraction step. An overview of those changes is presented in Sect. 4.3.

Our approach brings the following additions to the implementation of
CPACHECKER:

• Parsing lemmas from a witness file into an AbstractionLemma

• Adding a set of AbstractionLemma to the PredicatePrecision

• At an abstraction location:

– Selecting the relevant lemmas for the primary formula

– Appending the selected lemmas to the primary formula

• For a Boolean Abstraction:

– Selecting the relevant lemmas for the relevant predicates

– Instantiating the lemmas the same way as the predicates

– Adding the instantiated lemmas to the solver context

16



4.1 The Lemma Witness

4.1 The Lemma Witness

Users can provide abstraction lemmas to CPACHECKER via witness files in the
YAML 1 format. The Listing 2 shows a simple example of a lemma witness in lines
15 to 23. A lemma witness is defined by a list of one or more entries where the
entry_type is lemma_set. In addition to a list of one or more lemmas, a lemma_set

also contains a list of all function and variable declarations that are appear within its
lemmas. This information is encoded by two key-value pairs: The key declarations

maps to a sequence of all declarations in the form of valid C declarations. The key
content contains a list of individual lemma entries.
Each lemma from content is marked by the keyword lemma and has itself two
key-value pairs. The field value contains the body of the actual lemma in the
format of a C expression. A lemma can contain one or more function calls but the
parsing of function calls into data structures is not supported by the current state of
CPACHECKER. This limitation is discussed in more detail in Sect. 4.2. The proposed
implementation provides a workaround to circumvent this limitation and make the
parsing of lemmas that contain function calls possible.

Because of how the parsing of the lemma witness currently works, all functions
that appear in a lemma entry or a predicate need start with the prefix _L_ and be
surrounded by the pattern ACSL(<function>).

The Table 4.1 gives an overview over the structure of the entries of a lemma witness.
Listing 2 demonstrates a simple example of a lemma witness with one lemma entry
in the lines 15 to 23.

Key Value Description
entry_type lemma_set The entry_type of a lemma witness
declarations sequence All relevant declarations for the lemma as

valid C declarations
content sequence A sequence of one or more lemma elements

content of content
lemma mapping A basic building block of a lemma witness
value scalar The actual lemma
format c_expression A lemma is a c_expression

Table 4.1: Structure of the entries of a lemma witness

1https://yaml.org/
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4 Approach

Listing 2 An example of a lemma witness

1 - entry_type: invariant_set
2 metadata:
3 format_version: "2.0"
4 producer:
5 name: "Handcrafted"
6 content:
7 - invariant:
8 type: loop_invariant
9 location:

10 line: 18
11 column: 3
12 function: maxArray
13 value: "m == ACSL(_L_MAX(a,j))"
14 format: c_expression
15 - entry_type: lemma_set
16 declarations:
17 - "int _L_MAX(int* A, int I)"
18 - "int* A"
19 - "int I"
20 content:
21 - lemma:
22 value: "ACSL(_L_MAX(A,0)) == A[0]"
23 format: c_expression

18



4.2 Parsing of the Lemmas

4.2 Parsing of the Lemmas

The user provided lemma entries from the witness must be parsed into an inter-
nal data structure so they can be used to solve an abstraction problem. This data
structure is the newly added class AbstractionLemma which is a part of the preex-
isting PredicatePrecision, as shown in Fig. 4.1. For each lemma_set entry from a
witness an instance of the class AbstractionLemma is created. An AbstractionLemma

has two fields: The set formulas contains the content of all value entries from the
lemma_set as Boolean formulas. The String identifier is the unique name of the
lemma function that is prefixed by _L_. The identifier for the lemma_set from our
example witness Listing 2 is _L_MAX.

PredicatePrecision
- localPredicates
- functionPredicates
- globalPredicates
- lemmas

AbstractionLemma
- Set<BooleanFormula>
formulas
- String identifier

AbstractionPredicate
- Region abstractVariable
- BooleanFormula
symbolicVariable
- BooleanFormula
symbolicAtom

Figure 4.1: The Predicate Precision

In the current implementation of CPACHECKER, to get a BooleanFormula from a
string of a C expression the content of the string is first parsed into a CStatement.
The two implementations of CStatement that are relevant for the parsing of a lemma
are CExpressionStatement and CFunctionCallStatement, as shown in Fig. 4.2. If the
string that we want to parse does not contain any function calls it is parsed into a
CExpressionStatement. From a CExpressionStatement we can derive a CExpression

BooleanFormula by preexisting methods if the expression is a CBinaryExpression.

If the string that is to be parsed, contains a C function call, like our lemma
_L_MAX(A,0) == A[0], it is parsed into a CFunctionCallStatement from which we
can get a CFunctionCallExpression. But the CFunctionCallExpression class does
not implement the CExpression interface and can therefore not easily be trans-
formed into a BooleanFormula. To mitigate this limitation, we introduce the class
ACSLFunctionCall, which is a CFunctionCallExpression that also implements the
CExpression interface, as shown in Fig. 4.3.
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4 Approach

<<interface>>
CStatement

<<interface>>
CFunctionCall

<<abstract>>
AExpressionStatement

- AExpression expression

+ getExpression()

<<abstract>>
AFunctionCallStatement

- AFunctionCallExpression
expression

+ getFunctionCallExpres-
sion()

CExpressionStatement

+ getExpression()

CFunctionCallStatement

+ getFunctionCallExpres-
sion()

Figure 4.2: Excerpt from the class hierarchy of C statements

<<interface>>
CRightHandSide

<<interface>>
CExpression

<<abstract>>
ABinaryExpression

- AExpression operand1
- AExpression operand2

CFunctionCallExpression

ACSLFunctionCall

CBinaryExpression

+ CExpression
getOperand1()
+ CExpression
getOperand2()

<<interface>>
CLeftHandSide

CIdExpression

Figure 4.3: Excerpt from the class hierarchy of C expressions
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4.2 Parsing of the Lemmas

We can derive a CBinaryExpression from our lemma string in three general steps:
First, all substrings that are function calls are extracted from the lemma string.
The function calls in the original string are replaced by placeholder variables that
contain no function calls. Then, the function call is parsed into an ACSLFunctionCall

while the rest of the lemma can be parsed into a CBinaryExpression via preexisting
methods. Lastly, all occurrences of placeholder variables in the CBinaryExpression

are replaced by the corresponding ACSLFunctionCall. From the CBinaryExpression

that contains the function calls we can then derive a BooleanFormula that can be
added to the formulas of an AbstractionLemma.

The parsing of a statement that contains function calls is handled by the
newly introduced class ACSLParserUtils. When parsing a lemma, the method
parseACSLExpression searches the string for all occurrences of the regular expres-
sion ACSL(*) that marks the appearance of a function call. For each occurrence
of the pattern the function call substring is parsed into an ACSLFunctionCall. In
the original string the substring ACSL(*) is replaced by a variable of the form
lemma_tmp_i, where the index i is increased with every match. The function call is
parsed into an ACSLFunctionCall and the relationship between thee replacement
variable and the FunctionCall is stored in a map.
Our example string ACSL(_L_MAX(A,0)) == A[0] contains the pattern exactly once.
The replaced string lemma_tmp_1 == A[0] can be parsed as a regular C Expression
that contains no function calls. The substring _L_MAX(A,0) is parsed into an
ACSLFunctionCall by the method extractFunctionCall().

Inserting the function calls back into the CBinaryExpression is done by the
ACSLVisitor. This visitor recursively searches a CBinaryExpressions for all occur-
rences of a placeholder variable of the form lemma_tmp_i.
A CBinaryExpression has two operands, which are also instances of CExpression.
For each operand, the visitor checks if it is an instance of CIdExpression. If the
operand is a CIdExpression whose name is a placeholder variable, the visitor
replaces this operand with the corresponding ACSLFunctionCall. Otherwise, it
recursively visits that operand which itself can be a CBinaryExpression. After it has
traversed the whole expression, the visitor returns a CExpression that contains all
function calls instead of their placeholders.

From the CExpression that is returned by parseACSLExpression(), we can derive the
BooleanFormula for our lemma. The following section discusses how the lemmas are
used to compute a new abstraction at an abstraction location.
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4.3 Computing a new Abstraction

At an abstraction location, the CPA algorithm calls the predicate precision
adjustment operator prec. This operator computes a new abstraction state and an
updated precision from an abstract state, a reached set and a predicate precision.
The theoretical background of precision adjustment is introduced in Definition 4.

The implementation for the prec operator in CPACHECKER is provided by the
method prec() from the class PredicatePrecisionAdjustment, which decides if a
new abstraction should be computed. The actual computation of a new abstraction is
implemented by the class PredicateAbstractionManager. The relevant methods for
the computation of a Boolean abstraction from this class are: buildAbstraction(),
computeAbstraction() and computeBooleanAbstraction().
In the following section, we will see how these methods have been modified to
make use of the abstraction lemmas that are now part of the predicate precision.

The method buildAbstraction() instantiates the abstraction formula and conjuncts
it with the path formula into a primary formula. An abstraction formula can contain
predicates which are dependent on abstraction lemmas. For this reason, we now
need to select all the relevant lemmas for the abstraction formula and append
them to the primary formula. This step is performed by the LemmaSelectionVisitor,
which is explained in Sect. 4.4. Next, buildAbstraction() gets all the predicates,
that are relevant at this location, from the predicate precision and identifies which
of those still need to be handled by the Boolean abstraction. The lemmas for
those predicates are selected by the LemmaSelectionVisitor and passed on to the
method computeAbstraction(), together with the set of remaining predicates and
the primary formula. computeAbstraction() initializes the prover environment
with the primary formula and then passes the predicates and lemmas on to
computeBooleanAbstraction() which does the actual computation of a Boolean
abstraction.

To compute a Boolean abstraction, we first instantiate the symbolic atom of each
predicate and build the equivalence between the symbolic atom and its symbolic
variable. Then, we instantiate all the lemmas with the same variables as the predi-
cates. The sets of the predicate equivalences and the instantiated lemmas are then
added to the prover context. The prover performs a SAT check for all the remaining
predicates that tells us whether the abstraction is satisfiable.
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4.4 Selection of the Abstraction Lemmas

The PredicatePrecision contains one set of all lemmas from all the witness files.
For the computation of a new abstraction, we want to select just the lemmas that are
necessary for the abstraction formula and the relevant predicates. To achieve this,
we use three visitors that implement the visitor pattern: The LemmaSelectionVisitor,
the LemmaVariableVisitor and the LemmaVariableEqualityVisitor. CPACHECKER

already provides the abstract class DefaultFormulaVisitor from which our three
visitors inherit (see Fig. 4.4).

<<interface>>
FormulaVisitor

visitFreeVariable()
visitFunction()

<<abstract>>
DefaultFormulaVisitor

visitDefault()
+ visitFreeVariable()
+ visitFunction()

LemmaSelectionVisitor
- abstractionLemmas
+ visitFunction()
+ visitDefault()

LemmaVariableVisitor
- predName
- predArgs

+ visitFunction()
+ visitDefault()

LemmaVariableEqVisitor

- predArg

+ visitFreeVariable()
+ visitDefault()

Figure 4.4: Lemma Selection Visitor

The LemmaSelectionVisitor has a set of all abstraction lemmas from which the
relevant ones for a formula should be chosen. In our case, such a formula is either
an abstraction formula or a predicate. In the default case, the visitor just returns the
empty set. If it is visiting a function, the visitor will select all the lemmas for this
function and then recursively traverse through its arguments.
If the name of the function is equal to the identifier of one of the lemmas, we have
found a match. In this case, the formulas of the lemma need to be added to the
set that the visitor will return. The variables in the definition of a lemma are never
part of the program scope, while the arguments of a predicate are always from the
program scope. For this reason, we need to add information about which lemma
variable corresponds to which program variable to the resulting set. To find the
relationship between the variables, we visit each formula from the matching lemma
with the LemmaVariableVisitor.
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To find the equality between a variable from the lemma and a variable from the
formula or predicate, the LemmaVariableVisitor checks whether the name and
number of arguments of the lemma match those of the formula. If this is the case, it
will visit each argument of the formula with the LemmaVariableEqualityVisitor.
The LemmaVariableVisitor returns a BooleanFormula of the form
<lemma argument> = <predicate argument>, if it visits a free variable. Other-
wise, it returns a trivially true BooleanFormula. The BooleanFormula that is returned
by the LemmaVariableEqualityVisitor is then added to the result set of the
LemmaVariableVisitor.

In the following Chapter 5, we evaluate our implementation for a selection of test
programs, that cannot be verified by predicate abstraction in CPACHECKER without
a lemma witness. Our approach dose have some limitations which we analyze in
Chapter 6.
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CHAPTER 5

Evaluation

To evaluate our implementation from Chapter 4 we use BENCHEXEC1 [12, 13, 14], a
framework that can produce reliable measurements for large sets of benchmarking
tasks. For each benchmarking run it measures CPU time, wall time and memory
usage while also allowing to set specific limits for these resources. We perform
the benchmarking on a Debian 12 virtual machine with 2 CPU cores and 7 GiB of
memory available on a host machine with an Intel i5-7Y54 CPU. The time limit we
set for a benchmarking task is 900 s.

As input, BENCHEXEC takes a task definition file in the XML format and an input
file in the YAML format. For each test program we create one input file that comes
with a lemma witness where the expected result is true and another input file
without a lemma witness. Without a witness the expected result is UNKNOWN because
CPACHECKER reaches a TIMEOUT. For the benchmarking we use BENCHEXEC

version 3.29 and CPACHECKER version 4.1-151-gee5d4a8bcd+.

In Sect. 5.1 of this chapter we evaluate our example Listing 1 from our Background
Chapter 3, as well as a function that calculates the minimum from an array. In
Sect. 5.2 we evaluate some examples from the array-patterns benchmarks that
can be found in the sv-benchmarks 2 repository. In Sect. 5.3 we consider a modified
version of one of the programs from Sect. 5.2 that shows the limitations of our
approach. All program files that we use for benchmarking in this chapter have been
added to the cpachecker 3 repository.

1https://github.com/sosy-lab/benchexec
2https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
3https://gitlab.com/sosy-lab/software/cpachecker/-/merge_requests/173
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5 Evaluation

5.1 Maximum and Minimum of an Array

In this section we take a closer look at the exemplary function maxArray() from
Listing 3 in Chapter 3. The function loops over all elements from an array of integers
and returns its maximum value. We want to verify that the call of reach_error()
in line 11 cannot be reached when executing the program. When using predi-
cate abstraction, CPACHECKER cannot verify this property without a lemma witness.

To verify that the variable m from maxArray() in Listing 3 is greater
or equal to any element from the array we need the predicate
m == _L_MAX(arr,j) as well as the supplementary lemmas _L_MAX(A,0)== A[0]

and _L_MAX(A,I) == A[I] > MAX(A,I-1) ? A[I] : MAX(A,I-1). The second lemma
is easily readable and intuitive for humans if we write it as a ternary expression.
However, the lemmas are parsed as a CExpression which does not implement
ternary expressions. For this reason, we have to transform the second lemma of the
witness from Listing 4 into a less intuitive binary expression that can be handled by
CPACHECKER.

We want to validate that CPACHECKER can solve the verification task via predicate
abstraction if we provide it with the lemma witness but that it cannot solve the
same task without a lemma witness. Listing 5 shows the input file for an execution
of CPACHECKER with a lemma witness for the max-array() function where the
expected result is true. Listing 6 shows the input file for a run without a lemma
witness where we expect a TIMEOUT.

Table 5.1 shows the results of a BENCHEXEC run for the functions max-array() and
min-array() when CPACHECKER is provided with a lemma witness. As expected,
both verification tasks return the result true within our given resource limits.
Table 5.2 shows the results of a BENCHEXEC run for the same functions but without
a lemma witness. In this case, the verification tasks cannot be solved within the
given time frame and BENCHEXEC returns a TIMEOUT. These results show that the
lemma witnesses are necessary for CPACHECKER to verify the max-array() and
min-array() functions via predicate abstraction.

status cputime (s) walltime (s) memory (MB)
max-array true 7.517857 4.890180 267.530240
min-array true 9.110797 5.278691 259.887104

Table 5.1: Results for the BENCHEXEC run with a lemma witness

status cputime (s) walltime (s) memory (MB)
max-array TIMEOUT 902.700347 884.923291 884.420608
min-array TIMEOUT 903.079896 883.360306 1027.624960

Table 5.2: Results for the BENCHEXEC run without a lemma witness
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5.1 Maximum and Minimum of an Array

Listing 3 A C function that returns the maximum from an array

1 int maxArray(int* a,unsigned int l, unsigned int i) {
2 int j = 0;
3 unsigned int m = a[0];
4 while(j < l) {
5 if(a[j] > m) {
6 m = a[j];
7 }
8 j = j+1;
9 }

10 if(m < a[i]) {
11 reach_error();
12 return -1;
13 }
14 return m;
15 }

Listing 4 A lemma witness for the maxArray() function
1 - entry_type: invariant_set
2 content:
3 - invariant:
4 type: loop_invariant
5 value: "m == ACSL(_L_MAX(arr,j))"
6 format: c_expression
7 - entry_type: lemma_set
8 content:
9 - lemma:

10 value: "ACSL(_L_MAX(A,0)) == A[0]"
11 format: c_expression
12 - lemma:
13 value: "((A[I] > ACSL(_L_MAX(A,I))) &

ACSL(_L_MAX(A,I)) == A[I]) | (A[I] <=
ACSL(_L_MAX(A,I)) & ACSL(_L_MAX(A,I)) ==
ACSL(_L_MAX(A,I-1)))"

↪→

↪→

↪→

14 format: c_expression
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Listing 5 Input file with a witness

1 format_version: '2.1'
2

3 additional_information:
4 task_type: validation
5 verification:
6 - property_file:

../../../config/properties/unreach-call.prp↪→

7 expected verdict: true
8

9 input_files:
10 - 'max-array.c'
11 - 'max-array-witness.yml'
12

13 properties:
14 - property_file:

../../../config/properties/unreach-call.prp↪→

15 expected verdict: true
16

17 options:
18 language: C
19 data_model: ILP32
20 witness_input_file: 'max-array-witness.yml'
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Listing 6 Input file without a witness

1 format_version: '2.1'
2

3 additional_information:
4 task_type: validation
5 verification:
6 - property_file:

../../../config/properties/unreach-call.prp↪→

7 expected verdict: unknown
8

9 input_files:
10 - 'max-array.c'
11

12 properties:
13 - property_file:

../../../config/properties/unreach-call.prp↪→

14 expected verdict: unknown
15

16 options:
17 language: C
18 data_model: produces ILP32produces
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5.2 Array Patterns

In this section we evaluate a selection of array-pattern benchmarks from the
sv-benchmark 4 repository. All of those programs follow a similar structure for
which an excerpt from array1_pattern.c in Listing 7 and array5_pattern.c
in Listing 8 give two examples:
First, we initialize two arrays of the same size with all values as zero. We then pick a
random index from the first array and perform an operation that changes the value
at that index. The value of a corresponding index from array two is then changed
in a complementary way. At the end, we verify that the sum of both arrays fulfills
some property, for example that the sum of both arrays adds up to exactly zero.

In array1_pattern.c we select a random index i between zero and the size of
the array minus one. Then, we set the array entry at this index to the value of i.
Next, we set the array entry i steps from the end of the array to the value of -i.
After a non deterministic number of repetitions of this loop we calculate the sum of
both arrays. As the last step, we verify that the sum of both arrays equals zero.
As we can see in Table 5.4, CPACHECKER cannot verify this property
via predicate abstraction within our hardware restrictions. To verify
that the sum sum of both arrays is equal to zero we need to provide
CPACHECKER with the predicate sum == _L_SUM(array1, array2, count)

from Listing 9 for the for loop in line 74-77. The corresponding lemma
_L_SUM is defined by the witness in Listing 9 as _L_SUM(A1, A2, 0) == 0 and
_L_SUM(A1, A2, C) == _L_SUM(A1, A2, C-1) + A1[1] + A2[C].
If we provide CPACHECKER with this lemma witness, we can verify the program
array1_pattern.c via predicate abstraction and within our constraints, as
Table 5.3 shows.

The program array5_pattern.c in Listing 8 only differs from array1_-
pattern.c in how the values for the arrays are determined: For the first array, an
even index i of the array is assigned the value of i while an odd index is assigned
the value of -i. For the second array, an even index i of the array is assigned the
value of i and an odd index is assigned the value of i.
Table 5.4 shows that we cannot verify array5_pattern.c via predicate abstrac-
tion, if we do not provide CPACHECKER with a predicate and lemma witness.

The calculation of the sum sum for array5_pattern.c in line 97-100 from
Listing 8 is identical to the for loop line 74-77 from array1_pattern.c. This
means that we can use the same predicate and lemma witness to verify both
programs if we assign the predicate to the correct location in the source code.
It would make sense to generate a new predicate witness for each program
and reuse the same lemma witness file wherever it is applicable. But because
of how the parsing of the lemma witnesses and the predicates that reference
a lemma is currently implemented, all lemmas for a predicate need to be

4https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
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5.2 Array Patterns

provided within the same witness file. As discussed in Sect. 7.1, the parsing of
the lemmas and predicates should be adapted so that a lemma witness can be reused.

Because of the cumulative nature of the array-pattern benchmarks, we cannot
verify them with predicate abstraction in CPACHECKER without a lemma witness,
as Table 5.4 shows. If we provide CPACHECKER with a lemma witness that defines
how the sum of two array is computed and a predicate that makes use of this
lemma, CPACHECKER can verify the selected array-pattern programs within
the given time frame via predicate abstraction. Table 5.3 gives the results for a
BENCHEXEC run over the array-pattern benchmarks when CPACHECKER is
provided with a lemma witness for predicate abstraction. As expected, in this case
the verification result for all benchmarks is true.

status cputime (s) walltime (s) memory (MB)
array1_pattern true 7.586583 4.474643 272.375808
array2_pattern true 8.191312 4.913940 272.220160
array3_pattern true 7.243493 4.043497 269.238272
array4_pattern true 9.860977 5.642485 274.403328
array5_pattern true 11.951999 7.337764 264.130560
array6_pattern true 10.761578 5.943338 262.111232
array7_pattern true 10.813531 6.523912 256.892928
array8_pattern true 10.826994 6.643799 263.839744
array9_pattern true 9.957992 5.786742 274.001920
array10_pattern true 10.743326 6.628171 279.691264

Table 5.3: Results for the BENCHEXEC run with a lemma witness

status cputime (s) walltime (s) memory (MB)
array1_pattern TIMEOUT 903.21816 883.372897 449.327104
array2_pattern TIMEOUT 904.406783 885.379947 478.367744
array3_pattern TIMEOUT 902.526338 885.938551 806.858752
array4_pattern TIMEOUT 903.677846 883.405733 460.611584
array5_pattern TIMEOUT 901.646286 883.473540 470.028288
array6_pattern TIMEOUT 903.908666 885.320838 579.055616
array7_pattern TIMEOUT 903.211315 883.882255 590.790656
array8_pattern TIMEOUT 903.554847 882.603957 475.922432
array9_pattern TIMEOUT 903.334656 884.473069 442.060800
array10_pattern TIMEOUT 903.256535 883.766988 455.397376

Table 5.4: Results for the BENCHEXEC run without a lemma witness
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Listing 7 Excerpt from array1_pattern.c

44 int main()
45 {
46 int ARR_SIZE = 10000;
47

48 int array1[10000] ;
49 int array2[10000] ;
50 int count = 0, num = -1 ;
51 int temp ;
52 short index ;
53 signed long long sum = 0 ;
54

55 for(count=0;count<ARR_SIZE;count++)
56 {
57 array1[count] = 0 ;
58 array2[count] = 0 ;
59 }
60

61 while(1)
62 {
63

64 index = __VERIFIER_nondet_short() ;
65 assume_abort_if_not(index>=0 && index <

ARR_SIZE) ;↪→

66

67 array1[index] = num*(num*index) ;
68 array2[ARR_SIZE-1-index] = num * index ;
69

70 temp = __VERIFIER_nondet_int() ;
71 if(temp == 0) break ;
72 }
73

74 for(count=0;count<ARR_SIZE;count++)
75 {
76 sum = sum + array1[count] + array2[count] ;
77 }
78

79 __VERIFIER_assert(sum == 0) ;
80 return 0 ;
81 }
82
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Listing 8 Excerpt from array5_pattern.c

60 int count = 0, num = -1 ;
61 signed long long sum = 0 ;
62 int temp ;
63 short index ;
64

65 for(count=0;count<ARR_SIZE;count++)
66 {
67 array1[count] = 0 ;
68 array2[count] = 0 ;
69 }
70

71 count = 1 ;
72

73 while(1)
74 {
75

76 index = __VERIFIER_nondet_short() ;
77 assume_abort_if_not(index>=0 && index <

ARR_SIZE) ;↪→

78

79

80 if(index % 2 == 0){
81 array1[index] = num * (num * count)

;↪→

82 array2[index] = num * count ;
83 }
84 else{
85 array1[index] = num * count ;
86 array2[index] = num * (num * count)

;↪→

87 }
88

89 if(count == 200)
90 count = 0 ;
91 count++ ;
92

93 temp = __VERIFIER_nondet_int() ;
94 if(temp == 0) break ;
95 }
96

97 for(count=0;count<ARR_SIZE;count++)
98 {
99 sum = sum + array1[count] + array2[count];

100 }
101

102 __VERIFIER_assert(sum == 0) ;
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Listing 9 Excerpt from a lemma witness for array1_pattern.c from Listing 7

1 - entry_type: invariant_set
2 content:
3 - invariant:
4 type: loop_invariant
5 location:
6 line: 74
7 column: 2
8 function: main
9 value: "sum == ACSL(_L_SUM(array1, array2, count))"

10 format: c_expression
11 - entry_type: lemma_set
12 declarations:
13 - "int _L_SUM(int* A1, int* A2, int C)"
14 - "int* A1"
15 - "int* A2"
16 - "int C"
17 content:
18 - lemma:
19 value: "ACSL(_L_SUM(A1, A2, 0)) == 0"
20 format: c_expression
21 - lemma:
22 value: "ACSL(_L_SUM(A1, A2, C)) == ACSL(_L_SUM(A1,

A2, C-1)) + A1[C] + A2[C]"↪→

23 format: c_expression
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5.3 Limitations

5.3 Limitations

All examples in Sect. 5.1 and in Sect. 5.2 have the expected verdict true when
provided with a lemma witness, and TIMEOUT otherwise. In this section we evaluate
two modified versions of the program array1_pattern.c from Listing 7 of the
previous section. We expect the modified program array1_pattern-false.c
from Listing 10 to reach the error location upon execution. The program array1_-
pattern-always-false.c has been modified in such a way, that the expected
verdict is never true. Both modified programs were added to the cpachecker
repository.

In line 79 from array1_pattern.c from Listing 7 we reach an error state if the
sum of array1 and array2 is not equal to zero. Table 5.3 shows that the analysis
of this program with a lemma witness yields the expected result true. If we invert
this condition, we reach the error location if the sum of both array is equal to zero.
An excerpt from the program array1_pattern-false.c that implements this
change is shown in Listing 10.
Because predicate abstraction in CPACHECKER works with an over approximation of
the state space, we expect a verification attempt for array1_pattern-false.c
to reach a TIMEOUT. However, Table 5.5 shows that the actual result for a
CPACHECKER run with the lemma witness from Listing 9 is true.

Listing 10 gives a program that adds an else-clause to the if-statement in
line 79 of Listing 10. Because the if-clause and the else-clause both contain a
reach_error() call, the program always reaches an error state upon execution.
We expect a verification attempt of array1_pattern-always-false.c with
predicate abstraction in CPACHECKER to reach a TIMEOUT or yield the verdict
false. But, as we can see in Table 5.5, CPACHECKER still returns true when given
this program with the lemma witness from Listing 9 for predicate abstraction.

We discuss possible solutions for this problem in Chapter 6.

array1_pattern- status cputime (s) walltime (s) memory (MB)
false true 8.50163 5.272354 262.180864
always-false true 8.116608 5.272354 5.272354

Table 5.5: BENCHEXEC run for Listing 10 and Listing 11 with a witness Listing 9
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Listing 10 Excerpt from array1_pattern-false.c:
A version of Listing 7 where the property is error location is reachable

74 for(count=0;count<ARR_SIZE;count++)
75 {
76 sum = sum+ array1[count] + array2[count] ;
77 }
78

79 if(sum == 0){
80 reach_error();
81 return -1;
82 }
83

84 return 0 ;
85 }

Listing 11 Excerpt from array1_pattern-always-false.c:
A version of Listing 7 where an error location will always be reached

74 for(count=0;count<ARR_SIZE;count++)
75 {
76 sum = sum+ array1[count] + array2[count] ;
77 }
78

79 if(sum == 0){
80 reach_error();
81 return -1;
82 }
83 else{reach_error();}
84

85 return 0 ;

36



CHAPTER 6

Discussing Current Limitations

During the evaluation in Chapter 5, we discussed how CPACHECKER falsely returns
the verification result true for programs that should reach an error at runtime. In
Sect. 5.3 we have evaluated one program in Listing 10 where the error location
should be reachable and another program in Listing 11 that should always reach
an error location during execution. But the verdict for both of these programs for
predicate abstraction with a lemma witness is true.
In Chapter 3 we have seen how predicate abstraction in CPACHECKER produces an
abstract reachability graph (ARG) that maps abstract states to concrete locations in
the CFA. This way CPACHECKER determines if a program location is reachable at
runtime.

When CPACHECKER analyses both programs, it unrolls the ARGs as ex-
pected until the loop head in line 74. It also reaches the summation
sum = sum + array1[count] + array2[count] of the loop-body in line 76. Af-
ter this abstract state both ARGs are not unrolled further, even though we would
expect them to go back to the loop-head in line 74.
The ARGs for both programs reach the if-statement if(sum == 0) in line 79. From
here, we should reach the reach_error()-call in line 80, but the ARGs do not
contain an abstract state that covers this program location.
In the ARG for array1_pattern-false from Listing 10 we have an abstract
state for the return-statement in line 84.
With the program from Listing 11 we expect to reach an error location in any case
after line 79. But the ARG for this program does not unroll further after this point.
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6 Discussing Current Limitations

During the execution of the CPA Algorithm (Algorithm 1), the predicate transfer
relation⇝P from Definition 1 calculates all abstract successors for a given abstract
state. Afterwards, the stop operator stopP from Definition 3 determines, whether
those abstract successors are implied by another abstract state that is already part
of the waitlist. In this case, the abstract successors do not need to be explored further.

We have discussed how the ARGs for are not fully explored at the loop-head in line
74 and at the error locations in lines 80 and 84. It appears that CPACHECKER does
not recognize these program locations as abstraction locations.
One possible cause for this behavior is that the predicate transfer relation⇝P does not
find any abstract states corresponding to these program locations. It is also possible
that the predicate transfer relation finds the correct abstract successors, but that the
stop operator falsely decides that they are implied by another abstract state and
should not be explored further.

We suggest to investigate why the ARGs for Listing 10 and Listing 11 are not
explored fully at the relevant abstraction locations. Based on the analysis given in this
chapter, we propose that the predicate transfer relation⇝P or the stop operator stopP
is likely the cause for the limitations that we have discussed in Sect. 5.3.
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CHAPTER 7

Future Work

With the implementation proposed by this thesis we introduce a prototype that can
can solve the Boolean predicate abstraction for loops with cumulative properties
over arrays. In Chapter 5 we have evaluated our approach and discovered that
lemmas cannot always be expressed in the most intuitive way. We have also seen
that the same lemma witness cannot easily be reused for every program where it
is applicable. Sect. 7.1 suggests to integrate a dedicated ACSL-Parser which would
mitigate those limitations. In Sect. 3.2 we suggest to extract the functionality of our
prototype into a new Higher Order Abstraction CPA.

7.1 Integrating an ACSL Parser

In Sect. 4.2, we have discussed how lemmas are parsed into CPACHECKER by using
the existing infrastructure around CExpressions. This approach, however, has the
limitation that we can only parse expressions that are covered by CExpressions.
Function calls, for example, are not part of CExpression and could not easily be
parsed without the introduction of the new class ACSLFunctionCall.

As part of the evaluation in Chapter 5 we discussed that CExpression does not
support ternary expressions. Because of this limitation we had to represent an
intuitive and easily readable ternary expression as a much more complicated binary
expression. In Chapter 5 we also noticed that we cannot reuse the same lemma
witness for multiple predicate witnesses, because we need the lemma declarations
for the parsing of a predicate that references a lemma.

Because of the limitations of CExpressions in CPACHECKER, a lemma witness
should be represented as an acsl_expression instead of a c_expression. To parse
these expressions an ACSL parser that can handle the types of expressions that are

39



7 Future Work

relevant for the lemmas should be integrated into the current approach.

For this we would use the interface ACSLExpression that exists in parallel to the
interface CExpression. The new interface and the corresponding parser would then
also be able to handle function calls and ternary expressions.
For the interface ACSLExpression we would also need a ToFormulaVisitor that
could transform an ACSLExpression into a BooleanFormula which can be used for
the abstraction.

There are also changes that can be made to the data structure into which the lemmas
are parsed. We make a proposal for such changes in the following section.

7.2 Higher Order Abstraction CPA

With our current implementation a set of global abstraction lemmas is part of the
PredicatePrecision. During each abstraction step and for every relevant predicate,
we iterate over the whole set of lemmas to select the ones that apply at the current
location. Instead, we could introduce a Higher Order Abstraction CPA which would
have a lemma precision in analogy to the predicate precision with global, local and
function specific lemmas. Like the current PredicatePrecision, a LemmaPrecision

could be refined.
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CHAPTER 8

Conclusion

The current state of predicate abstraction in CPACHECKER can verify some pro-
grams containing loops with user defined predicates, but not those that operate
on cumulative properties over arrays. We expanded the implementation of pred-
icate abstraction in CPACHECKER to successfully compute the Boolean predicate
abstraction for functions that loop over arrays. Interesting properties of arrays are
finding the maximum or minimum element from an array or comparing the sums
of to arrays.
Our approach makes it possible to compute the Boolean predicate abstraction for
cumulative array functions by supplementing the user defined predicates with also
user defined lemmas. Those lemmas are provided to CPACHECKER via a witness file
and then parsed into CPACHECKER as a CExpression. The current implementation
of C expressions in CPACHECKER does not support function calls or ternary expres-
sions which caused difficulties for the parsing of the lemmas. For future work we
propose to introduce the new interface ACSLExpression and a corresponding parser
which provide all the necessary functionality.
Within CPACHECKER the lemmas are a part of the PredicatePrecision. For every
abstraction step we select the lemmas that supplement the relevant predicates for
this location and add them to the solver context. This makes it possible for the
SMT-Solver to successfully solve the verification task. The current implementation
of the lemmas as part of the PredicatePrecision is not yet optimized. For future
work we propose to extract the functionality of the lemmas into a Higher Order
Abstraction CPA that has a more refined LemmaPrecision. This new CPA would then
interact with the Predicate CPA to solve a verification task.
We have shown that the Boolean predicate abstraction for loops over arrays can be
computed by CPACHECKER using predicate abstraction. To achieve this goal we
supplement user defined predicates with user defined lemmas. This way we can
use more inductive predicates which enable us to compute the Boolean predicate
abstraction for cumulative functions like calculating the maximum from an array of
integers.
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[51] Z. Rakamarić and M. Emmi. Smack: Decoupling source language details
from verifier implementations. In CAV, pages 106–113. Springer, 2014. DOI:
10.1007/978-3-319-08867-9_7.

[52] D. M. Ritchie, S. C. Johnson, M. Lesk, B. Kernighan, et al. The c programming
language. Bell Sys. Tech. J, 57(6):1991–2019, 1978.

46

http://dx.doi.org/10.1145/503272.503279
http://dx.doi.org/10.1145/503272.503279
http://dx.doi.org/10.1145/503272.503279
http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1145/3632864
http://dx.doi.org/10.1145/3632864
http://dx.doi.org/10.1007/978-3-319-49812-6
http://dx.doi.org/10.1007/978-3-319-49812-6
http://dx.doi.org/10.1007/978-3-319-49812-6
http://dx.doi.org/10.48550/arXiv.1111.0372
http://dx.doi.org/10.48550/arXiv.1111.0372
http://dx.doi.org/10.1007/978-3-540-24622-0_22
http://dx.doi.org/10.1007/978-3-540-24622-0_22
http://dx.doi.org/10.1007/978-3-319-49812-6
http://dx.doi.org/10.1007/978-3-319-49812-6
http://dx.doi.org/10.4204/EPTCS.149.2
http://dx.doi.org/10.4204/EPTCS.149.2
http://dx.doi.org/10.1109/MS.1985.230345
http://dx.doi.org/10.1109/MS.1985.230345
http://dx.doi.org/10.1145/3462205
http://dx.doi.org/10.1145/3462205
http://dx.doi.org/10.1007/11817963_14
http://dx.doi.org/10.1007/11817963_14
http://dx.doi.org/10.1109/2.161279
http://dx.doi.org/10.1007/978-3-319-08867-9_7
http://dx.doi.org/10.1007/978-3-319-08867-9_7


Bibliography

[53] C. Sinz, F. Merz, and S. Falke. Llbmc: A bounded model checker for llvm’s
intermediate representation: (competition contribution). In TACAS, pages
542–544. Springer, 2012. DOI: 10.1007/978-3-642-28756-5_44.

[54] N. Suzuki and D. Jefferson. Verification decidability of presburger array pro-
grams. JACM, 27(1):191–205, 1980.

[55] T. Wahl. The k-induction principle. Northeastern University, College of Computer
and Information Science, pages 1–2, 2013.

[56] P. Wendler. Towards Practical Predicate Analysis. PhD thesis, 11 2017.

[57] M. Wenzel, L. C. Paulson, and T. Nipkow. The isabelle framework. In TPHOLS,
pages 33–38. Springer, 2008. DOI: 10.1007/978-3-540-71067-7_7.

47

http://dx.doi.org/10.1007/978-3-642-28756-5_44
http://dx.doi.org/10.1007/978-3-642-28756-5_44
http://dx.doi.org/10.1007/978-3-642-28756-5_44
http://dx.doi.org/10.1007/978-3-540-71067-7_7
http://dx.doi.org/10.1007/978-3-540-71067-7_7

	1 Introduction
	2 Related Work
	3 Background
	3.1 Control Flow Automata
	3.2 CPA Algorithm
	3.3 CPAchecker's Predicate Abstraction
	3.3.1 The Predicate CPA

	3.4 Example

	4 Approach
	4.1 The Lemma Witness
	4.2 Parsing of the Lemmas
	4.3 Computing a new Abstraction
	4.4 Selection of the Abstraction Lemmas

	5 Evaluation
	5.1 Maximum and Minimum of an Array
	5.2 Array Patterns
	5.3 Limitations

	6 Discussing Current Limitations
	7 Future Work
	7.1 Integrating an ACSL Parser
	7.2 Higher Order Abstraction CPA

	8 Conclusion
	Bibliography

