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Abstract

Ensuring software security is essential to protect sensitive information from unin-
tended disclosure or adversary exploitation. Taint analysis, a method grounded in
information flow analysis is an effective technique to track sensitive data through
programs, enabling the detection of vulnerabilities such as unauthorized infor-
mation disclosure. This thesis presents the implementation and evaluation of a
symbolic taint analysis module for CPAchecker, a configurable software verification
framework. The implemented module systematically tracks the flow of sensitive
information through C programs, identifying potential leaks and vulnerabilities in a
set of synthetic benchmark programs. For the benchmarking process a combination
of a set of test cases created alongside the development of the analysis implementa-
tion, and other set of benchmarks from external sources. In addition, all benchmarks
were formatted for consistency. The outcomes demonstrate the robustness and ex-
tensibility of the developed module, but also show that there is space for future
work on the aspects that could not be covered within the scope of this work.
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CHAPTER 1

Introduction

Ensuring software security has become an increasingly critical challenge, as
modern systems frequently handle sensitive information such as personal data,
authentication credentials, medical records, financial information, or classified
materials. Examples of critical software security breaches include vulnerabilities
like SQL-Injections, leaks of personally identifiable information through improperly
sanitized inputs, and unauthorized disclosure of cryptographic secrets [3]]. A tech-
nique to address this is taint analysis, a formal method based on information-flow
analysis used to track the flow of sensitive data through software programs. By
marking sensitive data (tainting) at specific sources and observing its propagation
throughout a program, taint analysis can help detect when such data reaches
insecure destinations, also known as sinks. Taint analysis enables developers to
identify potential vulnerabilities, including unintended data leaks and unauthorized
access paths.

The goal of the taint analysis is to determine whether at the end of program ex-
ecution there are secret variables that are adversary-observable. The adversary
is the entity that attempts to obtain information about confidential data from the
execution of a program. In this work, we use a threat model in which the adversary
can observe the public (low-security) outputs after the execution of a program that
operates on confidential data [7]]. A private/secret or high-security variable is, in con-
trast to a public variable, a variable that carries sensitive information that must not
be adversary-observable. The information flow analysis tracks the influence of the
different program variables on each other during program execution. In the context
of detection of unintended information disclosure, the influence of high-security
variables on low-security variables is particularly interesting and critical, because
even if after the program completion a secret variable is not directly leaked, an adver-
sary could gain partial or full knowledge about the confidential information through
a public output that was influenced by a high security value during the program
execution. Taint analysis flags variables that are influenced by high-security values



1 Introduction

as tainted and transitively propagates the taint with each interaction (assignments
and assumptions) between the variables.

This thesis presents an implementation of symbolic taint analysis and an evaluation
of its performance over a set of benchmarks in form of C-programs with predefined
assertions about the taint status of the program variables at certain points of the
program execution (ground truth).

Our taint analysis is implemented as a Configurable Program Analysis (CPA) [1] of
the CPAcheckerE] framework, a state-of-the-art tool for software verification which
will be briefly explained in Chapter 3.1. The benchmarking of the analysis is made
with the benchmarking tool BenchExec H Both tools are open-source and developed
at the chair of Software and Systems at the Ludwig Maximilians Universitdt in
Munich. (poner links a los repositorios al pie de la pagina)

Taint analysis in CPAchecker was implemented as a continuation of an initial
prototype written by Jan Haltermann. The prototype was not yet a working
implementation, meaning that it was not yet able to analyze a C program. However,
it was a solid foundation that counted with the necessary classes (CPA, Transfer-
Relation and State objects) to handle state generation, which were used in this thesis
as base for the implementation of the actual analysis and its posterior benchmarking.

The thesis consists of 6 chapters. To this chapter follows Chapter 2 that introduces
the concepts of information-flow and taint analysis, their relation and their application
in the implemented analysis in CPAchecker. Chapter 3 explains the aspects of
CPAchecker that are relevant for the analysis and how they are going to be used
for implementing and benchmarking our taint analysis. Chapter 4 goes deeper
into the actual implementation details of the taint analysis in CPAchecker, also
explaining the challenges and its logic, e.g., behind the state generation strategies
and other important aspects of the analysis. Chapter 5 shows the benchmarking
process and the result of our analysis. Chapter 6 presents the conclusion of this
work and suggests some ideas to expand it in the future.

The main contributions of this thesis are:

¢ Implementation of Taint Analysis: Development of a simple (static + single
copy + basic threat model), yet complete and expandable prototype for a taint
analysis module for CPAchecker, offering precise and systematic tracking of
information flows in C programs.

¢ Benchmark Design: Creation and collection of a suite of controlled test cases
to reliably evaluate the precision of the implemented taint analysis. All bench-
mark programs from external sources were be put in a common format.

* Performance Insights: Experimental validation of the taint analysis module’s
effectiveness in the benchmark set.

Thttps:/ /gitlab.com/sosy-lab/software /cpachecker
Zhttps:/ / github.com/sosy-lab/benchexec/blob/main/doc/INDEX.md



CHAPTER 2

Related Work

Taint analysis and information flow have been studied extensively, as these
approaches play a crucial role in software security by identifying unintended data
leaks and vulnerabilities. Yang et al. [7], in their work on lazy self-composition
for security verification, introduced a formal methodology to analyze information
flow within programs. Their approach employs a more complex verification
mechanism compared to the one implemented in this thesis, as it relies on lazy
self-composition to define and track information flow. However, it provides valuable
theoretical insights into secure program analysis, such as formal definition of the
information flow problem and symbolic taint analysis, which were used in this work.

CPAchecker, used as the foundation for this implementation, is a state-of-the-art
software verification framework that integrates SMT-based reasoning and config-
urable program analysis, as presented in the work "A Unified View on SMT-Based
Software Verification." [1]. This framework handles critical aspects of verification,
such as parsing, state exploration, and abstraction management, which in general
allowed the focus of this thesis to remain on the design and evaluation of the taint
analysis module.

The work "Timing side-channel attacks" [6] of Martin Schwarzl et al. highlights how
even subtle, indirect interactions between data can lead to critical vulnerabilities,
which underscores the importance of developing accurate tracking mechanisms
for both explicit and implicit data flows. Understanding the importance of indirect
flows was essential to shape the taint propagation strategy of this thesis.

Historical perspectives also offer valuable insights into information flow verification.
A foundational work, "Certification of Programs for Secure Information Flow"
by Dorothy and Peter Denning [2], introduces one of the earliest compile-time
mechanisms for securely certifying information flow in programs. Despite being
an older publication, it remains relevant today, particularly in its structured
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handling of information flows across data structures. The clear definitions and the-
oretical underpinnings inspired some aspects of the analysis performed in this thesis.



CHAPTER 3

Information-flow and Taint Analysis

3.1 Information-Flow Analysis

Information Flow is a property that checks the explicit or implicit influence of high
security (private) values on low security (public) values on a program [7].

Here, explicit information flow represents direct assignments or operations where
tainted data is directly used, and implicit information flow refers to the propagation of
influence through control-flow structures like conditional statements [2].

While the importance of explicit information flow is evident, implicit leaks can
appear less critical. However, the importance of implicit information flow lies in
the fact that confidentiality must ensure that sensitive data cannot be inferred by
observing side effects, such as flows, execution time, or exceptions.

Among other applications of this technique, inspection of such relationships can
deliver critical information about vulnerabilities in a system, addressing the secure in-
formation flow problem. The secure information flow problem encompasses challenges
surrounding data confidentiality, which ensures that no unauthorized party gains
visibility over private or high-security information, and data integrity, which ensures
that high-integrity processes are not manipulated by lower-integrity or untrusted
data [5].

Figures|l|and [2|illustrate the implicit and explicit information flow. Listing 1|shows
an example of explicit information flow in a C program. We consider the variable
high_security_variable to be a source of sensitive information, which due to
the assignment a += high_security_value; in code line 3 becomes adversary
observable through the variable a at the end of the program execution.

On the other hand, in listing [2| the variable a does not directly contain sensitive infor-
mation, but its value is controlled by the high_security_value. An attacker can
then gain information about high-security data even if it is not an explicit leak. This
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is an example of implicit information flow. Other forms of implicit information flow
are Timing Side Channels [6] and the mere presence of an error message, among others.

int main(int high_security_value) {
int a = 4;
a += high_security_value;
return a;

U W N =

Listing 1: Explicit information flow from a high security variable to a
low security variable

}

return a;

1 |int main(int high_security_value) {
2 int a;

3 if (high_security_value) {

4 a=1;

5 } else {

6 a = 0;

7

8

9

Listing 2: Implicit information flow in which a high security variable
controls the state of a low security variable

3.2 Symbolic Taint Analysis

Taint analysis is a form of information flow analysis. In contrast with other
forms of information flow analysis that could, for example, use execution
of copies of a program with modified sensitive data in control structures to
check whether the observable values were influenced, as shown in "Finding
Information Leaks with Information Flow Fuzzing" [4], in taint analysis the core
idea is to flag sensitive information as tainted, and track its propagation and
interaction with other program variables, to determine whether at the end of
the program execution, adversary observable variables are influenced by high
security data. Here, it is also important to note that not only variable assignments
(explicit taint) can be relevant for the taint propagation, operations inside control
structures such as conditions in branches or loops are relevant as well (implicit taint).

We distinguish symbolic from dynamic taint analysis. In the first, the program is
not analyzed at run-time and considers all possible inputs and paths that static
verification allows. Dynamic analysis, on the other hand, checks only explicit paths
of a program at run time. Since our implementation of taint analysis extends the
capabilities of CPAchecker, a framework for static software verification, it is a
symbolic analysis.

To describe taint analysis formally, we use the definition of symbolic taint analysis
from the paper Lazy Self Composition for Security Verification [7].




3.2 Symbolic Taint Analysis

We capture the taint of a formula ¢ over a signature X via

false ifNX =0
0(¢) = \/ x; otherwise

xcQ

Here, the signature represent the union of literals and program variables, and the
formula ¢ can be a statement, such as x + 1, or an assumption (like x < 1), but
note that ¢ is defined over the program signature X and therefore not necessarily
over program variables; it could also be a statement over constant values, which are
not a source of sensitive information, and therefore are never tainted. The symbol
x; is of sort boolean and says whether the program variable x € X is tainted or not.
In our analysis, it can be expressed as x; < x € T(C X), where T is the set of tainted
variables. The state update 7r(X;,X/) of the taint status of the program variables X is
then defined in Yang. et. al [7] as

/\ X = O(cond) V (cond?0(¢)):0(¢))
X €X v ¥

implicit taint flow explicit taint flow

This means that taint propagation can be triggered either by a direct assignment
(explicit taint propagation) or when an assignment is controlled by a tainted variable
(implicit taint propagation), e.g., when the condition of an if-statement contains a
tainted variable and its body contains a variable assignment, even if the tainted
variable is not involved in the assignment.

The intuitive behavior of the analysis that the formal definition above models can be
resumed as: "For given program variables x,x; with x| private and x, public, taint
may propagate from x; to x, either when x; is assigned an expression that involves
x; or when an assignment to x, is controlled by x;". This definition will be the
basis for the taint propagation of our analysis and for defining the information-flow
violation that the analysis will check.

The resulting behavior of the taint analysis is an overapproximation of the infor-
mation flow, leading to some conceptual challenges such as false-positive alarms.
Consider the program in figure |3 Intuitively one would think that the program
variable b should become sanitized by the subtraction of the high_sec variable.
For taint analysis this is not the case, since , as described above, for an assignment,
the taint flows from the right-hand side (RHS) to the left-hand side (LHS). Taint
analysis tracks the taint flow between program statements independently of their
actual values, and therefore, the actual value of b is irrelevant for the taint analysis.
This is an example of a false positive since b clearly does not carry the value of
high_sec after the subtraction, but despite it, it will be flagged as tainted.
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int main(int high_sec) {
int b = 1;

b =+ high_sec; // taint flows to b
b =- high_sec; // b is does not get sanitized

return b; // b is tainted

Listing 3: Overapproximation leads to false positive




CHAPTER 4

CPAchecker

CPAchecker [1] is a highly configurable SMT based software verifier developed
at the chair of Software and Systems of the Ludwig Maximilians Universitit Miinchen.
CPAchecker supports verification of C and Java Programs, although the verification
of Java programs is relatively new compared to the one for C, and therefore not yet
as mature as the for C programs, which is currently completely robust and has been
used for finding bugs in real-world programs e.g. in the Linux Kernel. Since the
work in this thesis is based on analyzing C programs, our focus stays on the key
aspects of CPAchecker’s capabilities for the language C.

CPAchecker provides a highly adaptable modular framework based on Configurable
Program Analysis (CPA), a unifying foundation for various program analyses. Be-
tween others, it supports approaches such as predicate abstraction, bounded model
checking, and lazy abstraction, which leverage SMT (Satisfiability Modulo Theories).
The taint analysis module extends CPAchecker using symbolic abstraction tech-
niques and configurable components to define sensitive sources, tainted and un-
taitned variables, and checks for assertions over the taint state of variables on certain
points of the program execution, among others. The module leverages CPAchecker’s
abstraction capabilities to propagate taint information through C programs.

Since almost all the concepts around information flow can be better understood
by looking at the CFA of a program, we take a look at its definition and role in
CPAchecker.

4.1 Control Flow Automaton

A Control Flow Automaton (CFA) A = (L,li,z,G) is a structure used to represent
a program in form of a graph. L is the set of program nodes and G the set of
program edges, with [;,; € L being the initial node (entry point) of the program,
and the edges g € G being 3-tuples with g = (l;,0p,l;) for the node [;,l; € L,
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and an operation op which can be either an assignment or an assume operation
over the set of program variables X, applied when transiting from node /; to
node /; in the edge g. CPAchecker generates a CFA for the analyzed programs,
which can be very useful, among others, to visually understand the informa-
tion flow in a program. Figure[4.I|shows a C code snippet and its CFA representation.

int main (int tainted) {

1
2 int a = 2;
3 int x;
= 2;
4
5 if (tainted < 10) {
6 X = aj
7 } else {
8 X = tainted;
9

}

==
= o

return x;

—-
N
—

[tainted < 10] !'[tainted < 10]

X = tainted;

return x;

Figure 4.1: C code on the left and its corresponding CFA on the right

CPAchecker allows the tracking of the CFA on each step of the CPA algorithm. It
parses the content of the given programs, e.g., program variables, assignments,
declarations, etc., and all this meta data is then contained in the CFA and passed to
the analysis. When writing or debugging an analysis in CPAchecker, a developer
can count with a robust tracking of the CFA of the analyzed program at each step of
the algorithm, being able to see all the important information, such as the type of
edge, the entering and leaving nodes, and the statements that are present at specific
points of the program execution. A major part of the implementation of an analysis
consists of handling the different types of edge and the statements on each edge.

4.2 CFA Edges

There are several types of edges that CPAchecker recognizes. Every type of edge con-
tains information about its predecessor and successor nodes, and each node contains

10
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information about its leaving and entering edges, so that outgoing from one edge
one can reconstruct the whole CFA. Additional information like the source lines,
raw statement and file location that correspond to the edge can be found in every
type as well. However, each particular type of edge has additional specific attributes.

In the following we focus on the types of edge that are relevant for our implemented
analysis, to set the ground for the explanation of the taint analysis in Chapter 4.
Consider x € X to be an arbitrary program variable in the set of program variables
of a C program.

1. Assume Edge: An assume edge represents the check of a condition inside some
flow control structure in the program, such as if-statments or loop-conditions.
It consists of a plain condition, like x > 3. Because of that, the predecessor
node of an assume edge always has two leaving edges, one for each branch, as

figure[d.2]shows.

Assume Edge 1 Assume Edge 2

() )

Figure 4.2: Node N1 is the predecessor node of assume edge 1. N1 has
two leaving edges

Since this kind of edge determines the branching of the CFA, it plays a critical
role in a path-sensitive analysis, like our implementation of taint analysis.
This edge contains additional information related to the given condition, such
as the expression it self, whether it is swapped, and a truth assumption, which
indicates which branch of the condition is being explored.

Note that in C, unlike other programming languages like Java, the logical
conditions are not necessarily treated as boolean variables. In general, in C
a value is equivalent to false when it is equal to 0, and true otherwise.
Therefore, for example, an assume edge created from the line if (x) ... is
totally valid, and internally means, for CPAchecker, to check whether (x ==
0) or (! (x == 0)) holds.

The special case of assumptions in which x is initialized as a non-deterministic
variable that does not hold an explicit value are valid as well, and its handling
represent an interesting case for the taint analysis.

2. Declaration Edge: Variable declarations without an initializer like char x;,
or with an initializer like int x = 4; or function declarations like void

11
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foo () ; are examples of statements that correspond to a declaration edge.
This kind of edge contains additional information about the declaration, such
as the (nullable) initializer, the name, scope and data type of the declared
variable.

. Statement Edge : A statement edge can represent either a simple expression,

an expression assignment, a function call, or a function call assignment. Calls to
external functions and C built-in functions like sizeof or alignof are handled
as statement edges, but fully implemented functions that are defined outside
the scope of the main function, are handled as a function call edge instead.
Simple expressions like var without any initialization or declaration are not
particularly relevant for the analysis, but are necessary for the generation of
new states to prevent an early termination of the analysis execution. Expression
assignments and function call assignments consist of a left-hand side (LHS)
and a righ-hand side (RHS), which are expressions themselves. This kind of
assignment corresponds to variable initializations or overrides for program
variables that were already declared earlier in the code, where the RHS is either
some expressione.g.,x = (1 < 0),ora (external or C built-in) function, e.g.,
x = sizeof (int) for an earlier declared int x.Function calls of external
and built-in C functions, that are not assignments, are handled as statement
edges as well. For all the types of statement edges there is specific information
of the statement like the corresponding expression or function call in case it is
not an assignment, and the left- and right-hand side otherwise.

A statement edge is one of the most common types of edge in a program and is
the place where a big part of the logic of the analysis is implemented, because
in most of cases here is where the information flows explicitly: the taint flows
from the RHS to the LHS of an assignments (or declarations with non-null
initializer).

. Function Call Edge: This type of edge comes from program lines containing

raw function call expressions like foo (x, .. .) or also assignments such as
y = foo(x,...) for given program variables x,y and, in contrast with the
Function Call Statement Edge explained above, a not-external and not-built-in
function foo () that is defined outside the scope of the current function.
This kind of edge contains information about the called function, e.g., the
name of the function or the passed parameters if present. This and the next
type of edge are particularly relevant for the handling of inter-procedural
function calls in the analysis.

. Function Return Edge: This edge connects the last node of a function and the

location where the function was called. It is strongly related to a function call
edge, because it is created at some point after a function call edge, no matter
whether the called function has a return value or if it is a void function. This
kind of edge includes the information about the inter-procedural flow, i.e.,
from which and to which function flows the returned value, and, when the
called function has a return value, this edge allows the handling of it.



4.2 CFA Edges

Listing[d]shows an example program in which one can clearly see the difference
between the last two mentioned edges and a return statement edge which will
be explained next. The lines 3 and 7 trigger both a function call edge and a
function return edge while line 11 triggers a declaration, a statement and a
return statement edge.

1 |int main() |

2 int a = 2;

3 foo(a); // fct. call edge and fct. return edge

4 |}

5

6 |void foo (int p) {

7 p = taint(); // fct. call edge and fct. return edge
8 |}

9

10 |int taint () {

11 // declaration edge and statement edge

12 // due to internal CPAchecker temp vars

13 return _ VERIFIER_nondet_int (); // and return statement edge

=
'S

}

Listing 4: Example function call edge vs function return edge vs
return statement edge

6. Return Statement Edge: This edge is triggered directly by a return statement in

the code, and therefore, it handles the return value of a function. The attributes
that are particular for this type of edge are the expression that is being returned,
and an assignment, which is created internally and named __retval__ (for
return value) and has the purpose of resolving the returned expression and
saving it into the internally generated retval variable for later handling outside
of the function in which it was created.
For example, in figure {4{the value of __ VERIFIER_nondet_int () will be
stored in __retval__ and then the value of it will be saved in the variable
p. The variable __retval__ generated in a return statement edge works
as a sort of bridge between function calls, and allows us to handle the taint
propagation in inter-procedural calls.

It is important to note that one line of code can imply several types of edge. In
general, two things can happen when the analysis processes an edge: either a new
"good" state is generated, or a property violation is set for the current state. The
specific handling of each of these edge types in our implementation of taint analysis
is explained in detail in chapter[5]

The code in snippet f|shows a static analysis of the edges that each line generates.
Note that, to keep the comments short, only the name of the generated type of edge
was written, but it does not mean that a line is an edge. A source code line and a
CFA edge are closely related concepts, but they are distinct and cannot be used
interchangeably. The comments that are written as "<line of source code>
//<edge type>"mustberead as"'<line of source code> // generates
an <edge type>".

13
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Notes about listing

- Code line 9 triggers two assume edges, one for arg == 0 and one for ! (arg ==
0).

- Code line 10 and 15 trigger two edges, one function call edge before processing
the function’s body of the function taint (), and one function return edge after the
called function was processed. Note that the word "return” in the function return edge
does not refer to the return value of a function, it refers to the edge that is "comming
back" (returning) from the called function to its caller.

- Code line 12 triggers a statement edge, whose assignment RHS contains the
evaluated value of sizeof (int), in this case 4UL. This does not only apply to the
sizeof function, but to all built-in C functions, and is something that CPAchecker
already delivers in the parsing of the given code, so the analysis does not have a
way to handle parameters that were given to built-in C functions. This last point
makes it difficult to track taint propagation for such function calls and its handling
is explained in Chapter 5}

- Code lines 24 to 26, regarding the function taint (), if the return statement would
have been directly return ___VERIFIER_nondet_int () ;, or more generally, if
the returned expression is not a declared variable, CPAchecker internally creates a
variable <Return type of the called function> __ CPAchecker_ TMP_-
<index> in the scope of the called function, to store its return value. For this it
creates an statement edge which assigns the returned value to the newly created
variable: e.g., int ___CPAchecker_TMP_0 = __ VERIFIER nondet_int ();

14



4.3 Parsing of C expressions

1 |extern int ___VERIFIER_nondet_int (); // declaration edge

2 |extern int __ _VERIFIER is_public(int variable, int booleanFlag);

3

4 [int main(int arg) { // declaration edge

5 int a = 2; // declaration edge

6 a = 2 < arg; // statement edge

7 int x; // declaration edge

8

9 if (arg) { // two assume edges, (arg == 0) and (arg != 0)

10 x = taint(); // function call edge and function return edge

11 } else {

12 x = sizeof(int); // statement edge

13 }

14

15 foo(&a); // function call edge and function return edge

16

17 _ _VERIFIER_is_public(a + x, 0); // statement edge

18 |}

19

20 |void foo(int* p) { // declaration edge

21 *p = 2 % (%p); // statement edge

2 |}

23

24 [int taint () { // declaration edge

25 int a = __ _VERIFIER_ nondet_int(); // declaration edge (for ‘int a
;') and statement edge (for the assignment ‘a = ...Y')

26 return a; // return statement edge

27 |}

Listing 5: Example C code snippet containing all types of edges that
are handled in taint analysis

4.3 Parsing of C expressions

CPAchecker delivers a robust parsing of expression for the analyzed C programs
to the implemented analysis. We handle some of them to model the taint analysis,
but there are still some that could be added in a future extension of the analysis. A
summary of the used expressions in our implementation follows:

1. CExpressions: Is the interface used to model further types of expressions. All
expressions that we use in the analysis implement this interface.

2. CLiteralExpression: This represents literal values, for example, (int) 5,
(char) ’'c’ or (float) 1.2.

3. CIdExpressions: This type of expression represents a single variable name,
e.g., x,y,var, etc.

4. CBinaryExpression: This represents operations with the form x o y where o
is a binary operator, and x and y can be CExpressions themselves, including
further binary expressions. For example, the expressiona + b * cis parsed
as a binary expression by considering the usual binding arithmetic rules (e.g.,
multiplication binds stronger than the sum operator). With this, the term y
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4 CPAchecker

:= b * cbecomes one term in the binary expression and as result the parsed
binary operation is considered as a + y which is resolved by unfolding the
results of the respective binary expressions.

. CCastExpression: Contains information about the new data type and the

casted CExpressions.

. CPointerExpression: Used to handle occurrences of pointers, for example, xp

= 20rint xp = &x.

. CUnaryExpression: Used to handle occurrences of unary operations applied

to a CExpressions, for example, -foo or &var.

. CArraySubscriptExpression: Used to handle occurrences of arrays, for exam-

ple,a[l] = 3.

. CFieldReference: Used to handle occurrences of field references, for example,

d.field = xor for pointer dereference:p -> value = x.

All this information is automatically parsed by CPAchecker and can be used after-
wards to handle the different situations.

16



CHAPTER 5

Taint Analysis in CPAchecker

As explained in chapter 3| our taint analysis implementation is based on the formal
definition from the paper Lazy Self Composition [7]. Although it must differ from it
in some points, due to the context of CPAchecker.

An example of one deviation from the definition in the paper, that we must take
for our implementation, are the CPAchecker C-built-in keywords sizeof and __-
alignof__ or_Alignof. These functions are internally evaluated at the program
parsing in CPAchecker before they are passed to the taint analysis, and for this

reason the analysis cannot see the arguments that were passed to that function.
Without this information, it is not possible for the analysis to track the taint flow in
such calls. These functions can represent a source of sensitive information, but as

long as we don’t have a way to access the original passed variables, we must accept

that for such cases the analysis will fail. Additionally, the behavior of the analysis

for these cases, is not consistent with the most general overapproximation rule of

taint analysis, that in every statement a tainted right-hand-side (RHS) should taint

the respective left-hand-side (LHS). To make this situation clear, we see in figure @
an example C program that uses the sizeof function with a tainted parameter x. If

we strictly follow the definition of taint analysis, then the RHS of the expression in

line 3 must taint its LHS, which does not happen in our implementation, due to the

mentioned limitation.

int main(int sensitive_information) {
int a = sizeof (sensitive_information);
return a;

Gk W N =

Listing 6: Example C program that returns the sizeof value of sensitive
information.
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5 Taint Analysis in CPAchecker

5.1 Threat Model

In information flow analysis the threat model determines when the analysis considers
that an attacker would be able to observe sensitive information based on the program
execution. For defining our threat model, we first need to make clear that in contrast
to the definition of the paper lazy self composition for security verification [7], we
do not consider fixed sets of high and low-security variables. Instead, we consider
the set X of all the program variables and two subsets T and U, which represent
the set of tainted and the set of untainted variables, respectively, with X =T U U.
The variables x € X are moved along the sets of tainted and untainted variables
depending on its current taint-state, and therefore, in our implementation a low-
security variable is the same as an untainted value and therefore, it can not happen
that a program variable is both low-security and tainted as the same time.

A program variable being moved to the set of tainted variables becomes a high-
security variable and is therefore equivalent to the combination of a variable with
its corresponding taint flag from the formal definition (and the same applies for the
set of untainted variables).

Now, let P be a program over the set of program variables X. For x € X we consider
the predicate Obs,(X) over program variables X which will determine if x is adversary-
observable. We use the simplest thread model approach suggested in the paper: "For
each low variable x € L, Obs,(X) holds at program completion". In our case we use U
instead of L and it corresponds to a threat model where the adversary can observe
the untainted variables after program completion. [7]

However, we consider a more general condition to determine property violations
than only at program completion: we check the taint on each arbitrary moment of the
program execution. A continuation of this work could be to implement the property
violations totally based on the thread model, defining sinks that would follow the
same logic as the current function that we use to check for property violations. For
now, the main goal of this work is to make sure that the analysis behaves as we
expect, and for which we need to observe and measure the behavior of the analysis
during the program execution and not only at the end of it.

5.2 Taint Analysis State

To understand how property violations are handled in our taint analysis implemen-
tation, we will first look at the abstract states. Taint analysis states are modeled in
the class TaintAnalysisState. java. It maintains the sets T of tainted and U
of untainted variables, sets of predecessor, successor and sibling states of the current
state, a boolean flag violatesProperty which indicates when the state violates the
information flow property, a boolean flag i sPathStart which indicates whether
the current state is the start of a split path after a control structure condition, and
alist nonTrivialPathStartStates of all the path start states that precede the
current state. The predecessor states are used for the isLessOrEqual check that
compares two states and determines whether one state is covered by another. The
successors are only used inside the constructor for determining whether a new
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5.3 Merge of states

generated state is successor of an state that has two successors, and therefore, to de-
termine whether the new generated state has a sibling state and is a path start state.
The list of nonTrivialPathStartStates is used to check efficiently whether a
state precedes another state. To implement the path-sensitivity of the analysis the
predicate analysis CPA should have been used. However, I realized this too late
in the developing of the module and could not figure out in time how to integrate
the value tracking into the taint analysis using an existing module dedicated to
this. That is why I had to add one field related to value tracking that conceptually
should not be in the taint analysis module and should be moved from there to a
different CPA. This field is a map evaluatedvalues that maps each program
variable to its value in the current state. Keeping a future refactoring of this in
mind, we separate the taint tracking so much as possible from the value tracking,
the evaluatedvalues does not keep track of the taint, and the tainted and
untainted lists do not keep track of the values. The evaluatedvalues map is
used in the TaintAnalysisTransferRelation class to keep track of reachable
and unreachable branches, and in the TaintAnalysisState class for the state
merge process. The class TaintAnalysisTransferRelation. java is responsi-
ble, among other things, of the generation of new states for the CPA Algorithm.

5.3 Merge of states

As part of the state space exploration, the CPAalgorithm needs to check whether
explored states are covered by others by comparing them. This is where the join
method comes into play. The join method of the taint analysis module, compares
two states; this and other and checks first whether this stateis lessOrEqual
than the other state, if not it checks whether the other state is lessOrEqual
than this state. If the previous checks failed, then it proceeds to merge (join) them.
Without value tracking, the merge process should create a new state that carries all
the tainted variables that were found in the joined states, and only the untainted
variables that were untainted in both states. With value tracking this is a little
more complex: The join of the taint status of the variables remains the same, but
additionally the analysis needs to check whether the variables contain the same
mapped values. If variables contain the same mapped values the join is made as
normal, only one state is generated, containing the combined taint status of the
parent states. If the parent/joined states do not contain the same values, the join
method will create a new false state that contains the combined taint status of the
parents, but maps each variable to two (or more) values. This new state is a sort of
state container that will carry the values of the parent states with the usual combined
taint status. The states container will then be unpacked in the transfer relation class,
where the parent states are reconstructed, with single value mapping and updated
taint status. In this way, for example, when a states container that contains n states
enters the transfer relation class, will generate n states with single value mapping
and all n states will have the same updated taint. All the unpacked states will then
be checked against the same edge for property violations in the transfer relation,
each state containing a different evaluatedvalues map.
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5 Taint Analysis in CPAchecker

5.4 Information Flow Violation

We are interested in checking whether expected taint status holds at certain points of
the program execution rather than knowing the status only at the end of it. Therefore,
our definition of a bad-state does not only consider the threat model, but also
whether the expected taint status holds at certain points of the program execution.
Therefore, we generalize the bad state definition of the paper. The result is slightly
different: Let 7: X — B be a function that takes a program variable and returns its
current taint-status; true when it’s tainted and false otherwise, and let e: X — B
a function that in the same way returns the expected taint-status of a program variable.

We define a Bad-State as Bad(X) := \/cx(t(x) # e(x)), a state over all the program
variables X in which the expected public/taint status of some checked variable
was different from its current taint status, and not necessarily a state in which
information is leaked. This is not only useful to identify information leaks, but also
to evaluate the performance of the analysis, and identifying inconsistencies fast,
e.g., the analysis reporting a program variable as tainted in a safe program and
untainted in an unsafe program. The program in figure [7|shows an example of a
situation in which our analysis will return an information flow violation, without
any leak of information being present, but with the expected taint not matching the
current taint status.

int main() |
int a = 3;
__VERIFIER_is_public(a, 0);

G W N =

Listing 7: Example C program fails without finding a tainted variable.

At this point it is important to note that we do not use SINKS in
our taint analysis. The original prototype included a list of SINKS, e.g.,
the function printf ();. We replaced this list of SINKS with one check-
function _ VERIFIER_is_public (<data_type> var, <int> expected_-
public_status) ;. There are two reasons for this. The first one is that once the
analysis is implemented, the SINKS could be implemented again, e.g., by passing
the SINKS to the analysis via configuration file. For the benchmarking of the imple-
mentation, it is easier to maintain only one unifying function that allows us to model
its behavior. The second reason is that this unified function allows us to explicitly
check if a program variable is tainted or if it is public. This is important because it
allows us to evaluate the analysis with safe and unsafe versions of the benchmarks
covering scenarios in which an incomplete implementation of the analysis could
report inconsistent analysis results. Such cases would be recognized immediately by
the publicity-check.
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5.5 Path sensitivity

5.4.1 _ VERIFIER_is_public function

The _ VERIFIER_is_public (<CExpression>, <boolean_flag>) function
receives two parameters, the first can be any type of C-expression (single variable
name, binary expression, etc.), and the second argument represents the expected pub-
lic/taint status of the given expression in the first parameter. It is the only function
in the code base that is meant to check the public/taint-status of a given expression,
and it is therefore the one responsible for identifying when the information-flow
property is violated and marking the current program state accordingly. Its use can
be seen in figure[7}, where the variable a is expected to be tainted (i.e., not-public). It
returns 1 when the assertion holds and 0 otherwise.

This is a critical part of the analysis, since it directly influences the state generation
and therefore the state space exploration executed by CPAchecker. Note that aside
from single variable name expressions this function supports all kind of expressions.

5.5 Path sensitivity

A path-sensitive taint analysis does not explore unreachable branches. The path
sensitivity is not mandatory for information-flow or taint analysis, but it improves
the precision of it, at the cost of complexity in the implementation. Taint analysis is
an overapproximation thus it causes false positives [lazy self composition paper].
Although, a not-path sensitive taint analysis reports more false positives than a
path sensitive analysis, due to the over-tainting in unreachable branches. In the
language of taint analysis, a false positive arises when the analysis reports a security
leak where there isn’t, and in the same way;, a false negative reports no information
disclosure when it should. The reason for the increased number of false positives
when exploring unreachable branches is evident: unreachable taint-propagation
could be triggered due to the more general overapproximation.

Figure [8{shows an example C program that contains an unreachable statement in
line 7 and assumes that a function taint () ; is a source of sensitive information.
A not-path-sensitive taint analysis will consider the statementb = taint () asa
valid information flow from the function taint () to the variable b thus reporting
a security leak when there is not. In contrast, a path sensitive analysis will not
explore the unreachable statement.
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5 Taint Analysis in CPAchecker

int main() {
int a = 2;
int b;

if (a < 0) {

O ® N Ul R W N e

b = taint();
} else {
b = a;

=
S)

}

==
N o=

return b;

—_
W
—

Listing 8: Example C program containing an unreachable explicit
taint-flow

5.6 Taint policy

5.6.1 Taint generation

We need to define what a source of sensitive information is, the so called Sources.
The class TaintAnalysisTransferRelation. java maintains a list called
SOURCES for this goal. The list of sources can be expanded, but for the sake of
implementing the analysis and benchmarking it, we consider for now two different
sources of high-security values:

e The function _ VERIFIER_nondet_<data_type>();, where <data_-
type> can be of type int, char, float, or double. It does not actually return
any value. The call int x = __ VERIFIER nondet_int (); stores null
in x, but semantically assigns to x the status tainted.

* For safety, we adopt a conservative approach for arguments passed to the
main function. These arguments are also considered to be tainted. E.g., in
figure 9| the variable arg is considered to be tainted from the beginning. This
conservative approach is a source of false positives since not every argument
passed to the main function is a real source of sensitive information. A less
conservative handling of this situation would increase the precision of the
analysis.

int main(int arg) {

.....

BN =

}

Listing 9: Argument passed to the main function is considered to be
tainted
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5.6.2 Taint propagation

As explained in Chapter |3, the basis for the behavior of our analysis is the
formal definition of taint analysis in the paper lazy self composition for software
verification, and this applies for the modeling of the taint propagation in the transfer
relation class. The definition for our implementation remains unchanged, since our
analysis is path-sensitive and considers both, explicit and implicit information flow.
These concepts also build the basis for the ground truth of our benchmark set. The
documentation of the external benchmarks that we used follow, in general, the same
rules for taint propagation.

We recall that in the definition presented in Chapter[3|x] € X/ represents the updated
taint status of the program variable x € X. In some of the benchmark programs, we
use 7(x) = x, to indicate the taint status of a program variable x € X. The formula
above can then be read as

false ifeNX =0
O(p) = \/ t(x) otherwise
xeQ

The use of 7(x) instead of x; is just for simplicity in the code comments, and does not
imply any semantical change.

Listing 10| shows the taint status of the program variables x,arg,sum € X through
the program through comments in the code. This kind of comment is present in
several benchmark programs as documentation of the ground truth, which represents
the expected taint values of program variables at certain points of the program
execution. For simplicity in the program comments we use the symbol + instead of
V, T for tainted (t rue) and U for untainted (false).

1

2 |int main(int arg) { // tlarg) =T
3 int x;

4 if (arg) |

5 X =2; // t(x) =1U

6 } else {

7 x = taint(); // t(x) =T
8 }

9 // t(x) =U+ T =T

10 int sum = arg + x; // t(sum) = t(arg) + t(x) =T + T =T
11 return sum;

12 |}

Listing 10: Comments to clarify the taint propagation

In the following we list the policy for the taint propagation regarding certain struc-
tures.

5.6.2.1 If-Statements and loops

When analyzing a control structure, there are generally two options: the condition of
the loop can be evaluated or it can not. This is explicitly checked in our analysis in the
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5 Taint Analysis in CPAchecker

handling of an assume edge, as explained in the past section. Our analysis generates
a new state in case the condition holds or in case it can not be evaluated, and no new
state otherwise. The policy for taint propagation inside if-statements is at this point
fully covered by the explanations about explicit and implicit information flow, and
the fact that our analysis is path sensitive. For loops hold the same behavior regard-
ing the conditions and the path sensitivity. However, a particularly interesting case
for loops is the one shown in figure (11} In the snippet we can observe an untainted
variable a that controls the loop condition and a variable b that gets increased inside
the loop. But then a gets tainted inside the loop, and its value is replaced with an non
deterministic value. Now, after leaving the iteration, the condition is checked again,
but the analysis determines that it can no longer evaluate the condition. The next
step is to go on with the program execution going in two separate ways, one outside
the loop and one inside. Here we encounter two problems: we need to be able to
join the path that goes inside the loops and the one that does goes outside of it. The
second problem is that, given that the loop condition now cannot be evaluated, the
stop condition will never be met, and therefore the analysis needs to know when to
stop exploring inside the loop, otherwise it will fall in an infinite execution inside
the loop. The solution for the first problem is given by CPAchecker, it automatically
triggers the join of the states that are coming together after a branching. The solution
to the second problem must be implemented in the analysis, because, given the value
tracking, the analysis will constantly increase the variable b making it imposible to
merge two states that despite the same taint, differ in the value b. For addressing
this, we use the control structure objects (LoopStructure). With help of these
objects we can determine whether a variable is being increased inside a loop that is
controlled by a variable that can not be evaluated. If that is the case, the variable will
not be increased, allowing the merge of the duplicated states, which will trigger that
the exploration of that branch terminates. In the first loop-iteration post taint of a,
the variable b receives one more assignment b++; . Since this happens inside a loop
controlled by a now tainted variable, b becomes implicitly tainted, but the value will
not be updated, because the condition is not-evaluable due to a non-deterministic a.
Since the taint and the values don’t change in the next iteration, the future states of
that path are considered as covered, terminating with the exploration of that path,
leaving the exploration of the loop. The join of the taint of b will then recognize b as
tainted. Summarized: if there is one path in which a tainted b reaches a sensitive
program location, then b must be considered as tainted in that location.

1 |int main() |

2 int a = 2;

3 int b = 0;

4

5 while (a > 0) {

6 b++;

7 a = _ VERIFIER_nondet_int ();

8 }

9

10 __VERIFIER_is_public(b, 0); // t(b) = U + T =T

Jun
s
-

Listing 11: Problem generated by a null condition
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This applies to for-loops as well. The analysis does not support this level of han-
dling of do-while loops, because I overlooked this loop type for a long time. The
implementation is very similar to a while or for-loop, but I did not have the time
to implement it. An approach for addressing this is presented in the section about
future work [l

Note that the ternary operator also support the exact same functionality as an
if-statement, including the implicit taint propagation.

5.6.2.2 Arrays and field members

Taint of arrays is supported and obeys the normal rule of RHS taints the LHS. And
can also get tainted by implicit taint. However, the sanitization of an array is slightly
different, since an untainted LHS does not sanitize automatically the RHS. Only
after every element was sanitized the array can be considered as untainted. The
logic for the implementation for field members is exactly the same as the one for
arrays, but instead of elements it considers the fields as tainted.

5.6.2.3 Pointers

With help of the value tracking we can taint or untaint pointer and the pointed
memory addressed directly. In this case we do not keep track of the actual memory
address, but of the expression that represents that memory address. The taint policy
followed here is that by tainting a pointer, all the pointed memory addresses must
become tainted, and the same for sanitization. In that same way, is a variable gets
tainted or sanitized, the same changes must be applied to the corresponding pointers
if there are. This works, because the evaluatedvalues maps CExpressions to
CExpressions, therefore, a mapping, for example, from p to &y is possible. Since the
evaluatedValues keeps track of all the existing program variables, it will always
find the correct mapping to the right CExpression.

5.6.2.4 Interprocedural function calls

The analysis supports taint propagation through function calls. For this there is no
specific restriction. In these cases, the goal is as usual to keep track of influences
between variables among function calls, e.g., if a function returns a tainted value,
and the return value is assigned to a variable x, then x will become tainted. If a
void function makes some modification in the memory address of a variable that is
defined in the scope of another function, the corresponding variable will become
tainted as well. Taint propagation for global variables is also supported.

In cases in which we are not certain of the taint status of a variable, the analysis will
behave conservatively by considering these as transitions to security leaks.

5.6.3 Taint Removal - Sanitization

The sanitization of variables is an important part of the taint analysis, because in real
world programs there are scenarios where sensitive inputs can become sanitized and
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therefore not be high security values any more. Sanitization refers to the application
of specific checks, transformations, or validations to remove harmful or unexpected
content from an input. For instance, validating and escaping special characters
in user-provided text fields to prevent SQL injection or XSS (cross-site scripting)
attacks is a common sanitization method. Just like the Sources, the sanitization
methods are specific to different program contexts. To generalize the sanitization
process, our analysis uses the function _ VERIFIER_set_public (var, bool),
where var is the variable to be modified as a CIdExpression, and bool € 0,1
determines whether var will be considered as tainted (var € T) or as sanitized
(var € U), 0 for tainted and 1 public (untainted).

This is useful on one hand for emulating a sanitize-function, and on the other hand
as a general tainting-function. After being called, the given variable will be flagged
as the boolean parameter says, and then the state generation step will move the
variable from one list (tainted /untainted) to the other if necessary. This public-status
change is effective in the most of cases, but not always. The impact of using this
function is restricted by the tainting logic followed by the analysis, therefore, there
are some cases in which this call does not have any impact on the public-status of
a variable. Figure [12|shows a code example of a sanitization attempt over single
elements of a tainted array. In our implemented analysis this program will not throw
any information-flow violation, meaning that the attempt of sanitization fails. This
behavior is intentional and obeys the logic that when at least one element of the
array is tainted, then all the other elements must also remain tainted. However,
an array can only be sanitized by sanitizing the array itself with _ VERIFIER_ -
set_public () or by sanitizing every single element in the array. Additionally,
the analysis will internally recognize that d[1] was sanitized, but it still will be
reported as tainted, for being an element of a tainted array. A point of discussion
can be set here: for precision the analysis could report the singe untainted variables
as untainted no matter if they are part of a tainted array. For this I decided to adopt
the most conservative approach to only report the variable as untainted, when the
array is untainted.

26



5.6 Taint policy

1

2 |int main () {

3 int x = 0;

4 int y = __VERIFIER_nondet_int(); // t(y) = T

5 int z = vy;

6

7 // taint flows from y to d

8 int d[2] = {x, vy, z};

9

10 __VERIFIER_set_public(d[1l], 1);

11

12 // The array is expected to remain tainted, because it sti
contains a tainted element

13 __VERIFIER_is_public(d, 0);

14

15 // The array elements are also expected to be reported as tainted

16 for (int i1 = 0; i < sizeof(d) / sizeof(d[0]); i++) {

17 __VERIFIER_is_public(d[i], 0);

18 }

19 |}

Listing 12: Example code of tainted array, with an attempt to sanitize
single elements of the array

There are other, more specific ways to taint or untaint a variable such as simply
override it with an untainted RHS (in the most cases), but we keep this function
as a general purpose taint/untaint-function, e.g., for modeling some of the
benchmarks that I created to test specific program scenarios for the implementation,
or to "translate" or emulate the behavior of some code parts contained in extern
benchmarks.

An important consideration is that the subtraction or arithmetic manipulation of
sensitive variables does not automatically result in sanitization; explicit operations
or reassignments are required to remove or override taint status.

For instance, consider the following illustrative scenario in figure

1 |int main() {

2 int x = _ VERIFIER_ nondet_int(); // sensitive data

3 int y = 5;

4 y =y + x; // taint flows from x (RHS) to y (LHS)

5 int z = y - x; // subtracting x won’t sanitize x — vy

6 _ _VERIFIER_is_public(z, 1); // asserts z is public will fail
71}

Listing 13: Example benchmark scenario demonstrating taint
propagation

In this example, despite arithmetic operations that might intuitively suggest sanitiza-
tion, our implementation correctly identifies the variable z as tainted. This behavior
follows the general taint propagation rule (overapproximation), that a tainted vari-
able on the RHS will taint the LHS of the statement. Hence, the assertion posed by
__VERIFIER is_public(z, 1) explicitly violates the expected taint-property
and is correctly flagged by our tool as unsafe. In such case, we encounter a false posi-
tive verdict, since the final value of z is y which is a constant value 5 and therefore
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not tainted. However, the actual logic that the analysis follows can be seen in figure

14l

int main () {

int x = _ VERIFIER_ nondet_int(); // t(x) = T

int y = 5; // t(y) = U

y =y +x; // ty) = t(y) + t(x) =U + T =T

int z =y - x%x; // t(z) = t(y) + t(x) =T+ T =T

__VERIFIER is_public(z, 1);

N Gk W N e

Listing 14: Example benchmark scenario demonstrating taint
propagation

5.7 Taint Analysis Transfer Relation

Now that we have reviewed the most relevant characteristics of taint analysis and the
related aspects of CPAchecker, in this section we are going to explain the handling
of important structures of C programs that are implemented in our taint analysis.
The handling of all the different edges that a program contains is made in the class
TaintAnalysisTransferRelation. The transfer relation class contains as fields
a list of SOURCES that was described in the section about the taint generation[5.6.1|
and, additionally, for the tracking of implicit information flow in control structures
such as loops of if-statements the transfer relation receives the loopStructure
and the ast CFARelat ion when created, so that it can access the information about
the control structures and propagate the implicit taint when necessary.

The entry point of the transfer relation «class is the method
getAbstractSuccessorForEdge that receives as input an abstract state,
a precision, and a cfa edge and returns a collection of new states. The precision is
not used in our analysis. The abstract state carries the taint and the values generated
in its predecessor state, and the cfa edge represents a line of code or another edge
that connects two program nodes.

Before the handling of the received edges the transfer relation makes three important
steps: it calculates what type of edge it received, then checks whether the current
edge is leaving a control structure, and then it attempts to extract states from the
received state, in case it is a states container. The reason for checking if the edge is
leaving a control structure is to force a join if necessary. This is, again, a consequence
of the value tracking that was implemented as last resort inside the taint analysis
module: The value tracking influenced the join dynamics, and the join dynamics
influences the state generation. This was not an issue in the most cases, but partic-
ularly for one benchmark case in which an if-statement was nested inside a while
loop, CPAchecker was not joining the two execution paths, resulting in a property
violation not being eliminated. To compensate this, the transfer relation checks this
and in case there are property violations in other execution paths that were found
before the end of the control structure, it forces the join of them so that the property
violation can be checked again. Therefore, the value tracking is definitely a part of
the current analysis design that should be separated from the taint analysis module
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to a different CPA. The extraction of states of a states container is also connected to
the same issue, and the reason for it was explained in section

After these checks the method will handle either the incoming edge, or a list of
extracted states. In any case, the next step is to handle the edges depending on their
edge type, and either generate, propagate (implicit and explicit taint), or remove
taint. The taint propagation is made in each method that handles the different edges
by populating the sets killedVars and generatedvars, following the rules de-
scribed in[5.6.2] For the variable-values mapping the map values is populated. The
sets and map are then passed to the generateNewState, that has the responsibil-
ity to create a new state based on the new found taint. Note that the taint status of
all variables could remain unchanged after the handling of the edge, in which case
CPAchecker will eventually attempt to trigger the merge of these states.

In the following we will describe how the transfer relation class handles the edges
mentioned in section#.2and how they handle the types of expressions mentioned
in section 4.3l

5.7.1 Assume Edge

Assume edges are handled in the method handleAssumption. This method has
two responsibilities: to evaluate the given condition and to generate a new state in
case the condition holds. For the evaluation of the given condition it retrieves the
CBinaryExpression contained in the assume edge and uses the values that the
state carries in the evaluatedvalues.

We present the example in figure [15(as motivation for the importance of a path
sensitive analysis. In the given program a path-sensitive analysis produces a dif-
ferent result than a non path-sensitive analysis. We can see that the statement
_ _VERIFIER_set_public(a, 1) is reachable and, therefore, the variable a is
sanitized. However, a non-path-sensitive taint analysis will explore both branches of
the program: b == l1and ! (b == 1).Itwill alsoignore the line  VERIFIER_ -
set_public(a, 1) in one program path, which will lead to the taint check _-
_VERIFIER is_public(a, 1) to seta property violation in that analyzed pro-
gram state.

1 |int main() {

2 int a = _ VERIFIER nondet_int(); // t(a) = T
3 int b = 1; // t(b) = U

4 if (b == 1) {

5 __VERIFIER_set_public(a, 1); t(a) = U

6 }

7 // path sensitive: branch t(a) = U =10

8 // non-path-sensitive: t(a) = T + U =T

9 __VERIFIER_is_public(a, 1);

=
o
-

Listing 15: branches
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5.7.2 Declaration edge

The method handleDeclarationEdge handles declarations of type
CVariableDeclaration and CFunctionDeclaration. The first type covers
all the declarations inside a function body, and the second one covers the variables
passed to functions as parameters, for example it would handle the declaration
of the function int foo (int var). If the initializer of the expression is null
it just adds the LHS as an untainted variable with value null, and in case the
initializer is not null it must check what type of initializer is it. In our modul the
initializers of type CInitializerExpression and CInitializerList were
the only ones that needed attention. However, in case another type of initializer
would need handling, the analysis would log it, but not handle it. In case the
initializer is an initializerList, it would correspond to a statement like int
x[3] = {1,2, 3}, whichis currently only supported for arrays. This method does
not handle implicit information flow, because variables that are declared inside a
loop do not survive outside the scope of its function. This can be an interesting
discussion point and maybe source for improvements.

5.7.3 Statement Edge

Like stated before, because of the structure of programs, this kind of edge is
one of the most used and the one where the most of different cases must
be handled. The method handleStatementEdge is responsible for this, and
covers the handling of the four special edge types mentioned in item
For both assignment types, the CExpressionAssignmentStatement and the
CFunctionCallAssignmentStatement, the analysis extracts the LHS and
the RHS and checks whether the RHS is tainted or if there is implicit taint
flow, in any of these cases the taint flows into the LHS. In the case of a
CFunctionCallStatement the statement does not contain an assignment, and
therefore there is no RHS to check against taint. However, the functions __ -
VERIFIER_set_publicand __VERIFIER_is_public are CFunctionCallState-
ments. The first function changes the taint status of the entered first parameter if
necessary, and the second function compares the current taint vs the expected taint,
and in case they do not match, it generates a information-flow violation for the cur-
rent state. The method handleStatementEdge handles all the types mentioned
ind.2l

5.7.4 Function Call Edge

This edge is handled in the method handleFunctionCallEdge which first
checks whether the called function has any arguments. If not it just calls the
generateNewStates with empty sets of tainted and untainted. If the function
called has arguments on the caller line, it connects the passed arguments to the
function arguments on the called function and taints it in case the argument was
tainted in the caller. To illustrate this, see the snippet in figure (16| where in line 5
the function foo is called with an untainted argument &a. This will result in the
pointer int+ p on line 247 being untainted at the beginning of the function. Note
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that the analysis will differenciate between the pointer p defined in line 3 and the
one inside the foo function, due to the qualified name of the variables (main:p vs
foo:p) and the robust parsing of CPAchecker. Therefore, they will be handled as
different variables, even if they have the same name.

int main() {
int a = 2;
int *p;

foo (&a);
// rest of the program...

}

O ® N Ul R W N e

void foo(intx p) {
*p = taint();

[
= o

}

Listing 16: Function call edge

Here there is room for improvements, since this part of the analysis still does not
consider implicit taint flow. Additionally, it does not differentiate when the function
is being called, for example, from inside a loop controlled by a condition that can
not be evaluated. This special case is very important regarding state generation and
termination of the analysis: if the conditions mentioned are met, the analysis will
explore both branches and if it does not recognizes this it will keep updating the
values inside the loop, causing in many cases that the analysis times out, due to a
non terminating generation of new different states. This is actually the reason for the
timeout of some benchmarks as we will see in the benchmark section. This scenario
is handled in the handleStatementEdge and other edges, but not yet here.

5.7.5 Function Return Edge

This edge is the bridge between caller and called method, and is handled in the
method handleFunctionReturnEdge. It determines whether the function call
is not void, i.e,, it has a return statement and if so it retrieves it from the edge
information. Then, it checks whether the return value is tainted and, if additionally
the related expression is an assignment, it propagates the taint to the LHS. LHSs
of type CIdExpression and of type CPointerExpression are supported here,
and the benchmark set did not require more than that. However, more cases should
be considered, such as field access, arrays, etc. This part of the analysis is, in that
aspect, still incomplete and would also profit from support for implicit information
flow recognition.

5.7.6 Return Statement Edge

This edge checks whether the return value is tainted and if so it taints a temporary
value. Additionally, it checks whether the current function is the main function, and
whether it is returning a tainted value. This is the only part of the code aside of the
check _ VERIFIER_is_public that can set a property violation. This is actually
not used in the benchmark set, but it shows how sinks could be handled in programs
that use real functions as sinks.
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5.7.7 Blank Edge

The blank edge is not really handled by the taint analysis, although there is a
method that triggers the generation of a new state for this edge. This is relevant
because without the generation of states for blank edges, the analysis would ter-
minate before exploring the whole state space. A similar case is the handling of
CallToReturnEdge thatis present as part of the first prototype, but I have never
seen a benchmark that uses it. Because of this I did not give priority to investigate
more about this edge. Its functionallity is limited to generate a new state with the
same values that the current state carries, just like the blank edge does.

5.7.8 Explicit vs Implicit information flow check

The explicit information flow does not have an special method in the transfer
relation class. The approach for this is simple: in an assignment, the RHS taints
the LHS. So we oft check first whether the RHS is tainted and then taint the
LHS. The case of the implicit flow is more complex and requires the use of the
structures mentioned at the beginning of this section to the transfer relation class
The loop structure and the astCfaRelation toghether with the location of
the edges provide a clear way to know whether an statement is placed inside
a loop, or any other control structure in the program. Additionally, one can
check whether the corresponding loop is a nested loop, or if it is nested inside
an if-statement, and other further imaginable cases. All this information is
necessary to determine implicit taint information, as explained in Chapter 3| To
check this, I created the two checks: isInControlStructure (pCfaEdge)
and isStatementControlledByTaintedVars (pCfaEdge,
taintedVariables) that use the mentioned fields to make the check and
are present always when we want to determine whether implicit taint is taking
place for the current edge.
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CHAPTER 6

Benchmarking Taint Analysis

6.1 Benchmarking Set-Up

For the benchmarking we used CPAchecker version 4.0 and BenchExec version 3.30,
and the BenchCloud to submit the runs in the cluster of the SoSy-Lab of the LMU-
Miinchen. The benchmarks were executed in an Apollon machine with CPU Intel
Xeon E3-1230 v5 @ 3.40 GHz, 8 cores, frequency: 3800 MHz, RAM: 33471 MB, using
OS Linux 6.8.0-78-generic. The limits for the benchmark definition were: timelimit:
900 s, memlimit: 15000 MB, CPU core limit: 2.

6.2 Defining the benchmark set

The benchmark set has a total of 233 benchmarks from which several are the safe
and unsafe variants of the same program, i.e., around 100 different programs. The
benchmark set was collected from three different sources. The first source contains
46 benchmark programs that I wrote for testing the functionality of the implemented
analysis during the development of the taint analysis module. Each program has
at least one unsafe version, in total this makes 139 benchmarks that I called core-
modeling. The second source is a set of 68 benchmarks from an open repository
called dcearaﬂ some of them containing a safe and unsafe version. I choose this
benchmark set because of its simple structure, but being slightly more challenging
than the initial benchmarks, I saw in it a good suit for stressing the current state
of the implementation to a point that helps me discover improvement areas. Addi-
tionally, it has some ground-truth documentation that uses almost the same taint
policy as our analysis. The third source of 14 benchmarks is the one cited in the
paper lazy self composition for security verification EL the set is called i fc-bench.

Ihttps://github.com/dceara/tanalysis/tree/master/tanalysis/tests/func_
tests
“http://www.cs.princeton.edu/~aartig/benchmarks/ifc_bench.zip

33


https://github.com/dceara/tanalysis/tree/master/tanalysis/tests/func_tests
https://github.com/dceara/tanalysis/tree/master/tanalysis/tests/func_tests
http://www.cs.princeton.edu/~aartig/benchmarks/ifc_bench.zip

6 Benchmarking Taint Analysis

The reason for selecting these benchmarks is because that paper is where I took the
most foundations for building the behavior of the taint analysis in this work from.
Additionally, the complexity of these benchmarks is superior than the others sets of
benchmarks, and therefore it is a good candidate for stress-testing the implementa-
tion at the next level. With complexity here, I mean that the IFC-bench benchmark
set combines several different structures and programming techniques, while the
locally created and the ones from the repository dceara, are more tailored to test
specific structures. The ground-truth is either well documented or can be easily
inferred by the comments and naming of the benchmarks. In the benchmarks of the
IFC-bench set, a program is safe when at the end of the program execution a checked
variable is expected to be untainted, and unsafe otherwise. For testing the imple-
mentation with the collected extern benchmarks, I had to "translate" the programs
to the language of our taint analysis modul, i.e., use the __ VERIFIER_nondet_-
<type>,_ VERIFIER_set_public() and__ VERIFIER_ is_public () instead
of the checks that the benchmarks bring with them. A simple example of such a trans-
lation was to replace the verifier assertion _ VERIFIER_set_secret (1, var)

with our assertion __ VERIFIER_set_public(var, 0),in the ifc-bench set.

The benchmarking consisted of two runs: the first run considering all the benchmark
sets together, and the second run where the benchmarks of the core-modeling and
the ones from the dceara repository were classified in seven categories: arrays,
cast, control flow structures, function calls, general functionality, pointers and
struct-and-member-access.

The approximate coverage of the categories is as follows:

* 36% control flow structures

28% general functionality
* 9% arrays

* 9% pointers

* 5% function calls

* 2% casts

* 2% struct and member access

6% ifc-benchmarks

I could not include the categories of IFC-bench ad general functionality in any of
the other mentioned categories because they don’t have a focus in testing a certain
type of structure:
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6.3 Results

6.3.1 Benchmark Run - All Benchmarks

The benchmark run of all benchmarks took a total of 18,5 minutes, with the bench-
marks of the IFC-bench being the most ressource demanding. From a total of 233
programs, 216 were verified correctly, and 8 returned a wrong verdict. 3 incorrect
true and 5 incorrect false. From the 233 benchmarks 9 timed out. Table n shows the

summarized information.

Category Status | CPU Time (s) | Wall Time (s) | Memory (MB)

All Results 233 1110 607 27800
Summary Measurements - - 181 -
Correct Results 216 972 531 24700
Correct True 81 372 203 9290
Correct False 135 601 328 15400
Incorrect Results 8 36.9 20.2 920
Incorrect True 3 13.2 7.23 344
Incorrect False 5 23.8 13.0 576

Table 6.1: Benchmarking results for taint analysis run all programs.

Correct Results

The categories in which the analysis had a perfect score were arrays (22/22), pointers
(22/22) and member access (5/5) with 0 incorrect results each. Notably good per-
formance can be observed for control structures (83/86) and function calls (11/12).
In the category general functionality I left all benchmarks that I could not assign to
a clear category. Despite in that category the analysis still is good (63 correct from
67), we can only affirm that our analysis shows a good basic functionality, since the
benchmarks in this set are one of the most simple. The worst performance (3 correct
from 5) we find for cast operations and for the benchmarks of the IFC-bench. That is
expected, since cast support was not implemented and the IFC-bench benchmarks
are the most complex, mixing a lot of different structures and operations in each
benchmark. For the benchmarks of the IFC-bench the analysis had a score of 8
corrects from 14 and the remaining 6 timed out.

Incorrect Results

In following we analyze potential reasons for the failures. The reasons for the cast
programs was already mentioned above: no support. The failure of the benchmark
trippleWhileLoopSafe is due to an early termination of the analysis, before
the found property violation can be fixed from the other execution path were
no property violation is found, but where a bigger taint status is carried in the
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state. This early termination is probably related to the issue of the value tracking
mentioned in

The programs sizeof_allignof.c and taintBy+LogicalOperationx.c fail due
to the issue commented at the beginning of chapter 5| This behavior is deep
integrated in CPAchecker and there is not much that the taint analysis modul itself
can do to fix it. One option could be the string parsing of the raw statement where
the lost variable was used. But string parsing is not a robust solution and should be
avoided.

The programs simpleBufferExamplex.c need the handling of the assignment
buf[n] = taint (); with buf being a pointer and n a constant. Assume that
buf points to an arbitrary memory address &x of an int x. Then the expression
buf [n] is equivalent to &x + n, which would mean to taint sx + n. This kind of
tainting of a neighbor memory address is not yet supported by the analysis.

Timed-Out

The programs simpleDoWhilex . c fail to reach the line of the check because, as
explained in subsection 5.6.2.1]it simply lacks of support. However, a clear solution
for this is presented in the next chapter to conclusions and future work.

The rest of the time-outs correspond to the family of the IFC-bench set. Given the
size of these benchmarks and that these cases were integrated at the end of this
work, I could not debug the non-termination problem in time, but given the amount
of loops and inter-procedural calls mixed, my guess is that somehow the states
generation explodes at some point.

6.4 Observations about the categories

From the CPU time of the results that returned a correct verdict, we can corroborate
the prior assumption of resource demands:

¢ IFC-Bench Repository Benchmarks: As expected, the run definition ifc-bench
proves to be the most resource-intensive set. Its programs, such as mod_add_-
4096.c and pwdcheck_unsafel6.c, have a steep CPU time growth. When
analyzing these benchmarks, the runtime increases significantly even for a
small number of benchmarks that return true, showing significant complexity
and computational cost for these programs compared to the rest of the sets.

* Non-control-strucure Benchmarks: The sets of benchmarks without control
structures shows the least resource demand, which aligns with expectations.
These are fundamental cases with a simpler structure, allowing CPAchecker to
process them efficiently.

The most demanding benchmark sets are the ifc-bench set and the control-flow-
structures set. Some of the most demanding programs are:
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* (from ifc-bench)mod_add_4096.c exhibits the sharpest increase in CPU
time due to high computational complexity from large data structures and
repetitive operations such as addition of big integers.

* (from ifc-bench) pwdcheck_unsafel6.c shows complexity due to
character-level secrets comparison, which involves nested loops and branch-

mg.

e (from dceara_set) tripplewhileloop_unsafe and
innerwhileloop_safe show steep computation times caused by
deep nested loops that track taints over repeated iterations. Additionally, for
this program the analysis succeeded in proving unsafety. However, for its
counterpart, tripplewhileloop_safe, it failed to prove safety.

Performance Bottlenecks:

¢ Benchmarks with nested loops, large data structures, or implicit taint propaga-
tion mechanisms. The implementation spends significant time traversing and
validating these intricate flows.

* The plots suggest that optimizations in handling nested control flows, such as
loop unrolling or taint propagation minimization, may help reduce CPU time
for complex sets like i fc-bench and control_flow_structures.

That loops are more ressource intensive than other structures such as if-statements
or simple assignments is not a surprise, however, the additional features related to
explicit value tracking that were implemented in TaintAnalysisState are probably a
factor that plays an important role in the performance of the analysis, due to extra
join operations and packing and unpacking states containers.
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Figure 6.1: Benchmark run per category
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CHAPTER 7

Conclusion and Future Work

7.1 Future Work

In following I present my suggestions for future work as continuation of this thesis.

An extension of the benchmark set could be done as part of future work. The
extension would need to contain benchmark cases for scenarios that are not covered
in this work, and complement the ones that are only partially covered, such as the
ones for type casting. Additionally, the same set of benchmarks could be duplicated,
but with assumptions tailored for different type of analysis, e.g., a ground truth for
analyze a path-insensitive analysis.

Regarding the implementation, there is still of room for improvement. The main
issue of the current implementation is the strong coupling that exist between value
tracking and taint tracking. By resolving this, the TaintAnalysisCPA could focus
solely in taint propagation, improving the state generation, and avoiding the early
termination of the program. This issue causes the bug that we saw in the benchmark
program trippleWhileLoopSafe_1.c where the analysis considers all the states
reached too early, leading to a wrong verdict.

Another point to consider in the future, is to add support for configurable sinks.
This would make the analysis more usable in real C programs without the need to
"translate" the program to verify. The support of more data types for the SOURCES
list is also an aspect that can be improved.

Regarding do-while loops, the missing implementation to support implicit taint
propagation is not hard to achieve. The only thing that needs to be implemented
for these loops is the recognition of tainted variables controlling the loop, and the
recognition of a null value controlling the loop condition. The current solution for
while and for-loops does not apply to do-while loops, because the check is based on
the incoming and outgoing edges of the relevant node. This recognition of the loop
condition and iteration indexes are not in the same entering/leaving edges as in a
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do-while loop in different edges. A separate check for do-while loops can be done
to ensure the termination and correct taint propagation of do-while loops.

The support for taint propagation related to cast operations is not implemented in
this analysis. CPAchecker counts with all the necessary parsing elements to address
this without much trouble.

To implement support for implicit taint propagation for FunctionCallEdge and
FunctionReturnEdge would be an improvement which could reduce the proba-
bility of falling in infinite execution paths. The complexity of this would be in the
inter procedural calls when they are made from inside a control structure controlled
by tainted variables, or by non-deterministic conditions.

Finally, supporting recursion would be a very nice improvement, and, since
CPAchecker already counts with certain features that support this, it would not be
an unimaginable new feature.

7.2 Conclusion

This work contributes with an implementation of taint analysis, capable of effectively
tracking the information flow through many structures of C programs in a path-
sensitive way considering explicit and implicit information flow, recognizing the
influence of variables in many scenarios and reporting possible leaks of information
on these programs. Although improvements in several ambits of the implementation
can be made, the benchmarking process shows that CPAchecker has the necessary
elements to be the backend of a strong taint analysis. Complementary to the devel-
opment of the taint analysis modul, this work contributes with a benchmark set
for testing taint analysis tools. The benchmark set has a well documented ground
truth described in this work 5, and additionally in several benchmarks directly in
the programs in form of comments. The benchmark set is designed to effectively
discover bugs in the core functionality of a path-sensitive taint analysis tool that
supports both explicit and implicit information flow. In case someone wants to
tests its tool with the benchmark set presented here, it must be clear that there are
still uncovered aspects, and that the ground truth in form of assertions is designed
for test a tool that complains with the characteristics that we mentioned above.
However, the ground-truth can be modified to test, for example a path-insensitive
analysis. For that, the assertions, for example, in benchmarks with control structures
would have to be made.
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