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Abstract

The increasing scalability of verification systems ensures the reliability and
safety of software, which is especially crucial for modern, large-scale appli-
cations. This thesis addresses the problem of unnecessarily large and com-
plex SMT formulas that create inefficiencies within the distributed software-
verification tool Multi-Processing Distributed Summary Synthesis (DsS). We
approached this problem by implementing the TRIMMER; a microservice that
leverages LLMs to continuously simplify SMT formulas from the DSS database
of block summaries. Our evaluation demonstrates that the TRIMMER achieves
average simplifications around 40 % of the original formula length, although
the impact on verification times could not be fully evaluated, due to limited
integration of the simplified formulas into Dss’s analysis. These findings in-
dicate that simplifying SMT formulas with LLMs is definitely possible, but
the approach cannot yet replace algorithmic simplification within the current
configuration of Multi-Processing DSS.
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1 Introduction

The relevance of software verification has been growing immensely since the in-
tegration of artificial-intelligence (Al) systems into the development process of
software systems, and into production code itself. Ensuring the reliability and safety
of technologies created with or using Al hinges on robust, efficient, and scalable
verification processes. The research project Multi-Processing Distributed Summary
Synthesis (DsS) [43], a progressive iteration of the original Distributed Summary
Synthesis project [27], aims at increasing said efficiency and scalability. Within this
thesis project, we contribute to Multi-Processing DSS a microservice that employs Al
for SMT formula simplification. Though this might seem contradictory at first, this
approach is a well justified experiment to challenge whether this kind of simplifica-
tion improves Multi-Processing DSS, and whether current AI models are up to par
for such complex tasks.

Goals. Our goal is to improve the runtime and scalability of the Multi-Processing DSS
project, an advanced verification tool for C programs that uses distributed analysis
and parallelization. We add a new microservice (TRIMMER) to the ecosystem of DSS
that connects to the database of block summaries and continuously simplifies them.
For the simplification of block summaries we use LLMs (most notably Gemini’s
AP]I) that receive an original formula and then generate a shorter, simplified formula.
After simplification, the microservice checks for syntax and overapproximation of
the original formula. Only then does it write the simplified version to the database.
We evaluate by comparing the performance of DSs with and without the simplified
messages on selected tasks from sv-benchmarks.

Motivation. Multi-Processing DSS pioneers parallelized, distributed analysis by
breaking down a verification task into many independent analysis blocks that
communicate with each other through messages. These messages contain block
summaries that represent the postconditions and violation conditions of the analysis
blocks. They can blow up in size very quickly for complicated programs (exceed-
ing 50k characters), especially for loops, since the program states of each iteration
are simply concatenated via conjunction. But not all the information contained in
such long messages is needed for successful verification, which creates inefficiencies.
Therefore, we aim to create elegant, simplified formulas that can be used instead
of the originals while keeping the verification sound. By using these simplified
messages during analysis, we try to improve the total verification runtime. Other
approaches to simplify the formulas (e.g. quantifier elimination, using SMT solvers
to simplify) have been unsuccessful, due to weak performance by the SMT solver Z3.
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Figure 1.1: Integrating the TRIMMER into Multi-processing DSS

In exploratory work we have already shown that LLMs are capable of simplifying
such SMT formulas while maintaining correct syntax and achieving overapproxima-
tion. We have also shown that simplification in real time is not feasible, as the delay
from data transfer and time spent "thinking’ by the LLMs is too large. This leaves
the continuous simplification of formulas as the best alternative to improve DSs.

Overview. We embed the TRIMMER as a Quarkus service into the existing microservice-
based DsS project Figure 1.1. Multi-processing DSS takes in a C program and creates
a control flow automaton from it, which is transformed into a blockgraph. Then, the
Controller distributes the work onto workers - the analysis blocks. The Controller
schedules message distribution between the workers by storing their messages
in a database. Whenever a message is needed by a worker, it is provided by the
Controller. The graphic shows that the TRIMMER is an entirely separate project
from Multi-processing DSS. The only point of connection is the database. That is
the instance the TRIMMER reads original messages from and continuously writes
simplified counterparts to. We implement the TRIMMER in Kotlin, and continuously
access the block summaries in form of SMT-LIB formulas through the database. The
formulas are parsed before we send them to an LLM (in our implementation Google
Gemini’s API) with a prompt requesting a simplified formula that is at least implied
by the original. Upon return of the formula, we check for correct SMT-LIB syntax
and overapproximation. After that the new formula is written to the same database,
where it is ready to be used by Multi-Processing DSS.

Example. A good example for a long SMT formula produced by Multi-Processing
DsS is Listing 1. Such a formula is read from the Multi-Processing DSS database and
sent to an LLM as String with a prompt like this:
I have the following SMT formula in SMTIib2 format: " + formula + " It
describes a C program in SSA form. Provide a smaller formula, you have
to guarantee that the new formula is implied by the original formula!
Also it is absolutely vital that the new formula is in valid SMTlib2 syntax!
Make sure you do not overlook any necessary declarations! If you cannot
find a result, return "No smaller formula found’. Do not add any line
breaks to the output!



1 | (set-info :source |printed by MathSAT|)\\n (declare-fun |main::yQ1| ()
(_ BitVec 32))\\n(declare-fun |main::yQ@2| () (_ BitVec 32))\\n(
declare—-fun |main::xQ@1l| () (_ BitVec 32))\\n(declare-fun |main::x@2
| () (_ BitVec 32))\\n(declare-fun |main::xQ@3| () (_ BitVec 32))\\n
(declare-fun |main::y@3| () (_ BitVec 32))\\n(assert (let ((.
def_104 (bvslt |main::yQ@3| (_ bvl0 32)))) (let ((.def_101 (bvadd
bvl 32) |main::y@3]))) (let ((.def_102 (= |main::y@2| .def_101)))
let ((.def_96 (bvadd (_ bvl 32) |main::x@3]))) (let ((.def_97 (=
main: :xQ@2| .def_96))) (let ((.def_44 (bvadd (_ bvl 32) |main::x@Q@2]))
) (let ((.def_45 (= |main::x@1| .def_44))) (let ((.def_36 (= |main::
x@1| (_ bvl4d 32)))) (let ((.def_46 (and .def_36 .def_45))) (let ((.
def_42 (bvadd (_ bvl 32) |main::y@2]))) (let ((.def_43 (= |main::y@l
| .def_42))) (let ((.def_47 (and .def_43 .def_46))) (let ((.def_40 (
bvslt |main::yQ@2| (_ bv1l0 32)))) (let ((.def_41 (not .def_40))) (let
((.def_48 (and .def_41 .def_47))) (let ((.def_98 (and .def_48
def_97))) (let ((.def_103 (and .def_98 .def_102))) (let ((.def_106 (
and .def_103 .def_104))) .def_106)))))))))))))))))))

(—
(
\

Listing 1: Long original formula produced by Dss

1 | (declare-fun |main::y@2]| () (_ BitVec 32)) (declare-fun |main::x@2| ()
(_ BitVec 32)) (declare-fun |main::x@3| () (_ BitVec 32)) (declare
—fun |main::y@3]| () (_ BitVec 32)) (assert (let ((.def_96 (bvadd (_
bvl 32) |main::x@3[]))) (let ((.def_97 (= |main::x@2]| .def_96))) (
let ((.def_101 (bvadd (_ bvl 32) |main::y@3]))) (let ((.def_102 (=
|main::y@2| .def_101))) (let ((.def_104 (bvslt |main::y@3] (_ bvl0
32)))) (let ((.def_103 (and .def_97 .def_102))) (let ((.def_106 (
and .def_103 .def_104))) .def_106))))))))

Listing 2: Simplified counterpart of Listing 1

The LLM should return a shorter SMT formula. A validator then checks the simpli-
fied formula for correct syntax and whether it is implied by the original formula. For
example the long input formula from Listing 1 is successfully reduced to the much
shorter formula in Listing 2. In this case, the simplified formula omits a guard that
forces a loop to have reached a certain threshold (y2 = 10). With the goal of upholding
verification soundness, our evaluation must show that omitting such information
does not lead to worse performance. Only after these checks the simplified formula
is written to the DSs database.

Scope. Within this project we implement the microservice with appropriate unit
and integration tests, statistics and metrics collection, and documentation. Also we
conduct a broad evaluation on selected verification tasks from sv-benchmarks - a
well maintained, large set of benchmark verification tasks for various C programs.

We do not implement or evaluate any non-SMT techniques, nor any alternative
approaches to formula simplification. This has been attempted previously, but
proven too difficult so far. We also do not integrate any solvers other than Math-
SAT5 through JavaSMT, or any LLM backend other than Google Gemini. While
we integrate the microservice into the Kubernetes cluster, we do not provide a full
production deployment version, complete with CI/CD pipelines or optimisation.
This is an ongoing research project. The TRIMMER uses Google Gemini, but we do
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not study hallucination mitigation or certify the LLM’s output beyond our SMT val-
idation module. Within our evaluation we demonstrate practical results but do not
provide formal worst-case complexity bounds or optimality guarantees concerning
trimming.

Evaluation. These are the research questions we aim to answer in our evaluation:

RQ 1. How much shorter are the formulas produced?

RQ 2. How often does the TRIMMER'’S simplification succeed?

RQ 3. How many API requests are wasted due to incorrect LLM responses?
RQ 4. Does the TRIMMER improve the verification time of DSS?

RQ 5. Are there cases where the TRIMMER leads to worse results?

We do not investigate the influence on memory consumption as Multi-processing
DsS already breaks down a verification task into many very small blocks, which is
very memory-efficient. To answer the questions we compare the performance of DSS
with and without the simplified formulas on selected tasks from sv-benchmarks. DSs
already provides us with the total verification time, from the TRIMMER we collect
lengths of original and simplified formulas, total amount of original messages,
amount of syntactically /logically correct simplifications, total LLM requests, reasons
for unsuccessful LLM requests, and latencies of the LLM and SMT solver calls.
From the TRIMMER we collect metrics like: lengths of original and simplified mes-
sages and amount of logically correct/incorrect simplifications.



2 Related Work

Foundational Methods. The simplification of logical formulas dates back several
decades, particularly in the context of program verification and theorem proving.
The combination frameworks developed by Nelson and Oppen, and Shostak estab-
lished the theoretical foundation for decision procedures used today. Nelson and
Oppen published a first version of a ‘simplifier” for Boolean logic formulas [48],
which 'normalises” formulas by transforming them into conditional “if-then-else” ex-
pressions. These conditional expressions are then algorithmically simplified, which
marks the birth of computational simplification on multi-theory formulas. Shostak
worked towards more general decision procedures for formulas involving diverse
semantic constructs [54], laying important groundwork for the Satisfiability Modulo
Theories (SMT). Subsequently, Clarke et al. introduced Counterexample-Guided Ab-
straction Refinement (CEGAR) [33], an iterative abstraction strategy that simplifies
verification tasks by overapproximating complex conditions (the original program),
refining them only when spurious counterexamples are detected. Similarly, the
predicate abstraction approach used in the project SLAM [20] demonstrated signifi-
cant scalability gains by abstracting complex arithmetic and pointer conditions into
simpler Boolean formulas. Similarly to SLAM, we also use the principle of ensuring
correctness through controlled simplification - where simplified formulas always
remain sound overapproximations.

Origins of Simplification in Syntactic Simplification. The Simplify theorem pro-
ver [37] was among the first systems to apply rewriting-simplification before solv-
ing, showing that preprocessing significantly improved verification performance.
Building on these findings, modern SMT solvers, including Z3 [35], Boolector [29],
and CVC4 [23], rely heavily on preprocessing techniques to simplify input formulas
before solving. Most work on preprocessing is published on Z3, where many new
preprocessing features have been added since the original paper introduced the
base ‘simplifier” unit [28, 36, 44]. For example, Z3’s tactics framework [36] employs a
set of rewrite rules and constant-folding heuristics. The success of these techniques
underscores the crucial role preprocessing plays in improving solver efficiency. In
this work our focus is not on solver efficiency, but on simplification in a dynamic
environment to reduce data-transfer times.

Logic-Based Approaches to Formula Reduction. Beyond syntactic preprocessing
simplifications, logic-based methods have been explored extensively. Such methods
are Quantifier Elimination (QE) and Craig Interpolation, for which engines are com-
monly exposed in tools like Z3, cvcb [21], MathSATS5 [31,32] and SMTInterpol [30].
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Surveys highlight QE as a standard preprocessing step for program synthesis, quan-
tified SMT, and CHC solving [39]. An example of a QE algorithm is Fourier-Motzkin
elimination [41]. This algorithm eliminates a variable x from a system of linear
inequalities by pairing every lower-bound of x with every upper-bound of x, which
forms a new inequality that no longer includes x. This can be continued for as long
as a variable has a lower- and upper-bound. Generally, QE can produce simplified
formulas for DSS, but a previous attempt to implement it failed due to poor solver
performance by Z3. Concerning Craig Interpolation, McMillan laid groundwork
for generating simplified formulas by applying the Craig-Lyndon interpolation
theorem to Model Checking [34,45,46,47]. Interpolants serve as concise overap-
proximations in proof-based refinement loops, where they power models such as
CPACHECKER [25]. For our simplification task they are complicated and costly to use;
they add overhead by requiring an unsat proof for each interpolant and they require
manual splitting of the formulas into at least two parts A and B, for which A A B
has to be unsatisfiable. Since the interpolant I is constructed to contradict B, if a later
block relies on properties found only in B, replacing B with I can cause the entire
proof to fail or become an under-approximation. This makes the implementation of
Craig Interpolation to simplify SMT formulas in DSS possible, but difficult. We leave
this approach for future work.

Another algorithm by Dillig et al. [38] focuses only on the simplification of quantifier-
free SMT formulas and is implemented in the software verification tool Ultimate
Automizer [40]. The algorithm reduces the size of formulas by removing irrele-
vant predicates and redundant subformulas. This is done as long as an equivalent
formula can be obtained by replacing any atomic formula with true or false. The
evaluations of both Dillig et al. and the Ultimate Automizer show that this approach
is very effective and lowers analysis times drastically, even though the algorithm
itself is costly due to multiple solver calls. This approach is interesting for Multi-
processing DSS, since formulas are always quantifier-free and can contain redundant
subformulas. An implementation of this algorithm is left for future work as well.

LLMs and Neural Approaches. Recent advances with neural-symbolic methods
have shown that LLMs can solve some complex mathematical tasks better than
humans and algorithm-based tools due to their pattern recognition abilities. Given
the example of integration problems, a neural network trained on graph representa-
tions of equations was able to outperform the linear-equation solver Mathematica
significantly [42]. Furthermore, OpenAl’s GPT-f model found new short proofs for
the Metamath formalization language that were accepted by a formal mathematics
community [49], showcasing the possibilities of incorporating LLMs into formal
mathematical work.

In the realm of verification and solvers, NeuroSAT has shown that neural networks
are able to predict properties of propositional formulas, replicating the behaviour of a
SAT-solver and implicitly simplifying SAT formulas along the way [52]. Integrating
a simplified NeuroSAT architecture into solvers like MiniSAT, Glucose, and Z3
enabled solving of up to 11% more problems than before, proving that neural
networks have a justified future in real-world verification problems [51].



These successes highlight the potential of neural approaches to exploit patterns
within logical formulas, however, they also exhibit limitations: They are often evalu-
ated in isolated or offline contexts, rather than on real-world tasks, which questions
the validity of the results. Further, they mandate coupling with formal-verification
steps to check for potential errors.

Positioning our Contribution. As DSS produces block summaries dynamically for
each verification run, the degree of simplification by static rewriting or constant-
folding is limited. Furthermore, this dynamic environment leads to logic-based
simplification methods requiring a lot of implementation effort: QE necessitates
rewriting the formulas before simplification (as the formulas are quantifier-free
bit-vector logic). Craig Interpolation needs an UNSAT partition, which needs to be
created for each summary, and the method can drop variables not shared by A and
B. This makes it difficult to reuse the interpolant.
These disadvantages leave LLMs as a justified alternative, for a couple of reasons:
¢ The pattern recognition capabilities might produce helpful simplifications,
speeding up verification.
¢ An LLM might be able to find simplifications that syntactic or logic-based
methods cannot find.
* It is a computationally cheap option, causing no overhead for the actual
verification task.
¢ It is simple to implement, as it does not interfere with any of DSS’ internal
workings and does not require complicated transformations or algorithms.
¢ A modular approach enables simple swaps of LLM models and providers,
future-proofing the approach.
Pairing this with syntax and overapproxmation checks, we aim produce a simplifier
that reduces total verification time and keeps verification sound.






3 Background

Within this section, we explain the underlying data structures, techniques, and
systems that are used in our microservice. Among those topics are the SMT-LIB
syntax, JavaSMT, and MathSAT (Section 3.1), CPACHECKER and Multi-Processing
DsS (Section 3.2), Quarkus, Kubernetes, and Google Gemini (Section 3.3).

3.1 Formal Methods and SMT

Satisfiability Modulo Theories. Multi-Processing DSS uses SMT (Satisfiability Mod-
ulo Theories) formulas instead of SAT (Boolean satisfiability) formulas. SAT solvers
determine the satisfiability of propositional logic formulas (Boolean formulas). In
more complex domains, like software verification, SAT solvers are often exchanged
for SMT solvers because their more expressive language makes them easier to use.
In most cases, satisfiability under the constraints of some background theory must
proven. Background theories can, for example, be the theory of equality, or some
theory of arithmetic. The research field devoted to proving this kind of satisfiability
is called Satisfiability Modulo Theories (SMT) [24]. The formulas’ syntax is defined
by the SMT-LIB standard, which was first proposed in 2003 [50] and subsequently
refined with the most recent update being version 2.7 [22].

SMT-LIB syntax. In SMT-LIB standard all commands, sorts, and terms are symbolic
expressions (s-expressions). S-expressions exhibit a recursive, tree-like structure,
where each node either consists of an atom or an expression combining two more
S-expressions. Since SMT-LIB is purely optimised for machine parsing, not human
readability, an expression always starts with the operator or function name, followed
by the operands or function arguments. Normally, an SMT-LIB formula starts with
some declarations of variables, constants, or functions, followed by the actual for-
mula contained in an “assert” block. Listing 3 shows an example SMT-LIB formula.
It is a violation condition of the DSS analysis block starting in line 17 of the program
in Listing 4. The first line is purely informational. The second line is the declaration
of the variable "x1” as 32 bit-vector. The third line is the actual formula: xI = 3.

The default background theory of formulas in DSS is the quantifier-free theory of
arrays, uninterpreted functions, and bit-vectors (QF_AUFBV). Semantically, the
formulas describe a path that CPACHECKER followed through a program’s Control
Flow Automaton (CFA). Since DSS breaks programs down into blocks, a block
from line 17-20 of Listing 4 creates the simple formula in Listing 3. We explain
the DSS concept in greater detail in the following sections. Other blocks with more
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1 | (set—-info :source |printed by MathSAT]|)
2 | (declare—fun |main::xQ@1| () (_ BitVec 32))
3 | (assert (let ((.def_10 (= |main::xQ@1] (_ bv3 32)))).def_10))

Listing 3: Example SMT Formula

1 |int main () {

2

3 int x = 0;

4 int y = 4;

5

6 if (y < 5) {
7 if (y == 4) |
8 xX++;
9 x++;
10 }

11 X++;

12 y++;

13 y++;

14 y++;

15 }

16

17 if (x == 3) {
18 ERROR:

19 return 1;
20 }

21 return 0;

2 |}

Listing 4: Corresponding code block

complicated paths create larger and more complex formulas; an example can be
found in Listing 5. It describes a path through the nested if-statements of the program
in Listing 4 (Lines 6-15). For complex verification tasks, path formulas can grow a
lot longer, exceeding lengths of 50000 characters.

JavaSMT and MathSAT5. Due to the vastly different API's of various solvers,
we use the unifying JavaSMT API to prevent lock-in effects and enable simpler
switching between solvers [19]. Currently JavaSMT supports many popular solvers,
like CVC5, MathSATS5, and Z3 [5]. As Multi-Processing DSS is implemented in the
verifier CPACHECKER [27], which was originally implemented using MathSAT as
backend SMT solver [25], we also implement the TRIMMER’s formula validation
unit using MathSAT as backend solver. The main reason for this is MathSAT’s
broad feature set [19], which covers all requirements for the TRIMMER. Also, its
longstanding reliability and soundness guarantees, as well as its high performance,
make MathSAT one of the best options for the task.
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1 | (set—-info :source |printed by MathSAT|) (declare-fun |main::xQ@3] () (_
BitVec 32)) (declare-fun |main::y@3| () (_ BitVec 32)) (declare—-fun |
main::x@4] () (_ BitVec 32)) (declare-fun |main::y@Q@4| () (_ BitVec
32)) (declare—-fun |main::xQ@1| () (_ BitVec 32)) (declare—-fun |main::
y@l| () (_ BitVec 32)) (declare—-fun |main::y@2] () (_ BitVec 32)) (
declare—-fun |main::xQ@2| () (_ BitVec 32)) (assert (let ((.def_124 (=

Imain::x@4| (_ bv0 32)))) (let ((.def_32 (bvadd (_ bvl 32) |main::
x@41))) (let ((.def_119 (= |main::xQ@3]| .def_32))) (let ((.def_27 (
bvadd (_ bvl 32) |main::x@3]))) (let ((.def_117 (= .def_27 |main::
x@21))) (let ((.def_104 (bvadd (_ bvl 32) |main::x@2]))) (let ((.
def_105 (= |main::x@1| .def_104))) (let ((.def_43 (bvadd (_ bvl 32)
|main::y@4]))) (let ((.def_100 (= |main::yQ@3]| .def_43))) (let ((.
def_38 (bvadd (_ bvl 32) |main::y@3]))) (let ((.def_98 (= .def_38 |
main::y@2]))) (let ((.def_95 (bvadd (_ bvl 32) |main::y@2]))) (let
((.def_96 (= |main::y@1| .def_95))) (let ((.def_79 (= |Imain::x@1| (_
bv3 32)))) (let ((.def_97 (and .def_79 .def_96))) (let ((.def_99 (
and .def_97 .def_98))) (let ((.def_101 (and .def_99 .def_100))) (let
((.def_106 (and .def_101 .def_105))) (let ((.def_118 (and .def_106
def_117))) (let ((.def_120 (and .def_118 .def_119))) (let ((.def_107
(= |main::y@4| (_ bv4d 32)))) (let ((.def_121 (and .def_107 .def_120)
)) (let ((.def_111 (bvslt |main::yQ@4] (_ bv5 32)))) (let ((.def_122 (
and .def_111 .def_121))) (let ((.def_123 (and .def_107 .def_122))) (
let ((.def_125 (and .def_123 .def_124))).def_125)))))))))))))))))))
))))))))

Listing 5: Complex SMT-LIB formula

3.2 Verification Tools and Model-Checking

CPACHECKER. CPACHECKER is the verifier for C programs in which Multi-Processing
DsS is implemented [27]. First published in 2011, the project aimed at accelerating
the process of converting a verification idea into actual experimental results, by
implementing configurable program analysis (CPA) approaches for several abstract
domains [25]. The idea was to simplify and unify, within one tool, many of the
complicated steps required for experimental evaluation of a verification algorithm.
Another goal of the project was to increase the validity of experimental results by
providing comparable environments for each experiment through the CPA con-
cept [25]. CPACHECKER uses abstract-predicate model checking, counter-example
validation via SMT, and precision refinement through Craig Interpolation [33] [25].
It also exposes the option to run a CEGAR loop using these techniques. The path
formulas shipped to Multi-Processing DSS originate from the validation step of this
workflow [26]. We look at this step in more detail when we discuss the workings of
DsS, since this step is where we aim to save time through the TRIMMER.

Distributed Summary Synthesis. The original DSs (also "internal DSS”) decomposes a
monolithic verification task into a network of smaller, interconnected block analyses,
each corresponding to a program control-flow block. The core Dss algorithm wraps
CPACHECKER’s predicate-abstraction CPA. The workflow is visualised in Figure 3.1,
a C program is taken in as input. First, DSS creates a control-flow-automaton from
this program, which is transformed into a block graph. From this blockgraph, the
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N _
‘ Program %% CFA creator H Blockgraph )\ > >Message Hub >

Figure 3.1: Original DSS concept

Multi-Processing DSS m
‘ Program }— CFA creator { Blockgraph } Controller -
l

Figure 3.2: Multi-Processing DSS concept

Worker

analysis is split into blocks that are analysed by workers. The workers communicate
through the message hub.

Each Dss analysis block iteratively synthesises entry summaries (postconditions
from predecessor blocks) and exit summaries (violation conditions sent to predeces-
sors, or if no violation conditions exist postconditions sent to successors) through
asynchronous refinement. Every time a block receives updated summaries from its
neighbours, DSS re-analyses only that block, instead of the entire program. New
summaries are computed from that analysis and propagated further, which enables
every block to be verified in parallel as independent analysis. Experimental results
show that this approach utilises more CPU cores than the traditional single-threaded
CPACHECKER analysis, and in return reduces overall response times for tasks with
high exploitation potential for parallelisation [27]. A limiting factor to this initial
version of DSS is that only one computer, i.e. only one CPU, is used. This puts harsh
restrictions on the potential gain through parallelisation, even for modern multi-core
processors with a lot of available memory. Therefore, Lemberger et al. proposed
a multi-processing version of DSS, which transform block analyses into stateless
microservices [43]. The workflow can be found in Figure 3.2. The workflow stays
the same up to the newly added Controller service. The Controller is added to
orchestrate the verification workflow more efficiently; it maintains the global block
graph and routes pre- and postcondition messages to a scalable pool of worker
services. These represent the workers from the original DSS concept, though in this
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iteration they invoke CPACHECKER in single-block mode to compute summaries.
The theory is that decoupling coordination from computation and leveraging con-
tainerised deployment, as well as advanced, well-maintained tools like Quarkus [18],
Kubernetes [7], and Linkerd [8], enables horizontal scaling and flexible resource
allocation.

How Distributed Summary Synthesis extends CPACHECKER. The classic single-
threaded workflow is replaced by a message-driven, block-wise refinement work-
flow: After the abstraction and model-checking phases identify an abstract counter-
example path, DSs divides the program’s CFA into basic blocks. Then, for each block,
the SSA path formula is built and its precondition and post-/ violation condition is
published to a shared message database. Whenever new summaries arrive, a worker
invokes the CPACHECKER engine, using the new messages as starting predicates [27].
This is also where the TRIMMER submodule can make a difference to the performance
of Multi-Processing DsSS. Currently, waiting on messages to be loaded to and from
the database can take up a large part of the total verification time. With simplified
messages, this waiting period can potentially be reduced, making the entire system
more efficient.

3.3 Implementation Tools and Google Gemini

Within the current implementation of Multi-Processing DSS and our TRIMMER mi-
croservice, we use high-performing, well-maintained tools and frameworks. In the
following we take a closer look at the tools used specifically for the TRIMMER.

Quarkus. Quarkus is a Java framework that shifts workload to build time, performs
annotation processing, dependency-injection, and REST/gRPC endpoint genera-
tion. It provides a rich extension ecosystem (e.g. quarkus-grpc, quarkus-scheduler,
quarkus-micrometer) that can be included at compile time. This enables us to pro-
duce a JVM image with low startup times, smaller memory footprint, and out-of-
the-box support for reactive programming models (Mutiny). Within the TRIMMER,
Quarkus packages the microservice as container image, provides the gRPC interface
to start and stop, handles asynchronous LLM calls via Mutiny and a REST client, and
schedules the trimming cycles [12,14, 16, 17]. Furthermore, statistics are collected
through the Micrometer and OpenTelemetry extensions [13, 15].

Kubernetes and Minikube. Kubernetes is the container orchestration platform
that automates deployment. It includes many features, such as service discovery
and load balancing, storage orchestration, and self-healing, which we make use
of in the implementation of the TRIMMER [6]. The platform originates from the
Google application Borg and was open-sourced in 2014, combining over 15 years of
experience in running production workloads. Minikube is a tool that quickly sets up
a local Kubernetes cluster [9]. We use this tool to set up our cluster whenever we are
testing or running the microservice DSS version.

Google Gemini. Google Gemini is a family of multimodal large language models
developed by Google DeepMind that are designed to process and reason over text,
images, audio, video, and code. The Gemini models have consistenly ranked well
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among other Al models on various benchmark tasks, with the latest 2.5-flash version
performing better than many of its competitors in the category of fast performance
on complex tasks [3].

Developers can access Gemini programmatically via the Gemini API, which exposes
REST and gRPC endpoints. Requests can be made through free-form text prompts,
which we use for the TRIMMER, structured prompts, and chat-style interactions.
Through the API], clients send their prompts and configuration as JSON payloads
and receive responses with generated content and metadata as JSON objects. Au-
thentication is handled through API keys - to use the TRIMMER, such an API key
must be provided. In contrast to normal chat usage the API lacks additional func-
tionality such as web-search, conversational history management, tool integration,
and safety-filtering pipelines. For the use case of the TRIMMER this is an advantage,
as the API has lower latency and none of the additional features are required. An
idea for future work is to experiment with structured prompts and data.
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4 Contribution

The TRIMMER microservice is our key contribution. As a subproject within Multi-
Processing DsS, it is divided into four main functional components. First, at the heart
of the service sits the MessageProcessor, which can be seen as orchestration layer.
Second, there is the MessageRepository, which interacts with the DSS database. Third,
there is the LLM client. Fourth, we contribute the Validator. Within this chapter
we explain how these units work together to form the TRIMMER by examining one
processing cycle. After that we discuss design choices, LLM prompting, and statis-
tics collection. All code can be found in the Gitlab repository of Multi-Processing
DSs [11].

4.1 Workflow and Approach

Figure 4.1 shows the detailed workflow of the TRIMMER. A workflow, consisting of
six stages, is started through the MessageProcessor. Once enabled, it schedules one
workflow every 15s, which is configurable. The MessageRepository fetches messages
from the database, from which the MessageParser extracts the SMT formulas. The
extracted formula is sent to the LLM with a request for simplification by the LLM
client. Upon return, the Validator validates the soundness of the simplification before
the MessageRepository writes any new entries to the database. In the following
sections we describe this workflow in more detail, following a message through one
processing cycle.

4.2 Fetching messages

1 |SELECT id, runId, blockId, messageType, messageContent, timestamp,
2 handled, wasShortenedTo, isShortenedFrom

3 |[FROM ${table.sglName}

4 | WHERE wasShortenedTo IS NULL

5 | AND isShortenedFrom IS NULL

6 |ORDER BY timestamp DESC

7 | LIMIT 2

Listing 6: Fetch messages SQL statement

The first step of a workflow is to read a configurable amount of messages - the
default hereby is 10 - via the MessageRepository from two of the database’s ta-
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Figure 4.1: Workflow of our approach

1 |val workDispatcher = Dispatchers.IO.limitedParallelism(parallelism)
2 | supervisorScope {

3 messages

4 .map { msg —>

5 async (workDispatcher) {

6 if (processSingleMessage (table, msg)) {
7 messageCount .addAndFetch (1)

8 }

9 }

10 }.awaitAll ()

11 }

Listing 7: Limited parallelisation for message processing

bles - "postconditionMessages” and "violationCondtionMessages’. These tables are
processed in parallel with Kotlin’s coroutines to minimise waiting periods.

The MessageProcessor can be seen as a controller unit or orchestration layer. Upon
starting, it delegates the MessageRepository to read from the database. This, in turn,
executes the SQL statement from Listing 6. The table name is passed as a function



4.3. EXTRACTING THE SMT FORMULA 17

parameter “$table.sqIName’ in Line 3. The statement grabs all the available fields of
a message (lines 1,2), and makes sure to only grab original, unsimplified messages
(lines 4,5), which we explain later. Ordering by "timestamp’ (Line 6) ensures that the
most recent messages are simplified during every cycle. The amount of messages
read at once is limited through a config property (Line 7). After executing, each
message is instantly converted to a Kotlin data class object to minimise database
communication. The MessageRepository returns a list of the fetched messages to
the MessageProcessor.

Now that the MessageProcessor has messages as pure Kotlin data object, we start
processing in parallel, as can be seen in Listing 7. The "'workDispatcher” (Line 1) coor-
dinates Kotlin’s coroutines; we invoke it with a limited amount of available threads
through ’.limitedParallelism(parallelism)’. The amount is configurable through a
config property. The "supervisorScope’ (Line 2) acts as a safety net: Even if one thread
is interrupted, or returns with an error, the other threads in the batch can finish their
work correctly without crashing. For every message, the process is wrapped in an
“async’ call to actually enable parallelisation (Line 5). We add a thread-safe counter
that we increment with ‘add AndFetch(1)” (Line 7) for every successfully processed
message. Before moving on with a new batch of messages, we make sure to wait for
all occupied threads to finish (Line 10).

4.3 Extracting the SMT formula

1 | {"uniqueBlockId":"MV2",

2 | "targetNodeNumber":66,

3 | "type":"ERROR_CONDITION",

4 |"payload":"{\"org.sosy_lab.cpachecker.cpa.callstack.CallstackCPA\":
5 \"69.__ VERIFIER_assert\",

6 | \"org.sosy_lab.cpachecker.cpa.functionpointer.FunctionPointerState\":
7 \"\",

8 |\"org.sosy_lab.cpachecker.cpa.predicate.PredicateCPA\":\"

9 (set—info :source |printed by MathSAT]|)

10 (declare—fun |__ VERIFIER_assert::cond@l]| () (_ BitVec 32))

11 (assert (let (

12 (.def_10 (= |_VERIFIER assert::cond@l| (_ bv0 32)))

13 )y .def_10))\",

—_
=

\"org.sosy_lab.cpachecker.cpa.predicate.PredicatePrecision\":
{\"locationInstances\":{},
\"localPredicates\":{}, \"functionPredicates\":{},\"global\":[]},
\"property\":\"CHECKED\",
\"sound\":\"SOUND\",
\"precise\":\"PRECISE\",
\"first\":\"true\",
\"origin\":\"N66->N68,N68->N69\"}",
"timestamp":"2024-10-16T07:09:51.8833642152"}

N NN = = =
N P © O 0 N o G

Listing 8: messageContent String

The next step is to parse each message. For this, the MessageProcessor delegates
extracting the SMT formula to the MessageParser. The formulas sit inside the ‘mes-
sageContent’ field, of which an example can be found in Listing 8. It always contains
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" LLM client
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GenerateContent potential other
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Figure 4.2: LLM client implementation

the top-level keys "uniqueBlockld” (Line 1), which is the ID of the block that produced
this message, "targetNodeNumber” (Line 2), which contains routing information
for the analysis, a “type’ (Line 3), which specifies the type of condition a message
contains, and the "payload” (Line 4), which holds the SMT formula under the key
‘org.sosy_lab.cpachecker.cpa.predicate.PredicateCPA’ (lines 8-13). The SMT formula
is the only information of interest to the TRIMMER. The MessageParser disregards
all other information and returns only this formula as String.

4.4 Simplification

After obtaining the stripped SMT formula as String, the MessageProcessor contin-
ues with the third step - the actual simplification. It requests a shortened formula
through the LLM client. The request is managed by an abstracted REST client in-
terface under the hood that uses three different abstraction layers: GeminiClient,
GeminiGateway, and GeminiService (Figure 4.2). GeminiClient is our concrete im-
plementation of the LLM client interface. It is injected at build time by Quarkus, so
the MessageProcessor has no knowledge of the concrete implementation - this is
symbolised by the arrow connecting only the LLM client and the MessageProcessor.
The request is then passed to the GeminiGateway, which ensures proper formatting:
The request String is wrapped into the JSON format Gemini’s API actually expects,
and Gemini's reply is unwrapped so that only the String response is returned to the
MessageProcessor. For this purpose we added the data transfer object ‘GenerateCon-
tentDto’, which represents Gemini’s request and response format accurately through
multiple simple Kotlin data classes. The GeminiService represents the actual REST
client that communicates with the APL It exposes the ‘generateContent” method
which takes in a configurable API key and the formatted request. The API key has
to be set as environment variable inside ‘dss-trimmer.deploy.yaml” for deployment.
With this architecture the MessageProcessor only calls one interface method, making
the underlying LLM technology totally interchangeable.

4.5 Validation

To make sure the response is a correct and meaningful simplification of our original
SMT formula, we employ a validation step as fourth step in our workflow. Again
in its role as orchestrating layer, the MessageProcessor calls both methods that
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interface Validator {
fun isSyntaxValid(formula: String): Boolean

fun isOverapproximation (
originalFormula: String,
simplifiedFormula: String,
) : Boolean

N U W N =

Listing 9: Validator interface

perform the checks. The Validator exposes two methods that override the Validator
interface (Listing 9), one to check the syntax of the simplified formula and another
to check whether the simplified formula is an overapproximation of its original
counterpart. We discuss later why overapproximation is a reasonably meaningful
simplification in this case. The Validator implements these checks using the SMT
solver MathSAT5 through the JavaSMT API layer. Checking syntax is trivial: We
parse the formula into solver readable format with the inbuilt parse function. If that
succeeds without throwing any exceptions we know that the LLM reply must have
correct SMT-LIB 2 syntax. Continuing with the overapproximation check, we build
the negation of original = simplified:

—(original = simplified)
< —(—original v simplified)
& original A —simplified

This means we tell MathSATS5 to prove original A —simplified is unsatisfiable. If this
returns true, the original formula implies the simplified counterpart and our check
returns true. In any other case, also exceptions or errors, we return false.

If the validation step fails, i.e. one of our validation methods returns false, the
MessageProcessor exits the processing cycle of this message early, skipping any
writes to the database. This ensures that only fully validated formulas are ever
written to the database.

4.6 Replacing the SMT formula

Assuming the MessageProcessor has received a valid and meaningful simplified
formula, we must now replace the SMT formula inside the payload before writ-
ing a new entry to the database. This makes up the fifth step in our workflow.
For the verification with DSS it is essential to make sure that all other informa-
tion the original message contained remains unchanged. Wrapping the formula
back into the message is completed by the MessageParser. Looking back at List-
ing 8, it parses the entire field and only overwrites the formula under ‘org.sosy_-
lab.cpachecker.cpa.predicate.PredicateCPA” inside of the payload. The function then
returns the updated messageContent as String.
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INSERT INTO ${table.sglName}
(runId,
blockId,
messageType,
messageContent,
timestamp,
handled,
isShortenedFrom)
VALUES (2, 2?2, 2, 2, 2, 2, ?)

O N U W N =

Listing 10: Insert SQL statement

1 |UPDATE ${table.sglName}
2 SET wasShortenedTo = ?
3 WHERE id = ?

Listing 11: Update SQL statement

4.7 Updating the database

At this point the MessageProcessor has a valid simplified SMT formula wrapped
inside the messageContent field. The last task of the TRIMMER is to update the
database accordingly. For this purpose, we have introduced two new fields to the
database, ‘wasShortenedTo’ and “isShortenedFrom’. Both fields have a default value
of null. They have the type Integer and reference the ID of another entry inside
the same table of the DSS database. The field "wasShortenedTo” should only ever
contain values for messages that have a simplified counterpart inside the table,
while “isShortenedFrom” should only ever contain values for messages that have an
original counterpart inside the table. This way both original and simplified always
carry a reference to each other, which not only simplifies our experimental setup but
should also be useful in the future. The MessageRepository takes over the database
writing. It exposes a method to write the messages to the database, which prepares
two SQL statements and executes them in the same commit to ensure database
atomicity. Listing 10 shows the insert statement for the new entry containing the
simplified SMT formula. The field “isShortenedFrom” is set to the original message’s
ID here. Listing 11 shows the update statement for the existing entry of the original
message. We only modify the field ‘'wasShortenedTo’, inserting the newly created
ID key from the insert statement.

This step concludes one iteration of the workflow, which is repeated as soon as the
scheduler interval has passed or is stopped by invoking the MessageProcessor’s
stop() method.

4.8 Design choices

Layered and separated structure. Our implementation choices strictly follow the
principles of separation of concerns and a layered architecture. At the highest layer
we implemented the TrimmerService, which is the communication layer between
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protobuf service (the client request) and the MessageProcessor. This restricts access,
since, so far, only two methods are exposed at runtime, start() and stop().

A layer below sits the MessageProcessor, which can be thought of as the coordina-
tion (service) layer of the TRIMMER. It has three main jobs: First, it schedules the
workflow on a fixed cadence and guards against incorrect usage (e.g. repeatedly call-
ing start/stop). Second, it coordinates the workflow, as we discussed earlier. Third,
it enables multiple workflows to run in parallel. Furthermore, this layer makes it
simple to work on the trimmer. As most of the functional tasks are configured via
interfaces, this layer only really has to change when you want to change the way a
workflow behaves. Switching SMT solvers or LLMs leaves this layer and the rest of
the service completely unaffected.

Below the MessageProcessor sit the separate logical modules that perform functional
tasks. These are mainly the MessageRepository, the MessageParser, the Validator,
and the LLM client. The MessageRepository works with any SQL-based datasource
that is configured via Quarkus, since we only use standard SQL queries. A short-
coming is that the MessageParser, in combination with the MessageRepository, only
works with this exact type of message formatting. If this changes in the future, we
have to refactor those two modules. As a change in message formatting should not
be frequent, since it also results in database changes, we believe this is not a big
issue. Also, adapting these two classes should not be a big challenge, due to their
limited and separated functionality.

In contrast, the two logical modules that are more prone to frequent switches are
fully modular and have clearly defined contracts for their behaviour in form of
interfaces. These are the LLM client and the Validator. Essentially following the
Adapter pattern, the GeminiGateway and GeminiService adapt Google’s REST API
into the LLM client’s interface, and the Validator deals with the JavaSMT/MathSAT5
details under the hood of the Validator interface. These modules allow for easy
unit testing, mocking, and swapping implementations without changing core logic
anywhere else.

Supporting the microservice are data classes, i.e. Message, MsgTable, and Gen-
erateContentDto. These classes represent the data layer, which reflects change in
information and is passed as communication object between different modules.
The Message class hereby represents a message itself, exactly as it can be found
within the database. This makes it easy to store all the fetched data in cache and
manipulate it without repeated database accesses. MsgTable is a simple allowlist
for the tables we can process messages from. It defines access clearly and makes the
table names easily interchangeable. Finally, GenerateContentDto represents a data
transfer object, which is why it consists of a cluster of simple data classes. It enables
extremely simple wrapping of requests to and unwrapping of responses from the
Gemini API JSON format.

Coroutine Pipeline. We use structured concurrency for our service, for two main
reasons. It enables us to reproduce our experiment settings consistently, and it en-
ables a configuration tailored to the specific problem and system setup. Structured
concurrency means that we set a configurable limit to the coroutines that the dis-
patcher may start. This ensures that our experiments always run with the same
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amount of parallel threads, independent of demand, LLM throughput, and message
list size. Omitting this can create a threat to the internal validity of the experimental
results. Therefore, we want to be able to control this at least in the experimental
setting. For larger scale deployment, the limit can simply be set to a higher value.
Nevertheless, as API requests cost money, it might be useful to keep a limit on the
processing rate regardless.

Database Additions. The MessageRepository follows the repository pattern as sin-
gle endpoint for database communication, executing all SQL statements. Writing
simplified messages to the same database at the end of our workflow should not
interfere with any of DSS” core logic, as this should not be adapted. Furthermore,
we should prevent processing the same original messages more than once, and
prevent processing an already simplified message again. This is achieved by adding
the two new columns to the existing DSS database schema, "'wasShortenedTo” and
‘isShortenedFrom’. These references to the corresponding counterpart make cor-
rect processing simple, without messing with any of the other information. For
processing we only ever fetch messages where both of these fields are null, as can
be seen in Listing 6; meaning such a message neither has a simplified counterpart,
nor is simplified itself. For the analysis with DSS we create a new configuration
property inside of the scheduler microservice, which handles message coordination
at analysis level. The property, a boolean flag, switches between forcing DSS to use
simplified messages whenever possible, and running DSS as before with only the
original messages. Per default, the flag is set to the latter setting.

Configuration-Driven Behaviour. A large part of the service can be configured
inside the TRIMMER's “application.properties’ file, such as batch size, limit to paral-
lelism, timeout limit, LLM provider, and scheduler interval. This not only enables
us to be consistent with experiments, but also makes the service highly configurable
for the task and different kinds of deployment. For example, with these properties,
we can decide if the service runs sequentially on a batch size of one, i.e. it really
processes one message at a time, which is great for bugfinding and troubleshooting;
or if it should run with a batch size of 100 and 100 parallel threads, if it has access to
a multicore CPU. Configuring the LLM provider enables adding other LLMs, while
keeping all original variations. The annotation as build property does not require
any code changes apart from adding a new implementation of an LLM client. With
that in place, a rebuild enables the new LLM.

Error Handling. We take several precautions to make the TRIMMER as robust as pos-
sible, but also let it crash if something really goes wrong. A frequent source of errors
and inconsistencies is parallel processing. Using Quarkus, many of the main prob-
lems with parallelism can be circumnavigated easily. The usage of "supervisorScope’
around our parallelisation calls ensures that a failure to process one message or
one table does not result in collapsing the entire processing batch. Concretely, it
allows processing to continue even after one thread throws any exception. Also, to
guard the entrypoint start() /stop() methods, we use Atomic flags to prevent race
conditions. The gateway itself bridges the reactive HTTP calls into coroutines, so
that no other threads attempting to call the LLM are blocked. As final step of the
workflow, the writes to the database happen in one single commit, which ensures
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I have the following SMT formula in SMT1lib2 format: - SMT formula -
It describes a C program in SSA form. Provide a smaller formula, you
have to guarantee that the new formula is implied by the original
formula! Also it is absolutely vital that the new formula is in valid
SMT1ib2 syntax! Make sure you do not overlook any necessary
declarations! If you cannot find a result, return 'No smaller formula
found’ . Do not add any line breaks to the output!

N O Ul W N

Listing 12: More vague prompt, yielding better results

I have the following SMT formula in SMT1lib2 format.

This SMT formula is used for software verification and resembles a
post— or violation condition of an analysis block. Your job is to
provide a simplified, shorter formula that can be used in place of the
original formula to complete the verification run. You have to
guarantee that the simplified formula is at least implied by the
original! Also it is absolutely vital that the new formula is in wvalid
SMT1lib2 syntax! Return only the formula, without line breaks, in valid
SMT1lib2 syntax! Validate your own result according to this checklist,
you should be absolutely certain that your simplification fulfills
these criterial:

1. The simplified formula is 100% valid SMT1lib2

syntax!

2. The simplified formula is definitely implied by the original
formula!

3. A verification run would achieve the same result when using the
simplified formula instead of the original formula!

77777 inserted SMT formula ————-

O 0N NG W N =
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Listing 13: More detailed prompt, yielding worse results

database atomicity. All this creates fully parallelised processing capabilities, without
common issues like race conditions and failed atomicity.

Furthermore, we make sure to catch many non-vital exceptions, such as parse errors,
serialisation exceptions, and SQL and validation failures. We log these exceptions
comprehensively for simple troubleshooting and leave the message that caused the
issue unhandled, so further attempts at simplification may be made.

4.9 Prompting the LLM

Preparing this thesis project, we conduct many experiments on SMT formula sim-
plification with LLMs. There are two main aspects that have to be validated before
implementing within Multi-Processing DSS. First, we find the LLM model best
suited for the task, combining precise formula simplifications with low latency and
response times. We aim to achieve good scalability and high throughput, while
generating high quality results for the verification tasks. Second, we find a prompt
that instructs the LLM to deliver us exactly the responses we wanted.

We test OpenAl’s ol-preview, ol-mini, 01, 03-mini, 03, as well as Google Gemini’s 1.5
flash, 1.5 pro, 2.0 flash, 2.5 flash, 2.5 pro, and Deepseek’s R1 models. Overall, the
models that take time to "think” (e.g. all of OpenAl’s ‘o...” models, Gemini’s "-pro’
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models) produce the highest quality results, but at the cost of taking about ~1
minute for each reply. This contradicts our high throughput ambitions, which is
why we look for a compromise between speed and accuracy. In the end, we decide
on Gemini 2.5 Flash, the newest and most advanced model of Google’s Flash series.
This model performs well in our experimental tests by hand, while keeping response
times closer to ~1/2 seconds. For the prompt we go through several iterations to
find the best solution. Counterintuitively, a more detailed and accurate prompt often
delivers much worse results than a more vague, but expressive version. For example,
the prompt in Listing 13 delivers worse results than the prompt in Listing 12 despite
the first providing much more precise orders. It is possible that this is linked to a
recently discovered phenomenon: Large Reasoning Models (which all of OpenAl’s
‘0..." models, Gemini’s 2.* models, and Deepseek’s R1 models are) face a complete
accuracy collapse beyond certain complexities. This leads researchers to believe that
these models are not deeply reasoning, but rather doing very advanced pattern
matching [53]. Looking at our more complex, precise prompt, we can hypothesise
that the task described is very complex, maybe too complex for pattern matching.
Our simpler prompt, on the other hand, does not make the LLM aware of this
complex context in the same detail, which potentially allows for better pattern
matching performance. Further research has to be conducted.

Obviously, the performance in these intial experiments is only measured by the
syntax and overapproximation checks; whether the verification runs can actually
return the same results is evaluated later. Therefore, it remains questionable if the
more vague prompt actually yields good results for verification.

4.10 Statistics Collection and Start Script

Mainly for our experiments, but also for ease of further development and LLM
comparison, we collect statistics via Micrometer, which we include into the compre-
hensive DSS Grafana dashboard. We collect the LLM request count, differentiated
by successful and unsuccessful LLM requests, the number of successful and unsuc-
cesful overapproximation and syntax checks, as well as the ratio of the length of
a simplified formula compared to the length of its original counterpart. From this
information we plot two diagrams over a time axis. The first diagram includes three
graphs, the total LLM requests per second, the wasted LLM requests per second,
and the successful LLM requests per second. The second diagram goes into more
detail on the wasted LLM requests. We plot the failed syntax checks per second, the
failed overapproximation checks per second, the LLM request timeouts per second
and the amount of times, where the LLM returns "No smaller formula found’, per
second. This diagram allows for comparisons between different Al models in the
future, making it easy to see what part of the task a specific model fails or excels at.
Furthermore, we create two gauges that show the average length ratio of simplified
formulas compared to their original counterparts, as well as the overapproximation
success ratio, which compares the amount of successful overapproximations against
the amount of unsuccessful overapproximations. The length ratio value gives us
a good overview of the Al model’s performance. Moreover, it shows us whether
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simplified formulas are longer than their original conterparts, which would directly
contradict the purpose of this microservice. Lastly, we add two diagrams plotting
the latencies of SMT solver calls and LLM requests, which enables us to identify
potential bottlenecks and compare solver and LLM performance in the future.

Starting a Verification Run with the Trimmer. We provide a new script to start a
verification run and the TRIMMER. This is handy for our experiments and can be
found in the Gitlab repository [11] as “start-experiment-trimmer.sh’. It extends the
usual ’start-run.sh’ shell script, and works completely automatically, if the pods
‘connector’, ‘trimmer’, and ‘postgres” are port-forwarded. Apart from that, usage
is the same as with the standard script, and more information can be found in the
repository. To make sure Multi-processing DSS actually has the ability to use some of
the simplified messages, the config property "dss.analysis.filterSimplifiedMessages’
has to be set to true before (re-)building the project.
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5 Evaluation

For our evaluation, we are interested in the of impact of simplified messages on the
correctness and verification time of Multi-Processing DSS. Moreover, we benchmark
the TRIMMER'S performance itself using multiple different configurations.

5.1 Research Questions

In the following, we conduct multiple experiments to answer these research ques-
tions:

RQ 1. How much shorter are the formulas produced?

RQ 2. How often does the TRIMMER’S simplification succeed?

RQ 3. How many API requests are wasted due to incorrect LLM responses?
RQ 4. Does the TRIMMER improve the verification time of DSS?

RQ 5. Are there cases where the TRIMMER leads to worse results?

5.2 Evaluation Setup

Technical Setup. The benchmarks run on a machine using Ubuntu 24.04.2 LTS
(GNU/Linux 6.8.0-58-generic x86_64) with an AMD EPYC 7713 64-Core Proces-
sor (256 CPUs) and 2 TB of total memory. Multi-processing DSS runs on a minikube
cluster, which is configured with 128 CPUs and 128 GB of memory. We use BenchExec
in version 3.30 [1, 2] to run entire task sets automatically and to measure verification
walltime. We configure BenchExec to use either the standard shell script or our new
one.

Experiments. To make our results comparable, we produce baseline results with
standard Multi-processing DSS, as well as experimental results where the TRIMMER
continuously simplifies messages from the database. For experimental runs, we
enable the newly added config property that allows Multi-Processing DSS to use
simplified messages.

Choice of Tasks. Evaluation happens on a selected subset of tasks from sv-bench-

marks in the reachability category. We choose 41 tasks that internal DSS can solve
and take internal DSS more than 60 s to solve. This gives Multi-processing DSS the
best possible chance of using simplified messages. The task set and all unprocessed
results can be found in the Multi-processing DSS data repository [10]. For proof of
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Table 5.1: Trimmer experimental configurations

Configuration Amount of Parallel Threads Batch Size
Minimal 8 10
Moderate 20 20
Proof of Concept 80 80

concept runs with a high volume of LLM requests we pick a subset of only two
tasks, due to high costs.

TRIMMER settings. We experiment with three different configurations for the TRIM-
MER, which can be found in Table 5.1. This enables us to evaluate the effect of volume
and speed of simplifications on Multi-processing DSS. Between experiments, we
vary the amount of parallel threads the TRIMMER is allowed to use, and the batch
size of messages that the TRIMMER processes in one cycle. The settings for cycle
frequency (15s) and LLM request timeout (20 s) stay the same for all experiments.
A 155 cycle frequency ensures we do not exceed per-minute API-request limits,
while a 20s timeout ensures that the TRIMMER continuously processes the most
up-to-date messages. Also, we keep the same Al model (Google Gemini 2.5 Flash [4])
and the same SMT solver for all experiments (MathSATS5 in version 5.6.11).

5.3 Evaluation Results

RQ 1 (Amount of length reduction).

Evaluation Plan: We collect multiple metrics directly from the TRIMMER: the average
length of all original formulas, the average length of original formulas that were
successfully simplified, the average length of simplified formulas, and the average
ratio of simplified length compared to original counterpart length. Comparing these
values, we can answer this question directly.

Results: For the minimal configuration Table 5.2 shows the average length of original
formulas that were simplified, the average length of simplifications, and the resulting
ratio. Averaged over all requests the length of an original formula that is successfully
simplified by the TRIMMER is about 437 characters, the average simplification length
is about 178 characters, and the average ratio is 41 %. Figure 5.2 visualises the
amount of analysis blocks, amount of original messages, and the average length
of original messages for every task (for a baseline run). All scales on the x-axis are
logarithmic for better visualisation. The amount of analysis blocks and the amount
of original messages will become important later, but for this research question the
average length of original messages is interesting. We find that for most tasks, the
average original formula that is simplified by the TRIMMER is orders of magnitude
shorter than the overall average formula. Figure 5.2 shows this in comparison to
Table 5.2.

The box-plot diagram in Figure 5.1 visualises the distribution of the average ratios
over all tasks. The highlighted tasks resemble the task with the maximum average
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Figure 5.1: Boxplot of the average simplified lengths per task

ratio (yellow), a task with an average ratio around the median (green), and the task
with the minimal average ratio (red). The blue box shows that the 25 % quantile
starts around 0.4 and the 75 % quantile reaches around 0.53, with the median or-
ange line sitting at around 0.45. Interpreting the diagram, we find that many of
our runs achieve consistent simplification lengths within the blue box and only the
red highlighted task is categorised as an outlier at under 1.5 IQR. We also see that
the whiskers cover a large spectrum, reaching 0.22 on the lower end and 0.66 on
the upper end. This tells us that the spread of ratios is rather large, showing that
simplification is dependent on the task.

In summary, we find that the average length of a simplified formula compared to
its original counterpart is 41 %. This means that the formulas on average are 59 %
shorter, which shows that the TRIMMER works well. This value is consistent over
multiple runs. The comparison between average length of all originals and originals
that were simplified shows that the TRIMMER prefers to simplify shorter formulas.
We believe this happens as longer messages take the LLM more time to process,
which results in more frequent timeouts. We evaluate the effect of timeouts in greater
detail when answering RQ 2.
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RQ 2 (Success of simplifications).

Evaluation Plan: Again we collect metrics directly from the TRIMMER: the amount
of overapproximation errors, the amount of syntax errors, the amount of request
timeouts, and total amounts of successful and unsuccessful simplifications. With
this data, we can evaluate how many simplifications are successful, and differentiate
which errors occur most frequently.

Results: Table 5.3 shows the total, successful, and unsuccessful LLM requests per
task, as well as the resulting usage of simplified messages during analysis. To answer
this research question, we focus on the total, successful, and unsuccessful columns
of Table 5.3. An LLM request is categorised as successful, if a simplified message
was written to the database as result of the request. If that is not the case, a request
is categorised as unsuccessful. To decide whether a simplified message is used
during the analysis, we query the ‘Requests’ table of the database, which contains
all message IDs that were distributed to any worker for a given verification task. For
the minimal configuration, the data shows that the ratio of successful to total LLM
requests is about 40 %. This is consistent with the other runs we have conducted.

Table 5.5 shows the request comparison table for moderate settings. Before the re-
quest limit is reached, the ratio of successful LLM requests compared to total LLM
requests experiences a slight drop to 33 % (Minimal Settings: 40 %). With the proof
of concept settings (Table 5.7), the same ratio experiences an increase to 45 %. Across
all configurations there are large variations of total LLM requests between each task.

Table 5.4 shows a more detailed summary of the unsuccessful requests for minimal
settings. Overapproximation errors are incremented every time a simplified formula
has correct syntax, but fails the overapproximation check. Syntax errors are incre-
mented each time a simplified formula has incorrect syntax. Both of these values are
consistently low throughout all tasks. With minimal settings, 14 overapproximation
errors and 89 syntax errors amount to 4.8 % of the 2337 unsuccessful requests. A
much larger portion can be attributed to timeouts. With 1868 timeouts they make
up 80 % of 2337 unsuccessful LLM requests. The remaining 15 % of unsuccessful
LLM requests are caused by other undocumented errors.

Table 5.6 shows the detailed summary of unsuccessful requests for moderate set-
tings. We find that overapproximation errors (26) and syntax errors (85) only amount
to 1.6 % of unsuccessful requests (6 882). Timeouts (4092) make up 59.5 % of unsuc-
cessful requests. A much larger portion of 38.9 % of all unsuccessful requests returns
with some undocumented error. Table 5.8 shows the detailed summary of unsuc-
cessful requests for proof of concept settings. Here, overapproximation errors (1)
and syntax errors (20) only amount to 2.6 % of unsuccessful requests (769), while
timeouts (648) make up 84.2 %. Undocumented errors only account for 13.2 %.

Overall, we see that the total amount of request varies strongly between tasks.
Figure 5.3 visualises all the walltimes we gathered for every run differentiated by
baseline runs (red) and experimental runs (blue). The tasks are sorted on the y-axis
by increasing median walltime and the x-axis uses a logarithmic scale for better
visualisation. In summary, it shows that walltimes vary a lot between tasks and



5.3. EVALUATION RESULTS 31

between runs. This is both the case for runs with TRIMMER and without. Comparing
Table 5.3 to Figure 5.3 we find that tasks with longer verification time enable the
TRIMMER to process more messages. Furthermore, we find variations in the ratio
of successful to total LLM requests between 33 % and 45 %. The data shows no
immediate reasons for this, but we attribute this fact mostly to variations in LLM
responses between runs. In summary, this shows that the TRIMMER is not an efficient
tool for formula simplification. We believe this inefficiency can be strongly reduced,
which we refer to in Chapter 6.

Concerning the distribution of errors that cause a request to fail, we find that the
TRIMMER shows great performance on overapproximation and syntax errors. With
values between 1.6 % and 4.8 % these syntactic and semantic errors stay at a very
reasonable, low threshold. This is consistent with other runs we conducted. Time-
outs are an issue with this approach, and affect the efficiency of the TRIMMER. We
also believe that they are the main reason why the TRIMMER simplifies shorter
than average messages for each task (see answer to RQ 1). Timeouts are caused by
the 20 s timeout configuration we keep fixed for our experiments. If we increased
the timeout limit, more requests would return successfully - hypothetically with
simplifications of longer messages. But the fact that the timeout limit is reached so
often in the current configuration also shows: A timeout limit is necessary, otherwise
the TRIMMER would spend too much time waiting on simplifications that arrive too
late to be used by Multi-Processing DSS. Efficiency gains must be sought elsewhere.

RQ 3 (Wasted API Requests).
Evaluation Plan: Compare total requests to unsuccessful requests.

Results: The answer to RQ 2 mostly answers this question as well. Table 5.3 shows
that 60.4 % of total LLM requests are unsuccessful with minimal settings. Table 5.5
shows that 67.5 % of total requests are unsuccessful with moderate settings, only
counting the tasks where request limits were not yet exceeded. Table 5.7 shows
that 54.9 % of requests were unsuccessful with proof of concept settings. The reasons
for this and detailed summaries were explained in our answer to RQ 3.

These statistics underline an underestimated factor of LLM simplification: Expenses.
For a run with moderate settings on all 41 tasks, Google bills about 160 €. This means
that continuous formula simplification at the moment is not the feasible, simple
alternative that we wanted to implement for Multi-Processing DSS.

RQ 4 (Impact on Verification Time).

Evaluation Plan: BenchExec records walltimes for all of our tasks. We can compare
these walltimes between baseline runs and experimental runs to evaluate the impact
of the TRIMMER on the verification time. Moreover, we collect the amount of simpli-
fied messages used during each analysis. This allows us to validate if improvements
are caused by the TRIMMER.
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Results: Table 5.3 shows the LLM requests per task differentiated by their success and
the usage of simplified messages for the minimal configuration. We can see that the
usages stay very low (62 messages of 1534 available messages over 41 tasks). From
the "successful” column of Table 5.3, we find that the amount of available simplified
messages is low compared to the total amount of messages from Figure 5.2. We
conduct experiments with moderate and proof of concept configurations in order to
increase available simplified messages, which we expect to increase the amount of
usages.

Table 5.5 shows the LLM requests per task differentiated by their success and the
usage of simplified messages for the moderate configuration experiment. After the
task ‘ged_2+newton_2_2.yml’ completes, the TRIMMER reaches the daily request
limit of the Gemini API (10000), which is why for all remaining tasks of the set
no more messages are simplified. This problem occurs consistently over multiple
runs. From the available results we can see that the amount of available simplified
messages (‘successful’) has increased dramatically, yet the usages per task stay very
low or zero for all tasks except 's3_cInt_2.BV.c.cil-1la.yml’ (s3 in the following). For
s3, the total amount of original messages is 10896. A usage of 66 simplified messages
is still very low in comparison.

We conduct experiments with proof of concept settings (Table 5.1) to validate that
the amount of available simplified messages is the limiting factor for usage during
analysis. To avoid exceeding request limits we only conduct this experiment with
two tasks: 's3_cInt_2.BV.c.cil-la.yml’ (s3) and "43_1la_cilled_ok_nondet_....yml"!
("43_1a’ in the following). Figure 5.2 highlights why these specific tasks were chosen:
First, they have a high amount of analysis blocks (s3: 149, 43_1a: 91). This means
that many blocks communicate with each other by exchanging a lot of messages,
which gives the analysis more opportunities to use simplified messages. Second, the
amount of original messages available is very high (s3: 8 500 and 43_1a: 9552), which
gives the TRIMMER plenty of opportunities for simplification. Third, the average
length of original messages is very high (s3: 14858 characters, 43_1a: 26758 charac-
ters), which means that using simplified messages can have a greater impact. The
last reason lies in the observed walltimes for these tasks. Figure 5.3 shows that s3
and 43_1a have consistently high walltimes, which enables the TRIMMER to produce
many simplified messages during the proof of concept experiment.

Table 5.7 shows the LLM requests to simplifications used comparison for the proof of
concept configuration. We find that with this configuration the amount of available
simplified messages does not increase a lot compared to Table 5.5. Furthermore, the
amount of simplifications used during analysis stays consistently low over multiple
runs; in this example run at 1 (43_1a) and 4 (s3). This disproves the hypothesis that
more available simplified messages simply induce Multi-processing DSS to use more
of these messages. We have one final hypothesis we want to validate: The TRIMMER’S

143 1a_cilled_ok_nondet_linux-43_1 a-drivers-leds-leds-regulator.ko-ldv_main0_sequence_infi-
nite_withcheck_stateful.cil.out.yml
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simplifications arrive too late for the fast-paced analysis of Multi-Processing DSS.

We conduct one last experiment to validate our hypothesis that the TRIMMER's
messages simply arrive too late to be relevant for the analysis. To eliminate the
time factor, we complete a baseline run with the task s3 and then let the TRIMMER
simplify a large part of the original messages. After that we remove all the messages
with a timestamp before the median timestamp (~1300 messages). This eliminates
many original messages and leaves mostly simplified messages in the database. A
query validates that there are still 1253 simplified messages left in the database,
which we update to match the runID of the next run. We then start the verification
of task s3 again, with the usage of simplified messages enabled for DsS. In theory, if
only the time delay is an issue, DSS should now use simplified messages. But that is
not the case, the counter for simplified messages used stays zero. This disproves our
hypothesis that the time delay of the TRIMMER's simplification is the only hindering
factor for usage during analysis. Instead there can be multiple other issues that
the complex machinery of Multi-Processing DSS causes. We will refer to them in
Chapter 6.

Overall, we find that the amount of simplifications used during analysis is too low
to have any meaningful impact on the verification time of Multi-Processing Dss. We
also find that the TRIMMER is capable of producing many correct simplifications
in short time with higher throughput settings. With the current configuration of
Multi-Processing DsS, these do not seem to be used systematically.

RQ 5 (Potential Negative Impact of the TRIMMER).
Evaluation Plan: Compare walltimes of tasks from baseline runs to experimental runs
with regard to simplified messages used.

Results: As our answer to RQ 4 finds: The usage of simplified messages during anal-
ysis is too low across all runs and tasks to conclude a meaningful statement on the
impact of the TRIMMER on the verification times of Multi-Processing DsS. The task
that used the highest amount of simplified messages (66) is s3 (same task as before).
During that run, this task completed with an incorrect "false’ result in 354 s. The
baseline run completed the same task with a correct ‘true’ result in 279 s. Checking
the walltime visualisation in Figure 5.3 and the bar chart in Figure 5.2, we see that
this task normally completes in around 200s to 400s and produces around 10000
original messages. Therefore, we do not interpret this single isolated result towards
any implications the TRIMMER has on Multi-Processing DsS.

In general, we have to leave this research question largely unanswered. The com-
plex scheduling algorithm of Multi-Processing DSS seems to be more intricate than
expected, and prevents a large number of messages simplified by the TRIMMER to
be used by analysis.
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5.4 Summary

Concluding the evaluation we find that the TRIMMER itself performs great with
regard to syntactical and semantical correctness, with such errors only making up
between 1.6 % and 4.8 % of total unsuccessful LLM requests. Timeouts, making up
between 59.5 % and 84.2 % of unsuccessful requests, cause large inefficiencies and
affect performance numbers. In total, between 33 % and 45 % of total LLM requests
are successful. It is important to keep in mind that the timeout was only employed
for better integration with Multi-Processing DSS. We believe omitting an enforced
timeout will improve the efficiency of the TRIMMER drastically.
Regarding the impact of the TRIMMER on Multi-Processing DSS, we find that the
current scheduling algorithm of Multi-Processing DSS does not allow enough sim-
plifications to be used during analysis. We conducted multiple variations of exper-
iments to find a working solution, but there are too many unknown variables to
explore all possibilities in this thesis. Our experiments tell us:

* The limiting factor is not the amount of simplified messages available.

¢ The limiting factor is not solely the time delay, which the TRIMMMER needs to

simplify a message.

5.5 Threats to Validity

Internal Validity. Our experiments were conducted on a shared server that multi-
ple people had access to during our experiments. Variations in CPU performance
and memory consumption could have had an influence on both Multi-processing
Dss” and the TRIMMER's performance. Also, we measured walltime via BenchExec
without using cgroups, which is not as accurate.

There is also a large portion of undocumented errors (19 % of unsuccessful LLM
requests on minimal settings). Manually checking the logs shows that these are all
cases where the LLM returns an empty payload, but there could be some other error
raised by the LLM.

Our selection of tasks is based on results from benchmarks with internal DSS, not
Multi-processing DSs. For this reason, the verification times may vary for our experi-
ments, and selected tasks may not be most representative of effects.

External Validity. Tasks were selected specifically to suit Multi-processing DSS, not
other verification tools. Also, only 41 tasks were evaluated. We assume that TRIMMER
performance translates well to other tasks with similar SMT formulas, as our prompt
does not include specific details on the type of formula.

In general, the TRIMMER’s approach can only be used with verification tools that
employ a formula-exchanging strategy. For analogue implementation, a database
that stores such messages is necessary. Since most verifiers work with SMT formulas,
it is possible to integrate some variation of the TRIMMER into many verification tools.
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Table 5.2: Minimal Setting: Average formula lengths and reduction ratio (per task)

Task Original Simplified Reduction

Length Length Ratio
Total 437.24 178.16 0.41
43_la_cilled_ok_nondet_....yml 797.72 241.30 0.30
aiob_4.c.v+lhb-reducer.yml 476.84 133.00 0.28
apache-get-tag.i.p+lhb-reducer.yml 0.00 0.00 0.42
arctan_Pade.yml 308.49 178.53 0.58
double_req_bl_1230.yml 629.32 331.75 0.53
double_req_bl_1232b.yml 359.74 218.67 0.61
double_req_bl_1250.yml 230.61 151.33 0.66
double_req_bl_1252b.yml 238.20 129.70 0.54
float21.yml 727.51 319.14 0.44
float_req_bl_1250.yml 0.00 0.00 0.22
float_req_bl_1252b.yml 26491 154.78 0.58
gcd_2+newton_1_8.yml 454.85 171.22 0.38
gcd_2+newton_2_2.yml 425.99 178.72 0.42
id_build.i.p+nlh-reducer.yml 384.25 187.86 0.49
id_build.i.p+sep-reducer.yml 446.46 181.78 0.41
minepump_spec2_product19.cil.yml 402.81 149.00 0.37
minepump_spec2_product27.cil.yml 437.18 200.80 0.46
minepump_spec5_productSimulator.cil.yml 147.00 88.80 0.60
modsf.yml 834.76 130.37 0.16
modulus-2.yml 465.36 106.94 0.23
newton_1_6.yml 288.31 142.14 0.49
newton_1_7.yml 281.43 156.40 0.56
newton_1_8.yml 298.96 158.17 0.53
pc_sfifo_1.cil-2+token_ring.02.cil-1.yml 475.18 190.69 0.40
pc_sfifo_2.cil-1+token_ring.01.cil-1.yml 424.32 183.63 0.43
pc_sfifo_2.cil-1+token_ring.02.cil-1.yml 321.83 152.48 0.47
pc_sfifo_3.cil+token_ring.01.cil-1.yml 370.20 165.23 0.45
pc_sfifo_3.cil+token_ring.02.cil-1.yml 376.20 162.57 0.43
s3_cInt_2.BV.c.cil-1a.yml 432.66 196.12 0.45
s3_cInt_3.BV.c.cil-la.yml 510.33 216.78 0.42
s3_srvr_2a.BV.c.cil.yml 556.40 257.12 0.46
s3_srvr_2a_alt.BV.c.cil.yml 547.35 217.32 0.40
sqrt_poly.yml 305.18 189.38 0.62
test_locks_10.yml 269.98 133.69 0.50

test_locks_9.yml 195.36 103.93 0.53
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Table 5.3: Minimal Setting: LLM requests, outcomes, and simplified messages used
(per task)

Task Total Successful Unsuccessful Simplified

Used
Total 3871 1534 2337 62
43_la_cilled_ok_nondet_....yml 260 103 157 7
aiob_4.c.v+lhb-reducer.yml 40 14 26 0
apache-get-tag.i.p+lhb-reducer.yml 20 13 7 0
arctan_Pade.yml 57 17 40 0
benchmark10_conjunctive.yml 0 0 0 0
double_req_bl_1230.yml 20 4 16 0
double_req_bl_1232b.yml 20 6 14 0
double_req_bl_1250.yml 20 9 11 0
double_req_bl_1252b.yml 20 12 8 11
float21.yml 40 7 33 0
float_req_bl_1230.yml 20 0 20 0
float_req_bl_1232b.yml 20 0 20 0
float_req_bl_1250.yml 20 5 15 0
float_req_bl_1252b.yml 20 10 10 0
gcd_2+newton_1_8.yml 541 200 341 0
gcd_2+newton_2_2.yml 503 167 336 0
id_build.i.p+nlh-reducer.yml 20 7 13 0
id_build.i.p+sep-reducer.yml 20 11 9 0
minepump_spec2_product19....yml 40 23 17 5
minepump_spec2_product??....yml 40 19 21 7
minepump_spec3_product19....yml 0 0 0 0
minepump_spec3_product59....yml 0 0 0 0
minepump_spec5_....yml 20 5 15 0
modsf.yml 236 54 182 4
modulus-2.yml 302 44 258 0
newton_1_6.yml 57 19 38 0
newton_1_7.yml 37 7 30 0
newton_1_8.yml 19 7 12 0
pc_sfifo_1.cil-2+token_ring.02....yml 380 208 172 2
pe_sfifo_2.cil-1+token_ring.01....yml 40 19 21 0
pe_sfifo_2.cil-1+token_ring.02....yml 60 31 29 1
pc_sfifo_3.cil+token_ring.01....yml 180 88 92 2
pc_sfifo_3.cil+token_ring.02....yml 140 68 72 1
s3_cInt_2.BV.c.cil-la.yml 100 57 43 1
s3_cInt_3.BV.c.cil-1a.yml 80 46 34 2
s3_srvr_2a.BV.c.cil.yml 120 59 61 0
s3_srvr_2a_alt.BV.c.cil.yml 140 90 50 16
sqrt_poly.yml 19 8 11 0
sumt7.yml 0 0 0 0
test_locks_10.yml 140 67 73 3
test_locks_9.yml 60 30 30 0
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Table 5.4: Minimal Setting: Reasons for unsuccessful requests (per task)

task Overapprox. Syntax Timeouts
Errors  Errors
Total 14 89 1868
43_la_cilled_ok_nondet_....yml 1 5 133
aiob_4.c.v+lhb-reducer.yml 0 0 6
apache-get-tag.i.p+lhb-reducer.yml 0 0 7
arctan_Pade.yml 7 0 18
double_req_bl_1250.yml 0 1 0
double_req_bl_1252b.yml 0 1 7
float21.yml 0 0 14
float_req_bl_1252b.yml 0 2 8
gcd_2+newton_1_8.yml 2 30 309
gcd_2+newton_2_2.yml 0 17 303
id_build.i.p+sep-reducer.yml 0 0 9
minepump_spec2_product19.cil.yml 0 1 5
minepump_spec2_product27.cil.yml 0 0 21
modsf.yml 0 0 173
modulus-2.yml 0 0 255
newton_1_6.yml 0 5 19
newton_1_7.yml 0 2 12
newton_1_8.yml 0 2 10
pe_sfifo_1.cil-2+token_ring.02.cil-1.yml 0 3 148
pe_sfifo_2.cil-1+token_ring.01.cil-1.yml 0 1 9
pc_sfifo_2.cil-1+token_ring.02.cil-1.yml 0 0 29
pc_sfifo_3.cil+token_ring.01.cil-1.yml 0 2 71
pc_sfifo_3.cil+token_ring.02.cil-1.yml 0 1 55
s3_cInt_2.BV.c.cil-la.yml 0 0 33
s3_cInt_3.BV.c.cil-1a.yml 0 2 32
s3_srvr_2a.BV.c.ciL.yml 0 2 44
s3_srvr_2a_alt.BV.c.cil.yml 0 4 46
sqrt_poly.yml 4 0 7
test_locks_10.yml 0 7 66
test_locks_9.yml 0 1 19

Table 5.5: Moderate Setting: LLM requests, outcomes, and simplified messages used
(per task)

Task Total Successful Unsuccessful Simplified

Used
Total 10200 3318 6882 82
modsf.yml 858 271 587 5
modulus-2.yml 1216 371 845 0
s3_cInt_2.BV.c.cil-1a.yml 360 168 192 66
s3_cInt_3.BV.c.cil-1a.yml 1580 497 1083 0
s3_srvr_2a.BV.c.cil.yml 2760 926 1834 5
s3_srvr_2a_alt.BV.c.cil.yml 520 304 216 6
gcd_2+newton_1_8.yml 1140 605 535 0
gcd_2+newton_2_2.yml 1766 176 1590 0
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Table 5.6: Moderate Setting: Reasons for unsuccessful requests (per task)

Task Overapprox. Syntax Timeouts
Errors  Errors
Total 26 85 4092
gcd_2+newton_1_8.yml 6 18 510
gcd_2+newton_2_2.yml 3 18 176
modsf.yml 2 8 535
modulus-2.yml 4 15 784
s3_cInt_2.BV.c.cil-la.yml 0 10 145
s3_srvr_2a.BV.c.ciL.yml 6 22 1775
s3_srvr_2a_alt.BV.c.cil.yml 5 5 167

Table 5.7: Proof of Concept: LLM requests, outcomes, and simplified messages used
(per task)

Task Total Successful Unsuccessful Simplified

Used
Total 1401 632 769 5
43_la_cilled_ok_nondet_....yml 637 232 405 1
s3_cInt_2.BV.c.cil-1a.yml 764 400 364 4

Table 5.8: Proof of Concept: Reasons for unsuccessful requests (per task)

Task Overapprox. Syntax Timeouts
Errors  Errors

Total 1 20 648

43_la_cilled_ok_nondet_....yml 0 13 392

s3_clnt_2.BV.c.cil-la.yml 1 7 256
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Task (Sorted from Fastest to Slowest Median Walltime)
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6 Future Work

Impact on Multi-Processing DSS. Further research should evaluate the TRIMMER's
effect on Multi-processing DSS in closer detail. To do so, it would be necessary to
find a configuration for Multi-processing DSS that allows it to use more simplified
messages. Starting points for an analysis of the configuration can be whether the
timestamp is an issue, or if each message’s flag "handled’ needs to be set to false
manually. Experimenting with larger block size of analyses could cause Multi-
processing DSS to slow down the verification. Potentially, that would enable more of
the simplified messages to be used. With more simplified messages in usage during
analysis, a re-evaluation of the impact of the TRIMMER on Multi-Processing DSS
would become necessary.

TRIMMER improvements. The TRIMMER currently lacks a heuristic or smart strategy
for the selection of messages. This can cause the TRIMMER to request simplification
of the same message multiple times, if a previous simplification has failed. Future
work could implement such strategies, for example with backoffs if a simplification
is attempted multiple times.

Integrating other LLMs. New LLM client implementations could be added and
evaluated against each other. Especially in the ever-changing environment of LLMs,
it is essential to integrate and evaluate new and improved Al models. The current
evaluation already shows that syntax and overapproximation are not limiting factors
for Google Gemini 2.5 Flash. Instead, it is mainly timing out. Newer and faster
models could mitigate this.

Adding other Solvers. Similar to the LLM client, the Validator module could also
be interchanged easily. It would be interesting to see if any new solver features
could be integrated as pre-processing steps for LLM simplification. Should an
algorithmic simplification process (e.g. quantifier elimination) be implemented for
Multi-processing DSS, it could be evaluated against the LLM simplification.

Algorithmic Simplification. Our work finds that algorithmic, logical simplification
cannot yet be replaced. Therefore, future work for Multi-processing DSS could
attempt to implement algorithmic approaches like Quantifier Elimination, Craig
Interpolation, or the simplification algorithm by Dillig et al. [38], which has shown
promising results in the verification tool "Ultimate Automizer” [40].
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7 Conclusion

Our work proposes an approach to simplify SMT formulas with the help of modern
LLMs. In particular, we have successfully implemented a microservice that con-
tinuously simplifies the block summaries of Multi-processing DSs, and evaluated
the performance of the TRIMMER and Multi-processing DSS based on tasks from
sv-benchmarks. Results showed that the performance of the TRIMMER with regard
to syntactical and semantical performance is very good. Our approach is justified
and delivers simplifications in the realm of 40 % of their original length, which is an
indication for what LLMs might be able to achieve in the future. Also, we showed
that enforced timeouts had a large impact on efficieny.

The impact of using simplified messages on verification with Multi-Processing DSS
could not be fully evaluated. This was due to the current Multi-Processing DSS
configuration not allowing enough simplified messages to be used during analysis.
On the other hand, we were able to rule out the amount of available simplifications,
and the time delay of simplification as sole causes for this effect. This indicates a
direction for future work and analysis of the root causes.

Concluding our work, we find that simplifying SMT formulas with the help of
LLMs is definitely possible, and a path worth exploring further. In contrast, with
the current configuration, it is not the simple, drop-in replacement for algorithmic
simplification we had aimed to integrate into Multi-Processing DSS. Should it be
possible to find a configuration that allows Multi-Processing DSS to use the TRIM-
MER’S simplified messages, this will have to be re-evaluated.

Disclaimer. For development of the TRIMMER Github Copilot was used as autocom-

pletion tool.
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