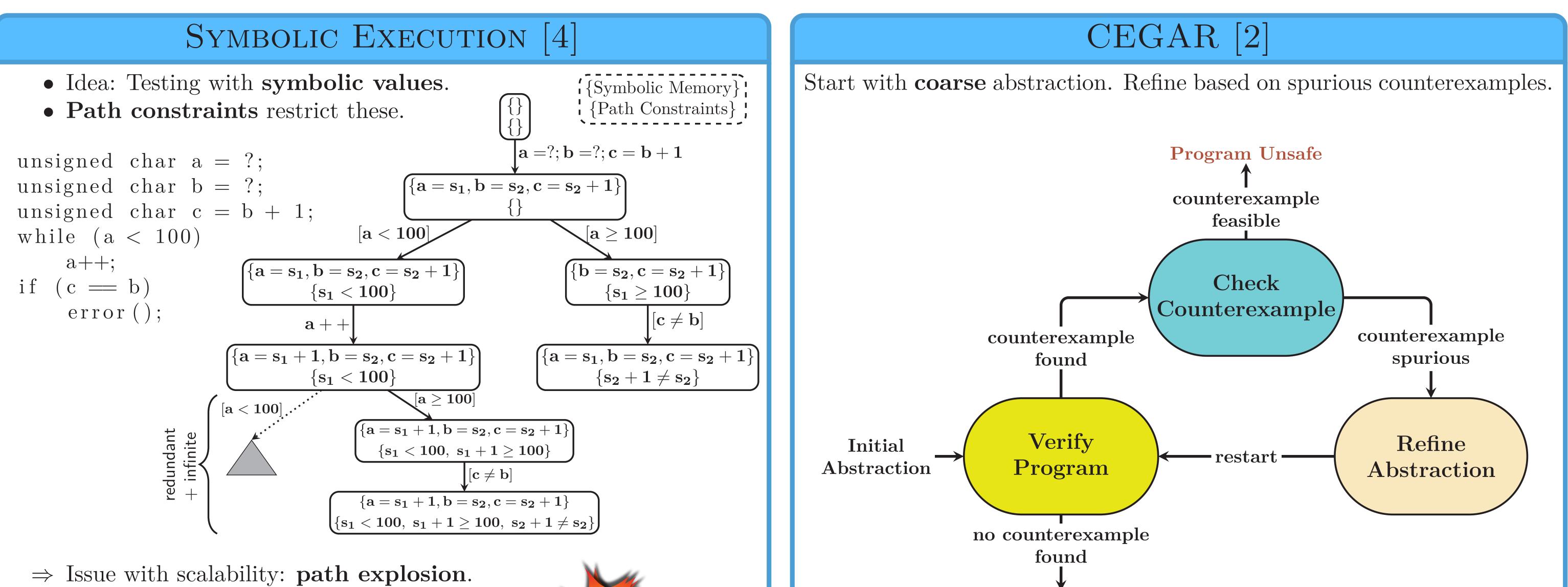


Efficient Symbolic Execution in CPAchecker

Dirk Beyer and Thomas Lemberger

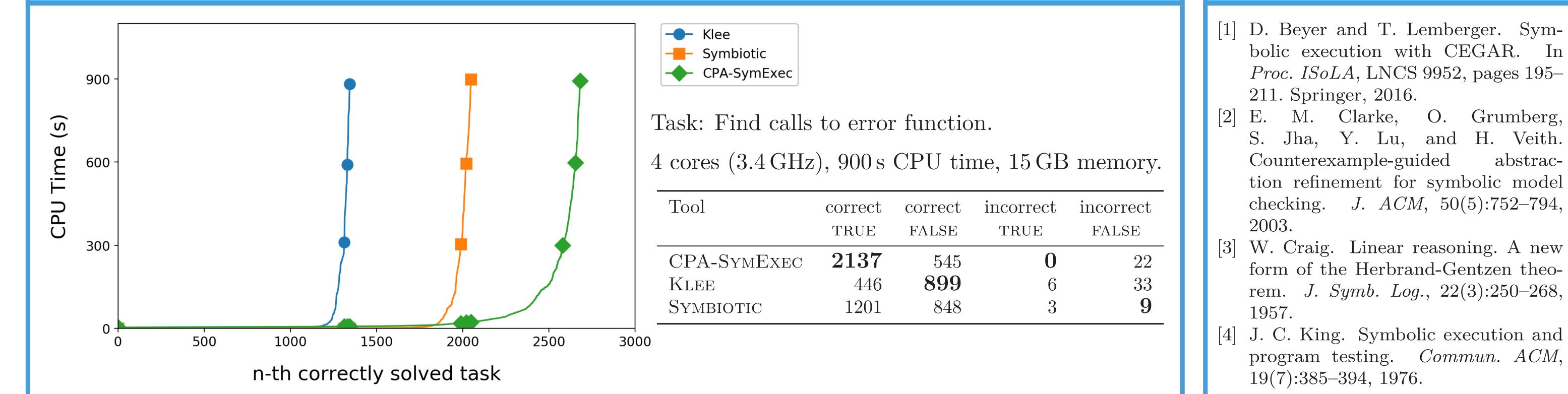

OVERVIEW

CPA-SYMEXEC is a symbolic-execution engine for C programs, implemented in CPACHECKER. It tackles the path-explosion problem of symbolic execution with counterexample-guided abstraction refinement (CEGAR). In the context of symbolic execution, it provides:

- Generation of executable test cases for condition coverage
- Concrete, symbolic and executable program traces
- Interactive, visual analysis reports based on HTML

For examples of these, have a look at the demo or the YouTube video.

Because of high precision, amount of states may grow exponentially and loops may be unrolled infinitely.



Program Safe

Symbolic Execution with CEGAR [1]

1. Verify Program 2. Check Counterexample 4. Verify Program 3. Refine Abstraction \rightarrow Abstraction: ("Precision") (with highest abstraction) (with refined abstraction) (it's infeasible) Which symbolic memory and Found Counterexample path constraints to track. a = ?; b = ?;**a** =?; **b** =?; Ta = ?; b = ?;a = ?; b = ?; \rightarrow Counterexample check: c = b + 1c = b + 1c = b + 1|c| = b + 1Traditional symbolic execution $\{a = s_1, b = s_2, c = s_2 + 1\}$ $\{a = s_1, b = s_2, c = s_2 + 1\}$ $\{b, c\}$ ${\mathbf{b} = \mathbf{s_1}, \mathbf{c} = \mathbf{s_1} + \mathbf{1}}$ over found counterexample. [a < 100] $[a \ge 100]$ $|\mathbf{a} < 1\overline{\mathbf{00}}|$ $a \ge 100$ $|[\mathrm{a} \ge 100]|$ $[\mathrm{a} \ge 100]$ \rightarrow Abstraction Refinement: $\{a = s_1, b = s_2, c = s_2 + 1\}$ $\{b = s_2, c = s_2 + 1\}$ $\{\mathbf{b}, \mathbf{c}\}$ $\{{f b}={f s_1},{f c}={f s_1}+1\}$ $\{b = s_1, c = s_1 + 1\}$ Trial & Error based on $\{\mathbf{s_1} \geq \mathbf{100}\}$ Craig interpolation [3]: $[\mathbf{c} = \mathbf{b}]$ $\mathbf{c} \neq \mathbf{b}$ $[\mathbf{c} \neq \mathbf{b}]$ $[\mathbf{c} = \mathbf{b}]$ $[\mathbf{c} = \mathbf{b}]$ $\mathbf{a} + +$ $\mathbf{a} + +$ "Information 'x' needed $\{b = s_2, c = s_2 + 1\}$ $\{a = s_1, b = s_2, c = s_2 + 1\}$ ${\bf b, c}$ $\{b = s_1, c = s_1 + 1\}$ $\{b = s_1, c = s_1 + 1\}$ $\{\}$ $\{s_2+1=s_2\}$ ${\bf c} = {\bf b}$ ${s_2 + 1 = s_2}$ $\mathbf{s_1 + 1 \neq s_1}$ to show counterexample Target infeasible?" \Rightarrow track 'x' Precision Increment

Experimental Results

References