
CPA-SymExec
Efficient Symbolic Execution inCPAchecker

Dirk Beyer and Thomas Lemberger

Overview
CPA-SymExec is a symbolic-execution engine for C programs,
implemented in CPAchecker. It tackles the path-explosion problem
of symbolic execution with counterexample-guided abstraction refinement
(CEGAR). In the context of symbolic execution, it provides:
• Generation of executable test cases for condition coverage
• Concrete, symbolic and executable program traces
• Interactive, visual analysis reports based on HTML

For examples of these, have a look at the demo or the YouTube video.

Downloads

cpachecker.sosy-lab.org doi.org/10.5281/zenodo.1321181 youtu.be/qoBHtvPKtnw

Symbolic Execution [4]
• Idea: Testing with symbolic values.
• Path constraints restrict these.

unsigned char a = ? ;
unsigned char b = ? ;
unsigned char c = b + 1 ;
whi l e (a < 100)

a++;
i f (c == b)

e r r o r () ;

{}
{}

{Symbolic Memory}
{Path Constraints}

{a = s1,b = s2, c = s2 + 1}
{}

{a = s1,b = s2, c = s2 + 1}
{s1 < 100}

{b = s2, c = s2 + 1}
{s1 ≥ 100}

{a = s1 + 1,b = s2, c = s2 + 1}
{s1 < 100}

{a = s1 + 1, b = s2, c = s2 + 1}
{s1 < 100, s1 + 1 ≥ 100}

{a = s1 + 1, b = s2, c = s2 + 1}
{s1 < 100, s1 + 1 ≥ 100, s2 + 1 6= s2}

{a = s1,b = s2, c = s2 + 1}
{s2 + 1 6= s2}

a =?;b =?; c = b + 1

[a < 100] [a ≥ 100]

a + + [c 6= b]

[a < 100]
[a ≥ 100]

[c 6= b]

re
du

nd
an
t

+
in
fin

ite

⇒ Issue with scalability: path explosion.
Because of high precision, amount of states
may grow exponentially and loops may be
unrolled infinitely.

CEGAR [2]
Start with coarse abstraction. Refine based on spurious counterexamples.

Initial
Abstraction

Verify
Program

Check
Counterexample

Program Safe

Program Unsafe

Refine
Abstraction

no counterexample
found

counterexample
found

counterexample
feasible

counterexample
spurious

restart

Symbolic Execution with CEGAR [1]

→ Abstraction: (“Precision”)
Which symbolic memory and
path constraints to track.

→ Counterexample check:
Traditional symbolic execution
over found counterexample.

→ Abstraction Refinement:
Trial&Error based on
Craig interpolation [3]:
“Information ‘x’ needed
to show counterexample
infeasible?” ⇒ track ‘x’

{}
{}

{}
{}

{}
{}

{}
{}

{}
{}

{}
{}

Target

{}
{}

a =?;b =?;
c = b + 1

[a < 100]

a + +

[a ≥ 100]

[c 6= b][c = b]

Found
Counterexample

{}
{}

{a = s1,b = s2, c = s2 + 1}
{}

{a = s1,b = s2, c = s2 + 1}
{s1 ≥ 100}

{a = s1,b = s2, c = s2 + 1}
{s2 + 1 = s2} 7

a =?;b =?;
c = b + 1

[a ≥ 100]

[c = b]

{}
{}

{����a = s1,b = s2, c = s2 + 1}
{}

{b = s2, c = s2 + 1}
{}

{b = s2, c = s2 + 1}
{s2 + 1 = s2}

a =?;b =?;
c = b + 1

[a ≥ 100]

[c = b]

{b, c}
{}

{b, c}
{}

{b, c}
{c = b}

Precision
Increment

{}
{}

{b = s1, c = s1 + 1}
{}

{b = s1, c = s1 + 1}
{}

{b = s1, c = s1 + 1}
{}

{b = s1, c = s1 + 1}
{}

{b = s1, c = s1 + 1}
{s1 + 1 6= s1}

a =?;b =?;
c = b + 1

[a < 100]

a + +

[a ≥ 100]

[c 6= b]

1. Verify Program
(with highest abstraction)

2. Check Counterexample
(it’s infeasible)

3. Refine Abstraction 4. Verify Program
(with refined abstraction)

Experimental Results

Task: Find calls to error function.
4 cores (3.4GHz), 900 s CPU time, 15GB memory.

Tool correct correct incorrect incorrect
true false true false

CPA-SymExec 2137 545 0 22
Klee 446 899 6 33
Symbiotic 1201 848 3 9

References
[1] D. Beyer and T. Lemberger. Sym-

bolic execution with CEGAR. In
Proc. ISoLA, LNCS 9952, pages 195–
211. Springer, 2016.

[2] E. M. Clarke, O. Grumberg,
S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstrac-
tion refinement for symbolic model
checking. J. ACM, 50(5):752–794,
2003.

[3] W. Craig. Linear reasoning. A new
form of the Herbrand-Gentzen theo-
rem. J. Symb. Log., 22(3):250–268,
1957.

[4] J. C. King. Symbolic execution and
program testing. Commun. ACM,
19(7):385–394, 1976.

