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Overview
CPA-SymExec is a symbolic-execution engine for C programs,
implemented in CPAchecker. It tackles the path-explosion problem
of symbolic execution with counterexample-guided abstraction refinement
(CEGAR). In the context of symbolic execution, it provides:
• Generation of executable test cases for condition coverage
• Concrete, symbolic and executable program traces
• Interactive, visual analysis reports based on HTML

For examples of these, have a look at the demo or the YouTube video.

Downloads

cpachecker.sosy-lab.org doi.org/10.5281/zenodo.1321181 youtu.be/qoBHtvPKtnw

Symbolic Execution [4]
• Idea: Testing with symbolic values.
• Path constraints restrict these.

unsigned char a = ? ;
unsigned char b = ? ;
unsigned char c = b + 1 ;
whi l e ( a < 100)

a++;
i f ( c == b)

e r r o r ( ) ;

{}
{}

{Symbolic Memory}
{Path Constraints}

{a = s1,b = s2, c = s2 + 1}
{}

{a = s1,b = s2, c = s2 + 1}
{s1 < 100}

{b = s2, c = s2 + 1}
{s1 ≥ 100}

{a = s1 + 1,b = s2, c = s2 + 1}
{s1 < 100}

{a = s1 + 1, b = s2, c = s2 + 1}
{s1 < 100, s1 + 1 ≥ 100}

{a = s1 + 1, b = s2, c = s2 + 1}
{s1 < 100, s1 + 1 ≥ 100, s2 + 1 6= s2}

{a = s1,b = s2, c = s2 + 1}
{s2 + 1 6= s2}

a =?;b =?; c = b + 1

[a < 100] [a ≥ 100]

a + + [c 6= b]

[a < 100]
[a ≥ 100]

[c 6= b]
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⇒ Issue with scalability: path explosion.
Because of high precision, amount of states
may grow exponentially and loops may be
unrolled infinitely.

CEGAR [2]
Start with coarse abstraction. Refine based on spurious counterexamples.
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Symbolic Execution with CEGAR [1]

→ Abstraction: (“Precision”)
Which symbolic memory and
path constraints to track.

→ Counterexample check:
Traditional symbolic execution
over found counterexample.

→ Abstraction Refinement:
Trial&Error based on
Craig interpolation [3]:
“Information ‘x’ needed
to show counterexample
infeasible?” ⇒ track ‘x’
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a =?;b =?;
c = b + 1

[a < 100]

a + +

[a ≥ 100]

[c 6= b][c = b]

Found
Counterexample

{}
{}

{a = s1,b = s2, c = s2 + 1}
{}

{a = s1,b = s2, c = s2 + 1}
{s1 ≥ 100}

{a = s1,b = s2, c = s2 + 1}
{s2 + 1 = s2} 7

a =?;b =?;
c = b + 1

[a ≥ 100]

[c = b]
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{}

{����a = s1,b = s2, c = s2 + 1}
{}

{b = s2, c = s2 + 1}
{}

{b = s2, c = s2 + 1}
{s2 + 1 = s2}

a =?;b =?;
c = b + 1

[a ≥ 100]

[c = b]

{b, c}
{}

{b, c}
{}

{b, c}
{c = b}

Precision
Increment

{}
{}

{b = s1, c = s1 + 1}
{}

{b = s1, c = s1 + 1}
{}

{b = s1, c = s1 + 1}
{}

{b = s1, c = s1 + 1}
{}

{b = s1, c = s1 + 1}
{s1 + 1 6= s1}

a =?;b =?;
c = b + 1

[a < 100]

a + +

[a ≥ 100]

[c 6= b]

1. Verify Program
(with highest abstraction)

2. Check Counterexample
(it’s infeasible)

3. Refine Abstraction 4. Verify Program
(with refined abstraction)

Experimental Results

Task: Find calls to error function.
4 cores (3.4GHz), 900 s CPU time, 15GB memory.

Tool correct correct incorrect incorrect
true false true false

CPA-SymExec 2137 545 0 22
Klee 446 899 6 33
Symbiotic 1201 848 3 9
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