
Master Thesis

in Computer Science

Software Verification based on
Adjustable Large-Block Encoding

Philipp Wendler

Supervisor:
Prof. Dr. Dirk Beyer

March 26, 2010

Abstract

Predicate abstraction is a widely used technique for software model
checking. Most approaches employ counterexample-guided abstrac-
tion refinement (CEGAR). The predicates needed for the abstraction
of the program states are found through the generation of Craig in-
terpolants for infeasible paths. Traditionally, the abstractions were
computed after each statement of the program, leading to a large
number of costly abstraction computations. A faster approach was
proposed which summarizes larger parts of a program into one for-
mula, and computes the abstraction only once for a whole block of
statements. This is called Large-Block Encoding (LBE), the previous
method being called Single-Block Encoding (SBE), respectively. LBE
uses blocks that are always as large as they can be without including
function calls and loops. In this work, an extended analysis is pre-
sented which is more flexible and allows the use of block sizes ranging
from SBE to LBE and beyond, through the adjustment of several
parameters. Such a unification of different concepts makes it easier
to understand and analyze the fundamental properties of the analy-
sis, and makes the differences of the variants more explicit. Certain
configurations could not be considered before in experiments, because
the tool implementations only allowed for configurations that are the
extreme cases of the new unified formulation. Benchmarks on exam-
ple C programs are reported with different configurations in order to
identify one that is generally the fastest.

Contents

1 Introduction 5
1.1 Related Work . 6
1.2 Structure . 6

2 Background 7
2.1 Input Language and Control-Flow Automata 7
2.2 Predicate Abstraction . 9
2.3 Paths as Formulas . 11
2.4 Counterexample-Guided Abstraction Refinement and Lazy Abstraction 12
2.5 Large-Block Encoding . 15
2.6 On-the-fly Large-Block Encoding . 18
2.7 Configurable Program Analysis . 21

3 Adjustable Large-Block Encoding 24
3.1 CPA for Adjustable Large-Block Encoding 26
3.2 Example . 28

4 Implementation 30

5 Evaluation 32
5.1 Block Size varying between SBE and LBE 34
5.2 Block Sizes larger than LBE . 40

6 Conclusion and Future Work 48

Bibliography 50

3

List of Figures

2.1 Example program lock-loop.c . 8
2.2 CFA for lock-loop.c . 8
2.3 ART for lock-loop.c . 14
2.4 Summarized CFA for lock-loop.c . 17
2.5 Results produced by LBE for lock-loop.c 17
2.6 ART produced by On-the-fly LBE for lock-loop.c 20

3.1 ART produced by Adjustable LBE for lock-loop.c 29

5.1 Results for block sizes 1 to 100, Boolean abstraction, topological sort . 38

List of Tables

5.1 Comparison of SBE and LBE . 35
5.2 Results for block sizes 1 to 100, Boolean abstraction, topological sort . 37
5.3 Results for block sizes 1 to 10, Cartesian abstraction, DFS 41
5.4 Results for block sizes 1 to 10, Cartesian abstraction, topological sort . 42
5.5 Results for block sizes 1 to 10, Boolean abstraction, topological sort . . 43
5.6 Results for block sizes 50 to 300 with absk 44
5.7 Results for LBE with unrolling of loops 45
5.8 Results for LBE with function inlining 47

4

1 Introduction

The verification of software products is very important, as our world depends more
and more on the correct functioning of software in all possible areas. Erroneous pro-
grams can even lead to deadly accidents [Neu09]. Several methods for finding bugs
and checking safety properties are based on static analysis, i.e., the analysis of the pro-
gram source code without actually executing the program. A comparison can be found
in [DKW08]. The best precision is provided by software model checking [JM09], which
verifies that a program conforms to a given specification. Such a specification could, for
example, be given by the programmer, by specifying predicates that must always hold
at a certain program location (e.g., through the use of assertions). Model checking with
predicate abstraction [GS97] has made a lot of progress, being implemented in several
tools like Slam [BR02] and Blast [BHJM07], which are able to verify properties of
C programs. These tools use counterexample-guided abstraction refinement [CGJ+03]
and lazy abstraction [HJMS02], automatically finding the necessary predicates through
generating Craig interpolants [Cra57] for spurious counterexamples [HJMM04]. How-
ever, their use for verifying real software products is still limited because of the large
amount of resources (especially time) needed to verify bigger programs. Large-Block
Encoding (LBE) [BCG+09] has been proposed as a way to speed up the analysis based
on predicate abstraction of larger program blocks at a time. The previous approach,
called Single-Block Encoding (SBE), is slower because it needs a costly abstraction
computation after each program statement. In this work, an extension to LBE called
Adjustable Large-Block Encoding is presented that allows configuration of the block
size in a wide range. Just by choosing the values of a few parameters not only SBE
and LBE can be used, but also block sizes between these two configurations and be-
yond LBE are possible. This has been implemented in CPAchecker [BK09], a tool
for static analysis that implements the Configurable Software Verification [BHT07]
framework and can be used as a software model checker. This implementation was
used to experiment with different configurations, benchmarking the time needed to
verify several example C programs and evaluating the results.

5

1.1 Related Work

There are several model checkers that use the traditional SBE approach together
with counterexample-guided abstraction refinement (CEGAR) [CGJ+03], including
Slam [BR02] and Blast [BHJM07]. The tool SatAbs [CKSY05] is also based
on CEGAR but uses symbolic search in the abstract space instead of abstractions.
More similar to LBE is the work of McMillan [McM06], which also follows the lazy-
abstraction paradigm [HJMS02], but does not use abstractions. Instead, it directly
adds the predicates extracted from the Craig interpolants [Cra57] [HJMM04] to the
abstract states. Bounded Model Checking [BCCZ99], for example implemented in
CBMC [CKL04], focuses on efficiently finding bugs in programs, but is not precise
enough to verify that a program conforms to a specification.

1.2 Structure

Chapter 2 provides the necessary background, including the definition of predicate ab-
straction, counterexample-guided abstraction refinement and Large-Block Encoding.
The CPA framework, which is used to encode the analysis, is also introduced here.
The contributions of this work are presented in Chapter 3 and its implementation is
described in Chapter 4. The experiments conducted to evaluate the new approach and
the discussion of the results can be found in Chapter 5, with some resulting ideas for
future work outlined in Chapter 6.

6

2 Background

2.1 Input Language and Control-Flow Automata

The language of the analyzed programs is a simple imperative programming language
containing loops, conditional branches and unconditional jumps (goto). The only type
of variables ranges over integers and is assumed to be of unconstrained precision (no
overflows). References or pointers, as well as arrays, are not part of the language. All
instructions are either simple side-effect-free assignments or assume operations.
Control-flow automata (CFA) [BCG+09] are used to encode programs given in this

language. A CFA A = (L,G) consists of a set L of program locations, and a set
G ⊆ L×Ops×L of control-flow edges, where Ops is the set of all possible operations
supported by the input language. The locations model the program counter l. Each
control-flow edge g ∈ G contains an operation that is executed when the control
flows from the predecessor location to the successor location of this edge. The set of
all variables that occur in the operations from the edges of A is denoted by X. A
program P = (A, l0) consists of a CFA A and a designated node from L, the start
location l0.
An example program written in a C-like syntax can be seen in Figure 2.1. It acquires

and frees a lock repeatedly and contains several checks verifying the correct state of
the lock. Figure 2.2 contains the CFA for this program, with node 0 being the start
location l0.
A concrete data state of a program is a set c : X → Z of mappings that assigns a

value to each variable of a program. The set of all such states is called C. Any subset
of C is called a region. A concrete state (c, l) ∈ C × L is a variable assignment at a
specific program location. A concrete path is a finite sequence 〈(c1, l1), . . . , (cn, ln)〉 of
states such that ∀i ∈ {1, . . . , n− 1} : (li, opi, li+1) ∈ G. Concrete paths are feasible if
each concrete state ci on the path is produced from its predecessor ci−1 by modifying
ci−1 according to the operation opi−1 on the edge between them, that is, if it is possible
that the program would follow this path if it was executed.

7

1 int f(int p, int n) {
2 int LOCK ;
3 LOCK = 0;

5 while (n >= 0) {
6 if (p) {
7 if (LOCK) {
8 goto ERROR;
9 }

10 LOCK = 1;
11 }

13 if (p) {
14 if (! LOCK) {
15 goto ERROR;
16 }
17 LOCK = 0;
18 }

20 n--;
21 }

23 if (! LOCK) {
24 return 0;
25 }

27 ERROR:
28 return 1;
29 }

Figure 2.1: Example program
lock-loop.c

Figure 2.2: CFA for lock-loop.c
assume(p) is represented by [p],
nodes with two outgoing edges are
of rhombic shape

8

Given an error location lE ∈ L, a program P = (A, l0) is called lE-safe if there is no
feasible concrete path in P starting at l0 and ending in lE. In the example, the error
location would be the CFA node labeled ERROR. With software model checking, this
is verified by unrolling the CFA into a tree which contains all possible concrete states
and checking the feasibility of each concrete path. Programs whose specifications are
given via assertions in the source code can be reduced to lE-checking by using the
following implementation of assertions:
assert(p) {

if ¬p then
lE : exit(1);
}

2.2 Predicate Abstraction

When using predicate abstraction [GS97], the concrete states of a program are not
stored explicitly. Instead, predicates from a quantifier-free theory T are used to model
program states. This abstraction is not exact, but sound (i.e., it over-approximates the
set of possible concrete states), possibly finding concrete paths that are not feasible,
but never missing a feasible concrete path. The most commonly used theory is linear
arithmetic with uninterpreted functions (LA+EUF). An efficient solver for satisfiabil-
ity modulo theories (SMT) [Seb07] that supports the chosen theory has to be available.
There are several approaches providing reasonably fast abstraction computations for
LA+EUF [LNO06] [CCF+07], implemented in tools like MathSAT [BCF+08]. With
P being a set of predicates from T , let ϕ be a first-order formula over predicates from
P . The formula ϕ represents the region rϕ of all concrete states that imply ϕ, i.e.,
rϕ = {c | c |= ϕ}. The set of concrete states that are reachable from any of the states of
a region by executing a given operation op ∈ Ops is represented by the strongest post-
condition operator SPop [BCG+09]. For an assignment operation x := e with x ∈ X,
a state c′ is reachable from the state c if c′ = c[x 7→ e], and for an assume operation
assume(p) with a predicate p over the variables from X, c′ is reachable from c if c′ = c

and p is true after all free variables in p have been replaced by their value from c. Thus,
the strongest postcondition operator is SPx:=e(ϕ) = ∃x′ : ϕ[x 7→ x′] ∧ (x = e[x 7→ x′])

for an assignment operation and SPassume(p)(ϕ) = p ∧ ϕ for an assume operation.
A program path σ is a finite sequence 〈(op1, l1), . . . , (opn, ln)〉 of pairs of operations

from Ops and program locations from L such that ∀i ∈ {1, n} : (li−1, opi, li) ∈ G

9

(a path is a walk through the CFA starting at l0). The definition of the strongest
postcondition operator is extended to paths by the successive application of SPop for
all operations in the path: SPσ(ϕ) = SPopn

(. . . SPop1(ϕ) . . .). A program path is called
feasible if SPσ(true) is satisfiable. Abstract reachability of a concrete state (c, l) is
defined by the existence of a feasible program path σ whose final location is l and
whose final region includes c (i.e., c |= SPσ(true)). Similarly, a program location l is
reachable if there is any reachable state (·, l).
Computing the reachability of a path after every step would be too expensive com-

putationally, because many such checks would be necessary, and the size of the involved
formulas increases with the length of the path. Therefore, abstractions are computed
that summarize the information known at some location of a path. Given a path
σ = 〈(op1, l1), . . . , (opn, ln)〉, an abstraction ϕ for SPσ(true) should contain the infor-
mation necessary to prove that a path σ′ = 〈(op1, l1), . . . , (opn+1, ln+1)〉 is infeasible,
if it indeed is. As the size of ϕ does not increase with the size of σ, in general the
satisfiability check for SPopn+1

(ϕ) should be faster than for SPσ′(true), hopefully com-
pensating for the cost of computing the abstraction. However, if the abstraction was
to imprecise, the analysis could fail to prove an infeasible path σ′ as infeasible and
the program could be considered unsafe, even if it is in fact safe. The precision of an
abstraction is a finite subset π of predicates from P that is used for computing the
abstraction. For the scope of this section, this set is considered to be fixed and given
externally. An abstraction for the formula ϕ computed under the precision π is written
as ϕπ. It is called an abstract state as it is an abstract representation of the region
(which is a set of concrete states) represented by ϕ. Given a method to compute the
abstraction for a formula ϕ, the abstract strongest postcondition operator is defined
as SPπop(ϕ) = (SPop(ϕ))π. During analysis, this is used to compute the successor ϕ′π

of an abstract state ϕπ, so that ϕ′π = (SPop(ϕ
π))π.

One further performance improvement can be achieved by using not one set π of
predicates for all abstraction computations, but to use a function Π : L → 2P . This
assigns a set of predicates (a precision) to each program location. When an abstrac-
tion is computed at location l, only Π(l) is used as the precision, and not all known
predicates. This decreases the number of predicates for most of the abstractions, as
normally a lot of predicates are only locally useful to prove that certain paths are
infeasible, but are not necessary in other parts of the program.
For the computation of an abstraction of a formula ϕ under a precision π, two

different methods can be used which differ in precision and performance.

10

2.2.1 Cartesian Predicate Abstraction

With Cartesian predicate abstraction [BPR01], it is checked independently for each
predicate p ∈ π if ϕ entails p. Then the Cartesian abstraction ϕπC of ϕ under the
precision π is ϕπC =

∧
{p ∈ π | ϕ ⇒ p}, i.e., the conjunction of all those predicates

for which this is true. In order to increase the accuracy of the abstraction, usually
the negations of all predicates are added to the precision before the abstraction is
computed. This method queries the SMT solver |π| times with relatively small input
problems, and the computed result is always a conjunction of predicates from π (which
can be stored very easily).

2.2.2 Boolean Predicate Abstraction

If the precision achieved with Cartesian predicate abstraction is not enough, Boolean
predicate abstraction as defined in [LNO06] can be used. Therefor only one query
to an SMT solver is needed, but the input formula is larger and instead of a mere
satisfiability check, all satisfying assignments of the formula need to be enumerated.
For each predicate pi ∈ π, a propositional variable vi is added. The SMT solver is
asked for all assignments to these variables that let the formula ϕ ∧

∧
pi∈π(pi ⇔ vi)

be true. For each such assignment m : {v1, . . . , vn} → B the conjunction over all
predicates whose propositional variable is set to true in the assignment is constructed,
i.e.,

∧
{pi ∈ π |m(vi)}. The result, the Boolean abstraction ϕπB for ϕ, is the disjunction

of all these formulas. This abstraction is more precise, as it contains not only those
predicates that are unconditionally entailed by ϕ, but also conjunctions of predicates.
However, computing the abstraction is much more expensive and the result can be
much larger, as the number of satisfying assignments can be exponential in the size
of π.

2.3 Paths as Formulas

Computing an abstraction of an abstract state happens at one program location at a
time, using only the abstraction of the predecessor state and the operation attached
to the edge between them. When it is necessary to view bigger parts of the program
as one formula, a problem arises. Assignments cannot be represented directly in a
Boolean formula. This problem can be eliminated by using ideas from the Static
Single Assignment (SSA) form [CFR+91] for programs [BHJM07]. Each variable is

11

assigned only once. Whenever a new assignment x := e′ to a variable x occurs, a new
variable x′ is introduced, and all further references to the original variable x in the rest
of the program are replaced by references to x′. This can be implemented by adding an
index to each variable of the program, which is increased by one on every assignment.
In SSA form it is possible to represent the assignment by the formula x′ = e′. It is not
necessary to transform the program into an SSA form before analyzing it, instead the
necessary adjustments can be made when a formula is constructed from a part of the
program. A path formula ϕ is a formula representing one or more (alternative) paths
in the CFA such that the formula is unsatisfiable if and only if all represented paths are
infeasible. Given such a path formula ϕ, the function indexϕ : X → N returns for any
variable v ∈ X the maximum of all indices of occurrences of v in ϕ, or zero if there is
no such occurrence, i.e., indexϕ(v) = max({0}∪{k | vk occurs in ϕ}). A path formula
can be constructed iteratively for a finite sequence 〈(l1, op1, l2), . . . , (ln, opn, ln+1)〉 of
CFA edges. The initial formula ϕ0 is true. For each i ∈ {1, . . . , n}, the path formula ϕi
is constructed as follows: If opi is an assume operation of the form assume(p), the path
formula ϕi is set to ϕi−1∧p′, where p′ is created from p by replacing any free variable v
in p by vj with j = indexϕi−1

(v). If opi is an assignment operation of the form x := e,
the path formula ϕi is set to ϕi−1 ∧ (xj = e′), where j = indexϕi−1

(x) + 1 and e′

is created from e by replacing any free variable v in e by vk with k = indexϕi−1
(v).

Therefore, the path formula for a path without branches is always a conjunction of the
formulas representing single operations, only with indices added to all occurrences of
free variables. Given two path formulas ϕ1 and ϕ2, the path formula for the disjunction
of the two paths is ϕ = (ϕ1 ∧ ψ1) ∨ (ϕ2 ∧ ψ2), where ψ1 and ψ2 are two correction
terms equalizing the index of each variable. Both ψ1 and ψ2 are conjunctions. For
any variable v that occurs in ϕ1 or in ϕ2, the term vi = vj with i = indexϕ1(v) and
j = indexϕ2(v) is created. If i > j, this term is added to ψ2 and if i < j the term is
added to ψ1. Otherwise this term is not needed.

2.4 Counterexample-Guided Abstraction

Refinement and Lazy Abstraction

In the previous section, the precision was assumed to be given externally. The pred-
icates for the precision have to be chosen wisely, as they are the key for a good
performance and a successful analysis. Choosing too few predicates would result in
too imprecise abstractions and potentially failing to prove that a program is safe, while

12

too many predicates would result in overly expensive abstraction computations. With
counterexample-guided abstraction refinement (CEGAR) [CGJ+03] a technique called
lazy abstraction [HJMS02] is possible which automatically finds the needed predicates
and uses only these. Analysis starts with the empty set as the initial precision. This
will result in all abstractions being true and the error location to be reachable (if it is
syntactically reachable in the CFA). When a path σ to the error location (a counterex-
ample) is encountered, this path is checked for feasibility by checking the satisfiability
of SPσ(true). If the path is indeed feasible, the program is unsafe and analysis termi-
nates. If the path is not feasible, the counterexample is said to be spurious. In this
case, the path is analyzed, the predicates necessary to prove this path as infeasible are
extracted [HJMM04] and added to the precision, and the analysis is restarted with
the new precision. This is done iteratively until either a real counterexample is found
or no path to the error location is feasible any more.
The example from Figure 2.1 has been analyzed with lazy predicate abstraction.

The resulting abstract reachability tree which contains all reachable abstract states
can be seen in Figure 2.3.

2.4.1 Abstract Reachability Tree

In order to analyze the path of a counterexample, the information which abstract state
is the predecessor of a given state has to be known. This is done by creating an abstract
reachability tree (ART) [BHJM07]. This tree stores the generated abstract states
together with the program location they belong to, and the predecessor-successor
relation. The nodes of this tree are tuples (l, ϕ) of program locations and abstract
states. An edge ((l, ϕ), (l′, ϕ′)) is contained in the tree, if there exists an edge (l, op, l′)

in the CFA and ϕ′ = SPπop(ϕ). The root of an ART is the node (l0, true). A node
(l, ϕ) is called covered if there is another non-covered node (l′, ϕ′) in the ART which
belongs to the same program location and whose abstract state entails the covered
node’s abstract state, i.e., (l′ = l) ∧ (ϕ′ |= ϕ). The successors of a covered node do
not need to be analyzed further, because they are already over-approximated by the
successors of the covering node. Thus an ART is called complete if every node is either
covered or all its possible successors exist as its children in the ART. A complete ART
that does not contain a node (lE, ·) for the error location lE exists only for lE-safe
programs.

13

0
4

1
5

 int LOCK;

2
148

 LOCK = 0;

3
153

[n >= 0]

10
150

 [n < 0]

6
182

[!p]

4
154

 [p]
4

180

 [p]

9
185

 [!p]

2
193

n = n - 1;

 covered by

5
157

 [!LOCK]

6
206

 LOCK = 1;

7
207

 [p]

8
209

 [LOCK]

9
222

 LOCK = 0;

 covered by

covered by

11
151

 [!LOCK]

12
152

 return 0;

Figure 2.3: ART for lock-loop.c
Each node is labeled with two numbers, the
first being the number of the CFA node it be-
longs to and the second a unique identifier as-
signed to all ART nodes. The ART node iden-
tifiers are non-contiguous due to the use of re-
finement, which results in the deletion of ART
nodes and a (partial) restart of the analysis.
If the ART node number of a node ϕ is larger
than the ART node number of a node ψ, the
node ϕ has been generated later than node ψ.
The edges of the ART are represented only by
the solid lines. These are labeled with the op-
erations from the corresponding CFA edges for
better orientation. Nodes whose shape is an
octagon are covered nodes. Such nodes have
an outgoing dashed line that shows which node
is responsible for a node to be covered.
Abstract states which are not reachable are
not contained in the ART. This can be seen at
node 10

150 for example. It has only one successor
although the CFA node 10 has two outgoing
edges. The analysis has correctly determined
that the other path, which leads to the error
location, is not feasible, as the edge connecting
node 10 and the error location is labeled with
assume(LOCK), and LOCK is never equal to
true at location 10.
The final precision found through refinement
for this example is:

Π(l) =


{LOCK, p} if l ∈ {4, 6}
{LOCK} if l ∈ {2, 3, 6, 7, 9, 10}
{p} if l ∈ {5}
∅ otherwise

It can be seen that each predicate is only added
to the precision where it is needed. For ex-
ample, the predicate LOCK is not present for
location 5 and 8 although it is contained in
the precision for all other locations of the loop
body because the value of the variable LOCK
will be overwritten immediately after these two
locations anyway.

14

2.4.2 Generating Predicates via Craig Interpolation

Given an infeasible path σ, it is necessary to decide which predicates are useful to prove
that this path is infeasible, and where (on which program locations) they are useful.
Craig interpolants [Cra57] can be used to generate the right predicates [HJMM04].
Given two formulas ϕ− and ϕ+ whose conjunction is unsatisfiable, a Craig interpolant
of ϕ− and ϕ+ is a formula ψ which fulfills the following properties:

1. ϕ− ⇒ ψ

2. ψ ∧ ϕ+ is unsatisfiable

3. ψ contains only variables which occur in ϕ− and ϕ+

Therefore, the interpolant ψ is a formula which contains enough information from ϕ−

to make ψ ∧ ϕ+ unsatisfiable, but is hopefully smaller than ϕ−. As it is entailed by
ϕ−, the unsatisfiability of ψ ∧ϕ+ can be used to show the unsatisfiability of ϕ− ∧ϕ+.
Interpolants can be generated from the proof of unsatisfiability of ϕ− ∧ ϕ+. To find
predicates for the infeasible path σ which is represented by its path formula ϕ, the path
is split at a location l. The part of ϕ that corresponds to the first part is used as ϕ−,
the other part of ϕ is used as ϕ+. Then the interpolant for these two formulas contains
all those statements about the variables of the program, that have to be known at the
cut point l in order to show that the remainder of the path is infeasible. Thus all
predicates contained in the interpolant are added to the precision at location l. This
can be done for every location in the path.
An SMT solver that supports Craig interpolation is likely to offer a method for

checking the satisfiability of a conjunctive formula and generating the interpolants
for all possible cut points, so that less queries have to be executed and redundant
computations can be reduced. This also guarantees that all interpolants are generated
from the same proof of unsatisfiability, which is necessary in order to ensure that all
interpolants together prove that the path is infeasible. Since interpolation is used
for model checking, efficient algorithms have been developed and implemented that
provide interpolants for theories like LA+EUF [CGS08] [BZM08].

2.5 Large-Block Encoding

The traditional approach to predicate abstraction, which was explained in the pre-
vious sections, can generate large amounts of abstract states, and needs many ab-
straction computations for this. Thus, a new approach called Large-Block Encod-

15

ing (LBE) [BCG+09] was proposed, which reduces the number of abstract states by
combining CFA edges into blocks. For differentiation, the previous approach will be
called Single-Block Encoding (SBE), as it uses blocks that contain only a single CFA
edge. LBE’s blocks, however, can contain large parts of the program, including several
control-flow branches, but excluding loops. This can lead to an exponential reduction
in the number of abstract states. The queries given to the SMT solver for abstraction
computation can be exponentially larger, but today’s solvers employ efficient heuris-
tics for satisfiability checks, so that there is an overall performance increase of one to
two orders of magnitude.
The original CFA is transformed into a new “summarized” CFA containing only

large blocks by applying three rules:

Rule 0: All outgoing edges from the error location lE are removed.

Rule 1: Each node l′ ∈ L\{lE} which has only one incoming edge (l, op, l′) is removed,
together with all its adjacent edges. For each removed outgoing edge (l′, op′, l′′)

a new edge (l, op; op′, l′′) is introduced. This edge connects the predecessor l
and the successor l′′ and is labeled with the sequential combination of the
operations from the two edges it replaces. Note that l and l′′ may be equal.

Rule 2: Any two edges (l, op1, l
′) and (l, op2, l

′) which share the same predecessor and
successor are replaced by a single edge (l, op1‖op2, l

′) which is labeled with the
disjunctive combination of the operations from the two replaced edges. For
the disjunctive combination, the strongest postcondition operator is defined
as SPop1‖op2(ϕ) = SPop1(ϕ) ∨ SPop2(ϕ).

Rule 0 is applied once, and Rule 1 and Rule 2 are applied repeatedly until a fixpoint is
reached. Then each edge of the new CFA is labeled with the operations from a block
of the program. It is ensured that such a block does not contain loops, because in a
loop there is at least one CFA node which has two incoming edges, and such nodes are
never removed from the CFA. A loop that does not contain nested loops nor the error
location is now represented by a single CFA node for the loop head with a reflexive
edge that is labeled with all operations contained in the loop body.
A summarized CFA can be used for predicate abstraction with the extended

strongest postcondition operator, because the error location is reachable in the new
CFA if and only if it is reachable in the original CFA. The summarization does not
change the semantics of the program [BCG+09]. Due to the increased complexity of
the formulas however, it is necessary to use Boolean predicate abstraction. Carte-

16

int LOCK
LOCK = 0

[n >= 0]
[!p] [p]

[!LOCK]
LOCK = 1

[!p] [p]
[LOCK]
LOCK = 0

n––

[n >= 0] [n < 0]
[p] [!p]

[LOCK] [!LOCK]
LOCK = 1

[p]
[!LOCK]

[p]
[!LOCK]

[LOCK]

Figure 2.4: Summarized version of the CFA in Figure 2.2 (example lock-loop.c)
with the labels of the edges shown in the boxes. assume(p) is repre-
sented by [p], alternative execution is represented by ‖ and op1 ; op2

is represented by putting op2 under op1

0
0

1
1

ERROR
2

(a) ART before first refinement

0
0

1
3

1
4

 covered by

(b) Final ART

Π(l) =

{
{LOCK} if l = 1

∅ otherwise

(c) Final Precision

Figure 2.5: Results produced by LBE for lock-loop.c

sian predicate abstraction is not precise enough and does not succeed in verifying
reasonable-sized programs.
The effect of the summarization when applied to the CFA from Figure 2.2 can be

seen in Figure 2.4. Figure 2.5 shows result of analyzing this example with LBE. First,
the analysis starts with an empty precision, so the path to the error location is found

17

and refinement is used. At this point, the ART looks like in Figure 2.5a. Refinement
finds the predicate LOCK to be necessary at location 1. Therefore the ART nodes 1
and 2 are removed and analysis is restarted at node 0. With the new precision that
can be seen in Figure 2.5c the error location is not reachable anymore. The analysis
finishes with the ART from Figure 2.5b without needing any further refinement.

2.6 On-the-fly Large-Block Encoding

Compared with Single-Block Encoding, Large-Block Encoding greatly increases the
performance of the analysis, but has the disadvantage that it needs a pre-processed
CFA. This is inconvenient if the analysis uses several abstract domains like predicate
abstraction together with the explicit tracking of some variables, because the other
domains would need to be adapted to summarized CFAs as well. It is also not possible
to dynamically adjust the size of the blocks, which could be used to maintain the
best trade-off between the number of blocks (respectively the number of abstraction
computations) and the size of the blocks (respectively the complexity of the abstraction
computations). Thus, a new approach called On-the-fly Large-Block Encoding which
works with an unmodified CFA was developed by Dirk Beyer and M. Erkan Keremoglu,
but has not been published yet. It is similar to LBE as abstractions are computed only
at program locations corresponding to loop heads and the error location (such locations
are called abstraction locations). For any CFA, there is a bijective mapping between
its abstraction locations and the locations the CFA would have after summarization,
as the summarization removes exactly the non-abstraction locations from the CFA.
With On-the-fly LBE, each abstract state consists of a pair (ψ, ϕ) where ψ is the

result of an abstraction computation (an abstraction formula), and ϕ is a path formula
as defined in Section 2.3. Given an edge (l, op, l′) and an abstract state (ψ, ϕ), the
successor of this state is defined as follows: If l′ is an abstraction location, ϕ′ is set to
SPop(ϕ) and ψϕ′ is created from ψ by replacing each variable v that occurs in ψ with vi
where i = indexϕ′(v). Then the successor is (ψ′, true) with ψ′ being created from the
abstraction of ϕ′ ∧ ψϕ′ by removing the indices attached to the variables. In other
words, the abstraction of the conjunction of ϕ, the formula representing the current
operation op and ψ (with the right indices added to all variables) is computed, with
the indices removed from all variables afterwards. If l′ is not an abstraction location,
the successor is (ψ, ϕ′), where ϕ′ is constructed from the path formula ϕ and the
operation op as described in Section 2.3. If control flow meets at a non-abstraction

18

location and there are two abstract states (ψ1, ϕ1) and (ψ2, ϕ2), these two abstract
states are merged into a new abstract state (ψ′, ϕ′) if ψ1 and ψ2 were computed at the
same program location and are equal. The abstraction formula of the merged node is
ψ′ = ψ1 = ψ2 and the path formula ϕ′ is also constructed from ϕ1 and ϕ2 as described
in Section 2.3. This ensures that for any abstract state that does not belong to an
abstraction location, the path formula represents all possible loop-free paths to the
last abstraction location.
When using the same precision, the result of On-the-fly LBE is equal to that of LBE

with a summarized CFA, as there is a bijective function mapping the abstract states of
the latter to those abstract states of the former that belong to an abstraction location.
This function maps an abstract state ψ produced by LBE with pre-processing to an
abstract state (ψ, true) of On-the-fly LBE. Figure 2.6 shows the resulting ART for
analyzing lock-loop.c with On-the-fly LBE and demonstrates this point.

2.6.1 Refinement strategy

Predicate abstraction with on-the-fly creation of large blocks can be used with ART-
based refinement. After a path to the error location is found, the formula representing
this path has to be created. This is different from predicate abstraction without Large-
Block Encoding since abstract states on the path may have been merged. Therefore
there is no ART anymore, but instead a directed acyclic graph (DAG) that contains
the same nodes and is constructed in the same way, except that two nodes can be
merged with the resulting node having all parents and children of the two nodes. As
there is not much difference to a tree (e.g. there still is a single root node) and out
of tradition, this data structure will still be called ART. With Large-Block Encoding,
some properties hold that make the ART even more similar to a tree and which help
to construct the formula representing the path(s) to the error location. An ART node
whose abstract state was produced by an abstraction computation is called abstraction
node. For any node in the graph, let the nearest abstraction node be the node itself,
if it is an abstraction node, and the nearest abstraction node among the ancestors
of the node otherwise. Then, the definition of the On-the-fly Large-Block Encoding
ensures that only such pairs of nodes are merged, where both nodes belong to a non-
abstraction location and both have the same nearest abstraction node. This means
that those edges that violate the tree property of the ART can connect only nodes
which would have been close in the graph anyway. So on a higher level, the ART can
still be seen as a tree with several parts that are each a DAG. These DAG parts do not

19

0
3

1
5

 int LOCK;

2
17

 LOCK = 0;

3
25

[n >= 0]

10
20

 [n < 0]

6
34

[!p]

4
26

 [p]

9
43

 [!p]

6
35

 [p]

2
45

n = n - 1;

 covered by

8
40

 [LOCK]

 LOCK = 0;

5
31

 [!LOCK]

 LOCK = 1;

11
21

 [!LOCK]

12
24

 return 0;

Figure 2.6: ART produced by On-the-fly LBE for
lock-loop.c
In this ART, nodes with a square or an octagon as
their shape represent nodes which were produced
by computing an abstraction. Octagon nodes are
nodes which are covered, like in Figure 2.3. With
LBE, only abstraction nodes can be covered, as
the coverage relation is based only on the abstrac-
tion formula and therefore needs to be computed
only for abstraction nodes.
The three nodes 0

3, 2
17 and 2

45 correspond exactly
to the three nodes of the final ART produced by
LBE that can be seen in Figure 2.5b. The num-
ber of abstraction computations and refinement
steps as well as the final precisions are also equal
for LBE with a summarized CFA and On-the-fly
LBE. The ART of the latter just contains addi-
tional non-abstraction nodes, but these nodes are
very inexpensive to create, as only a syntactical
transformation from code to predicates is neces-
sary.
Therefore, On-the-fly LBE is more similar to LBE
with pre-processing, although at first glance its
ART looks more similar to the ART produced by
SBE. However, some differences do occur. With
SBE, the two ART nodes that belong to program
location 6 are not merged, whereas with LBE they
are merged, producing node 6

34 that has two par-
ents. The same is true for the nodes at location 9.
In a larger program this could result in the LBE
ART being much smaller.

20

contain any abstraction nodes, as such nodes are never merged. Thus, for every node
all paths from this node to the root of the ART contain exactly the same abstraction
nodes in the same order, and only the non-abstraction nodes may vary. This can be
used to construct the path formula which represents all paths from the node on the
error location to the root node as a conjunction of the path formulas for each part
between two abstraction nodes. Only the SSA indices for the variables occurring in
the formula need to be adjusted.
If the created path formula is unsatisfiable (which means that all represented paths

are infeasible), the cut points for which the interpolants are generated correspond ex-
actly to the abstraction nodes on the path(s) to the error location, as the path formula
is a conjunction of the parts between the abstraction nodes. Thus the predicates that
are extracted from the interpolants get added to the precision Π at the right locations
so that they will be used in the next iteration of the abstraction-refinement loop to
compute more precise abstractions at the abstraction locations.

2.7 Configurable Program Analysis

Configurable Program Analysis [BHT07] is a framework for software verification
that can be used as a precise model checker as well as as an efficient lattice-based
program analyzer. It defines an algorithm (shown as Algorithm 1) that uses an ab-
stract interpreter (called configurable program analysis (CPA)) providing the domain
of the analysis and some operators. The result of the CPA algorithm is the reached
set R which contains all reachable abstract states of the program. CPAs can and
have been defined for a lot of known software verification domains, like predicate ab-
straction, shape-based heap analysis and others. Several CPAs can be combined and
executed simultaneously by using the Composite pattern known from software engi-
neering [GHJV94]. A CPA D = (D, ,merge, stop) consists of an abstract domain D,
a transfer relation , a merge operator merge and a termination check stop.

1. The abstract domain D = (C, E , J·K) is defined by a set C of concrete states, a
semi-lattice E and a concretization function J·K. The lattice E = (E,>,v,t)

consists of a set E of lattice elements (the abstract states of the analysis), a top
element > ∈ E, a preorder v ⊆ E × E and a join operator t : E × E → E.
The concretization function J·K : E → 2C assigns to an abstract state the set of
concrete states it represents.

21

Algorithm 1 CPA(D, e0)
Input: a CPA D = (D, , merge, stop),

an initial abstract state e0 ∈ E, where E denotes
the set of elements of the lattice of D

Output: a set of reachable abstract states
Variables: a set reached of elements of E,

a set waitlist of elements of E
1: waitlist := {e0}
2: reached := {e0}
3: while waitlist 6= ∅ do
4: choose e from waitlist
5: waitlist := waitlist \ {e}
6: for each e′ with e e′ do
7: for each e′′ ∈ reached do
8: // combine with existing abstract state
9: enew := merge(e′, e′′)
10: if enew 6= e′′ then
11: waitlist :=

(
waitlist ∪ {enew}

)
\ {e′′}

12: reached :=
(
reached ∪ {enew}

)
\ {e′′}

13: if ¬ stop(e′, reached) then
14: waitlist := waitlist ∪ {e′}
15: reached := reached ∪ {e′}
16: return reached

2. The transfer relation v E×G×E defines which elements are the successors
of an element, given an edge from the CFA.

3. The merge operator merge : E × E → E may combine the information of two
abstract states. It can weaken the second parameter using the information of the
first parameter, so that the resulting element represents more concrete states.
The operator which always returns the second parameter (and thus performs
no weakening and no loss of precision) is called mergesep. The operator which
for two elements e1, e2 ∈ E always returns e1 t e2 (returning an element which
represents at least the union of the sets of concrete states represented by e1 and e2
respectively) is called mergejoin. While this operator reduces the precision of the
analysis, it also increases the performance, as only the successors of the newly
created element need to be constructed, and not the successors of e1 and e2.
Using mergesep, the precision of a model checker is used, while with mergejoin,
the performance of a lattice-based program analyzer can be achieved.

4. The stop operator stop : E × 2E → B determines whether a given abstract state
can be considered covered by the set of abstract states already reached. If so,
the analysis does not need to consider the successors of this abstract state. The

22

most commonly used implementation of stop is the operator stopsep which checks
if there is any reached node which represents at least all concrete states of e, i.e.,
stopsep(e, R) = (∃e′ ∈ R : e v e′).

2.7.1 State-Space Traversal Methods

The CPA framework does not define the order in which the reachable abstract elements
are constructed. However, it is necessary to choose the right strategy (that defines the
order in which elements are taken from the waitlist) to gain good performance. One
possibility for this is to use a stack for the waitlist, so that the last added element is
the next one to be used. This constructs the abstract reachability tree in the same
order a depth-first iteration over the tree would enumerate the elements in. This
strategy has the advantage that one path gets fully analyzed before other paths are
tried, which finds an eventual error location at the end of a path quite fast. If this error
location is indeed reachable, the analysis can terminate as it proved the program to be
unsafe. The opposite strategy is to use a queue for the waitlist, which would result in
a breadth-first-like iteration order. This is generally slower because the beginnings of
all paths are analyzed before an eventual error location at the end of a path is found
and analyzed. However, for configurations using other merge operators than mergesep

(which never merges), depth-first iteration might not be optimal. When two paths are
merged and the first path is weakened, the rest of the first path has to be re-analyzed.
So it would have been better to not analyze the first path in its full length but instead
to wait with analyzing the first path until the second path has been merged into it.
However, it is not possible to know in advance if a given abstract state will be merged
with another one. So a breadth-first iteration might be faster assuming that when a
merge occurs, both paths are often of similar length. For example, this might be the
case when the control flow meets after two similarly long branches. But for analysis
which explicitly model the program counter variable and never merge two abstract
states which belong to different locations, a better strategy is to use an iteration order
similar to topological sort. In this case, every program location gets a number assigned
which is higher than the number of all its predecessor locations (ignoring backwards
edges). For the waitlist, a priority queue is used which always returns one of those
abstract states that belong to the location with the lowest number among all waitlist
states’ locations. This leads to the behavior that the successor location of a control-
flow meet point is analyzed only after the paths leading to that location have been
analyzed (and their abstract states have been merged).

23

3 Adjustable Large-Block Encoding

On-the-fly Large-Block Encoding has the advantage of working on an unmodified
CFA and still providing the benefits of LBE, but it is not flexible enough to allow
different block sizes to be used. Adjustable Large-Block Encoding is an analysis that
is based on On-the-fly LBE, but the block size it uses is configurable. By modifying
one parameter, its behavior can not only be switched between Single-Block Encoding
and Large-Block Encoding, but also changed to any of numerous other configurations
with block sizes between SBE and LBE as well as block sizes larger than LBE. With
On-the-fly LBE, the decision whether an abstraction should be computed for a new
abstract state depends only on the current program location. Abstractions are always
computed at loop heads and at the error location. For Adjustable LBE, this decision is
no longer hard-wired, but instead made by a new operator called abstraction operator
abs, which takes an abstract state and a CFA edge as input. It returns true if an
abstraction should be computed and false otherwise. Only at the error location an
abstraction computation is still enforced regardless of the decision made by the new
operator, because this is needed for the analysis to determine if an error location is
unreachable. The actual generation of the successor (that is either the computation
of the abstraction or the creation of the path formula) is not changed compared to
On-the-fly LBE.
The great flexibility of Adjustable Large-Block Encoding results from the possibility

to choose the abs operator freely. Two particular choices for abs are absSBE, which
specifies to always compute an abstraction, and absLBE, which specifies to compute
an abstraction if the successor location of the current CFA edge is an abstraction
location. Thus the analysis can be configured to behave exactly like SBE or LBE.
Another possible choice for abs would be to compute an abstraction if the length of
the longest path represented by the path formula ϕ of the abstract state exceeds a
certain threshold. This operator is named absk for any threshold k ∈ N \ {0}. But the
decision made by abs does not necessarily have to be based only on statically available
information. One implementation could for example measure the free memory of
the system and compute abstractions if the path formulas need too much memory.

24

Another could benchmark the time needed to compute the abstractions and adjust
the block size so that a single computation does not take too much time. The decision
whether an abstraction should be made could also depend on the precision Π, e.g. such
that abstractions are computed when the precision contains predicates for the current
program location.
It should be noted that the analysis will not terminate if there is an infinite walk

through the CFA for which the chosen implementation of abs will never specify to
compute an abstraction. This happens for example if the abs operator always returns
false (so that abstractions are never computed) and the analyzed program contains a
loop. Therefore it is recommended to use an implementation of abs that has an upper
bound on the size of the blocks it produces. For absLBE this is guaranteed as the size
of the CFA is finite, and thus any longer path will contain loops.
Adjustable Large-Block Encoding allows abstract states that belong to the same

program location to be merged under some conditions. Firstly, an abstract state that
was generated by computing an abstraction may never be merged with any other node.
Secondly, two abstract states with different abstractions may never be merged. These
two conditions are required to prevent a great loss of precision (the analysis would
become similar to a lattice-based program analyzer otherwise). Thirdly, abstract states
may only be merged if their abstractions were computed at the same program location.
This is necessary to ensure that all paths in the ART from one ART node to the root
contain exactly the same abstractions, as explained in Section 2.6.1. With these
conditions, the ART produced by Adjustable LBE for any program is similar to the
one produced by On-the-fly LBE for the same program, the only difference being the
size of the parts between the abstraction nodes. Because of this, the same refinement
strategy can be used.
If the block size produced by the chosen abstraction operator is large enough that the

whole program with each loop unrolled a few times fits into one block (and is therefore
represented by a single path formula), the analysis becomes similar to Bounded Model
Checking (BMC) [BCCZ99]. However, there are still some differences as BMC does
not use abstractions at all and does not try to give a sound verification result.
For SBE and LBE it is easy to decide which abstraction mechanism is used for

the analysis. Cartesian abstraction is faster than Boolean abstraction for SBE, but
not powerful enough for LBE [BCG+09]. With Adjustable Large-Block Encoding this
decision is still important, but more difficult to make, as there are many more possible
configurations.

25

3.1 CPA for Adjustable Large-Block Encoding

The formal definition of Adjustable Large-Block Encoding is given as a CPA. Predicate
abstraction has already been expressed as a CPA [BHT07], proving its applicability.
An advantage is that CPAs can be easily implemented due to an available ready-to-use
implementation of a framework for CPAs, requiring only the operators of the analysis
to be implemented.
The CPA for Adjustable Large-Block Encoding D = (D,Π, ,merge, stop) is

based on the original CPA for Predicated Abstraction [BHT07] and the concepts of
LBE [BCG+09] and On-the-fly LBE (Section 2.6). Given a set X of program variables
and a control-flow automaton A = (L,G, l0) with a set L of program locations, a set G
of edges as well as an initial node l0, let lE ∈ L be the error location of the program,
let P be the set of quantifier-free predicates over variables from X, let F be the set
of arbitrary quantifier-free formulas over variables from X and let Π : L → 2P be a
precision. The components of D are defined as:

1. The abstract domain D = (C, E , J·K) is a tuple of a set C of concrete states, a
semi-lattice E of abstract states and a concretization function J·K : E → C. The
semi-lattice E = (E,>,v,t) is defined as:

a) The lattice elements e ∈ E (the abstract states) are tuples (l, ψ, lψ, ϕ) ∈
(L∪{l>}×F×L∪{l>}×F) where l is the explicitly modeled program counter
variable, ψ is a formula over predicates from P (called the abstraction formula,
because it is always the result of an abstraction computation), lψ is the location
at which ψ was computed and ϕ is a path formula representing some or all of
the paths from lψ to l. The formula lψ is also called the abstraction location.
An abstraction element is an element which was generated by computing an
abstraction. Such elements always have l = lψ and ϕ = true. An abstract
state is reachable, if both ψ and ϕ are satisfiable.

b) The top element > is (l>, true, l>, true) represents a state without any infor-
mation about the analyzed program.

c) The partial order v ⊆ E × E is defined such that for any two elements e1 =

(l1, ψ1, l
ψ1 , ϕ1) and e2 = (l2, ψ2, l

ψ2 , ϕ2) from E the following holds:

e1 v e2 ⇐⇒ (e2 = >)

∨
(
(l1 = l2 = lψ1 = lψ2) ∧ (ψ1 =⇒ ψ2)

)
∨
(
(l1 = l2) ∧ (lψ1 = lψ2) ∧ (ψ1 = ψ2) ∧ (ϕ1 =⇒ ϕ2)

)

26

This means that for two abstraction elements, the partial order is based on the
relation of the abstraction formulas, whereas for two non-abstraction elements
with the same abstraction formula, it is based on the relation of the path
formulas.

d) The join operator t : E×E → E always returns the smallest (as defined by the
partial order) element that is larger than both elements given as parameters.

2. The transfer relation ⊆ E×G×E contains all tuples (e, g, e′) with g = (l, op, l′),
e = (l, ψ, lψ, ϕ) and e′ = (l′, ψ′, lψ

′
, ϕ′) for which, given a precision π = Π(l′), the

following holds:
(
ψ′ = SPπop(ϕ ∧ ψ)

)
∧ (ϕ′ = true) ∧ (lψ

′
= l′) if abs(e, g) ∨ (l′ = lE)

(ϕ′ = SPop(ϕ)) ∧ (ψ′ = ψ) ∧ (lψ
′
= lψ) otherwise

This transfer relation is adjustable by choosing an abstraction (·)π (i.e., whether to
use Cartesian abstraction or Boolean abstraction) and an abstraction operator abs :

E×G→ B. The choice of abs will determine the size of the blocks. Two particular
possibilities are absSBE which returns always true and absLBE which returns true
if the successor location of the given edge is the head location of a loop. It is
suggested that an abs operator is chosen that will eventually return true for every
path through the CFA, otherwise the analysis would not terminate if the program
contains loops.

3. The merge operator merge : E × E → E is defined for two abstract elements
e1 = (l1, ψ1, l

ψ1 , ϕ1) and e2 = (l2, ψ2, l
ψ2 , ϕ2) from E as

merge(e1, e2) =

(l2, ψ2, l
ψ2 , ϕ1 ∨ ϕ2) if (l1 = l2) ∧ (ψ1 = ψ2) ∧ (lψ1 = lψ2)

e2 otherwise

This is equivalent to using mergejoin if both elements belong to the same location
and their abstraction formulas are equal and were computed at the same location,
and mergesep (i.e., no merging) otherwise.

4. For the stop operator stop : E × 2E → B the stopsep operator is used, i.e.,

∀e ∈ E,R ⊆ E : stop(e, R) = (∃e′ ∈ R : e v e′)

27

3.2 Example

In order to give an example, the program lock-loop.c from Figure 2.1 was analyzed
with Adjustable LBE. For the abstraction operator, the conjunction of absLBE and
abs15 was used. This operator returns true if the current location is an abstraction
location (that is a loop head) and the length of the longest path represented by the
path formula of the current abstract state is at least 15. The length of one iteration
of the loop is 8 edges as can be seen in Figure 2.2. Therefore, in this example, an
abstraction is made exactly after two iterations.
The resulting ART can be found in Figure 3.1. The node shapes are the same as in

Figure 2.6: All non-circular nodes are abstraction nodes, and nodes with an octagon
shape are covered. The first number in each node is the program location this node
belongs to, and the second number is a unique identifier. The solid lines are the ART
edges and are labeled with the operations from the corresponding CFA edges.
This ART was produced in the following way: Firstly, all locations of the program

starting a location 0 were analyzed and abstract states were generated for each of them
(among them the nodes 0

4 and 1
5). Then the successor of the abstract state at location

9 was analyzed, leading to a second node at location 2. These two abstract states were
merged because they both had the same abstraction formula and the same abstraction
location. The resulting abstract state is represented by node 2

37. The same occurred at
all other locations, producing the nodes 10

43 to 9
81. During the generation of the successor

of the latter, the abstraction operator returned true as location 2 is an abstraction
location and the length of the longest path represented by the path formula was 18.
So the abstraction node 2

92 was computed and the rest of the loop was analyzed again.
The new nodes were not merged with the existing ones for the same program location
because their abstraction and their abstraction location were different. Node 2

121 also
was not merged with node 2

92 as abstraction nodes like the latter never are. Similarly
to before, the nodes generated during the fourth iteration of the loop were merged
with the nodes of the third iteration, producing the nodes 10

127 to 9
165. The next time

an abstract state was produced at location 2, again a new abstraction was computed.
As there was already an abstraction node at the same location which covered the new
node, no successors for this node were produced. At this point, there were no further
abstract states in the waitlist, so the analysis terminated.
Compared to LBE, the same number of abstraction computations were needed, but

the input formulas had roughly double the size.

28

0
4

1
5

 int LOCK;

2
37

 LOCK = 0;

10
43

[n < 0]

3
49

 [n >= 0]

11
44

[!LOCK]

12
45

return 0;

4
52

 [p]

6
65

 [!p]

5
61

 [!LOCK]

LOCK = 1;

9
81

 [!p]

7
68

 [p]

 n = n - 1;

2
92

 n = n - 1;

10
127

 [n < 0]

3
133

 [n >= 0]

2
121

 [n < 0]

 [n >= 0]

11
128

 [!LOCK]

12
129

 return 0;

6
149

 [!p]

4
136

 [p]

7
152

 [p]

9
165

 [!p]

8
161

 [LOCK]

 LOCK = 0;

n = n - 1;

2
168

n = n - 1;

 covered by

5
145

 [!LOCK]

 LOCK = 1;

8
77

 [LOCK]

 LOCK = 0;

Figure 3.1: ART produced by Adjustable LBE for lock-loop.c

29

4 Implementation

The CPA for Adjustable Large-Block Encoding was implemented as a component of
CPAchecker1 [BK09]. This tool for static analysis is the proposed successor of the
widely used model checker Blast [BHJM07]. It is a framework specifically designed
to allow CPAs to be implemented and used easily, by providing everything else that is
needed. It features a C parser, a component to create a CFA from a parsed source file,
an implementation of the CPA algorithm with precision adjustment and an algorithm
for counterexample-guided abstraction refinement. CPAs for predicate abstraction
providing the ability to use SBE as well as LBE are also contained. These were the
implementations used for the benchmarks in [BCG+09]. A CPA for the on-the-fly
encoding of the blocks that works on an unmodified CFA was implemented by Dirk
Beyer and M. Erkan Keremoglu, but this work has not yet been published. This CPA
was extended in order to provide the flexibility needed to run other configurations
as well. While theoretically easy, this was more difficult than expected, because the
existing code relied on some assumptions that were true for LBE, but no longer for
adjustable LBE. These assumptions had to be identified and the code had to be
changed appropriately.
The implementation supports interprocedural analysis, handling function calls and

managing scoped variables. Similarly to the previous implementation of LBE, addi-
tional abstractions are computed after function call and function return edges if absLBE

is used. However, recursive functions are not supported by CPAchecker.
An optimization that is already contained in the previous CPA is to not restart the

analysis after each refinement step by removing every element from the reached set,
but instead to remove only those elements belonging to the infeasible error path. This
saves the computation cost of re-generating all other elements.
Another optimization was implemented together with Adjustable LBE. Previously,

the CPA stored the predicate map Π as global information, so that whenever an ab-
straction was computed at a node l, the same predicates Π(l) were produced (as long

1 Available at http://cpachecker.sosy-lab.org

30

http://cpachecker.sosy-lab.org

as Π had not been modified by refinement). This is not optimal because nodes may
occur in multiple paths, which could need different predicates to be proven infeasi-
ble. When this happens, not all predicates from Π(l) are necessary, but nevertheless
increase the computation cost for the abstraction. The situation can be improved
by using different precisions for different paths. This was implemented by using the
framework for dynamic precision adjustment for CPAs [BHT08]. Each abstract ele-
ment gets a precision attached to it, which is used for abstraction. A newly generated
element inherits the precision from its predecessor. During the refinement step, the
new predicates can then be added not only specific to the location where they are
needed, but also specific to the path, by only modifying the precisions of the elements
along the path. The identity function as the precision adjustment function defined by
this extension was used, because modifying the precision in-between two refinement
steps is not necessary.

31

5 Evaluation

Previously only the configurations for SBE and LBE with both Cartesian and Boolean
predicate abstraction have been used and evaluated [BCG+09]. The results show that
two of these configurations are not useful: LBE with Cartesian abstraction as it failed
to solve any tested example because of being to imprecise, and SBE with Boolean
abstraction as it is prohibitively slow and not able to solve more examples than SBE
with Cartesian abstraction. Of the remaining two configurations, LBE with Boolean
abstraction succeeds in all examples and is always faster than SBE with Cartesian
abstraction.
As the results showed that the smallest possible block size (and resulting from it,

the smallest possible formula size) is not the best one, the question arises what the
optimum is. It is reasonable to expect that, when starting with a block size of one,
analysis becomes faster when the size is increased, but eventually only until a turning
point is reached. For even larger block sizes, analysis would get slower or would not
succeed, e.g. because of memory problems due to the increased formula sizes.
A second question was at which block size the switch from using Cartesian abstrac-

tion to Boolean abstraction needs to be made, because the analysis would become too
imprecise otherwise. If this threshold is sufficiently high, it might be advisable to use
a smaller block size which allows using the faster Cartesian abstraction instead of a
larger block size with the costly Boolean abstraction.
Another performance tuning possibility is the strategy the CPA algorithm uses to

take elements from the waitlist. As LBE uses mergejoin in most locations and re-
analyzing an already explored path is costly (because all abstractions on that path
have to be recomputed if the abstract state has been weakened), it is advisable to
use the topological-sort-like iteration order. For SBE however, the default depth-first-
like order has the best performance as explained above. So similarly to the choice of
the predicate abstraction, there has to be a threshold beyond that it is better to use
topsort instead of DFS.
The configurations evaluated in this work can be divided into two categories. The

first one uses an abstraction operator that is implied by absLBE, i.e., the operator

32

returns true at least if absLBE would return true, but potentially more often. This
leads to block sizes which are at most as large as with LBE. Note that absSBE is an
example of this case. The second category contains all other configurations. These
might produce block sizes that are much larger than with LBE.
All benchmarks were run on a virtual machine under VMware on a server. The

machine was assigned a quad-core CPU with up to 2800MHz and 4GB of RAM.
The operating system was the 64bit version of Ubuntu 9.10, using Linux 2.6.31 and
OpenJDK 1.6. CPAchecker from the subversion repository in Revision 1213 with
MathSAT 4.28 [BCF+08] as the SMT solver was used. The Java VM was restricted
to 4GB of memory and a maximum execution time of 1800 seconds per program.
The test cases are similar to those used in [BCG+09]. They consist of three groups.

The first one are the test_locks_* examples that were artificially created to produce
an ART which is exponential in size when analyzed with SBE. In these examples several
nested locks are acquired and released in a loop, similar to the lock-loop.c example
from Figure 2.1. The number in the name gives the number of locks in the program.
The second group are several parts of drivers from the Windows NT kernel. These
examples are named cdaudio, diskperf, floppy and kbfiltr according to the driver
they are from. The last group are the s3_* examples, which were taken from the SSH
server (s3_srvr_*) and client (s3_clnt_*). The code contains a simplified version of
the state machine handling the communication according to the SSH protocol. This
is basically a large loop with a lot of branches, but no function calls. Both the NT
drivers and the SSH code files were pre-processed manually in order to remove heap
accesses, and automatically with CIL [NMRW02] in Version 1.3.6 in order to simplify
the C code to facilitate the parsing. Into some of these examples artificial bugs were
introduced causing specified assertions to fail. The name of these programs contains
BUG in order to show this. All test cases are included in the CPAchecker repository
together with the used configurations.
The test_locks* programs have less than 200 lines of code, whereas the other

examples have between 700 and 3000 lines of code. These numbers include comments
and empty lines and were measured after the pre-processing.
In the following, all times are shown as seconds and were rounded to three significant

digits. In cases where CPAchecker did not succeed, either “> 1800” or “MO” are
printed for a timeout or an out of memory error respectively.
All configurations gave the correct result on all test cases, if they succeeded to

terminate in the given time. That is, for all programs with BUG in the name a coun-

33

terexample was found, and all the other programs were proved safe. Therefore, the
result of the analysis is not shown in the following.

5.1 Block Size varying between SBE and LBE

The first set of evaluated configurations was created by using a new abstraction op-
erator absLBE

k : E × G → B which is defined as the disjunction of absLBE and absk.
This operator returns true if either the length of the longest path represented by the
path formula of the abstract state has reached a certain threshold k ∈ N \ {0} or the
successor location is an abstraction location as defined by LBE.
Using another measure for the size of a path formula than the length of the longest

path was also evaluated. Possible functions would include the number of Boolean
operators in the formula, or the number of operands. With these the size of the new
element after a merge took place would be the sum of the sizes of the old elements.
However, if the program contains several successive control-flow splits and merges
(as it is often the case), this number would increase exponentially. In programs like
the test_locks_* examples, the number of operands in a formula would easily reach
several hundred million. Since formulas like this contain a lot of identical sub-parts,
this is neither a good approximation of the memory needed to store the formula nor
the computing time needed for operations like satisfiability checks. Therefore, the
length of the longest path represented by the path formula was always used as the size
of a path formula. This is also more intuitive, as it is roughly identical to the length
of the code in the source file.
In order to allow comparing the current results with previous ones, the test cases

were run with the previous implementation of SBE and LBE (the one used by Beyer et
al. [BCG+09]) and with the new implementation. The results can be seen in Table 5.1.
The columns marked with “adj.” are the ones produced by the implementation of
Adjustable Large-Block Encoding using absSBE and absLBE respectively. Cartesian
abstraction was used for SBE and Boolean abstraction was used for LBE. For “LBE
(adj.)” topological sort was used as the traversal method, the other configurations used
depth-first search (LBE on a pre-processed CFA does not benefit from topsort). The
results show that in most cases the old implementation is faster, which is reasonable
as the overhead for constructing the blocks on-the-fly is missing. However, for LBE
this difference is not as large as for SBE, and there are also examples where the new

34

Program SBE SBE (adj.) LBE LBE (adj.) max
e∈R

(size(e))

test_locks_5.c 3.26 6.21 .170 .483 43
test_locks_6.c 3.98 13.2 .370 .398 51
test_locks_7.c 7.37 46.9 .237 .875 59
test_locks_8.c 16.3 124 .305 .437 67
test_locks_9.c 37.1 692 .202 .510 75
test_locks_10.c 109 >1800 .266 .746 83
test_locks_11.c MO >1800 .256 .416 91
test_locks_12.c MO MO .248 .486 99
test_locks_13.c MO MO .240 .769 107
test_locks_14.c MO MO .227 .787 115
test_locks_15.c >1800 MO .466 .896 123
cdaudio_simpl1.cil.c 164 1780 11.7 51.5 202
cdaudio_simpl1_BUG.cil.c 173 488 5.26 32.5 202
diskperf_simpl1.cil.c MO 417 537 146 54
floppy_simpl3.cil.c 41.8 313 7.04 20.1 64
floppy_simpl3_BUG.cil.c 19.1 128 2.97 11.1 64
floppy_simpl4.cil.c 52.7 740 8.35 32.2 133
floppy_simpl4_BUG.cil.c 23.7 488 4.58 20.1 133
kbfiltr_simpl1.cil.c 7.54 38.6 1.27 2.57 53
kbfiltr_simpl2.cil.c 15.6 150 1.73 3.75 72
kbfiltr_simpl2_BUG.cil.c 8.84 59.7 1.96 2.28 72
s3_clnt_1.cil.c 357 >1800 15.9 14.6 102
s3_clnt_1_BUG.cil.c 484 522 1.22 2.81 102
s3_clnt_2.cil.c 726 >1800 12.8 35.4 102
s3_clnt_2_BUG.cil.c 531 469 2.12 2.06 102
s3_clnt_3.cil.c 594 >1800 19.5 17.8 102
s3_clnt_3_BUG.cil.c 492 547 1.26 3.14 102
s3_clnt_4.cil.c 601 >1800 36.6 9.59 102
s3_clnt_4_BUG.cil.c 462 481 2.03 2.54 102
s3_srvr_1.cil.c 194 >1800 16.6 31.2 103
s3_srvr_1_BUG.cil.c 660 116 1.43 1.62 103
s3_srvr_2.cil.c MO >1800 107 86.7 102
s3_srvr_2_BUG.cil.c 1090 23.3 1.55 2.71 102
s3_srvr_3.cil.c 1010 >1800 109 14.1 102
s3_srvr_4.cil.c 277 >1800 441 160 102
s3_srvr_6.cil.c >1800 >1800 456 45.7 107
s3_srvr_7.cil.c MO >1800 321 136 105
s3_srvr_8.cil.c >1800 >1800 >1800 21.2 105

Table 5.1: Comparison of SBE and LBE
size(e) is the length of the longest path represented by the path formula of
an abstract state e, whereas R is the final reached set.

35

approach works better. Thus the disadvantage of the previous implementation (the
missing flexibility) in general does not outweigh its sometimes better performance.
Using the absLBE

k operator, one can adjust the block size freely between SBE and
LBE by setting the parameter k. Firstly, it was necessary to determine meaningful
values for k. For this, the maximum block size of all elements of the final reached
set R was measured while using absLBE. The results are shown in the last column of
Table 5.1. In the examples this value was in the range from 50 to 200. This means that
the longest code part that does not contain function calls or loops has approximately
that many statements. This may seem much for normal programs, but results from
the CIL pre-processing before the analysis. This step simplifies complex statements
by splitting them into smaller statements and introducing temporary variables, which
increases the number of statements.

5.1.1 Block Sizes between 1 and 100

As only a few examples had block sizes beyond 100, the first step was to analyze sizes
in the range of 1 to 100. Due to the large amount of time needed to benchmark a
single configuration, only k ∈ {1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100} was tested. For
all of these configurations Boolean abstraction and topological sort were used.
The results, which are shown in Table 5.2, vary for the three groups of test cases.

The test_locks_* examples behave as expected, producing an exponential decrease
in time when the block size rises, until all examples need less than one second. This
can nicely be seen when drawing the results in a diagram with an logarithmic time
axis, as in Figure 5.1. While for LBE all examples take roughly the same amount of
time, for smaller block sizes the larger examples take exponentially more time than
the ones with less locks. For block sizes below 30 some of the larger examples do not
even terminate.
For the NT drivers the results are similar, but the point from which no further

performance increase is made is reached earlier. This threshold lies between 20 and
50 depending on the example. For larger block sizes, the time needed stays roughly
constant, showing neither a downwards nor an upwards trend. The results for the test
cases with a bug behave similar to the ones without a bug.
The SSH test cases do not show such clear results. While the times for the programs

with a bug follow the same trend as the other examples, the times for the programs
without an artificial bug vary widely depending on the block size. For block sizes
below 50, none of the latter terminates. Even for larger blocks, some examples do

36

P
ro

gr
am

k
=

1
k

=
1
0

k
=

2
0

k
=

3
0

k
=

4
0

k
=

5
0

k
=

6
0

k
=

7
0

k
=

8
0

k
=

9
0

k
=

1
0
0

L
B

E
te

st
_l

oc
ks

_5
.c

6
.0

6
3
.4

2
1
.0

2
1
.2

9
.3

6
7

.6
9
5

.3
9
7

.2
9
2

.5
8
7

.4
6
8

.5
0
7

.4
8
3

te
st

_l
oc

ks
_6

.c
2
0
.2

3
.0

3
1
.9

0
1
.3

6
.6

9
0

.3
3
4

.5
2
7

.4
2
8

.6
3
7

.7
9
0

.3
2
3

.3
9
8

te
st

_l
oc

ks
_7

.c
4
8
.4

5
.7

1
1
.3

0
3
.2

6
.5

1
6

1
.0

6
.8

0
0

.3
2
6

.5
9
1

.3
5
5

.8
0
7

.8
7
5

te
st

_l
oc

ks
_8

.c
2
2
0

2
5
.8

3
.8

2
1
.8

6
1
.2

0
1
.2

7
.4

1
4

.3
9
2

.6
7
0

.5
7
5

.6
8
0

.4
3
7

te
st

_l
oc

ks
_9

.c
3
4
1

6
7
.7

1
2
.4

6
.9

7
1
.6

7
1
.6

3
.5

4
3

.4
5
4

.5
5
1

.6
6
7

.7
0
5

.5
1
0

te
st

_l
oc

ks
_1

0.
c

>
1
8
0
0

1
0
9

7
.5

3
6
.5

9
3
.7

9
1
.2

4
.6

7
9

.5
8
8

.8
0
5

.8
4
5

.9
9
3

.7
4
6

te
st

_l
oc

ks
_1

1.
c

M
O

2
4
4

2
6
.7

4
.7

1
6
.7

3
1
.7

1
.9

0
6

.9
9
2

1
.2

0
.9

0
5

.4
1
8

.4
1
6

te
st

_l
oc

ks
_1

2.
c

M
O

>
1
8
0
0

8
8
.5

2
0
.6

3
.0

8
5
.3

1
1
.3

2
1
.0

4
.9

9
5

1
.3

5
.7

2
8

.4
8
6

te
st

_l
oc

ks
_1

3.
c

>
1
8
0
0

M
O

1
3
4

7
1
.5

7
.1

2
2
.7

8
2
.2

9
1
.4

8
1
.7

7
1
.0

5
1
.0

9
.7

6
9

te
st

_l
oc

ks
_1

4.
c

M
O

M
O

>
1
8
0
0

5
8
0

1
9
.6

1
7
.6

4
.6

1
2
.2

5
2
.0

7
1
.1

3
.9

1
5

.7
8
7

te
st

_l
oc

ks
_1

5.
c

M
O

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

3
2
.2

2
2
.3

2
3
.1

5
.5

6
2
.7

1
2
.4

6
1
.4

0
.8

9
6

cd
au

di
o_

si
mp

l1
.c

il
.c

M
O

2
1
0

1
1
9

5
1
.9

5
2
.9

5
4
.5

4
9
.0

5
2
.6

5
8
.1

5
3
.8

5
3
.5

5
1
.5

cd
au

di
o_

si
mp

l1
_B

UG
.c

il
.c

4
7
8

1
0
6

1
5
1

3
2
.6

3
6
.7

3
8
.6

3
2
.7

3
5
.5

4
0
.0

3
3
.4

3
1
.9

3
2
.5

di
sk

pe
rf

_s
im

pl
1.

ci
l.

c
>

1
8
0
0

8
5
5

1
5
5

1
7
1

1
6
3

1
6
8

1
5
8

1
5
2

1
5
4

1
4
6

1
6
7

1
4
6

fl
op

py
_s

im
pl

3.
ci

l.
c

4
9
8

8
0
.5

2
3
.6

1
9
.3

2
5
.5

2
3
.1

2
0
.0

2
1
.0

2
1
.1

1
9
.8

1
7
.9

2
0
.1

fl
op

py
_s

im
pl

3_
BU

G.
ci

l.
c

1
6
8

4
5
.9

1
3
.9

1
2
.1

1
3
.9

1
1
.3

1
1
.2

9
.3

8
9
.1

1
1
0
.5

1
0
.4

1
1
.1

fl
op

py
_s

im
pl

4.
ci

l.
c

9
6
2

2
1
2

5
4
.0

2
8
.8

4
1
.4

3
9
.2

3
5
.2

3
1
.7

3
2
.6

3
2
.8

4
4
.6

3
2
.2

fl
op

py
_s

im
pl

4_
BU

G.
ci

l.
c

3
5
2

1
5
0

3
9
.0

1
6
.9

3
0
.4

3
1
.3

2
6
.1

2
1
.3

2
2
.2

2
3
.3

2
3
.1

2
0
.1

kb
fi

lt
r_

si
mp

l1
.c

il
.c

3
0
.6

1
0
.1

3
.7

2
2
.6

6
3
.2

8
2
.8

2
2
.1

5
2
.4

9
1
.8

3
1
.8

9
2
.8

1
2
.5

7
kb

fi
lt

r_
si

mp
l2

.c
il

.c
1
1
4

5
9
.1

1
0
.2

5
.2

6
5
.9

0
7
.9

3
4
.1

2
4
.5

6
4
.1

9
4
.6

7
3
.9

4
3
.7

5
kb

fi
lt

r_
si

mp
l2

_B
UG

.c
il

.c
4
2
.2

1
6
.5

3
.2

5
4
.1

6
3
.2

2
3
.3

7
2
.8

9
3
.2

2
2
.1

9
2
.3

6
2
.2

7
2
.2

8
s3

_c
ln

t_
1.

ci
l.

c
M

O
M

O
M

O
M

O
M

O
4
1
.3

2
7
.8

1
3
.4

1
0
.8

4
4
5

4
5
.0

1
4
.6

s3
_c

ln
t_

1_
BU

G.
ci

l.
c

M
O

6
7
.5

2
0
.4

8
.7

8
1
1
.8

3
.8

2
2
.3

9
2
.2

5
2
.1

6
7
.8

7
4
.1

9
2
.8

1
s3

_c
ln

t_
2.

ci
l.

c
M

O
M

O
M

O
M

O
M

O
3
4
.4

4
5
.0

1
6
.2

1
2
.8

5
6
9

4
9
.1

3
5
.4

s3
_c

ln
t_

2_
BU

G.
ci

l.
c

M
O

1
3
5

2
6
.6

1
4
.2

1
0
.2

3
.9

3
3
.0

5
1
.9

4
2
.5

9
6
.4

7
3
.5

8
2
.0

6
s3

_c
ln

t_
3.

ci
l.

c
M

O
M

O
M

O
M

O
M

O
4
5
.7

2
3
8

3
0
9

2
4
.6

M
O

3
6
.4

1
7
.8

s3
_c

ln
t_

3_
BU

G.
ci

l.
c

M
O

5
5
.3

1
8
.6

1
9
.6

6
.2

0
3
.6

2
2
.7

2
3
.2

7
1
.9

3
9
.8

7
3
.4

5
3
.1

4
s3

_c
ln

t_
4.

ci
l.

c
M

O
M

O
M

O
M

O
M

O
3
8
.1

1
7
.7

2
4
.2

9
.5

3
4
4
1

2
8
.4

9
.5

9
s3

_c
ln

t_
4_

BU
G.

ci
l.

c
9
9
4

7
8
.0

3
3
.8

1
5
.2

5
.4

2
3
.7

3
2
.3

5
1
.8

6
2
.6

8
8
.9

1
3
.6

4
2
.5

4
s3

_s
rv

r_
1.

ci
l.

c
M

O
M

O
M

O
M

O
M

O
4
3
.7

M
O

7
1
2

1
1
3

M
O

4
7
.8

3
1
.2

s3
_s

rv
r_

1_
BU

G.
ci

l.
c

1
6
3

1
4
.9

9
.4

4
2
.0

3
3
.0

1
1
.4

9
2
.6

4
2
.3

2
2
.3

5
5
.2

2
1
.4

7
1
.6

2
s3

_s
rv

r_
2.

ci
l.

c
M

O
M

O
M

O
M

O
M

O
4
6
2

3
3
.2

M
O

3
4
0

M
O

9
8
.5

8
6
.7

s3
_s

rv
r_

2_
BU

G.
ci

l.
c

2
1
.8

6
0
.4

6
.1

8
2
.7

2
4
.8

0
2
.6

5
1
.0

9
2
.0

3
1
.6

1
5
.0

0
3
.3

2
2
.7

1
s3

_s
rv

r_
3.

ci
l.

c
M

O
M

O
M

O
M

O
M

O
3
2
.9

1
1
.5

3
1
.1

2
4
.7

M
O

M
O

1
4
.1

s3
_s

rv
r_

4.
ci

l.
c

M
O

M
O

M
O

M
O

M
O

3
2
5

5
6
.4

1
2
.1

2
2
.0

M
O

4
5
.6

1
6
0

s3
_s

rv
r_

6.
ci

l.
c

M
O

M
O

M
O

M
O

M
O

M
O

8
3
.8

6
3
8

M
O

5
0
.8

M
O

4
5
.7

s3
_s

rv
r_

7.
ci

l.
c

M
O

M
O

M
O

M
O

M
O

M
O

1
3
3

4
5
8

M
O

M
O

3
1
5

1
3
6

s3
_s

rv
r_

8.
ci

l.
c

M
O

M
O

M
O

M
O

M
O

M
O

1
8
.9

4
2
.7

2
6
.8

1
5
5

5
6
5

2
1
.2

Table 5.2: Results for block sizes 1 to 100, Boolean abstraction, topological sort

37

k = 1 k = 10 k = 20 k = 30 k = 40 k = 50 k = 60 k = 70 k = 80 k = 90 k = 100 LBE

0,1

1

10

100

1000

test_locks_5.c
test_locks_7.c

test_locks_9.c
test_locks_11.c

test_locks_13.c
test_locks_15.c

test_locks_5.c test_locks_6.c test_locks_7.c test_locks_8.c test_locks_9.c test_locks_10.c
test_locks_11.c test_locks_12.c test_locks_13.c test_locks_14.c test_locks_15.c

tim
e

block size

Figure 5.1: Results for block sizes 1 to 100, Boolean abstraction, topological sort

not terminate although configurations with smaller blocks succeed in analyzing them.
Even with a block size of 100 two examples fail to be analyzed, although their maxi-
mum block size when analyzed with LBE only reaches 102 and 107 respectively. The
only configuration which works for all examples is LBE.
Taken together, out of these configurations with Boolean abstraction and topological

sort, LBE is clearly the best configuration as expected. Not only is it the only one
succeeding on all examples used, it is also the fastest for almost all examples.

5.1.2 Block Sizes between 1 and 10

For very small block sizes, Cartesian abstraction was expected to be able to verify the
programs. Therefore, several benchmarks were run with k ∈ {1, . . . , 10}. Three con-
figurations were used, namely Cartesian abstraction with DFS (Table 5.3), Cartesian
abstraction with topological sort (Table 5.4) and Boolean abstraction with topological

38

sort (Table 5.5). The last one was included because it is the same configuration that
was used in the previous section.
The first notable result here is that Cartesian abstraction with topological sort

manages to verify more examples if the block size is lower, succeeding at the smallest
4 test_locks_* examples and all the NT driver examples with k = 1, but at no
test_locks_* and only 2 driver programs with k = 10. The reason is that the com-
plexity of the path formulas rises when abstract states are merged and one formula
represents several paths of the program. Then the path formulas are not longer con-
junctions of predicates, but arbitrary Boolean formulas containing predicates that are
combined with “and” and “or” without any restriction. Cartesian abstraction often is
too imprecise for this because it considers only one predicate at a time. As topological
sort is used to maximize the number of merges that occur during the analysis, this
explains why Cartesian abstraction performs so badly with this state-space traversal
order. Due to a limitation of CPAchecker it is not detected when the analysis is
too imprecise for the analyzed program. Instead there is an endless loop in which the
same spurious counterexample is found over and over again. Therefore, these cases
show up as a timeout or an out-of-memory error in the result tables.
Table 5.3 shows that Cartesian abstraction performs better when used together with

DFS. It manages to verify almost all of the test_locks_* examples if the block size
threshold is at least 8. Only for the driver programs the results are similar to that of
Cartesian abstraction with topological sort, also getting worse at a higher k. This is
explicable by the greater complexity of the control flow in these programs compared
with the other examples.
The results for Boolean abstraction shown in Table 5.5 are those that could be ex-

pected from the results in Table 5.2, confirming the fact that larger block sizes are
better in terms of performance. While it was expected that Boolean abstraction is
slower than Cartesian abstraction as long as the latter is precise enough, this is not
always true. The advantage of being able to work with more complex formulas (and
thus with topological sort and merging, which reduces the number of abstractions)
seems to at least sometimes outweigh the costlier abstraction computations. Boolean
abstraction with DFS was not tested due to time reasons. It is expected that this con-
figuration would be the slowest of all four as the results for Cartesian abstraction show
that DFS mostly does not need the better precision provided by Boolean abstraction.
The overall result of this section is clearly that there is no other configuration with

a performance similar to that of LBE. In the tested range, larger blocks are always
faster than smaller blocks. While this effect flattens above k = 50, some examples do

39

still benefit from a further increase in the size of the blocks, so it seems to be worth
evaluating block sizes beyond those that LBE produces. Cartesian abstraction cannot
be seen as a usable configuration. For k ≤ 6 a large number of test cases fail because
the analysis would take too much time or memory, and for larger k the imprecision
that is inherent to this method impedes its application.

5.2 Block Sizes larger than LBE

As the previous section shows that smaller block sizes are slower than LBE, it is
interesting to see how the analysis performs for larger block sizes. For this, absk was
used as the abstraction operator together with Boolean abstraction and topological
sort. The threshold k was taken from {50, 100, 150, 200, 250, 300} in order to test
configurations that produce blocks larger than those of LBE for most of the examples.
For the NT drivers, the results are shown in Table 5.6. For all other examples the

analysis failed because of too few memory or a timeout. The reason for this is that
these programs consist of a single large loop. With absk as the abstraction operator
the analysis fails to detect in a timely manner that the abstract states inside of the
loop are covered after the second iteration. For a new abstract state, the check if it
is covered is only made if it was produced by an abstraction. This is because only
for a pair of such nodes it is possible to do this by comparing only their abstraction
formulas, which can be done very fast. Checking if a symbolic formula (such as a path
formula) entails another formula is too expensive to do this for all new abstract states.
Additionally, as the program counter is modeled explicitly by the analysis, an abstract
state can only be covered by another abstract state that belongs to the same location.
Furthermore, a loop in the analyzed program is unrolled in the ART until at least

one of two conditions is true: Either the path has become infeasible (for example if
a counter variable exceeds the upper limit) or no new information has been added to
the abstract states in the last iteration. For the first condition, it is necessary that
there is a predicate in the precision that is related to the loop condition. This is often
not the case. Especially with lazy abstraction it is never the case in the first iteration
of the abstraction-refinement-loop as the initial precision is empty. For the second
condition, it is necessary that at least one abstract state in the loop is detected to be
covered by another abstract state that has been generated before.
Now if the threshold k is larger than the path through a loop of the program, but it

is not a multiple of the length s of the longest path through the loop, there will be no

40

P
ro

gr
am

k
=

1
k

=
2

k
=

3
k

=
4

k
=

5
k

=
6

k
=

7
k

=
8

k
=

9
k

=
1
0

te
st

_l
oc

ks
_5

.c
6
.3

6
5
.0

1
5
.9

7
5
.5

2
5
.1

2
5
.2

9
4
.0

6
6
.1

4
3
.3

6
3
.4

2
te

st
_l

oc
ks

_6
.c

1
3
.1

1
0
.2

1
1
.2

1
0
.8

1
2
.1

1
1
.1

1
1
.7

6
.1

6
1
1
.1

4
.7

5
te

st
_l

oc
ks

_7
.c

3
4
.8

2
2
.8

2
8
.5

2
5
.3

3
2
.7

3
1
.5

3
1
.6

1
7
.3

2
3
.1

3
1
.0

te
st

_l
oc

ks
_8

.c
1
0
2

4
2
.8

5
1
.6

6
6
.1

7
2
.9

4
0
.2

5
0
.1

3
7
.3

3
9
.0

2
9
.8

te
st

_l
oc

ks
_9

.c
2
9
8

9
5
.9

1
1
8

1
9
0

1
4
5

9
2
.8

9
5
.6

1
2
6

1
0
6

7
3
.7

te
st

_l
oc

ks
_1

0.
c

1
2
5
0

2
7
1

3
3
6

4
4
0

4
7
4

1
8
5

2
3
3

1
4
7

1
7
6

2
7
4

te
st

_l
oc

ks
_1

1.
c

>
1
8
0
0

8
8
3

8
2
3

1
2
7
0

1
1
8
0

7
0
2

4
4
1

4
6
7

2
6
5

7
3
5

te
st

_l
oc

ks
_1

2.
c

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

1
2
8
0

1
4
5
0

5
9
9

5
2
9

6
8
6

te
st

_l
oc

ks
_1

3.
c

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

1
2
2
0

1
5
6
0

1
0
6
0

te
st

_l
oc

ks
_1

4.
c

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

te
st

_l
oc

ks
_1

5.
c

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

cd
au

di
o_

si
mp

l1
.c

il
.c

M
O

M
O

1
0
2
0

M
O

8
9
8

M
O

M
O

3
3
6

4
9
3

6
1
7

cd
au

di
o_

si
mp

l1
_B

UG
.c

il
.c

1
5
8

1
1
8

9
4
.0

7
1
.0

M
O

M
O

M
O

M
O

M
O

M
O

di
sk

pe
rf

_s
im

pl
1.

ci
l.

c
M

O
M

O
8
9
7

M
O

3
0
2

2
9
3

2
1
3

M
O

1
0
1

6
2
.0

fl
op

py
_s

im
pl

3.
ci

l.
c

5
5
9

M
O

8
8
2

7
4
2

6
1
0

M
O

M
O

M
O

M
O

M
O

fl
op

py
_s

im
pl

3_
BU

G.
ci

l.
c

7
5
.8

7
8
.5

7
4
.9

M
O

M
O

M
O

M
O

M
O

M
O

M
O

fl
op

py
_s

im
pl

4.
ci

l.
c

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

fl
op

py
_s

im
pl

4_
BU

G.
ci

l.
c

7
7
.4

8
1
.0

7
8
.7

4
7
.8

M
O

M
O

M
O

M
O

M
O

M
O

kb
fi

lt
r_

si
mp

l1
.c

il
.c

4
8
.2

3
9
.9

3
0
.9

.6
0
8

.5
6
8

1
.3

3
1
.2

4
1
.1

3
1
.0

1
.5

7
7

kb
fi

lt
r_

si
mp

l2
.c

il
.c

1
2
8

1
2
4

1
1
5

4
2
.2

3
9
.5

3
0
.4

1
2
.3

3
2
.9

2
1
.5

1
1
.2

kb
fi

lt
r_

si
mp

l2
_B

UG
.c

il
.c

1
5
6

1
4
3

9
0
.8

1
3
0

1
0
5

1
0
5

5
3
.2

9
9
.5

5
0
.0

6
9
.9

s3
_c

ln
t_

1.
ci

l.
c

M
O

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

8
2
1

4
9
2

2
6
5

4
4
1

6
3
6

s3
_c

ln
t_

1_
BU

G.
ci

l.
c

6
6
7

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

s3
_c

ln
t_

2.
ci

l.
c

M
O

M
O

>
1
8
0
0

5
3
8

>
1
8
0
0

3
2
2

>
1
8
0
0

2
0
4

3
9
3

5
2
3

s3
_c

ln
t_

2_
BU

G.
ci

l.
c

6
7
7

2
9
9

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

s3
_c

ln
t_

3.
ci

l.
c

M
O

>
1
8
0
0

>
1
8
0
0

M
O

>
1
8
0
0

5
5
2

>
1
8
0
0

1
8
4

6
5
3

5
2
5

s3
_c

ln
t_

3_
BU

G.
ci

l.
c

6
5
3

1
3
7
0

>
1
8
0
0

M
O

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

s3
_c

ln
t_

4.
ci

l.
c

M
O

>
1
8
0
0

M
O

7
2
6

>
1
8
0
0

3
3
0

7
7
6

2
4
6

4
4
5

4
9
5

s3
_c

ln
t_

4_
BU

G.
ci

l.
c

6
4
6

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

s3
_s

rv
r_

1.
ci

l.
c

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

2
1
4

1
5
1
0

>
1
8
0
0

8
6
4

2
9
.7

3
0
4

3
.9

3
s3

_s
rv

r_
1_

BU
G.

ci
l.

c
4
2
.2

4
5
.8

1
6
.8

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

s3
_s

rv
r_

2.
ci

l.
c

M
O

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

1
8
9

>
1
8
0
0

M
O

3
7
8

1
7
8

3
2
7

s3
_s

rv
r_

2_
BU

G.
ci

l.
c

3
5
.6

1
6
5

1
9
.2

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

M
O

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

s3
_s

rv
r_

3.
ci

l.
c

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

1
8
.1

7
1
4

>
1
8
0
0

5
6
.4

6
8
5

>
1
8
0
0

1
0
8
0

s3
_s

rv
r_

4.
ci

l.
c

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

8
7
.7

1
1
3
0

>
1
8
0
0

2
.3

3
4
1
4

2
3
1

3
5
1

s3
_s

rv
r_

6.
ci

l.
c

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

7
3
2

1
6
6
0

>
1
8
0
0

4
.5

3
>

1
8
0
0

1
8
0

>
1
8
0
0

s3
_s

rv
r_

7.
ci

l.
c

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

9
9
8

>
1
8
0
0

1
0
.3

5
1
9

2
5
8

>
1
8
0
0

s3
_s

rv
r_

8.
ci

l.
c

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

3
.9

0
>

1
8
0
0

4
.9

1
>

1
8
0
0

Table 5.3: Results for block sizes 1 to 10, Cartesian abstraction, DFS

41

P
ro

gr
am

k
=

1
k

=
2

k
=

3
k

=
4

k
=

5
k

=
6

k
=

7
k

=
8

k
=

9
k

=
1
0

te
st

_l
oc

ks
_5

.c
6
.2

1
2
0
.0

2
3
.8

>
1
8
0
0

M
O

M
O

M
O

M
O

M
O

M
O

te
st

_l
oc

ks
_6

.c
1
3
.2

1
1
7

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

M
O

M
O

M
O

M
O

M
O

te
st

_l
oc

ks
_7

.c
4
6
.9

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

M
O

M
O

M
O

M
O

M
O

te
st

_l
oc

ks
_8

.c
1
2
4

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

M
O

M
O

M
O

M
O

M
O

te
st

_l
oc

ks
_9

.c
6
9
2

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

M
O

M
O

M
O

M
O

M
O

te
st

_l
oc

ks
_1

0.
c

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

M
O

>
1
8
0
0

M
O

M
O

M
O

te
st

_l
oc

ks
_1

1.
c

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

M
O

M
O

M
O

M
O

te
st

_l
oc

ks
_1

2.
c

M
O

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

M
O

M
O

M
O

>
1
8
0
0

M
O

te
st

_l
oc

ks
_1

3.
c

M
O

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

M
O

M
O

M
O

M
O

te
st

_l
oc

ks
_1

4.
c

M
O

M
O

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

M
O

M
O

M
O

M
O

te
st

_l
oc

ks
_1

5.
c

M
O

M
O

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

M
O

M
O

M
O

cd
au

di
o_

si
mp

l1
.c

il
.c

1
7
8
0

1
1
9
0

1
1
0
0

7
6
6

4
5
3

M
O

M
O

3
4
0

M
O

M
O

cd
au

di
o_

si
mp

l1
_B

UG
.c

il
.c

4
8
8

4
5
6

6
2
9

4
7
6

2
5
6

2
6
5

2
2
5

2
6
5

1
4
8

1
2
4

di
sk

pe
rf

_s
im

pl
1.

ci
l.

c
4
1
7

2
9
3

2
2
2

1
4
4

1
6
1

M
O

6
5
.4

M
O

M
O

M
O

fl
op

py
_s

im
pl

3.
ci

l.
c

3
1
3

3
1
5

3
4
9

3
2
3

1
5
2

2
6
0

M
O

M
O

M
O

M
O

fl
op

py
_s

im
pl

3_
BU

G.
ci

l.
c

1
2
8

2
7
1

2
0
9

1
8
2

7
4
.0

1
2
2

4
3
.2

M
O

M
O

M
O

fl
op

py
_s

im
pl

4.
ci

l.
c

7
4
0

1
1
0
0

1
0
6
0

8
7
1

5
4
1

3
5
6

M
O

M
O

M
O

M
O

fl
op

py
_s

im
pl

4_
BU

G.
ci

l.
c

4
8
8

6
7
6

7
1
2

5
8
4

3
4
1

2
5
0

1
4
1

M
O

M
O

M
O

kb
fi

lt
r_

si
mp

l1
.c

il
.c

3
8
.6

2
9
.5

2
5
.5

1
8
.7

1
9
.4

M
O

6
.8

7
M

O
M

O
M

O

kb
fi

lt
r_

si
mp

l2
.c

il
.c

1
5
0

1
2
2

1
4
1

9
4
.1

8
2
.4

M
O

3
0
.4

M
O

M
O

M
O

kb
fi

lt
r_

si
mp

l2
_B

UG
.c

il
.c

5
9
.7

2
6
.7

2
6
.3

1
7
.8

1
8
.9

1
3
.9

6
.3

3
1
4
.9

1
0
.3

1
7
.6

s3
_c

ln
t_

1.
ci

l.
c

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

M
O

>
1
8
0
0

M
O

s3
_c

ln
t_

1_
BU

G.
ci

l.
c

5
2
2

5
2
9

1
8
9

2
4
0

6
4
.6

6
3
.1

M
O

5
9
.7

8
7
.0

1
4
2

s3
_c

ln
t_

2.
ci

l.
c

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

M
O

>
1
8
0
0

>
1
8
0
0

s3
_c

ln
t_

2_
BU

G.
ci

l.
c

4
6
9

2
4
1

4
2
0

3
0
3

1
6
0

1
4
4

M
O

M
O

8
1
.2

8
9
.3

s3
_c

ln
t_

3.
ci

l.
c

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

M
O

>
1
8
0
0

>
1
8
0
0

s3
_c

ln
t_

3_
BU

G.
ci

l.
c

5
4
7

2
2
3

2
7
9

4
6
2

9
4
.2

2
2
1

1
5
6

M
O

1
2
5

5
5
.8

s3
_c

ln
t_

4.
ci

l.
c

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

M
O

>
1
8
0
0

>
1
8
0
0

s3
_c

ln
t_

4_
BU

G.
ci

l.
c

4
8
1

2
5
3

2
5
8

4
8
9

1
4
7

4
2
.1

>
1
8
0
0

M
O

6
6
.7

9
3
.0

s3
_s

rv
r_

1.
ci

l.
c

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

M
O

>
1
8
0
0

M
O

M
O

s3
_s

rv
r_

1_
BU

G.
ci

l.
c

1
1
6

4
5
.8

2
5
.7

3
9
3

>
1
8
0
0

2
5
.6

M
O

5
7
.9

M
O

M
O

s3
_s

rv
r_

2.
ci

l.
c

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

M
O

>
1
8
0
0

M
O

>
1
8
0
0

s3
_s

rv
r_

2_
BU

G.
ci

l.
c

2
3
.3

2
9
8

6
6
.4

1
1
2

>
1
8
0
0

2
4
.9

>
1
8
0
0

8
3
.4

M
O

5
1
.6

s3
_s

rv
r_

3.
ci

l.
c

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

M
O

>
1
8
0
0

M
O

M
O

s3
_s

rv
r_

4.
ci

l.
c

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

M
O

>
1
8
0
0

M
O

M
O

s3
_s

rv
r_

6.
ci

l.
c

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

M
O

>
1
8
0
0

M
O

M
O

s3
_s

rv
r_

7.
ci

l.
c

>
1
8
0
0

>
1
8
0
0

M
O

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

M
O

>
1
8
0
0

M
O

M
O

s3
_s

rv
r_

8.
ci

l.
c

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

M
O

>
1
8
0
0

M
O

M
O

Table 5.4: Results for block sizes 1 to 10, Cartesian abstraction, topological sort

42

P
ro

gr
am

k
=

1
k

=
2

k
=

3
k

=
4

k
=

5
k

=
6

k
=

7
k

=
8

k
=

9
k

=
1
0

te
st

_l
oc

ks
_5

.c
6
.0

6
1
8
.0

2
4
.5

1
1
.2

6
.0

5
3
.2

6
3
.0

9
3
.2

7
2
.4

8
3
.4

2
te

st
_l

oc
ks

_6
.c

2
0
.2

M
O

>
1
8
0
0

1
1
9

1
5
.5

8
.8

3
1
1
.2

3
.8

0
2
.4

7
3
.0

3
te

st
_l

oc
ks

_7
.c

4
8
.4

M
O

M
O

6
4
8

8
3
.5

9
1
.8

1
2
.6

1
3
.0

2
1
.3

5
.7

1
te

st
_l

oc
ks

_8
.c

2
2
0

M
O

>
1
8
0
0

M
O

1
8
0

2
9
1

4
7
.0

5
0
.3

2
4
.2

2
5
.8

te
st

_l
oc

ks
_9

.c
3
4
1

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

1
3
5
0

4
1
7

3
0
4

4
9
.8

3
8
.8

6
7
.7

te
st

_l
oc

ks
_1

0.
c

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

1
2
2
0

5
8
7

1
4
8
0

2
7
1

1
0
9

te
st

_l
oc

ks
_1

1.
c

M
O

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

1
5
5
0

1
2
7
0

1
4
6
0

2
4
4

te
st

_l
oc

ks
_1

2.
c

M
O

M
O

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

M
O

M
O

>
1
8
0
0

te
st

_l
oc

ks
_1

3.
c

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

M
O

>
1
8
0
0

>
1
8
0
0

M
O

M
O

te
st

_l
oc

ks
_1

4.
c

M
O

M
O

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

M
O

te
st

_l
oc

ks
_1

5.
c

M
O

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

cd
au

di
o_

si
mp

l1
.c

il
.c

M
O

>
1
8
0
0

>
1
8
0
0

5
8
7

5
8
0

6
2
4

3
6
6

5
1
6

2
4
6

2
1
0

cd
au

di
o_

si
mp

l1
_B

UG
.c

il
.c

4
7
8

3
5
8

5
2
6

3
9
1

3
0
8

2
2
6

1
9
2

2
5
0

1
3
3

1
0
6

di
sk

pe
rf

_s
im

pl
1.

ci
l.

c
>

1
8
0
0

>
1
8
0
0

>
1
8
0
0

4
2
3

>
1
8
0
0

>
1
8
0
0

2
3
7

5
9
.2

1
6
9

8
5
5

fl
op

py
_s

im
pl

3.
ci

l.
c

4
9
8

4
3
6

4
0
4

2
3
7

1
1
5

4
4
0

7
3
.4

6
8
.1

6
5
.1

8
0
.5

fl
op

py
_s

im
pl

3_
BU

G.
ci

l.
c

1
6
8

2
1
6

2
1
3

1
8
9

8
2
.1

8
1
.1

3
0
.8

3
1
.2

3
4
.7

4
5
.9

fl
op

py
_s

im
pl

4.
ci

l.
c

9
6
2

8
9
7

M
O

7
7
1

5
1
4

6
1
8

1
4
1

2
9
4

1
6
7

2
1
2

fl
op

py
_s

im
pl

4_
BU

G.
ci

l.
c

3
5
2

5
8
5

6
3
3

4
4
8

3
2
0

2
0
2

1
2
1

1
9
9

1
2
8

1
5
0

kb
fi

lt
r_

si
mp

l1
.c

il
.c

3
0
.6

1
8
.7

2
0
.0

1
7
.6

1
5
.3

1
7
.8

5
.8

5
3
.9

4
7
.2

5
1
0
.1

kb
fi

lt
r_

si
mp

l2
.c

il
.c

1
1
4

9
6
.8

1
2
2

7
7
.7

7
2
.5

5
6
.0

2
4
.1

1
8
.9

3
9
.3

5
9
.1

kb
fi

lt
r_

si
mp

l2
_B

UG
.c

il
.c

4
2
.2

1
6
.2

1
7
.5

1
6
.8

1
5
.6

1
1
.2

5
.2

4
1
2
.8

8
.6

4
1
6
.5

s3
_c

ln
t_

1.
ci

l.
c

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

s3
_c

ln
t_

1_
BU

G.
ci

l.
c

M
O

8
1
4

M
O

4
3
6

4
8
.9

1
1
9

2
0
1

9
7
.9

1
7
5

6
7
.5

s3
_c

ln
t_

2.
ci

l.
c

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

s3
_c

ln
t_

2_
BU

G.
ci

l.
c

M
O

5
3
6

3
7
5

5
1
1

2
5
7

1
7
9

5
7
.0

6
1
.3

1
1
5

1
3
5

s3
_c

ln
t_

3.
ci

l.
c

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

s3
_c

ln
t_

3_
BU

G.
ci

l.
c

M
O

5
9
3

5
9
2

8
0
9

2
2
9

1
7
2

8
3
.7

8
2
.8

1
6
9

5
5
.3

s3
_c

ln
t_

4.
ci

l.
c

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

s3
_c

ln
t_

4_
BU

G.
ci

l.
c

9
9
4

3
2
4

2
0
6

8
4
5

8
3
.2

4
7
.4

1
3
8

3
1
.0

7
8
.2

7
8
.0

s3
_s

rv
r_

1.
ci

l.
c

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

s3
_s

rv
r_

1_
BU

G.
ci

l.
c

1
6
3

5
2
.6

1
3
8

1
3
6

2
4
.8

4
2
.5

4
6
.4

3
6
.8

2
0
.8

1
4
.9

s3
_s

rv
r_

2.
ci

l.
c

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

s3
_s

rv
r_

2_
BU

G.
ci

l.
c

2
1
.8

3
7
8

8
3
.1

2
2
4

1
7
.8

2
4
.4

1
5
4

6
4
.9

1
6
.6

6
0
.4

s3
_s

rv
r_

3.
ci

l.
c

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

s3
_s

rv
r_

4.
ci

l.
c

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

s3
_s

rv
r_

6.
ci

l.
c

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

s3
_s

rv
r_

7.
ci

l.
c

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

s3
_s

rv
r_

8.
ci

l.
c

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

M
O

Table 5.5: Results for block sizes 1 to 10, Boolean abstraction, topological sort

43

Program k = 50 k = 100 k = 150 k = 200 k = 250 k = 300 LBE
cdaudio_simpl1.cil.c 223 47.2 18.9 14.8 > 1800 > 1800 51.5
cdaudio_simpl1_BUG.cil.c 158 97.6 26.6 18.7 > 1800 > 1800 32.5
diskperf_simpl1.cil.c 3.94 3.44 2.68 1.65 2.42 2.51 146
floppy_simpl3.cil.c 10.8 2.10 2.75 1.11 1.43 2.50 20.1
floppy_simpl3_BUG.cil.c 13.9 1.86 3.17 1.22 .891 1.90 11.1
floppy_simpl4.cil.c 3.06 2.08 4.07 .952 1.41 1.99 32.2
floppy_simpl4_BUG.cil.c 2.56 1.69 4.05 1.61 1.81 2.74 20.1
kbfiltr_simpl1.cil.c 2.97 1.79 .761 1.07 1.38 1.31 2.57
kbfiltr_simpl2.cil.c 5.39 2.14 2.16 1.69 1.39 1.65 3.75
kbfiltr_simpl2_BUG.cil.c 3.28 2.03 2.11 1.44 1.39 2.32 2.28

Table 5.6: Results for block sizes 50 to 300 with absk

coverage check as long as no two nodes for the same location have been created. In the
worst case, this can take k · s steps and s abstraction computations. For k = s, only
one iteration and two abstraction computations would have been needed. Therefore it
is not advisable to use absk with larger values of k if the program contains large loops
and no predicates are tracked for the loop condition.
However, as the results for the driver examples show, it may be worth to use absk for

programs without large loops, as the analysis is sometimes a lot faster than LBE. The
best block size depends strongly on the analyzed program, so no general suggestion
can be given. The highly differing results for absLBE

k (see Table 5.2) and absk (see
Table 5.6) with the same k show that with LBE a lot of blocks are actually smaller than
50 although the maximum block size is always larger than that for these programs.

5.2.1 Loop Unrolling

In order to be able to use larger blocks for the examples with large loops in spite of
the encountered problem, absk was combined with absLBE so that abstractions would
be computed only at the abstraction locations that LBE uses (especially loop heads),
but with some loop iterations being unrolled. This can be achieved by using the
conjunction of absk and absLBE as the abstraction operator.
In Table 5.7 the results are shown for the SSH test cases with the threshold k taken

from {50, 100, 150, 200, 250, 300}. For the other examples there is no difference in per-
formance to the LBE results. The reason for this is that the loop in the test_locks*
programs is not relevant for the safety properties that the analysis tries to verify.
Therefore, only one iteration of the loop is analyzed in the LBE configuration and no
performance benefit can be gained by unrolling. There is also no measurable slowdown
because there are only very few abstraction computations necessary, and these do not
need much more time if the path formula is for example twice as large as with LBE (if

44

Program k = 50 k = 100 k = 150 k = 200 k = 250 k = 300 LBE
s3_clnt_1.cil.c 17.4 9.54 432 527 829 > 1800 14.6
s3_clnt_1_BUG.cil.c 1.91 1.99 4.64 5.68 4.38 8.33 2.81
s3_clnt_2.cil.c 35.2 34.2 MO 18.7 1090 > 1800 35.4
s3_clnt_2_BUG.cil.c 2.88 2.03 4.43 4.71 7.94 9.17 2.06
s3_clnt_3.cil.c 19.2 28.6 35.7 > 1800 > 1800 916 17.8
s3_clnt_3_BUG.cil.c 3.69 2.62 5.18 5.13 6.82 9.60 3.14
s3_clnt_4.cil.c 8.58 29.5 1200 > 1800 1290 > 1800 9.59
s3_clnt_4_BUG.cil.c 3.08 2.83 4.54 4.51 5.85 5.67 2.54
s3_srvr_1.cil.c 36.1 24.1 1560 MO 74.4 > 1800 31.2
s3_srvr_1_BUG.cil.c 1.73 2.33 3.27 3.95 3.24 3.66 1.62
s3_srvr_2.cil.c 91.2 18.5 24.1 MO > 1800 MO 86.7
s3_srvr_2_BUG.cil.c 2.17 1.96 2.34 2.80 2.96 2.91 2.71
s3_srvr_3.cil.c 15.5 20.5 MO 303 > 1800 > 1800 14.1
s3_srvr_4.cil.c 181 453 MO > 1800 MO 613 160
s3_srvr_6.cil.c 51.4 485 112 MO MO MO 45.7
s3_srvr_7.cil.c 146 23.1 101 607 > 1800 > 1800 136
s3_srvr_8.cil.c 21.6 15.1 86.6 1330 1000 276 21.2

Table 5.7: Results for LBE with unrolling of loops

two iterations were unrolled). The NT drivers’ files contain at most one small loop,
so there is no difference in performance for them, either.
For the SSH test cases, the results are mixed. Some configurations provide better

performance than LBE for a few programs. With almost all configurations, however,
there are some examples where much more time is needed, or the analysis even fails to
terminate. An extreme case is s3_clnt_4.cil.c. LBE needs less than 10 seconds, but
with k >= 150 more than 1000 seconds are needed. Similar examples were observed
during implementation. Even a simple artificial example (shorter than the presented
lock-loop.c) that LBE manages to verify in under a second could take over 500
seconds when two iterations of the loop were unrolled.
The main cause for this are the interpolants generated by the SMT-solver. In

these cases, the path formula is too complex to generate interpolants efficiently. The
interpolation takes very long, and the resulting formulas are very large. Even for
the smallest tested example, a single interpolant could be several Megabytes large
when represented as a DAG. If such a formula was unrolled into a normal string
representation consisting of predicates concatenated with “&” and “|”, it could reach
up to 170MB even though the originating program contained only a small loop with
20 iterations and the threshold k was set to 10.
To see if this can be done better by other tools, a different SMT-solver was tried,

namely CSIsat [BZM08]. While it managed to produce much better interpolants
for the small artificial example, it was too slow to be used with the examples used
for the benchmarks. One reason for this is that MathSAT is used as a library in
CPAchecker, so calls to the solver practically generate no overhead. CSIsat in

45

contrast is a stand-alone tool. Therefore, a new process had to be started whenever
interpolants had to be generated. Also, CPAchecker does not store the formulas
it uses on its own but delegates this task to MathSAT. Thus, the formulas had to
be converted between the formats of MathSAT and CSIsat before and after the
interpolant generation. It was not possible to better integrate CPAchecker and
CSIsat due to the large dependency of predicate abstraction in CPAchecker on
MathSAT, but this might be feasible in the future.
In general, loop unrolling is currently not advisable. However, work should be

done to generate better interpolants, either by enhancing MathSAT or by integrating
CSIsat more tightly so that its usage in CPAchecker becomes faster. As the results
look promising aside from the cases with extreme problems, loop unrolling might be
a future way to reduce the amount of abstraction computations.

5.2.2 Function Inlining

Yet another way to increase the block size was evaluated. The previous implementa-
tion of LBE forces an abstraction on every function call and return, as explained in
Chapter 4. In order to see if this is really necessary, this restriction was changed to be
optional. The variant without these abstractions is called LBE with function inlining,
as it behaves as if a pre-processor would have inlined all function calls in the program.
This is not possible for recursive functions, and similarly LBE with function inlining
will not work if recursive functions exist in the program. In this case an abstraction
operator with an additional threshold that forces an abstraction after a certain path
length has to be used. However, as CPAchecker currently contains no support for
recursive functions anyway, this was not necessary here.
Table 5.8 compares the results of LBE with and without inlining. For the

test_locks_* examples there is no difference, as these do not contain function calls.
Therefore, they were omitted from the table. The results are inconsistent. Some test
cases benefit from inlining and are notably faster, but there is a massive performance
decrease for some other examples. A small performance increase was expected due to
the reduced number of abstraction computations. For the results that got slower the
increased complexity of the path formulas is probably too much for the used SMT-
solver, similar to the results that are obtained when unrolling of loops is enabled.
Therefore, it is better to not use this variant as long as interpolant generation does
not work better.

46

Program LBE LBE with inlining
cdaudio_simpl1.cil.c 51.5 51.7
cdaudio_simpl1_BUG.cil.c 32.5 16.4
diskperf_simpl1.cil.c 146 273
floppy_simpl3.cil.c 20.1 21.9
floppy_simpl3_BUG.cil.c 11.1 7.08
floppy_simpl4.cil.c 32.2 23.9
floppy_simpl4_BUG.cil.c 20.1 8.83
kbfiltr_simpl1.cil.c 2.57 1.77
kbfiltr_simpl2.cil.c 3.75 3.32
kbfiltr_simpl2_BUG.cil.c 2.28 .839
s3_clnt_1.cil.c 14.6 19.7
s3_clnt_1_BUG.cil.c 2.81 2.46
s3_clnt_2.cil.c 35.4 14.2
s3_clnt_2_BUG.cil.c 2.06 4.03
s3_clnt_3.cil.c 17.8 12.7
s3_clnt_3_BUG.cil.c 3.14 2.58
s3_clnt_4.cil.c 9.59 13.3
s3_clnt_4_BUG.cil.c 2.54 3.58
s3_srvr_1.cil.c 31.2 7.30
s3_srvr_1_BUG.cil.c 1.62 2.54
s3_srvr_2.cil.c 86.7 233
s3_srvr_2_BUG.cil.c 2.71 2.46
s3_srvr_3.cil.c 14.1 36.9
s3_srvr_4.cil.c 160 14.6
s3_srvr_6.cil.c 45.7 >1800
s3_srvr_7.cil.c 136 72.5
s3_srvr_8.cil.c 21.2 19.6

Table 5.8: Results for LBE with function inlining

47

6 Conclusion and Future Work

Currently no other configuration provides results as good as those of LBE with Boolean
abstraction. Cartesian abstraction is either too slow or too imprecise, and small block
sizes are generally much slower than larger ones. However it is not beneficial to use
blocks that are larger than those produced by LBE, either. All such configurations
were too slow or even failed to terminate in a significant number of examples. The
reason is the greater complexity of the path formulas, which seems to be too much for
the used SMT-solver.
Thus several possibilities for future work arise. Perhaps a different abstraction op-

erator that adjusts the block size more intelligently than a simple threshold would
give better results. The unrolling of loops seems to be promising, but is currently
restricted due to the low quality of the interpolants found by the SMT-solver used. It
may be worth to extend the experiments with other SMT-solvers to see if better inter-
polants can be found. These tools would have to be tightly integrated into the model
checker in order to provide reasonable performance. With loop unrolling and very
large blocks, predicate abstraction would become similar to Bounded Model Check-
ing [BCCZ99], so strategies for handling large formulas from BMC could be used. The
CPA could be extended to allow satisfiability checks of symbolic formulas instead of
using abstraction, creating an analysis that would be able to behave not only like a
precise model checker, but also like a bounded model checker. Another analysis that
is based on lazy abstraction and interpolants but does not compute predicate abstrac-
tions was presented by McMillan [McM06]. This approach could be integrated, too.
The convergence of all these different methods would yield great possibilites for com-
parison. Additionally, using a configurable analysis would make it possible to use new
configurations not yet presented by combining strategies from different approaches.
Another strategy for faster analysis of loops is to replace them by their closed form, if

one can be found. This has been presented in [KW10] and similar techniques could be
integrated into the presented CPA, too. Compared with SBE, the use of Large-Block
Encoding simplifies this, because a single path formula representing the whole body
of a loop is already created. This formula could be analyzed to find loop invariants.

48

As explained in Chapter 4, currently the new predicates found during refinement
are added only to the abstract states along the infeasible path. However, if there are
several similar paths through the program, it may be worth adding the predicates
to other paths as well, saving the need for separate refinement steps for each path.
Heuristics could be implemented that share the predicates of similar paths. With the
possibility for dynamic precision adjustment [BHT08], the CPA framework already
provides a convenient method to do this kind of precision adjustment.
Most analysis that are based on predicates focus on precision rather than on effi-

ciency. As the CPA framework makes it easy to configure the precision of an analysis
by choosing an appropriate merge operator, it might be interesting to evaluate if less
precise configurations (like using mergejoin) still provide useful results and are notably
faster.
All these options could probably be easily integrated into the framework for Ad-

justable Large-Block Encoding. This unification of concepts would create a great tool
for experimenting with new approaches to software model checking based on predi-
cates.

49

Bibliography

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.
Symbolic Model Checking without BDDs. Proceedings of the 5th Inter-
national Conference on Tools and Algorithms for the Analysis and Con-
struction of Systems (TACAS 1999), LNCS 1579, pages 193–207. Springer,
March 1999.

[BCF+08] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Grig-
gio, and Roberto Sebastiani. The MathSAT 4 SMT Solver. Proceed-
ings of the 20th International Conference on Computer Aided Verification
(CAV 2008), LNCS 5123, pages 299–303. Springer, July 2008.

[BCG+09] Dirk Beyer, Alessandro Cimatti, Alberto Griggio, M. Erkan Keremoglu,
and Roberto Sebastiani. Software Model Checking via Large-Block Encod-
ing. Proceedings of the 9th International Conference on Formal Methods
in Computer-Aided Design (FMCAD 2009), pages 25–32. IEEE Computer
Society, November 2009.

[BHJM07] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar.
The Software Model Checker Blast: Applications to Software Engineer-
ing. International Journal on Software Tools for Technology Transfer
(STTT), volume 9, number 5-6, pages 505–525. Springer, October 2007.

[BHT07] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Configurable
Software Verification: Concretizing the Convergence of Model Checking
and Program Analysis. Proceedings of the 19th International Conference
on Computer Aided Verification (CAV 2007), LNCS 4590, pages 504–518.
Springer, July 2007.

[BHT08] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Program
Analysis with Dynamic Precision Adjustment. Proceedings of the 23rd

50

IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE 2008), pages 29–38. IEEE Computer Society, September 2008.

[BK09] Dirk Beyer and M. Erkan Keremoglu. CPAchecker: A Tool for Con-
figurable Software Verification. Technical Report SFU-CS-2009-02, Simon
Fraser University (SFU), January 2009.

[BPR01] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Boolean and
Cartesian Abstractions for Model Checking C Programs. Proceedings of
the 7th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS 2001), LNCS 2031, pages
268–283. Springer, April 2001.

[BR02] Thomas Ball and Sriram K. Rajamani. The Slam project: Debug-
ging system software via static analysis. Proceedings of the 29th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages
(POPL 2002), pages 1–3. ACM, January 2002.

[BZM08] Dirk Beyer, Damien Zufferey, and Rupak Majumdar. CSIsat: Interpo-
lation for LA+EUF. Proceedings of the 20th International Conference
on Computer Aided Verification (CAV 2008), LNCS 5123, pages 304–308.
Springer, July 2008.

[CCF+07] Roberto Cavada, Allesandro Cimatti, Anders Franzén, Krishnamani
Kalyanasundaram, Marco Roveri, and R. K. Shyamasundar. Computing
Predicate Abstractions by Integrating BDDs and SMT Solvers. Proceed-
ings of the 7th International Conference on Formal Methods in Computer-
Aided Design (FMCAD 2007), pages 69–76. IEEE Computer Society,
November 2007.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Transactions on Programming
Languages and Systems (TOPLAS), volume 13, number 4, pages 451–490.
ACM, October 1991.

[CGJ+03] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement for symbolic model

51

checking. Journal of the ACM, volume 50, number 5, pages 752–794.
ACM, September 2003.

[CGS08] Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. Efficient
Interpolant Generation in Satisfiability Modulo Theories. Proceedings of
the 14th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS 2008), LNCS 4963, pages
397–412. Springer, April 2008.

[CKL04] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A Tool for Check-
ing ANSI-C Programs. Proceedings of the 10th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2004), LNCS 2988, pages 168–176. Springer, March 2004.

[CKSY05] Edmund M. Clarke, Daniel Kroening, Natasha Sharygina, and Karen
Yorav. SatAbs: SAT-Based Predicate Abstraction for ANSI-C. Proceed-
ings of the 11th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2005), LNCS 3440, pages
570–574. Springer, April 2005.

[Cra57] William Craig. Three Uses of the Herbrand-Gentzen Theorem in Relating
Model Theory and Proof Theory. The Journal of Symbolic Logic, volume
22, number 3, pages 269–285. Association for Symbolic Logic, September
1957.

[DKW08] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A Survey of
Automated Techniques for Formal Software Verification. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, vol-
ume 27, number 7, pages 1165–1178. IEEE Circuits and Systems Society,
July 2008.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
patterns: Elements of reusable object-oriented software. Addison-Wesley,
November 1994.

[GS97] Susanne Graf and Hassen Saïdi. Construction of abstract state graphs
with PVS. Proceedings of the 9th International Conference on Computer
Aided Verification (CAV 1997), LNCS 1254. Springer, June 1997.

52

[HJMM04] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L.
McMillan. Abstractions from proofs. Proceedings of the 31st ACM
SIGPLAN-SIGACT symposium on Principles of programming languages
(POPL 2004), pages 232–244. ACM, January 2004.

[HJMS02] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire
Sutre. Lazy abstraction. Proceedings of the 29th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages (POPL
2002), pages 58–70. ACM, January 2002.

[JM09] Ranjit Jhala and Rupak Majumdar. Software model checking. ACM
Computing Surveys (CSUR), volume 41, number 4, pages 1–54. ACM,
October 2009.

[KW10] Daniel Kroening and Georg Weissenbacher. Verification and Falsification
of Programs with Loops using Predicate Abstraction. Formal Aspects of
Computing, volume 22, number 2, pages 105–124. Springer, March 2010.

[LNO06] Shuvendu K. Lahiri, Robert Nieuwenhuis, and Albert Oliveras. SMT
Techniques for Fast Predicate Abstraction. Proceedings of the 18th In-
ternational Conference on Computer Aided Verification (CAV 2006),
LNCS 4144, pages 424–437. Springer, August 2006.

[McM06] Kenneth L. McMillan. Lazy Abstraction with Interpolants. Proceedings
of the 18th International Conference on Computer Aided Verification
(CAV 2006), LNCS 4144, pages 123–136. Springer, August 2006.

[Neu09] Peter G. Neumann. Risks to the public. ACM SIGSOFT Software En-
gineering Notes, volume 34, number 5, pages 18–24. ACM, September
2009.

[NMRW02] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley
Weimer. CIL: Intermediate Language and Tools for Analysis and Trans-
formation of C Programs. Proceedings of the 11th International Confer-
ence on Compiler Construction (CC 2002), LNCS 2304, pages 213–228.
Springer, April 2002.

[Seb07] Roberto Sebastiani. Lazy Satisability Modulo Theories. Journal on Sat-
isfiability, Boolean Modeling and Computation, volume 3, number 3-4,
pages 141–224. December 2007.

53

Eidesstattliche Erklärung

Hiermit versichere ich, dass ich diese Masterarbeit selbstständig und ohne Benutzung
anderer als der angegebenen Quellen und Hilfsmittel angefertigt habe und alle Aus-
führungen, die wörtlich oder sinngemäß übernommen wurden, als solche gekennzeich-
net sind, sowie dass ich die Masterarbeit in gleicher oder ähnlicher Form noch keiner
anderen Prüfungsbehörde vorgelegt habe.

Passau, den 26. März 2010

Philipp Wendler

	Introduction
	Related Work
	Structure

	Background
	Input Language and Control-Flow Automata
	Predicate Abstraction
	Paths as Formulas
	Counterexample-Guided Abstraction Refinement and Lazy Abstraction
	Large-Block Encoding
	On-the-fly Large-Block Encoding
	Configurable Program Analysis

	Adjustable Large-Block Encoding
	CPA for Adjustable Large-Block Encoding
	Example

	Implementation
	Evaluation
	Block Size varying between SBE and LBE
	Block Sizes larger than LBE

	Conclusion and Future Work
	Bibliography

