
University of Passau
Faculty for Computer Science and Mathematics

Master’s Thesis

Light-Weight Invariant Generation for
Software Verification with CPAchecker

Matthias Dangl

October 10, 2013

Master’s Thesis
at the Software Systems Lab
at the Faculty for Computer Science and Mathematics
at the University of Passau

Assessor: Prof. Dr. Dirk Beyer
Advisor: M. Sc. Philipp Wendler

Abstract

This thesis presents a light-weight approach to invariant generation in the context of
an implementation of k-induction for software verification within the CPAchecker
framework. CPAchecker is a tool for software verification, one of the grand chal-
lenges of computing research. Inductive methods to prove the correctness of loops
have been applied for years, but rely on manual invariant annotation or complex
and elaborate algorithms for automatic generation of invariants, because classic in-
ductive methods often require strong invariants to be able to prove loop correctness.
k-induction, however, is often successful with weaker invariants.

The presented invariant generation algorithm supporting the k-induction implemented
in the bounded model checking algorithm of CPAchecker is evaluated and it is
shown that while k-induction certainly is no all-encompassing approach to software
verification, there are promising results for a significant number of experiments, which
might be an incentive to further research into the question what types of programs
benefit most from a k-induction verification approach.

Contents

List of tables vii

List of Figures x

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 2
1.3 Terminology . 6

1.3.1 Programs and Control Flow Automata 6
1.3.2 Types . 6
1.3.3 Pure Expressions . 7
1.3.4 SMT Solver . 7

2 Background 9
2.1 k-Induction . 9
2.2 Basics of Invariant Generation . 10

2.2.1 Information Extraction . 15
2.2.2 Information Representation . 16
2.2.3 Abstract Interpretation . 16

2.3 Configurable Program Analysis . 19

3 Theory 23
3.1 Providing k-Induction with Invariants 23
3.2 Invariant Generation . 24

3.2.1 Efficient Representation . 24
3.2.1.1 Sets of Integer Values 24
3.2.1.2 Variable Environment 26
3.2.1.3 Path Distinction . 27

3.2.2 Expression Evaluation and Abstraction 29
3.3 A Configurable Program Analysis for Generating Invariants 31

4 Implementation 33
4.1 Overview . 33
4.2 InvariantsCPA . 34

4.2.1 Initialization . 34
4.2.2 Configuration . 35

vi Contents

4.3 InvariantsDomain . 35
4.4 SimpleInterval . 38
4.5 CompoundState . 38
4.6 InvariantsFormula . 39
4.7 InvariantsState . 40

4.7.1 Assignment Transitions . 41
4.7.2 Assume Transitions . 42
4.7.3 Joining States . 43
4.7.4 Invariant Extraction . 44

4.8 InvariantsTransferRelation . 44
4.9 Evaluation of Formulas . 45

5 Experimental Results 47
5.1 Selected Benchmarks . 47
5.2 Analyses . 47

5.2.1 Bounded Model Checking . 47
5.2.2 Predicate Analysis . 48

5.3 Measured Properties . 48
5.3.1 Safety . 48
5.3.2 Time and Space . 49

5.4 Benchmark Environment . 49
5.5 Experiments . 49

5.5.1 Proof of Concept . 49
5.5.2 Guessing of Potentially Interesting Variables 54
5.5.3 Comparative Benchmark . 60
5.5.4 Related Benchmarks . 63

6 Conclusion 65
6.1 Summary . 65
6.2 Prospects . 66

6.2.1 Integration into the existing framework 66
6.2.2 Multi-Loop Programs . 66
6.2.3 Bit-Vectors . 67
6.2.4 Pointer Aliasing . 67
6.2.5 Further Heuristics . 67

Bibliography 69

List of Tables

4.1 Configuration options . 36
4.2 Important external configuration options 37

5.1 Configuration options used for the bounded model checking experiments
on the ssh program selection . 51

5.2 Bounded model checking with k-induction using invariant generation
applied on the ssh benchmark set . 52

5.3 Bounded model checking with k-induction applied on the ssh bench-
mark set, not using invariant generation 55

5.4 CPU times and memory consumption for the different values of k when
using bounded model checking with k-induction and invariant genera-
tion, setting cpa.invariants.interestingVariableLimit to 0 57

5.5 Bounded model checking with k-induction applied on the ssh bench-
mark set, using cpa.invariants.interestingVariableLimit = 1 . . 61

5.6 Comparison between three different analyses over the large benchmark
set . 62

List of Figures

2.1 The control flow graph of a very simple program 11
2.2 The control flow graph of a very simple program with an error assertion 12
2.3 Another control flow graph of a very simple program with an error

assertion . 13
2.4 Another control flow graph of a very simple program with an error

assertion . 14
2.5 A control flow graph of a program containing a loop 17

3.1 A list of intervals representing > . 26
3.2 An empty list of intervals representing ⊥ 26
3.3 A list of intervals representing all integer numbers but zero 26
3.4 A list of intervals with two finite intervals 27
3.5 A complex list of intervals . 27
3.6 An example control flow graph of a program where variable ranking

might be sub-optimal . 30

4.1 A mapping of variables to expressions, representing knowledge about
an environment . 41

5.1 The verification result chart for bounded model checking with k-induction
using invariant generation applied on the ssh benchmark set. In total
there are 22 safe and 23 unsafe programs in the set. 51

5.2 The consumed CPU time graph for bounded model checking with k-
induction using invariant generation applied on the ssh benchmark set 53

5.3 The consumed memory graph for bounded model checking with k-
induction using invariant generation applied on the ssh benchmark set 53

5.4 The verification result chart for bounded model checking with k-induction
applied on the ssh benchmark set, not using invariant generation. In
total the set contains 22 safe and 23 unsafe programs. 54

5.5 The consumed CPU time graph for bounded model checking with k-
induction applied on the ssh benchmark set, not using invariant gener-
ation . 56

5.6 The consumed memory graph for bounded model checking with k-
induction applied on the ssh benchmark set, not using invariant gener-
ation . 56

x List of Figures

5.7 The verification result chart for bounded model checking with k-induction
applied on the ssh benchmark set, using invariant generation but not
guessing one important variables. In total the set contains 22 safe and
23 unsafe programs. 57

5.8 The consumed CPU time graph for bounded model checking with k-
induction applied on the ssh benchmark set, using invariant generation
but not guessing important variables 58

5.9 The consumed memory graph for bounded model checking with k-
induction applied on the ssh benchmark set, using invariant generation
but not guessing important variables 58

5.10 The verification result chart for bounded model checking with k-induction
applied on the ssh benchmark set, using invariant generation with
guessing one important variable. In total the set contains 22 safe and
23 unsafe programs. 59

5.11 The consumed CPU time graph for bounded model checking with k-
induction applied on the ssh benchmark set, using invariant generation
with guessing one important variable 59

5.12 The consumed memory graph for bounded model checking with k-
induction applied on the ssh benchmark set, using invariant generation
with guessing one important variable 60

1 Introduction

1.1 Motivation

According to Tony Hoare, automatic verification of software is one of the grand chal-
lenges for computing research. He describes the correctness of computer programs
as ”the fundamental concern of the theory of programming and of its application in
large-scale software engineering” [1, p. 65] and emphasizes the importance of achiev-
ing the goal of automatic software verification not only for end-users but also for the
economy as a whole [1, p. 66].

One of the criteria Hoare gives for a problem to be considered a grand challenge is
that it must actually be a challenge [1, p. 64]. Verifying software is undeniably a
challenging task, considering that even the question of whether or not a program
terminates at all is undecidable in general[2].

The systematic process of using mathematical techniques to verify the conformity of
a design specification to the design implementation is called formal verification[3].
An important aspect of formal software verification is the application of assertions
over program variables, because whether or not an undesirable program state is
reached usually depends on the values of those variables. Assertions over program
variables that remain true each time a program location is reached are called invariant
assertions[4].

One approach to formal software verification is model checking, which is described as
an algorithmic analysis of programs used to prove their execution properties[5]. The
basic idea of model checking is checking whether the finite state graph of a program
is a model of its specification or not [6, p. 76].

This approach, however, is faced with the problem of representing large numbers of
states for complex systems. To handle such situations, McMillan proposed the appli-
cation of ordered binary decision diagrams (OBDDs) to represent boolean formulas
in a compact canonical form. But the efficiency of these data structures depends on
the NP-complete problem of optimal variable ordering for OBDDs and there are cases
where even for an optimal ordering the size of the OBDD is proven to be exponential
in the number of variables [6, p. 76].

Bounded model checking (BMC) tries to avoid this explosion of states by using propo-
sitional decision procedures instead of BDDs and considers counterexamples to the

2 1.2 Related Work

specification with a specific length k where the maximum length of the counterexam-
ple is limited by a bound[7].

To be able to prove correctness of loops without having to unroll them completely,
which is often infeasible and sometimes impossible, inductive approaches are applied.
For induction to be successful, sufficiently useful invariant assertions are required.
Automatically generating useful invariants is, however, a hard task[8].

CPAchecker is a configurable software verification tool which implements, among
other strategies, bounded model checking and provides a framework for implement-
ing configurable program analyses[9]. The bounded model checking implementation
of CPAchecker uses k-induction to prove loop correctness. While this advanced
algorithm improves the ability to verify loop correctness, it still relies on sufficiently
useful invariants, but contrary to traditional inductive approaches, k-induction is often
successful with significantly weaker invariants[8]. Therefore, a light-weight approach
to invariant generation has now been implemented as a configurable program analysis
in CPAchecker, to be used by CPAchecker’s bounded model checking algorithm.

1.2 Related Work

In 1967, Floyd described program verification methods using verification conditions
in control flow graphs[10] and in the same year proposed a verifying compiler[11].
He was supported by King in 1970, who in his thesis presents a theoretical basis for
program verifiers as a ”first step toward developing a ’verifying compiler’”[12] and
suggests using invariant statements as inductive predicates [12, p. 22 ff.] for software
verification.

Two years later, Hoare elaborated on the basic techniques that can be used to explore
the logical foundations of computer programming. Among the axioms and rules he
provided to accomplish this task, he proposed the application of invariant assertions
to the analysis of while-loops[13], which related to Floyd’s suggestion of invariant
statements as inductive predicates.

Wegbreit discussed heuristic approaches for synthesizing loop predicates extracted
from partially manually specified inductive assertions and from loop boundary condi-
tions as well as methods to extract loop predicates by using input predicates in combi-
nation with evaluation of weak interpretations [14, p. 102] in 1974. He concluded that
the techniques he presented were not sufficient to provide all-encompassing invariant
assertions for complex programs, but that an achievable goal might be to automati-
cally provide a programmer with enough information to easily understand the more
complex loops while covering the simpler loops without requiring interaction [14, p.
112].

Caplain attempted to extract the ”Most General Invariant” [15, p. 165] of any program
loop in 1975. He claimed that the challenging part of verifying program correctness is

3

finding the inductive assertions required to prove the correctness of the loops contained
in the programs [15, p. 165] and gave instructions to transform a loop into a partial
specification of the loop containing a set of invariant assertions [15, p. 170].

Two years after Wegbreit’s article about the synthesis of loop predicates, Mannar
and Katz showed techniques for automatically deriving invariants and defined criteria
required to use those generated invariants to prove correctness, incorrectness and ter-
mination [16, p. 188]. They pointed out that the general problem of finding invariants
for any program is unsolvable and agree with Wegbreit on his suggestion that user
interaction might always play a key role in software verification [16, p. 204].

Patrick Cousot and Radhia Cousot proposed abstract interpretation as a simple means
to extract abstract information about the execution of a program without actually
executing the program code exactly. They proposed using the resulting correct but
inexact information to provide answers about partial correctness or similar questions,
where more exact data is not always required [17, p. 238]. They postulated that most
program analysis techniques may be seen as cases of abstract interpretation and point
out several examples, one of them being the discovery of inductive invariants [17, p.
250].

In 1978, Cousot and Halbwachs explored methods to extract linear restraints among
variables of programs[18]. They presented formal representations for their assertions
and mapped their linear restraint transformer to basic elements of the language [18,
p. 85].

Bryant suggested using binary decision diagrams with restrictions to variable ordering
to represent boolean functions in 1986, thus introducing the concept of ordered binary
decision diagrams (OBDDs). He presented algorithms for manipulating these decision
diagrams and demonstrated his ideas on examples from logic design verification [19, p.
1]. While showing the efficiency of ordered binary decision diagrams for many cases,
he also proved that there are functions that can never benefit from variable ordering
in binary decision diagrams [19, p. 21 ff.].

In 1990, Burch et al. devised a method to symbolically represent state spaces of finite
state systems by using the ordered binary decision diagrams described by Bryant and
applied it to a model checking algorithm [20, p. 428]. They were able to reduce
the ”complexity of various graph based verification algorithms” but point out that
even though ordered binary decision diagrams were beneficent to their work, it might
be desirable to adapt a representation structure not suffering from the drawbacks of
OBDDs already mentioned by Bryant [20, p. 438].

This desired alternative to ordered binary decision diagrams was presented by Biere
et al in 1999. They proposed bounded model checking, a technique were they re-
duced model checking to propositional satisfiability. They emphasized the benefits
of SAT-based procedures for symbolic model checking and saw opportunities to fur-
ther improve bounded model checking by combining it with other state-space reducing
methods[7].

4 1.2 Related Work

Hoare proposed a set of properties defining a grand programming challenge in 2003.
He used software verification in form of the verifying compiler as his prime example for
a grand programming challenge and elaborated on the various aspects of the problem
making it so important and challenging to computing research. He proclaimed Floyds
efforts in the late sixties and the seventies as failed due to insufficient availability of
required fundamental research but was convinced that scientific progress since then
might prove to enable more current efforts to succeed in this discipline[1].

Colón et al. in 2003 claimed to present ”the first sound and complete technique for
generating inductive invariants” being complete for inductive invariants[4]. They drew
the conclusion that their technique, while guaranteed to find all linear invariants of
a linear program provable by inductive linear assertions, was not fit to be applied to
larger systems due to the generation of non-linear constraints[4].

In early 2004, Sankaranarayanan et al. presented a method to generate non-linear
invariants of a program. They reduced invariant generation to a numerical constant
solving problem by applying the theory of ideals over polynomial rings. They men-
tioned that their approach of using constraint solving eliminates the impact of the
polynomial degree of the desired invariants and stated that their technique would
scale to larger applications. They did, however, admit that their method lacked com-
pleteness which might in some cases be undesirable[21].

Later that year, Rodŕıguez-Carbonell and Kapur showed a technique for generating
polynomial loop invariants for imperative program code similar to the approach pre-
sented by Sankaranarayanan et al. Contrary to Sankaranarayanan et al., Rodŕıguez-
Carbonell and Kapur provided an algorithm that is not only correct but also com-
plete for the class of loops considered, and do not require the extensive usage of
heuristics[22].

In 2006, Ernst et al. published their work about Daikon, a system they created
to dynamically detect likely invariants of a program. Their dynamic technique is a
machine learning approach to invariant detection. [23, p. 35] They emphasized that
their tool is scalable, robust and extensible [23, p. 44].

Beyer et al. explained in 2007 that while they noted a theoretical convergence of
program analysis and model checking, practical implementations had often remained
ununifiable. Their solution to this problem was an algorithm for configurable program
analysis, allowing both sides to co-operate. To prove their concept they implemented
it in the software model checking tool Blast. Their experiments suggested that this
approach also allowed customizations to software verification techniques leading ”to
dramatic improvements in the precision-efficiency spectrum” [24, p. 504].

In 2009, Wahl gave a concise explanation of k-induction as a generalization of the
standard induction which corresponds to 1-induction in the k-induction terminology.
He proved not only that it is a valid method for constructing proofs but also that
k-induction is superior to 1-induction[25].

5

Also in 2009, Clarke et al. composed a comprehensive scientific history of model
checking. They provided a definition for formal verification and explained the basic
idea of model checking, before discussing the state explosion problem and highlighting
the advantages of model checking in general as well as the different approaches to
model checking and their specific advantages and disadvantages[6].

In the same year, Gupta and Rybalchenko published their work about their software
InvGen, a tool used to automatically generate linear arithmetic invariants for im-
perative programs. The techniques they use to generate the invariants are abstract
interpretation and template generation[26].

In 2011, Beyer et al. presented their software verification tool CPAchecker based on
the algorithm for configurable program analysis (CPA) they suggested in 2007[9][24].
Their goal was to provide an extensible platform to accelerate the process of transform-
ing theoretical verification ideas into actual executable and testable software verfifica-
tion programs [9, p. 184]. Their results showed that the predicate analysis they imple-
mented in CPAchecker in most cases outperformed the model checking tool Blast.
They also implemented an explicit-value analysis and integrated the C bounded model
checker CBMC into CPAchecker, both producing experimental results they were
positively impressed with [9, p. 189].

In the same year, Donaldson et al. claimed to be the first to apply k-induction to
automatic loop verification [27, p. 1] using a technique they would later refer to as
split-case k-induction[8]. They pointed out that by automatic translation of multi-
loop programs into programs with only one single loop, they were able to cancel the
negative impact of their technqiue’s restriction to single-loop programs and demon-
strated functionality and effectiveness of their idea by implementing it in a verification
tool they named Scratch [27, p. 30].

Later that year, Donaldson et al. again employed k-induction to loop verification,
proposing a technique they called combined-case k-induction for software verification.
They now tried to handle multi-loop programs by cutting one loop at a time until the
resulting program is loop free, thus eliminating the need of automatically transform-
ing all program loops into a single one. Additionally they showed that for software
verification to succeed with combined-case k-induction, the invariants used may of-
ten be significantly weaker than when using standard inductive invariant or split-case
k-induction approaches[8].

To follow Donaldson et al.’s example, k-induction was recently integrated into the
bounded model checking implementation of the software verification tool CPAchecker
developed by Beyer et al. This thesis provides the invariant generation required to
provide the information necessary to successfully apply the k-induction to loop verifi-
cation in CPAchecker.

6 1.3 Terminology

1.3 Terminology

1.3.1 Programs and Control Flow Automata

As the invariant generation algorithm presented in this thesis is implemented in the
CPAchecker framework, which currently is used to analyze C code, the configurable
program analysis generating the invariants was also tested on C code. The example
programs shown in this thesis, however, are presented in the form of control flow
graphs and are synonymously referenced as programs and control flow automata. Also,
the control flow graphs shown will not include variable declarations; any previously
unassigned variables appearing in the graph are simple treated as having an unknown
value at that location. There are several reasons for this convention.

First and foremost, configurable program analyses like the implemented invariant gen-
eration algorithm operate on control flow automata in CPAchecker. The algorithm
is thus not limited to C code; in theory it can be applied to any control flow automa-
ton, although language specific code structures might introduce new kinds of edges
that could require extra handling.

Secondly, control flow graphs make the state transitions of the programs more obvious.
It is therefore easier for the reader to retrace which transitions are possible and which
ones are not.

Thirdly, it is often desirable to take a closer look at an excerpt of a program, where
not all information about the program is presented. This mirrors the frequent real
situations, where a part of a program is supposed to be verified, but some informa-
tion from external sources such as third-party libraries or user input is not known
to the analysis. In practice, this missing information is often simulated by replacing
occurrences with calls to functions returning random values. In this thesis, this would
unnecessarily bloat the examples. Showing only a control flow graph that lacks such
missing information is probably less confusing to a reader than them stumbling upon
distracting calls to randomizers or having to remember how a specific language treats
uninitialized variables.

1.3.2 Types

The implemented invariant generation algorithm considers exclusively integral values.
Furthermore, it is mostly ignored that the values are actually bit-vectors in reality, so
phenomena like integer overflow are not taken into account. If this is considered as a
problem for an application using the algorithm, the analyzed control flow graphs must
be modified before the analysis to include extra edges simulating these phenomena,
for example by using modular arithmetic expressions.

7

1.3.3 Pure Expressions

This thesis will refer to ”pure expressions” at some points. A pure expression is
considered to be an expression that does not change the program environment upon
evaluation. A pure expression will also always evaluate to the same value as long as
the program environment does not change.

1.3.4 SMT Solver

SMT is an acronym for satisfiability modulo theories. SMT is a decision problem over
logical formulas. An SMT solver can be used to solve these formulas. In software
verification, SMT solvers are often used to prove that a formula representing the
reachability of an error location is unsatisfiable.

2 Background

This chapter elaborates on the theoretical background this thesis is based on. The
first section describes the principles of k-induction, the second one shows the basics
for generating invariants, and the third section explains the concept of configurable
program analyses.

2.1 k-Induction

Mathematical induction is a well known method of proof usually used to prove asser-
tions over the set of natural numbers. When trying to prove an assertion P : N→ B
over all natural numbers, the idea of mathematical induction is to prove P (0) for the
minimal element 0 of the set of natural numbers in the base step and then finding a
proof that for every number n+1 following a number n for which P (n) holds, P (n+1)
holds as well in the inductive step or, in other words,

(P (0) ∧ ∀n (P (n) =⇒ P (n + 1))) =⇒ ∀nP (n)[25]. (2.1)

k-induction is a generalization of k-induction using not only one, but k base cases in
the base step and the assertion is required to hold for the k previous numbers in the
inductive step. More formally:

Ak :=
k−1∧
i=0

P (i) ∧ ∀n
((

k−1∧
i=0

P (n + i)
)

=⇒ P (n + k)
)

(2.2)

where Ak is the k-induction principle and A1 is the classic 1-induction explained
above[25].

An important aspect of k-induction is that for any k ∈ N, k ≥ 1, Ak =⇒ Ak+1[25].
This means that the higher the value of k, the weaker the assertion used for the
induction proof is, the reason being that in the step case there it considers not only the
assertion over one predecessor P (n) about the one number n before the next number

n + 1 but actually the assertion over k predecessors
(

k−1∧
i=0

P (n + i)
)

which includes

at least the assertion P (n + k − 1) but potentially more. This suggests that for k-
induction with higher values of k, proofs might succeed provided with less additional
information than for lower values of k.

10 2.2 Basics of Invariant Generation

The same induction principles can also be applied to the verification of program loops,
where the assertion is not proven over the natural numbers but over the set of loop body
executions, with the program state after the n-th loop body execution corresponding
to the number n of the natural numbers in the mathematical induction methods shown
above. For k-induction, the first k loop body executions can be unrolled. Proving an
assertion to be true before each of those unrolled loop body executions as well as
proving that for any k successive loop executions before each of which the assertion
holds, the assertion holds before the (k + 1)-st loop body execution, proves that the
assertion is true before every execution of the loop body. Trivially, iff the assertion
is true after any n-th loop body execution, it is true before the (n + 1)-st loop body
execution.

Consider a program containing a loop that supposedly is safe. When representing the
program with a control flow graph, to prove that the program is safe it is necessary to
show that no error location of the graph is reachable. Each path through the program
graph can be represented as a formula by using the edge information as predicates. If
all formulas of paths leading to error locations are unsatisfiable, the error locations are
unreachable and the program is safe. Of course it is infeasible to enumerate all paths
if a program contains a loop with a large or unknown number of iterations. Induction
can be used to circumvent this problem. For programs with loops, it is necessary
to prove the assertion that the formula of each path leaving the loop leading to an
error location is unsatisfiable, or in other words, that there is no iteration through the
loop so that a formula of a path exiting the loop in this iteration and leading to an
error location is satisfiable. This assertion can be used as a safety property that when
proven for each iteration of a loop, is sufficient to show that the loop is correct. When
using k-induction to produce this proof, the safety property must first be proven for
the first k iterations as the base case before proving that the safety property holds for
any iteration n if it holds for its k preceding iterations n− k to n− 1 as the step case.

2.2 Basics of Invariant Generation

Assertions over the variables of a program that remain true whenever a certain program
location is reached are called invariant assertions of a location[4]. The definition of
inductive assertions is very similar, but more specifically tailored to loops in that an
inductive assertion is an invariant assertion that holds the first time a location is
reached, as well as every time the program loops back to the same location[4]. An
assertion can be proven to be invariant by proving that a stronger inductive assertion
can be found that implies the assertion to be proven [28, p. 91].

Invariant assertions for a loop thus provide information about the loop that can be
helpful in proving other assertions, like showing that an error condition is never reached
in any execution of the loop body, and may be used to support inductive proofs of
loop correctness, such as strategies using k-induction.

11

N0

N1

N2 N3

N4 N5

N6

assign(x := 1)

assume(y = 0) assume(y 6= 0)

assign(z := 0) assign(z := 1)

Figure 2.1: The control flow graph of a very simple program

Consider the control flow graph shown in figure 2.1.

It is easy to see that x = 1 at every node from N1 through N6. It is also obvious
that y = 0 at N2 and N4 and that y 6= 0 at N3 and N5 as well as that z = 0 at N4
and z = 1 at N5. Each of these assertions is invariant at the respective mentioned
locations.

If we add an assertion to the graph that leads to an error state if x 6= 1 in N6 as
shown in 2.2, the invariant assertion x = 1 at N6 mentioned above trivially proves
that the error state is unreachable.

Leaving it at that would mean that for N6 we only know that x = 1, which is a severe
disadvantage when changing the error assertion of 2.2 to the more complex version in
2.3, because knowing that x = 1 at N6 does not suffice to prove that the error location
is unreachable anymore. Looking a bit closer, we could, however, see that z ∈ {0, 1}
is also an invariant assertion at N6, because one of the two paths to N6 ensures z = 0
while the other path ensures z = 1, so depending on how N6 is reached, z must be
either 0 or 1, and it is for example impossible for z to be 2 at N6. This information
is sufficient to prove that the error location is unreachable in 2.3.

When modifying the error assertion again to be more complex as shown in 2.4, even the
invariant assertions x = 1 and z ∈ {0, 1} are insufficient to prove the error location to
be unreachable. To disprove its reachability, we are required to retain the information
that z = 0 iff y = 0 and z = 1 iff y 6= 0 as representable by an invariant assertion

12 2.2 Basics of Invariant Generation

N0

N1

N2 N3

N4 N5

N6

N7 ERROR

assign(x := 1)

assume(y = 0) assume(y 6= 0)

assign(z := 0) assign(z := 1)

assume(x = 1) assume(x 6= 1)

Figure 2.2: The control flow graph of a very simple program with an error assertion

13

N0

N1

N2 N3

N4 N5

N6

N7 ERROR

assign(x := 1)

assume(y = 0) assume(y 6= 0)

assign(z := 0) assign(z := 1)

assume(z 6= 2) assume(z = 2)

Figure 2.3: Another control flow graph of a very simple program with an error assertion

14 2.2 Basics of Invariant Generation

N0

N1

N2 N3

N4 N5

N6

N7 ERROR

assign(x := 1)

assume(y = 0) assume(y 6= 0)

assign(z := 0) assign(z := 1)

assume(!((z = 1) ∧ (y = 0))) assume((z = 1) ∧ (y = 0))

Figure 2.4: Another control flow graph of a very simple program with an error assertion

15

((y = 0)∧ (z = 0))∨ ((y 6= 0)∧ (z = 1)) at N6. This information now covers the proof
for the error location in 2.4 to be unreachable.

Such precision comes at a price, however. While it might be easy to collect this detailed
information for small programs such as the one shown with various modifications in
2.1, 2.2, 2.3 and 2.4, it is infeasible for larger programs: n seemingly independent but
consecutive if-then-else-decisions would already lead to 2n different paths and as
soon as a loop is contained the number of paths might even be infinite. This problem is,
of course, a general one and in no way specific to generating invariants for k-induction,
where k-induction in itself is an attempt to improve proofs over possibly infinite loops.
Nevertheless it is a problem that must be dealt with, because while k-induction sup-
posedly succeeds with weaker invariants than standard induction, proving non-trivial
programs with k-induction mostly still requires non-trivial invariant assertions.

In fact, the question whether to trade performance for precision arises perpetually over
the different aspects considered in order to create the invariant generation program
implemented for this thesis. A wrong decision about any one aspect’s performance
could easily lead to infeasibility while reducing the precision too much might impede
the ability to prove a correct loop. This section explains the decisions that coined the
implementation presented in 4.

2.2.1 Information Extraction

There are basically two important types of control flow edges for information extrac-
tion: Assumption edges and assignment edges.

When a path through a control flow graph branches, the edges representing the differ-
ent branches contain condition expressions that decide which way the actual execution
of the program will chose. These edges are called assumption edges or assume edges.
A pure assumption expression does not change the program environment, so after the
transition over the edge, all program variables have the same value they had before
the transition. The information that can be gained from an assume edge lies within
the condition: Because the execution takes an assume edge if and only if its condition
is met, we know that the condition holds at the successor of the assume edge.

An assignment edge represents the assignment of a value to a variable, where the
value may be computed from an arbitrarily complex expression. Assuming that the
expression itself is pure and ignoring language specific features like multiple aliases to
the same memory location, the only variable that changes via an assignment edge is
the assigned variable itself. The information that can be gained from an assignment
edge is that the variable that was assigned to has the value of the assignment at the
successor of the edge.

Just like multiple edges leaving one location splits one path into multiple paths, mul-
tiple edges leading to the same node occur. It is up to the analysis to decide whether

16 2.2 Basics of Invariant Generation

to keep the different paths apart, thus preserving the differences in information as
described in the last part of the introduction to this section, or treating the differ-
ent paths as one single path from that point onward, thus losing the differences in
information but potentially massively reducing the workload.

The raw extracted information also has the form of expressions, although they can
often be simplified by combining them with each other. A formalized discussion of
these methods of discovering and combining information about linear restraints among
the variables of a program is given by Cousot and Halbwachs in their joint paper in
1978[18].

2.2.2 Information Representation

Over the course of analyzing a control flow graph to collect and refine invariants over
the locations, sometimes information is added and sometimes information must be
removed. Consider a control flow path where in the begin an assign edge x := 1
clarifies the variable x to have the value 1. If, later on the path, another assignment
edge x := y is encountered, any information we previously had about x is invalid and
must be dropped, even the x = 1 collected earlier - unless, of course, y is known to be
1 as well.

It is often useful to be able to combine pieces of information collected from different
locations, join information from different paths, extract the collected invariants to be
used by a solver, or in some cases even determine a location to be unreachable without
using an external solver. An important aspect for the efficiency of these operations is
an efficient representation of the collected information. Sometimes efficiency may be
bought at the cost of precision. In such cases the benefits and drawbacks of a solution
must be discussed carefully, as each loss of precision might cause the verification to
fail.

2.2.3 Abstract Interpretation

All of the previously shown example control flow graphs are free of loops. Given
sufficient but finite time, it is possible for these programs to completely extract all
information about all values of variables at all locations that is conveyed by the graphs
and to represent this information in a finite amount of space, assuming that the chosen
data structures are chosen wisely with respect to the aspects discussed in 2.2.2.

In contrast, consider the control flow graph shown in 2.5. As soon as a program con-
tains loops, it generally becomes impossible to convert the graph into a representation
like the one mentioned above without losing information. Not only might the number
of iterations required to completely unroll a loop be extremely large, it might even
be unknown, which leaves no other option but to consider it as potentially infinite if

17

N0

N1

N2

N3N4

N5

N6

N7

N8 N9N10

N11ERROR

assign(x1 := 0)

assign(x2 := 0)

assign(i := 1)
assume(i 6= 1)

assume(i = 1)

assume(i 6= 2)

assume(i = 2)

assign(x1 := x1 + 1)
assign(x2 := x2 + 1)

assign(i := i + 1)
assume(i 6= 3)assume(i = 3)

assign(i := 1) assume(x1 = x2)

assume(x1 6= x2)

Figure 2.5: A control flow graph of a program containing a loop

18 2.2 Basics of Invariant Generation

no other information about the loop boundaries is known. Likewise, any attempt of
completely unrolling such loops is futile.

Fortunately, the very idea of using k-induction is targeted at reducing the amount
of information required for proofs, so, once again, we are able to reduce precision in
favor of efficiency and termination. If the possible values of variables within a loop
and the information about variable interrelations is approximated roughly enough,
the analysis of the loop terminates, because after a finite amount of iterations through
the loop, no new information is gained. The goal, of course, should be to keep said
finite amount of iterations through the loops as small as possible while retaining as
much information as possible. So instead of exactly interpreting the program code,
we perform only an abstract interpretation.

Abstract interpretation, as presented by Cousot and Cousot in 1977[17], ”is a general
theory for approximating the semantics of discrete dynamic systems, for example,
computations of programs” [29, p. 324].

In their initial example in their 1977 paper, Cousot and Cousot reduce variable val-
ues to their signs, leaving three possible states for a variable: Positive, negative, or
unknown, denoted as {+,−,±} [17, p. 238]. As this, of course, is just an example for
the general idea of using abstract representations covering large parts of state spaces,
using an unmodified version of this strategy might cause issues. For example, it raises
the question how to deal with the value 0. It could be included in + or − or simply be
treated as ±. While it is certainly possible to use an abstract interpretation treating
0 as either of these values by taking this special case into account, it seems not only
confusing to represent a value that is neither negative nor positive by +, −, or ±.
Supposing that 0 is a significant value in many programs, as might be suggested by
programming languages like C treating it as the boolean false as well as 0 being the
size of any kind of empty collection, it might even be disastrous to the precision of an
analysis if the value 0 is indistinguishable from all positive or all negative values or is
even automatically treated as an unknown value. Thus, it might be desirable for an
analysis to handle 0 values in an extra case.

But even that might often still not be enough precision. Fortunately, a more precise
version of abstract representation will be discussed in 3.2.1.1: Intervals or lists of
intervals. They do allow for representing signs by intervals from negative infinity to
−1 or 1 to positive infinity, the unbounded interval covers the unknown case and even
0 is easily represented by a singleton interval from 0 to 0. Moreover, intervals may be
used to cover a lot more cases if required for precision.

Representation, however, is only one aspect of abstract interpretation. When ana-
lyzing an expression over concrete or abstract values, an abstract result needs to be
found. The easiest but least precise way to compute the result of an expression would
be to define the value of every expression as unknown. While this approach is of course
useless for an analysis in general, it can be used as a fallback option in cases where
the computation of a more precise result is too complicated. It is important to keep

19

in mind that the very reason why abstract interpretation is used is to avoid too high
precision. Thus, it must be carefully decided exactly how precise the evaluation of an
expression should be at any point during the analysis.
There is, on the one hand, no harm in exactly evaluating expressions that are not part
of any loop. Diverging paths can be merged back together when they reconnect or
treated separately as already discussed in 2.2.1. Expressions that are part of a loop,
on the other hand, require more sophistication. Ideally, the abstraction would cover
no more than the variable values actually possible within the loop, but since often not
even the number of iterations through a loop is known and the chosen representation
only allows for a finite amount of gaps between value ranges, it is in general futile to
pursue this goal.

2.3 Configurable Program Analysis

Configurable software verification is a concept researched by Beyer et al. Specifically,
Beyer et al. designed a strategy called configurable program analysis or CPA[24].
One of the goals of this strategy is to facilitate the combination, configuration and
comparison of different program analyses. Another benefit of their software verification
framework CPAchecker built around this strategy is that new analyses can be
implemented more quickly and in a standardized way[9], as many tasks often required
for program analysis, like SMT solvers or parsing code and transforming it into control
flow automata, are already available within the framework.
The following paragraphs paraphrase the definition of a configurable program analysis
given by Beyer et al. in their 2007 paper about configurable software verification[24].
A configurable program analysis D = (D, , merge, stop) is defined by an abstract
domain D, a transfer relation , a merge operator merge, and a termination check
stop [24, p. 506].
It is possible to further break down the definition of the abstract domain into D =
(C, E , J·K), where C is the set of concrete states the abstract domain consists of, E is a
semi-lattice and J·K is a concretization function. The semi-lattice E = (E,>,⊥,v,t)
consists of the set E of abstract elements, elements for top > and bottom ⊥, where
> ∈ E and ⊥ ∈ E as well as a preorder v ⊆ E×E and a join operator t : E×E → E
which is a total function. J·K : E → 2C is the concretization function assigning a
meaning to an abstract state by expressing which concrete states it covers [24, p.
506].
The transfer relation ⊆ E×G×E is used to assign abstract successors e′ to a state
e. g denotes the control flow edge corresponding to the transfer [24, p. 506 f.].
The merge operator merge : E × E → E is used to combine information of abstract
states. Because both functions have the same input and output sets, the merge oper-
ator seems similar to the join operator t defined for the semi-lattice of the abstract

20 2.3 Configurable Program Analysis

domain. However, the two operators are applied to achieve different goals. The merge
operator may be based on the join operator, but not necessarily is. For soundness
of the analysis, it is required that the result of the merge operator is at least as as
abstract as its second parameter [24, p. 507].

Lastly, the termination check stop : E× 2E → B is an operator used to check whether
or not the set of abstract states given as the second parameter covers the abstract state
given as the first parameter. Just the way the merge operator seems similar to the
join operator, the termination check seems similar to the preorder v of the lattice and
again, the similarity is misleading, as termination check and preorder differ in the way
they are used. Nevertheless, the termination check can be based on the preorder [24,
p. 507].

The actual configurable program analysis algorithm is given in pseudocode by Beyer
et al. [24, p. 508]:

Input: a configurable program analysis D = (D, , merge, stop), an initial
abstract state e0 ∈ E where E denotes the set of elements of the
semi-lattice

Output: a set of reachable abstract states
Variables: a set reached of elements of E, a set waitlist of elements of E
waitlist := {e0}
reached := {e0}
while waitlist 6= ∅ do

pop e from waitlist
for each e′ with e e′ do do

for each e′′ ∈ reached do do
// Combine with existing abstract state
enew := merge(e′, e′′)
if enew 6= e′′ then

waitlist := (waitlist ∪ {enew})\{e′′}
reached := (reached ∪ {enew})\{e′′}

end
end
if ¬stop(e′, reached) then

waitlist := waitlist ∪ {e′}
reached := reached ∪ {e′}

end
end

end
return reached

Algorithm 1: The CPA algorithm taken from Beyer at al. [24, p. 508]

The algorithm takes a configurable program analysis as defined above and an initial
abstract state e0 ∈ E of the semi-lattice D as its input. During the algorithm, two sets
containing abstract elements are used, one of them representing states that have been

21

reached by the analysis Er and another set that represents the states waiting to be
processed Ew. Initially, the initial state is added to the set of waiting states. In every
iteration of the outer loop, one state e is taken from the set of waiting states and is
processed. This processing involves using the transfer relation to obtain the abstract
successors of e. Each of those abstract successors e′ is then merged with each state
e′′ ∈ Er of the set of reached states to obtain the merged state enew = merge(e′, e′′). If
enew = e′′, the merge result did not result in an abstraction, as the second parameter
is the least abstract state the merge operator is allowed to produce. If enew 6= e′′,
the new state enew is added to both the set of reached states Er and the set of states
waiting to be processed Ew. Independently of the result of the merge operation, the
stop operator is invoked on the abstract successor e′′ and the set Er of reached states.
If it the result of the stop operation is negative, e′′ is added to Er and Ew. In any case,
the next iteration of the outer loop of the algorithm then begins, supposing Ew 6= ∅.
Otherwise, the algorithm terminates and gives Er as its output [24, p. 508].

3 Theory

In this chapter, the theory this thesis is based on is explained. The first section
explains how the generated invariants are combined with k-induction. The second
section focuses on the techniques used to accomplish the task of generating invariants
chosen for this thesis. The third section shows how these techniques are used to define
a configurable program analysis for generating invariants.

3.1 Providing k-Induction with Invariants

2.1 explained the properties and benefits of k-induction, but also stated that for in-
duction proofs to succeed, information about the analyzed programs is required. The
control flow automaton shown in figure 2.5 represents an actual code example tested
with the implemented algorithm. If the bounded model checking algorithm imple-
mented in CPAchecker applies its induction proof to this example, it fails even for
k = 100. Provided with the invariant (i = 1 ∧ x1 = 0 ∧ x2 = 0) ∨ ((i ∈ {1, 2} ∨ i ≥
4) ∧ x1 ≥ 1 ∧ x2 ≥ 1) by the implemented invariant generation algorithm, however,
the verification succeeds for k = 2. To understand how information is supplied to the
induction, knowledge about the how the induction proof is constructed is required.

As the base case of the induction can easily be handled by enumerating the contained
iterations and checking the paths leaving the loop in these iterations is usually feasible,
the base case is trivial. When using bounded model checking with a bound k, the task
of proving the base case is already covered. The step case is more complicated. It can
be formulated as consisting of three parts A, B and C when written as (A∧B) =⇒ C,
where C is the assertion that the safety property holds for any iteration n, B is the
condition stating that the safety property holds for the k predecessors, and A is an
additional condition provided by invariant assertions. Thus, if (A ∧ B) =⇒ C is a
tautology, the program is safe. This can easily be checked by using an SMT solver to
prove that ¬((A ∧ B) =⇒ C) is unsatisfiable. The invariant generation algorithm
implemented for this thesis is responsible for providing part A of this formula.

But while experiments show that k-induction works well for some programs, other
examples benefit less from the technique [8, p. 367]. To the knowledge of the au-
thor, as yet, no clear characterization of the classes of programs that benefit most
from k-induction has been determined. The fact that k-induction is superior to classic

24 3.2 Invariant Generation

induction by considering - and thus differentiating between - different base cases, how-
ever, suggests that k-induction might be most useful for verifying programs containing
loops with multiple loop body cases.

3.2 Invariant Generation

2.2 explained the theoretical background of invariant generation used for this thesis.
This section shows the approaches selected for the implementation.

3.2.1 Efficient Representation

2.2.2 discussed the requirements on information representation and addresses that
sacrificing precision to gain verification speed is sometimes beneficial, but has the
drawback of jeopardizing the verification success.

3.2.1.1 Sets of Integer Values

As shown in 2.2, there are cases like the one presented in figure 2.3 where it is sufficient
to narrow down the possible values for a specific variable. It is thus desirable to
be able to represent the possible values of a variable as a set. When dealing with
large or possibly infinite amounts of elements, however, one has to consider that set
implementations which use explicit representations of every element contained are not
applicable.

A simple way of representing large or even infinite sets of integers in a constant amount
of space is the interval, the drawback being that they cannot contain gaps. An interval
i consists of a lower bound lb and an upper bound ub, where lb ≤ ub. The bound-
aries of the interval lb and ub are considered to be included in the interval, unless
they are infinite. Inclusive bounds are denoted with brackets, exclusive bounds with
parentheses, so the interval from zero to positive infinity becomes [0, Inf). For ease
of notation, in cases where the value of a bound is not specified in this thesis, it is
denoted as if it were known to be inclusive, unless the difference is significant to the
topic.

It is possible to represent the range of values from −224 to 224 by just stating those
two bounds in an interval i := [−224, 224], but due to the inability of intervals of
representing gaps in the set it is impossible to represent said range without the value
0 with just one interval. Another problem that might arise with intervals is when
trying to represent an empty set. This second issue, of course, might be easily fixed
with a special convention or an additional flag without impairing the general idea of
using intervals.

25

Another method to represent sets of integers is using lists of intervals. Such lists of
intervals now allow for gaps in the sets and with the empty list provide an easy way to
represent the empty set. Lists of intervals, however, again suffer the initial problem of
possibly growing linearly in size with the amount of values represented, for example
when considering the infinite set of even numbers. Nevertheless, they still allow for
representing all sets representable by a single interval in a constant amount of space
while at the same time enabling the representation of more complex sets. It is then
up to the application employing this set representation to use it in a responsible way.

Considering operations on the sets, there are differences between single intervals and
lists of intervals as well. Checking whether or not a value is contained is a constant
operation for single intervals, but logarithmic in the amount of intervals in a sorted
list of non-overlapping and non-touching intervals. Two intervals i1 := [lb1, ub1], i2 :=
[lb2, ub2] do not overlap if lb1 > ub2∨ub1 < lb2, or in other words, if the intersection of
the sets represented by the two intervals is the empty set. Two intervals i1 := [lb1, ub1],
i2 := [lb2, ub2] are considered as non-touching if the intervals do not overlap and
min(|lb2 − ub1|, |lb1 − ub2|) > 1, or in other words, if there is at least one value
between the intervals that is included in neither of them. Ensuring that intervals
to not overlap or touch in turn complicates the union of sets, which is linear in the
combined amount of intervals of both sets, but is constant if using only single interval
sets at the cost of a loss of precision when spanning from the lowest lower bound to
the highest upper bound of the sets being united.

So while contrary to using lists of intervals, using single intervals to represent the sets
of values is simpler, more time efficient and more space efficient, the list of invervals
provides a much wider range of possibilities and thus, higher precision. But not only
do lists of intervals allow for a higher precision, if desired they can be used just like
the single intervals by using lists with just one element each. For the implementation
of the invariant generation algorithm, the choice therefore fell on representing the sets
with lists of intervals.

These lists of intervals and their potential for representing large sets can be visualized
with some simple figures. Figure 3.1 shows a list of intervals with one element repre-
senting all integer values. Figure 3.2 presents an empty list of intervals representing
the empty set of integers. Figure 3.3 is a visualization of the solution to the problem
of not being able to represent gaps in sets with single intervals, such as representing
all integer values without the value 0. Figure 3.4 shows a list of intervals with two
finite elements, thus representing a finite set of integer values with a gap between the
intervals. Lastly, figure 3.5 shows another list of intervals containing three elements,
but while two of the elements are finite, the third one is infinite. Note that some of
the intervals are already visualized with a lattice in mind: While the lists of intervals
themselves are simply sets of integer values, they are used to describe the possible
values of expressions or variables. So of course figure 3.5 shows a set containing the
values −10, −9, −8, 0, 10, and every value greater than 10, but when used as the
representation of possible values of a variable, there is only one actual integer value

26 3.2 Invariant Generation

All integer values, may be used to represent > in a lattice

(-Inf, Inf)

Figure 3.1: A list of intervals representing >

∅, may be used to represent ⊥ in a lattice

Figure 3.2: An empty list of intervals representing ⊥

of the variable that is not known exactly but might be either −10, −9, −8, 0, 10, or
any value greater than 10.

3.2.1.2 Variable Environment

When analyzing a program, there is usually more than one variable and not only the
specific values a variable might be of interest but also any relations between different
variables. Sometimes for example two variables might be known to be equal even
though there is no information about their actual value. It is therefore not always suf-
ficient to keep a mapping between variables and their corresponding sets of possible
values. Unless the specific value of two equal variables is known, much more informa-
tion would be preserved if for example instead of storing a set of possible values for
both variables, the set is stored for only one of the two variables while the second one
links to the first one.

This idea, however, does not take inequalities into account. Two variables might be
known not to be equal, one might be known to be larger than the other one, possibly
even by a known value. The logical consequence would be not to map sets of possible
values to variables, but rather formulas that might contain such sets but might also
represent complex relationships between variables.

Anything but 0

(-Inf, -1] [1, Inf)

Figure 3.3: A list of intervals representing all integer numbers but zero

27

2 to 4, 8 to 10

[2, 4] [8, 10]

Figure 3.4: A list of intervals with two finite intervals

The values -10, -9, -8, 0, 10, any value greater than 10

[-10, -8] [0,0] [10, Inf)

Figure 3.5: A complex list of intervals

But switching the way of representing information about a variable from sets of possi-
ble values to complex formulas again rises the questions discussed in the introduction
to this subsection. The more complex such a formula becomes, the more complex
it becomes to modify the information about the variable, because the whole formula
must be analyzed and changed accordingly. The invariant generation algorithm using
such a mapping of variable names to expressions is therefore required to control the
complexity of the expressions so as not to risk negative impacts on performance.

The mapping makes it easy to quickly access an expression associated with a variable
and can thus be used to evaluate a variable by repeatedly replacing other variables
contained in its expression with their respective expressions until no variables remain.
This, however, is only possible if the mapping does not contain loops. This might seem
trivial at first, but sometimes it is difficult to decide to what variable an expression
that could as well be resolved to a different variable is supposed to be stored. To
avoid loops in the mapping, such expressions must sometimes be simplified, and this
simplification can potentially reduce the precision.

To mitigate this problem, the environment is accompanied by a very simple set if
variable interrelations. These interrelations are binary relations over variables using
the operators of the set O of operators where O = {=, 6=, <,≤, >,≥} so that for each
set S of these sets, S ⊆ V ×O × V , where V is the set of variables.

3.2.1.3 Path Distinction

The control flow graph in figure 2.4 shows an example for a program where simply
knowing the possible values of a program variable is not sufficient to prove the program
correct. Rather, it is sometimes necessary to know under what conditions which values
are possible. A mapping from variable to value or expression as suggested in 3.2.1.2
is not the proper data structure for such information.

28 3.2 Invariant Generation

In the previously mentioned example, the solution shown was to keep the paths apart,
but the description also explained the general infeasibility of that approach. It is thus
not sensible to try to analyze every program path separately, while on the other hand
the distinction of at least partial paths is required for some proofs.

Using a configurable program analysis for the invariant generation algorithm allows for
generating multiple states for the same program location, which can be used to sepa-
rate paths by generating different invariant assertions for different paths and treating
those states as a disjunction of the paths. There is, however, also the option of merg-
ing states by using the merge operator defined in 2.3, so that the information of the
merged states can be combined [24, p. 505]. In the case of the invariant generation
algorithm, this means dropping the distinction between the merged paths.

This leads to the problem of deciding when to merge states and when to keep them
apart, or in other words the definition of the join operator, supposing the merge
operator mergejoin is used. Merging too often results in a loss of too much information
to prove correctness, while merging too few states leads to an explosion of states as
described by Clarke et al. [6, p. 79]. Ideally, the algorithm should always merge
two states if dropping the distinguishing information is irrelevant to the success of
verification and never merge them otherwise. Unfortunately, there is no reasonable
way of deciding in advance exactly which information is really required.

Some information, of course, may be eliminated as irrelevant immediately, for example
any variables that do not appear in any assume edges of paths leading to the error
location. Conversely, variables that do appear on such assume edges might be consid-
ered as relevant, but not necessarily are: consider the example shown in 2.3, where
the value of y is in no way relevant for the proof, while in 2.4 it certainly is. Multiple
strategies for deciding when to merge and when not to are conceivable.

One idea is to analyze which variables appear more often in assume edges leading to
an error location and which variables appear less, prioritizing information retention for
the more frequent variables and merging states when the dropped information affects
mostly less frequent variables.

Another option is ranking the variables appearing in assume edges by their proximity
to the error location instead of by their frequency. This strategy is specifically useful
in cases where the assume edges around the error location are designed to specify the
actual error condition represented by the error location.

Of course, many more different strategies are conceivable. It has to be evaluated over
extensive benchmarks which strategy provides the best results in practice. Figure 3.6
shows an example program where both of the strategies mentioned previously produce
a sub-optimal relevance ranking for the variables: Both strategies would rank x most
important, because it appears on the most assume edges leading to the error location
as well as on the assume edge closest to the error location. x, however, is 1 on every
path leading to the error location anyway. It would be more beneficial to closely

29

analyze the variables y and z, as their possible different constellations are relevant for
the proof.

The option chosen for this thesis is the second of the strategies described above:
Ranking the variables appearing in assume edges leading to the error location by their
proximity to the error location and prioritizing information about the closer variables
as opposed to information about variables farther away.

3.2.2 Expression Evaluation and Abstraction

At many points during the analysis, it is required to evaluate collected formulas to
an over-approximation of the values covered by formula: Formulas can be partially
simplified by evaluating constant parts or even completely replaced by the over-
approximation to increase the amount of represented state space by decreasing the
precision, and a formula that evaluates to an empty set of values is unsatisfiable,
which allows for some optimizations. While it might therefore initially seem desirable
to always evaluate expressions as exact as possible, 2.2.3 discussed the necessity of
abstract interpretation and an approach to its implementation.

The option chosen for this thesis is evaluating expressions in loops as exactly as pos-
sible, but storing the information in a way similar to the example strategy of Cousot
and Cousot, focusing on signs, with slight modifications for some special values. Thus,
the information gain from expressions in loops is rather imprecise, but as has been
elaborated in 2.2, this lack of precision is necessary to ensure not only efficiency but
even termination of the analysis.

It has already been discussed in 2.2.3, that while a high precision is desirable for
the quality of the results of the analysis, lower precision is sometimes required to
guarantee the termination of the algorithm. Therefore two strategies for evaluation
formulas are implemented: One strategy tries to achieve a high precision by evaluating
expressions as exact as possible, while the other strategy deliberately generates much
less precise results. For example, the first strategy would evaluate x = 1 + 1 to x = 2,
while the second strategy might produce x > 1. For the aforementioned reasons, it
is vitally important to the algorithm that this abstract evaluation strategy produces
such imprecise results. The abstract evaluation strategy first evaluates each expression
like the exact evaluation strategy, but then abstracts the result r to the abstract result
ra := ⋃{p|p ∈ {{(−Inf,−1]}, {[0, 0]}, {[1, Inf)}}∧p∩r 6= ∅}. This way, the value 0 as
well as the set excluding it, {(-Inf,-1], [1, Inf)}, can still be represented exactly, while
at the same time allowing sign based abstraction as discussed in 2.2.3 with only the
exception of the value 0. The set of exceptions, namely {0}, could easily be extended
to further increase precision; such an extension however would once again lead to a
lowered performance as more different abstractions are possible.

This concept of abstraction with exceptions for set representations is very similar to the
concept used to over-approximate states on merging based on potentially interesting

30 3.2 Invariant Generation

N0

N1

N2 N3

N4 N5

N6

N7

N8 ERROR

assume(x 6= 1)

assume(x = 1)

assume(y = 0) assume(y 6= 0)

assign(z := 0) assign(z := 1)

assume((x = 1) ∨
(z = 1) ∨ (y = 0))

assume((x = 1) ∧ (z = 1) ∧ (y = 0))

assume(x 6= 1)

assume(x = 1)

Figure 3.6: An example control flow graph of a program where variable ranking might
be sub-optimal

31

variables as in the heuristic described in 3.2.1.3. A possible extension to this strategy
for over-approximating the sets could be made by extending the set of exceptions to
the abstraction by guessing which constants might be interesting to the analysis, for
example by performing a pre-analysis to determine constants on assume edges close to
the error locations. This idea, however, has not yet been implemented and therefore
no evaluation results can be presented for it.

3.3 A Configurable Program Analysis for Generating
Invariants

As the generated invariants will be used by the bounded model checking algorithm
implemented in CPAchecker, the probably most straight-forward approach to in-
tegrate invariant generation is to define it as a configurable program analysis or CPA.
The properties of a CPA were defined in 2.3.

The invariant generation CPA is hereby defined as I = (Di, i, mergei, stopsep where
mergei ∈ {mergejoin, mergesep}.

These merge operators mergejoin and mergesep as well as the stop operator stopsep are
taken from Beyer et al. and can be found in their 2007 paper on configurable software
verification[24].

mergejoin is a merge operator based on the join operator, so that mergejoin(e, e′) =
ete′ and mergesep is a merge operator that always returns the second parameter so that
mergesep(e, e′) = e′, thus no merged states are ever used by the configurable program
analysis algorithm [24, p. 507]. While mergesep preserves the most information as no
precision is lost by merging different states, it also cannot benefit from the advantages
of merging states in time and memory consumption described in 3.2.1.3. The solutions
presented there only apply when mergejoin is used, which therefore is the default option
as will become apparent in table 4.1.

stopsep is a stop operator based on the preorder of the semi-lattice, so that stopsep(e, Er) =
(∃e′ ∈ Er : e v e′) [24, p. 507].

The abstract domain Di = (C, Ei, J·Ki) consists of the set C of concrete states, the set
Ei of abstract states and the concretization function J·Ki where Ei = (Ei,>,⊥,vi,ti)
is a lattice based on states where every abstract element or state e ∈ Ei represents the
collected information about invariants. This information is represented as a mapping
of expressions and an accompanying set of relations between variables as described
in 3.2.1.2. These expressions may consist of other expressions, variables or constants.
As the actual values of the constants are not always known, they are modelled by
the sets described in 3.2.1.1, where a set represents the information that the modelled
constant is a value contained in the set. An abstract element with no information is the
state> , an abstract element containing a contradiction in the represented information

32 3.3 A Configurable Program Analysis for Generating Invariants

represents the state ⊥, for example if any expression mapped to a variable evaluates
to an empty set of possible values.

Ei ⊆ M × R where M is the mapping of expressions to variables and R is the set of
binary variable interrelations. The mapping M of expressions to variable is defined as
M : V → Expr, where Expr is the set of expressions and V is the set of variables.
The set Expr of expressions is defined recursively as Expr ⊆ ((Expr × B × Expr) ∪
(U ×Expr)∪V ∪ 2Z). In this definition, V is again the set of variables, Z is the set of
integer values, so that a constant can be modelled by a set of integer values, U is the
set of supported unary operators U = {¬,∼,−} and B is the set of supported binary
operators B = {+, ∗, /, %, =, <,ˆ, |,∨, &,∧, >>, <<,∪}. As described in 3.2.1.2, given
the set O of comparison operators where O = {=, 6=, <,≤, >,≥} and the set V of
variables, the binary variable interrelation set is defined as R ⊆ V ×O × V .

Subsequently, the preorder function vi ⊆ Ei×Ei is defined so that vi (e, e′) evaluates
to true iff the information represented by the abstract element e implies the informa-
tion represented by the abstract element e′ and there is no difference in information
regarded as especially interesting according to 3.2.1.3.

The join operator ti : Ei×Ei is defined so that ti(e, e′) produces an abstract element
e′′ representing an over-approximation of the disjunction of the information of abstract
element e and abstract element e′, but only if the abstract elements are not considered
to be incompatible for merging by differences in information regarded as especially
interesting according to 3.2.1.3. In the latter case, e′ is returned and the abstract
elements are not joined. As mentioned above, this only affects the behavior of the
configurable program analysis algorithm if mergejoin is used.

The definition of the transfer relation i ⊆ Ei×G×Ei is that for a predecessor e ∈ Ei

a control flow edge g ∈ G leaving e, the successor is e if the edge g does resemble
neither an assignment nor an assumption edge. Otherwise, the information of the
successor state e′ is a modification of the predecessor state e where the information is
changed according to the assumption or assignment made on the edge g as described
in 2.2.1 by using the techniques described in 3.2. So ∀g ∈ G : (∃e, e′ ∈ Ei ∧ g 6∈
(Gassume ∪Gassign) =⇒ e = e′, where Gassign ⊆ G is the set of assignment edges and
Gassume ⊆ G is the set of assume edges.

4 Implementation

The invariant generation is implemented as a configurable program analysis within the
software verification framework CPAchecker [9] and is used by the bounded model
checking implementation of CPAchecker.

Like every configurable program analysis in CPAchecker, the InvariantsCPA con-
sists of abstract elements, an abstract domain and a transfer relation. It uses the
stopsep operator and by default also the mergejoin operator, as described in 3.3.

As stated in 1.3.2, the presented algorithm is limited to integral values, not floating
point values and also not bit-vectors. It has also already been explained that there-
fore phenomena like integer overflow are not handled by the analysis. Although the
present implementation encapsulates the affected value representations in a way that
is designed to make them exchangeable in case of future improvements, it is currently
limited by this restriction.

4.1 Overview

It has already been mentioned above that the invariant generation algorithm is im-
plemented as a configurable program analysis within CPAchecker. 3.3 explains the
properties of the components required in order to use a CPA to implement the invariant
generation algorithm. The main class implementing the definition of the CPA is the
class InvariantsCPA described in 4.2.

One important component required for the definition of the CPA is the definition of
the abstract elements described in 3.3. The abstract elements are implemented in the
InvariantsState class described in 4.7. The environment mapping and the accompa-
nying set of additional variable interrelations storing the information represented by
the InvariantsStates consist of expressions which in turn are implemented by the In-
variantsFormula class described in 4.6. An InvariantsFormula can be any type of the
implemented unary or binary operations over other InvariantsFormulas or a variable
or a constant. It has already been explained that the actual values of the constants
are not always known, and that they therefore are modelled by the sets described in
3.2.1.1, where a set represents the information that the modelled constant is a value
contained in the set. These sets are implemented by the class CompoundState de-
picted in 4.5. As explained in 3.2.1.1, the set representation chosen for this thesis uses

34 4.2 InvariantsCPA

sorted lists of intervals. These intervals are implemented by the class SimpleInterval
presented in 4.4.

Another important component is the transfer relation implemented in the Invari-
antsTransfer relation described in 4.8. The transfer relation is responsible for com-
puting the abstract successors corresponding to a control flow edge leaving a state
represented by an abstract element. As mentioned above, these abstract elements are
represented by instances of the class InvariantsState.

A further component required for the definition of the CPA is the abstract domain im-
plemented by the class InvariantsDomain depicted in 4.3. It contains the join operator
and the preorder.

4.2 InvariantsCPA

The class InvariantsCPA defines the configurable program analysis used to implement
the invariant generation algorithm. It manages the merge and stop operators, the
abstract domain InvariantsDomain, the configuration and the initialization.

4.2.1 Initialization

To start the configurable program analysis, an initial state is required. The function
for computing this initial state is part of the InvariantsCPA class. The following
initialization procedures aggregate data used to construct the initial state and are
implemented in this function.

Before the actual algorithm runs, it is automatically initialized with some data affect-
ing the analysis. First, all edges on paths leading to an error location are collected.
All other edges are irrelevant for proving an error location to be unreachable. This
is an optimization that could also be implemented by removing all irrelevant paths
from the control flow graph prior to the analysis, so this strategy might be removed in
the future to provide a cleaner, more generic algorithm. Until then, the optimization
can be switched off via a configuration flag, but defaults to being turned on. If the
optimization is turned off, all edges are considered to be relevant.

The optimization can be improved even further by analyzing what variables appear
on the relevant assume edges and what other variables they are influenced by. As only
those variables are relevant for proving the unreachability of an error location, others
need not be analyzed. Again, this optimization could be replaced by stripping appear-
ances of irrelevant variables from the control flow graph before starting the invariant
generation algorithm. For the time being, this improved optimization if performed by
default, but may be switched off via a configuration flag. If the optimization is turned
off, all variables are considered to be relevant.

35

Another element of the initialization process is the guessing of interesting information
to be used for deciding about the merging of states as described in 3.2.1.3 and 4.7.3.
The guessing may include variables, and it may include generic predicates, depending
on the configuration. By default, the guessing of variables is enabled, while the guess-
ing of generic predicates is disabled. To guess what information might be interesting,
the algorithm starts a backwards breadth first search through the control flow graph
starting from the target locations. When an assume edge is found, its expression is a
candidate to be interesting information. Based on the configuration, it might be used
as a generic interesting predicate, its variables might be used as interesting variables,
or it could be ignored if the limits of interesting predicates and variables are already
reached. Predicates that are detected as already covered by the guessed variables are
ignored and do not count toward the limit.

Variables considered to be interesting are a subset of the set of variables that are
considered to be relevant that was described above. These sets should not be confused
with each other.

4.2.2 Configuration

The algorithm can be configured via the configuration options shown in table 4.1.
As there are default values for all options, none of them has to be set explicitly.
There are further important configuration options that do not directly affect the im-
plemented algorithm, but are used to enable its usage in other analyses or make the
algorithm more useful for the analyses using it. These parameters are listed in ta-
ble 4.2. All the default values shown are default on an application wide basis for
CPAchecker; naturally these default values are sometimes overridden by standard
configurations of certain strategies. A notable example for this is the standard config-
uration for bounded model checking with induction, where bmc.induction is set to
true, bmc.useInvariantsForInduction is set to true, cpa.predicate.solver.useIntegers
is set to true and cpa.loopstack.maxLoopIterations is set to 1. cpa.loopstack.maxLoopIterations
of course must always be overridden with the desired value of k for k-induction.

4.3 InvariantsDomain

The InvariantsDomain class maps to the abstract domain described in 3.3. It im-
plements the join operator and the preorder of the lattice. As both aspects require
intricate knowledge of the InvariantsState class that is designed to be encapsulated,
the actual implementation of these aspects is delegated to the InvariantsState class.

36 4.3 InvariantsDomain

Name Description Default
cpa.invariants
.analyzeTargetPathsOnly

Determine target locations in advance
and analyze paths to the target loca-
tions only. See 4.2.1.

true

cpa.invariants
.analyzeRelevantVariablesOnly

Determine variables relevant to the de-
cision whether or not a target path as-
sume edge is taken and limit the anal-
ysis to those variables. See 4.2.1.

true

cpa.invariants
.interestingPredicatesLimit

The maximum number of predicates to
consider as interesting. -1 one disables
the limit, meaning that all predicates
are considered to be interesting, but
this is not recommended. 0 means that
guessing interesting predicates is dis-
abled. See 4.2.1.

0

cpa.invariants
.interestingVariableLimit

The maximum number of variables to
consider as interesting. -1 one dis-
ables the limit, meaning that all vari-
ables are considered to be interesting,
but this is not recommended. 0 means
that guessing interesting variables is
disabled. See 4.2.1.

2

cpa.invariants.merge Which merge operator to use for
InvariantCPA. Allowed values are
JOIN and SEP. Using the option SEP
turns off merging of states completely,
rendering the options cpa.invariants
.interestingPredicatesLimit
and cpa.invariants
.interestingVariableLimit ir-
relevant. Using the option SEP is not
recommended.

JOIN

cpa.invariants.useBitvectors Whether or not to use a bit-vector for-
mula manager when extracting invari-
ant approximations from states.

false

Table 4.1: Configuration options

37

Name Description Default
cpa.loopstack.maxLoopIterations Threshold for unrolling program loops,

which essentially maps to the k in k-
induction as explained in 2.1. 0 means
that loops are unrolled completely.

0

cpa.predicate.solver
.useIntegers

Forces the satisfiability solver to use in-
teger variables instead of floating point
variables. Without this option, induc-
tion is often too imprecise to perform a
successful proof.

false

bmc.induction Use induction in the bounded model
checking algorithm. Without using in-
duction, bounded model checking does
not apply the algorithm implemented
in this thesis.

false

bmc.useInvariantsForInduction Use invariants for the induction in
the bounded model checking algorithm.
Without this option, bounded model
checking does not apply the algorithm
implemented in this thesis for generat-
ing invariants to support the induction
proof.

false

Table 4.2: Important external configuration options

38 4.5 CompoundState

4.4 SimpleInterval

SimpleIntervals are the basic building blocks for representing states in the Invari-
antsCPA. Their structure corresponds to the description of intervals given in 3.2.1.1.
A SimpleInterval represents a contiguous range of values over Z.

Such an interval may have a finite lower and a finite upper bound or be infinite in one
or both directions. Single finite values are represented as an interval with two equal
finite bounds.

An interval is never empty, i.e. it always contains at least one value, which is rele-
vant when using intervals to represent knowledge about the state of a program value.
SimpleIntervals are not suited to represent the state ⊥ for a value. The unbounded
interval, however, can be used to represent >.

SimpleIntervals are immutable objects. All operations that return a modified version
of the object they are invoked on either create new instances or reuse appropriate
instances created earlier, but never modify the object itself. There are operations for
intersecting, spanning over, negating or extending intervals as well as operations for
checking whether or not a value is contained in an interval, two intervals touch or two
intervals intersect each other. More complex operations, for example most arithmetic
operations, are not provided by this class.

4.5 CompoundState

A CompoundState is a set of intervals that do not touch or intersect each other. Com-
poundStates are the preferred method of representing constant values in the Invari-
antsCPA. Like SimpleIntervals, CompountStates are immutable objects that cannot
be changed over the public interface. Unlike SimpleIntervals, it is possible to repre-
sent non-consecutive values with CompoundStates or to use a CompoundState with
an empty set of intervals to represent the state ⊥. A CompoundState can also be seen
as a compact approach to represent a possibly infinite set of integer values, so the set
of CompoundStates C can be defined as C := P (Z) and for every CompoundState
c ∈ C, c ⊆ Z is true. To represent their relation to SimpleIntervals, to shorten the
notation of large states and to be able to express infinite sets of integer numbers, the
notation used for CompoundStates in this thesis will be sets of intervals instead of
sets of integer numbers unless a set of integer numbers is required for an explanation.
CompoundStates match the description of lists of intervals in 3.2.1.1 and the example
figures given in 3.1, 3.2, 3.3, 3.4 and 3.5;

CompoundStates provide all basic binary arithmetic and bit-wise operations used in
the C programming language as well as the additive inverse and the binary negation
over compound states. Some of those operations, like for example the additive inverse,
are exact, while others, like for example the arithmetic multiplication, are less exact

39

but still guarantee to produce states that are - not necessarily proper - supersets of
the actual exact operation results. More formally, for two CompoundStates c1, c2 ∈ C
and a binary operator oc : C × C → C corresponding to a binary operator oi :
Z×Z→ Z, {oi(ic1 , ic2)|ic1 ∈ c1, ic2 ∈ c2} ⊆ oc(c1, c2). The same principle applies to the
implemented unary operations: For a CompoundState c ∈ C and an unary operator
oc : C → C corresponding to an unary operator oi : Z→ Z, {oi(ic)|ic ∈ c} ⊆ oc(c).

Allowing for inaccuracies within these bounds is valid, because the goal of the In-
variantsCPA is not a C interpreter but to produce invariants within the context of
program analysis. While higher precision leads to more useful invariants, striving for
precision is only reasonable as long as it is feasible, and, as explained in 1.1, checking
all possible concrete states of a program is generally considered to be infeasible even
for finite state spaces.

To understand that the superset constraint defined above for the operations over
CompoundStates ensures that while precision might decrease, correctness is preserved,
consider the following example:

Let the CompoundState sv := {2, 3, 4, 8, 9, 10} = {[2, 4], [8, 10]} as shown in figure 3.4
be the model of a program value v and the CompoundState sc := {2} = {[2, 2]} be the
model of a program value c. When modelling the result r of the multiplication c ∗ v,
without any further information the most exact model possible for r would be the set
{4, 6, 8, 16, 18, 20} or in CompoundState notation {[4, 4], [6, 6], [8, 8], [16, 16], [18, 18], [20, 20]}.
It is obvious that multiplication with a constant factor would produce an interval with
a single integer number for each integer number contained in the other operand. With
the present implementation of CompoundStates, such exact models cannot efficiently
be represented and are even impossible to represent when considering an operand
modelling an infinite set of integer numbers. While technically the CompoundState
implementation is able to represent sets containing many intervals, the number of in-
tervals - not necessarily the number of values represented - is for reasons of efficiency
kept small in practice. Therefore the actual multiplication operation for sv ∗ sc would
yield a CompoundState sr := {[4, 8], [16, 20]}. While numbers like 3, 7 or 19 are
contained in this set but not in the exact result shown above, all correct values are
contained as well. Therefore the model, which is meant to express that the actual
program value at the program state represented by model is a value contained in the
set, is still correct. Of course, special cases exist where an improved precision may be
achieved for such operations with minimal loss of efficiency, but as they are subject to
change regarding future tests and evaluations, those optimizations are not explicitly
listed in this thesis.

4.6 InvariantsFormula

InvariantsFormulas represent the expressions handled by the InvariantsCPA. Their
structure is very similar to the structure of the CExpression tree structure used by

40 4.7 InvariantsState

CPAchecker, however, the latter is meant specifically to represent C expressions and
thus does not allow other types of constants but CLiteralExpressions.

The generic implementation of the InvariantsFormula tree provides the InvariantsCPA
with a type safe means to use expressions with different constant types, for example
CompoundStates.

The visitor pattern has been implemented around InvariantsFormulas, which are the
nodes accepting the visitors in terms of the pattern[30]. They are thus traversable by
visitors. There is a classic implementation of the accept methods with just the visitors,
as well as an extension with a generic parameter so that parameterized algorithms do
not require the parameter to be bound to a visitor instance.

4.7 InvariantsState

Instances of the InvariantsState class are the abstract elements of the InvariantsCPA.
They represent abstract program states determined during the analysis and are im-
mutable objects.

Two data structures are used to represent the state information: A mapping of ex-
pressions to variable names as the environment and a set of assumptions about binary
interrelations between variables. All expressions used in InvariantsStates are Invari-
antsFormulas with CompundState constants.

The mapping is required to be able to quickly resolve variables contained in expres-
sions. Resolving a variable in an expression means replacing the variable in the expres-
sion with the expression mapped to the variable. All variables that are not explicitly
mapped to an expression are implicitly considered to be mapped to >. Expressions
mapped to variables may contain other variables. It is often desirable to apply variable
resolution to an expression until no variables remain. This is only possible if there
are no cyclic mappings. Therefore mappings like {x → x} or {x → y, y → x} are
forbidden. An example mapping and its representation as a directed acyclic graph are
shown in figure 4.1;

The set of binary interrelations between variables provides the ability to represent
some information that is simple yet not adequate for the mapping.

During the analysis, new information is gained and old information is invalidated.
Changes in information happen by transitioning from one state over an edge to an-
other one and by joining states from different paths. While the theoretical principles
behind information extraction, information representation, and the joining of paths,
are discussed in 2.2.1, 3.2.1 and 3.2.1.3, the following subsections 4.7.1, 4.7.2 and 4.7.3
explain the details of the implementation of these principles.

41

t u + w

u v + w

v x

w y

x z

y >

z >

t

u

v

w

x

y

z

Figure 4.1: A mapping of variables to expressions, representing knowledge about an
environment

4.7.1 Assignment Transitions

The environment information is collected when the configurable program analysis hits
an assignment edge in the control flow automaton. The InvariantsTransferRelation
then calls the assignment function on the current state. This function does not change
the immutable InvariantsState but rather returns a different instance reflecting the
changed state.

When an array slot is assigned, sometimes special handling is required. If array
subscripts were always constant, no special treatment would be required. However,
array subscripts may contain references to other variables with possibly unknown
values. If an array slot is assigned where the exact value of the subscript expression
is unknown, all previously known information about any slots of the array that might
be affected becomes invalid, and the assignment expression must not be stored as
information about any specific slot of the array, but can only be stored in combination
with the subscript. Conversely, if an array slot is assigned where the exact value of the
subscript expression is known, all information stored about the array in combination
with unknown subscript values becomes invalid and has to be removed. When the
array itself is reassigned, this information must be removed, and when it is copied to
another array variable, this information can be copied as well.

The more common uses of pointers can be dealt with easily. The handling of arrays
has just been discussed already. Another common use of pointers often arises when
objects or structs are used and their members are accessed via references. Assignments
to those members can be stored just like assignments to other variables by simply using
the complete dereferencing expression. The same can be done if there is no pointer

42 4.7 InvariantsState

involved and members are accessed directly by storing the information in combination
with the access expression. When the object or struct is copied to another variable,
this information must be copied accordingly, and when the object or struct itself is
reassigned, the old information about its members must be dropped, similar to the
way arrays are handled.

Pointers in general, however, pose a serious problem to the analysis, because they
can be used in more complex ways than the previously described ones. Sometimes
it is not known where a pointer points to. If such a pointer is assigned to, any
previous information becomes invalid, because anything could have changed. Even if
an absolute value of a pointer is known, there is usually no or not enough information
about the memory layout of the program, so that it becomes impossible to determine
the affected variables.

A similar problem arises from aliases. If a variable is assigned to that is an alias to a
variable, the other variables is assigned to as well. If it is not known if the assigned
variable is an alias to another variable, all information about variables that could be
aliased by the assigned variable should be deleted. This is not yet implemented into
the analysis, so there may be incorrect results for such cases. There is, however, an
alias analysis implemented within CPAchecker that might be used in the future to
resolve this issue.

The assignment function is not limited to modifying the environment. A reassignment
of a variable might require the removal of assumptions from the set of assumptions
described in 4.7.2 that are no longer valid.

Also, the assignment function may return the same state instance they were invoked
on, provided that it is able to detect that the respective assignment transition does not
change any information. It is also possible for the function to return null, if it detects
that the resulting state model would otherwise represent ⊥, for example when the
assignment triggers a simplification of the environment that reveals a contradiction.

4.7.2 Assume Transitions

Whenever an expression is found at an assume edge, the information represented by
the edge is combined with the previously known information to check whether any
simple information about binary relations between variables, such as equalities or
inequalities, can be gained. Any such relation found is stored in a set of assumptions
separate from the environment.

Just like the assignment function is not limited to touching the environment, the
assume function is not limited to modifying the assumption set. Environment infor-
mation can be refined by combining it with information obtained from assume edges,
but this refinement is only performed within bounds that do not violate the abstract
interpretation strategy explained in 2.2.3: Only the first time the edge appears in the

43

analyzed path or if the assumption expression contains no more than one variable,
because this means that the contained variable is compared to a constant and will not
produce different information the next time the edge is visited during the analysis of
the path. This, of course, does not guarantee that non-null results of these functions
represent reachable states, otherwise the analysis alone would be sufficient to prove a
program correct, which is obviously the responsibility of the induction algorithm using
the analysis, not the analysis itself.
Another likeness to the assignment function is that the assume function, too, may
return the same state if the transition does not change any information or null, if
it detects that the resulting state model would otherwise represent ⊥, for example
when assumptions in the assumption set contradict each other. Again, this does not
guarantee that non-null results of these functions represent reachable states.

4.7.3 Joining States

As explained in 3.2.1.3, joining paths is required to ensure the convergence of the
analysis, because while extracting information about a program in general seems like
an easy task, the actual difficulty lies in deciding what information do drop and what
information to retain over the course of the analysis so as not to explore a poten-
tially infinite but certainly often large state space: Keeping every piece of information
that might be required to prove correctness is generally considered as infeasible even
for finite state spaces [5, p. 1]. When defining a configurable program analysis for
CPAchecker, it is possible to specify the behavior of joining states. The contract of
joining two states is to produce a state covering both input states by either precisely
representing their united information or over-approximating it. As it is this over-
approximation which actually causes the previously mentioned loss of information, it
is in some cases desirable not to join states. Therefore it is also possible to refuse
joining two states on a per case basis.
While the decision whether to join two states or not does not directly affect the cor-
rectness of the algorithm, it does affect the two opposing properties of precision and
runtime. Joining two states might cause a loss of important information, while not
joining enough states might cause the algorithm to take too much time. The decision
is further complicated by not knowing in advance what information is important and
not knowing in advance how much the runtime increases by not merging two specific
state. To tackle at least one of those problems, 3.2.1.3 addresses strategies for guessing
which variables might be important to the analysis. Whenever CPAchecker sug-
gests merging two states to the analysis, it is checked if the states differ in important
information. If they do, the states are not merged, otherwise they are. This way,
information considered to be important is preserved, while information considered to
be less important is over-approximated.
Consider for example the states S1 := {y = {[0, 0]}, z = {[0, 0]}} and S1 := {y =
{(−Inf,−1], [1, Inf)}, z = {[1, 1]}}. Merging the states would produce the state

44 4.8 InvariantsTransferRelation

S1,2 := {z = {[0, 1]}}, because (y = 0) ∨ (y 6= 0) means that there is no information
about y anymore. This example is actually the same as in figure 2.4 in the introduction
to the theory of the invariant generation algorithm implemented in this thesis. The
solution for this example was to keep the information apart by storing not the union
of variables but rather the union of states. This means we would have to represent the
information ((y = 0)∧ (z = 0))∨ ((y 6= 0)∧ (z = 1)). While this cannot be represented
by a single InvariantsState, this is exactly the information represented by not merging
the two states. At the same time, the example shows why merging states in general
is desirable: Not merging two states obviously has about at least twice the memory
footprint as merging them, and as the analysis has to take transitions from all states
into account, every time two states are merged, one state less must be analyzed.
In the same way that environment information can be used for discrimination between
pairs of states that should be merged and pairs of states that should not be merged,
the discrimination can also be based on generic predicates. This feature, however, is
turned off by default.

4.7.4 Invariant Extraction

The most important operation provided by InvariantsStates is the extraction of in-
variants in a format recognized by applications using the algorithm. This operation
is implemented as a function that creates an SMT formula combining all assumptions
extractable from the state it is invoked on, including all environment information,
with conjunctions. This boolean formula is not an InvariantsFormula, but a formula
created by a formula manager provided by the caller. A disjunction of the boolean
formulas extracted from all states of a certain location produces an invariant for that
location.

4.8 InvariantsTransferRelation

The InvariantsTransferRelation class defines the transfer relation of the implemented
configurable program analysis using the singleton pattern[30]. The single instance
of this class is thus responsible for computing the successors reachable from a given
InvariantsState over a given control flow edge.
The InvariantsTransferRelation will produce either no successor or one successor for
any given edge or predecessor, but never more than one. Edges representing assump-
tions will generally add information, edges representing assignments might also remove
information. The successive InvariantsState represents the information of the prede-
cessor modified to reflect the change in information represented by the transition over
the edge. The successor may be equal to the predecessor if the same information is
represented before and after the transition. If the new information reveals an obvious
contradiction, no successor is produced.

45

The actual implementation of the creation of successors is part of the InvariantsState
class described in 4.7, respectively its functions for computing the successor of a state
over an assignment edge or over an assume edge.

4.9 Evaluation of Formulas

As explained in 3.2.2, this thesis uses two different strategies for expression evaluation.
One of the strategies is used to evaluate any given expression as exact as possible.
This strategy is implemented by a formula visitor. The other strategy is used to first
evaluate any given expression as exact as possible, like the first strategy, but then
abstract it in the way described in 3.2.2. This strategy is implemented by a formula
visitor as well.

5 Experimental Results

This chapter will show the experimental results of this thesis. The experiments made
were very extensive, resulting in a large amount of data. To improve readability, only
excerpts are shown in this part of the document, while the complete data can be found
on the CD accompanying this thesis.

5.1 Selected Benchmarks

To be able to properly evaluate the implemented algorithm, all of the programs used
for the benchmarks were chosen from the set of benchmarks that was also used for the
second International Competition on Software Verification of 20131. The complete set
of benchmarks used for the experiments conducted for thesis therefore contains more
than two thousand different programs.

A small subset of this set was selected for more specific experiments. This selection
consists of a large part of the simplified and the normal ssh programs from the compe-
tition benchmark set, because while reasonably complex, these programs also clearly
expose the property of containing a loop where the body is split in different cases, that
was described as a potential indicator for programs that benefit from k-induction in
3.1. Moreover, each of the programs contains only one single loop, which is a require-
ment for the k-induction strategy implemented in CPAchecker’s bounded model
checking algorithm.

5.2 Analyses

5.2.1 Bounded Model Checking

The primary motivation for the implementation of this light-weight approach to invari-
ant generation is the k-induction strategy implemented in CPAchecker’s bounded
model checking algorithm. Therefore the only reasonable way of determining the via-
bility of the approach for the purpose it was designed for is by applying the bounded
model checking analysis to adequate programs.

1http://sv-comp.sosy-lab.org/2013/– last check: October 10, 2013

http://sv-comp.sosy-lab.org/2013/

48 5.3 Measured Properties

5.2.2 Predicate Analysis

The k-induction strategy implemented for bounded model checking within CPAchecker
is only applicable to programs with just one single loop and is only used for programs
where no error is found for unrolling k iterations of the loop, so the invariant gen-
eration algorithm is usually not applied for unsafe programs. Using bounded model
checking is therefore not the adequate option for benchmarking the invariant genera-
tion algorithm in general over the whole set of benchmarks described in 5.1, because
many of the contained programs contain multiple loops or are unsafe. Fortunately,
CPAchecker’s predicate analysis is also able to use the algorithm to extract invari-
ants for the analyzed programs, so this analysis was used to conduct experiments over
the large set of benchmarks.

5.3 Measured Properties

Alongside the conducted experiments, several properties were measured.

5.3.1 Safety

For all of the programs used for the experiments, it is known in advance whether
the program is safe or unsafe. As a result can be either SAFE, UNSAFE or UNKNOWN,
each experiment might therefore either determine safety or unsafety correctly, result
in a false positive or false negative, or make no conclusive statement about the safety
of the program. To be able to save space to present comparisons between different
configurations without the reader having to jump between pages, SAFE, UNSAFE or
UNKNOWN will be shortened to S, U and ? within the tables.

It is also possible for an experiment to be terminated prematurely if too much time
or memory is consumed, or an exception might occur during the execution. While
these cases basically count as UNKNOWN results as well, they are obviously much less
desirable than the algorithm coming to the conclusion that it is unable to determine
the analyzed program’s safety on its own accord.

It should be noted that for the bounded model checking algorithm to determine the
unsafety of a program, the invariant generation algorithm implemented in this thesis
is not applied. Correct results for programs known to be unsafe are thus much less
relevant for the evaluation of the presented algorithm than the results of programs
known to be safe, as k-induction is applied to prove safety. An experiment were a
program containing a loop is correctly verified as SAFE by bounded model checking
shows that the generated invariants were sufficient for the k-induction proof to succeed
with the given value of k, while an UNKNOWN result means that either the precision of
the generated invariants or the value of k used were too low.

49

5.3.2 Time and Space

The execution time and the amount of memory required to run an experiment are
important properties: Not only do they represent limited resources that are used to
cancel experiments that use excessive amounts of them. There is also the conflict
between time and space efficiency on the one hand and precision on the other hand,
that continually emerged during the discussion of various aspects of this thesis in the
previous chapters. Measured time values are given in seconds and displayed rounded
to the next decade.

It is expected that higher memory consumption roughly correlates with higher CPU
time and in contrast, that lower memory consumption correlates with a lower CPU
time, because both properties are influenced by the common factor of the amount
of states used by the invariant generation analysis. More states obviously lead to a
higher memory consumption, but also require more processing capacities. Memory
values are given in MB and rounded to the next hundred’s place.

5.4 Benchmark Environment

The measurements were run on Intel Core i7-2600K machines with eight cores and
16 to 32 gigabytes of memory each. Each measurement was limited to a runtime of
15 minutes, a memory consumption of 15000 megabytes, a heap size limit of 13000
megabytes and 4 CPU cores. The CPAchecker version used was 1.2, revision 8828.

5.5 Experiments

The following subsections describe the conducted experiments in detail.

5.5.1 Proof of Concept

It has already been explained that the main motivation for this thesis is the application
of k-induction. Table 5.2 shows the application of bounded model checking with k-
induction to the ssh program selection described in 5.1. The configuration options
used are shown in table 5.1.

As the generated invariants are used to prove loop safety in bounded model checking
with induction, it is expected that the invariant generation has no impact on proving
programs to be unsafe. Furthermore, it is expected that higher values of k allow
for proving more programs to be safe by k-induction or unsafe by finding a counter
example within k loop iterations, than with lower values of k. Because of the properties
of k-induction discussed in 2.1, it should never happen that program safety is unknown

50 5.5 Experiments

for a certain value of k, when it was proven to be safe or unsafe with a lower value of
k.

To be able to show the differences in the ability to verify the programs depending on
the value of k, only the verification results are shown. With only one exception, all
safe programs are verified for k ≥ 4, while lower values of k are insufficient for the
verification of some programs. The table also shows that any program verified for
a certain value v for k is also verified for every k > v, as is expected and required
because of the properties of k-induction described in 2.1. This set of experiments can
thus be seen as a kind of proof of concept for k-induction in combination with the
generated invariants.

Looking at figure 5.2, the consumed total CPU time for each value of k seems to be
inversely proportional to the value of k. This can be explained by the fact that the
bounded model checking algorithm first checks for an error path of length k and only
invokes invariant generation to attempt an induction proof for safety if no such path
is found. Therefore, the more unsafe programs are correctly found to be unsafe by
the algorithm, the fewer invocations of invariant generations occur, thus decreasing
the overall time consumption. As soon as increasing k does not reveal any further
error paths, no more time can be saved via this phenomenon, and time consumption
is actually expected to rise due to the cost of unrolling the loop iterations. Indeed,
the total consumed CPU time for k = 3 is higher in the displayed experiments than
for k = 2, while for both values of k, the programs that are proven to be unsafe by the
analysis are the same. In contrast, when increasing k from k = 5 where 11 programs
are known to be unsafe to k = 6, where 19 programs are known to be unsafe, total
CPU time required to process all files is about cut in half. As expected, apart from
some minor fluctuations, memory consumption is high when CPU times are high and
low, when CPU times are low. The memory chart is shown in figure 5.3.

The programs where safety is still UNKNOWN for k = 4 are, with only one exception,
actually unsafe as is shown by continuing to increase k until k = 10. The verification
result chart is shown in figure 5.1.

To determine the actual benefit of the invariant generation algorithm, these results
have to be compared with another run of the experiments where the usage of the
invariants is turned off, so they were repeated with the configuration options shown in
table 5.1, with the difference of bmc.useInvariantsForInduction being set to false.
It is expected that the total CPU time consumed is lower than when using invariant
generation, and that it increases proportionally with k because of the cost of unrolling
the loop iterations.

Table 5.3 shows that without invariant generation, far less programs can be proven to
be safe, and those that can be proven mostly require a higher value of k. The unsafety
of programs, on the other hand, is proven for the same values of k as in the earlier set of
experiments shown in table 5.2. So while k-induction obviously still is able to improve
the results for higher values of k, for example by proving ssh-simplified/s3 srvr 1a safe

51

Name Value
cpa.invariants.analyzeTargetPathsOnly true
cpa.invariants.analyzeRelevantVariablesOnly true
cpa.invariants.interestingPredicatesLimit 0
cpa.invariants.interestingVariableLimit 2
cpa.invariants.merge JOIN
cpa.invariants.useBitvectors false
cpa.loopstack.maxLoopIterations 1-10
cpa.predicate.solver.useIntegers true
bmc.induction true
bmc.useInvariantsForInduction true

Table 5.1: Configuration options used for the bounded model checking experiments on
the ssh program selection

 0

 5

 10

 15

 20

 25

1 2 3 4 5 6 7 8 9 10 50 100

N
u
m

b
e
r

o
f
fi
le

s
p
ro

v
e
n
 S

A
FE

 /
 U

N
S

A
FE

k

SAFE: UNSAFE:

Figure 5.1: The verification result chart for bounded model checking with k-induction
using invariant generation applied on the ssh benchmark set. In total
there are 22 safe and 23 unsafe programs in the set.

52 5.5 Experiments

File k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10
s3 srvr 10 unsafe U U U U U U U U U U
s3 srvr 11 unsafe ? ? ? ? ? ? U U U U
s3 srvr 12 unsafe ? ? ? ? ? U U U U U
s3 srvr 13 unsafe ? ? ? U U U U U U U
s3 srvr 14 unsafe ? U U U U U U U U U
s3 srvr 1 safe S S S S S S S S S S
s3 srvr 1 unsafe ? ? ? U U U U U U U
s3 srvr 1a safe S S S S S S S S S S
s3 srvr 1b safe S S S S S S S S S S
s3 srvr 2 safe S S S S S S S S S S
s3 srvr 2 unsafe ? ? ? U U U U U U U
s3 srvr 3 safe ? ? ? S S S S S S S
s3 srvr 4 safe ? ? ? S S S S S S S
s3 srvr 6 safe S S S S S S S S S S
s3 srvr 6 unsafe U U U U U U U U U U
s3 srvr 7 safe ? ? ? S S S S S S S
s3 srvr 8 safe ? ? ? S S S S S S S
s3 srvr.blast.01 safe ? ? ? S S S S S S S
s3 srvr.blast.01 unsafe ? ? ? U U U U U U U
s3 srvr.blast.02 safe S S S S S S S S S S
s3 srvr.blast.02 unsafe ? ? ? U U U U U U U
s3 srvr.blast.03 unsafe ? ? ? U U U U U U U
s3 srvr.blast.04 unsafe ? ? ? U U U U U U U
s3 srvr.blast.06 safe S S S S S S S S S S
s3 srvr.blast.06 unsafe ? ? ? ? ? U U U U U
s3 srvr.blast.07 safe ? ? ? S S S S S S S
s3 srvr.blast.07 unsafe ? ? ? ? ? U U U U U
s3 srvr.blast.08 safe ? ? ? S S S S S S S
s3 srvr.blast.08 unsafe ? ? ? ? ? ? ? ? ? U
s3 srvr.blast.09 safe ? ? ? S S S S S S S
s3 srvr.blast.09 unsafe ? ? ? ? ? U U U U U
s3 srvr.blast.10 safe ? ? ? S S S S S S S
s3 srvr.blast.10 unsafe ? ? ? ? ? ? ? ? ? U
s3 srvr.blast.11 safe ? ? ? ? ? ? ? ? S S
s3 srvr.blast.11 unsafe ? ? ? ? U U U U U U
s3 srvr.blast.12 safe S S S S S S S S S S
s3 srvr.blast.12 unsafe ? ? ? ? ? U U U U U
s3 srvr.blast.13 safe S S S S S S S S S S
s3 srvr.blast.13 unsafe ? ? ? ? ? U U U U U
s3 srvr.blast.14 safe S S S S S S S S S S
s3 srvr.blast.14 unsafe ? ? ? ? ? U U U U U
s3 srvr.blast.15 safe ? ? ? S S S S S S S
s3 srvr.blast.15 unsafe ? ? ? ? ? ? ? ? ? U
s3 srvr.blast.16 safe S S S S S S S S S S
s3 srvr.blast.16 unsafe ? ? ? ? ? U U U U U
CPU time in s 2620 2300 2340 2260 2240 1000 1000 1020 1040 1020
Total memory in MB 72000 67000 65300 61700 58800 43500 44400 45000 42600 41700
Safe results 11 11 11 21 21 21 21 21 22 22
Unsafe results 2 3 3 10 11 19 20 20 20 23

Table 5.2: Bounded model checking with k-induction using invariant generation applied on the
ssh benchmark set

53

 0

 1000

 2000

 3000

 4000

 5000

1 2 3 4 5 6 7 8 9 10 50 100

C
P
U

 t
im

e
 i
n
 s

e
co

n
d

s

k

Total CPU time for SAFE
Total CPU time for UNSAFE

Total CPU time for UNKNOWN

Figure 5.2: The consumed CPU time graph for bounded model checking with k-
induction using invariant generation applied on the ssh benchmark set

 0

 10000

 20000

 30000

 40000

 50000

 60000

1 2 3 4 5 6 7 8 9 10 50 100

M
e
m

o
ry

 c
o
n
su

m
p
ti

o
n
 i
n
 M

B

k

Total memory for SAFE
Total memory for UNSAFE

Total memory for UNKNOWN

Figure 5.3: The consumed memory graph for bounded model checking with k-
induction using invariant generation applied on the ssh benchmark set

54 5.5 Experiments

 0

 5

 10

 15

 20

 25

1 2 3 4 5 6 7 8 9 10 50 100

N
u
m

b
e
r

o
f
fi
le

s
p
ro

v
e
n
 S

A
FE

 /
 U

N
S

A
FE

k

SAFE: UNSAFE:

Figure 5.4: The verification result chart for bounded model checking with k-induction
applied on the ssh benchmark set, not using invariant generation. In total
the set contains 22 safe and 23 unsafe programs.

to be safe for k = 9 when its safety is still unknown for k = 8. The verification result
chart is displayed in figure 5.4.

Memory consumption, as shown in figure 5.6, seems to relate to CPU time consumption
even more strongly than with invariant generation. Looking at the CPU time chart in
figure 5.5, the total consumed CPU time is a lot lower than when invariant generation
is enabled and, as expected, the more loop iterations are unrolled, the higher the
consumed CPU time. Seeing the unsatisfying overall results, however, shows how
important the generated invariants are for the induction proofs. While not shown in
the table, even using k = 100 does not improve the results of the experiments any
further.

5.5.2 Guessing of Potentially Interesting Variables

As discussed in 3.2.1.3 and 4.2.1, a strategy for selecting certain variables as more
interesting to the analysis than others is employed to decide when to merge states
and when not to. Because the usage of this strategy is optional, it is easy to test how
it affects the outcome of the verification by repeating the experiments of 5.5.1 with
the configuration options shown in table 5.1 with the change that cpa.invariants
.interestingVariableLimit is set to 0 or to 1.

As it turns out, not using any selection of variables to prevent merging of states, thus
merging always, is no better than not using the invariant generation algorithm at all.

55

File k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10
s3 srvr 10 unsafe U U U U U U U U U U
s3 srvr 11 unsafe ? ? ? ? ? ? U U U U
s3 srvr 12 unsafe ? ? ? ? ? U U U U U
s3 srvr 13 unsafe ? ? ? U U U U U U U
s3 srvr 14 unsafe ? U U U U U U U U U
s3 srvr 1 safe S S S S S S S S S S
s3 srvr 1 unsafe ? ? ? U U U U U U U
s3 srvr 1a safe ? ? ? ? ? ? ? ? S S
s3 srvr 1b safe ? S S S S S S S S S
s3 srvr 2 safe ? ? ? ? ? ? ? ? ? ?
s3 srvr 2 unsafe ? ? ? U U U U U U U
s3 srvr 3 safe ? ? ? ? ? ? ? ? ? ?
s3 srvr 4 safe ? ? ? ? ? ? ? ? ? ?
s3 srvr 6 safe ? ? ? ? ? ? ? ? ? ?
s3 srvr 6 unsafe U U U U U U U U U U
s3 srvr 7 safe ? ? ? ? ? ? ? ? ? ?
s3 srvr 8 safe ? ? ? ? ? ? ? ? ? ?
s3 srvr.blast.01 safe ? ? ? ? ? ? ? ? ? ?
s3 srvr.blast.01 unsafe ? ? ? U U U U U U U
s3 srvr.blast.02 safe ? ? ? ? ? ? ? ? ? ?
s3 srvr.blast.02 unsafe ? ? ? U U U U U U U
s3 srvr.blast.03 unsafe ? ? ? U U U U U U U
s3 srvr.blast.04 unsafe ? ? ? U U U U U U U
s3 srvr.blast.06 safe ? ? ? ? ? ? ? ? ? ?
s3 srvr.blast.06 unsafe ? ? ? ? ? U U U U U
s3 srvr.blast.07 safe ? ? ? ? ? ? ? ? ? ?
s3 srvr.blast.07 unsafe ? ? ? ? ? U U U U U
s3 srvr.blast.08 safe ? ? ? ? ? ? ? ? ? ?
s3 srvr.blast.08 unsafe ? ? ? ? ? ? ? ? ? U
s3 srvr.blast.09 safe ? ? ? ? ? ? ? ? ? ?
s3 srvr.blast.09 unsafe ? ? ? ? ? U U U U U
s3 srvr.blast.10 safe ? ? ? ? ? ? ? ? ? ?
s3 srvr.blast.10 unsafe ? ? ? ? ? ? ? ? ? U
s3 srvr.blast.11 safe ? ? ? ? ? ? ? ? ? ?
s3 srvr.blast.11 unsafe ? ? ? ? U U U U U U
s3 srvr.blast.12 safe ? ? ? ? ? ? ? ? ? ?
s3 srvr.blast.12 unsafe ? ? ? ? ? U U U U U
s3 srvr.blast.13 safe ? ? ? ? ? ? ? ? ? ?
s3 srvr.blast.13 unsafe ? ? ? ? ? U U U U U
s3 srvr.blast.14 safe ? ? ? ? ? ? ? ? ? ?
s3 srvr.blast.14 unsafe ? ? ? ? ? U U U U U
s3 srvr.blast.15 safe ? ? ? ? ? ? ? ? ? ?
s3 srvr.blast.15 unsafe ? ? ? ? ? ? ? ? ? U
s3 srvr.blast.16 safe ? ? ? ? ? ? ? ? ? ?
s3 srvr.blast.16 unsafe ? ? ? ? ? U U U U U
CPU time in s 160 180 200 210 220 230 240 250 280 300
Total memory in MB 6500 7400 8000 8100 8500 8400 8800 8800 9100 9400
Safe results 1 2 2 2 2 2 2 2 3 3
Unsafe results 2 3 3 10 11 19 20 20 20 23

Table 5.3: Bounded model checking with k-induction applied on the ssh benchmark set, not using
invariant generation

56 5.5 Experiments

 0

 1000

 2000

 3000

 4000

 5000

1 2 3 4 5 6 7 8 9 10 50 100

C
P
U

 t
im

e
 i
n
 s

e
co

n
d

s

k

Total CPU time for SAFE
Total CPU time for UNSAFE

Total CPU time for UNKNOWN

Figure 5.5: The consumed CPU time graph for bounded model checking with k-
induction applied on the ssh benchmark set, not using invariant gener-
ation

 0

 10000

 20000

 30000

 40000

 50000

 60000

1 2 3 4 5 6 7 8 9 10 50 100

M
e
m

o
ry

 c
o
n
su

m
p

ti
o
n
 i
n
 M

B

k

Total memory for SAFE
Total memory for UNSAFE

Total memory for UNKNOWN

Figure 5.6: The consumed memory graph for bounded model checking with k-
induction applied on the ssh benchmark set, not using invariant gener-
ation

57

 0

 5

 10

 15

 20

 25

1 2 3 4 5 6 7 8 9 10 50 100

N
u
m

b
e
r

o
f
fi
le

s
p
ro

v
e
n
 S

A
FE

 /
 U

N
S

A
FE

k

SAFE: UNSAFE:

Figure 5.7: The verification result chart for bounded model checking with k-induction
applied on the ssh benchmark set, using invariant generation but not
guessing one important variables. In total the set contains 22 safe and
23 unsafe programs.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10
CPU time in s 390 390 410 410 420 380 380 400 430 430
Total memory in MB 12800 12400 12300 12100 12400 11400 11700 11800 12400 11900
Safe results 1 2 2 2 2 2 2 2 3 3
Unsafe results 2 3 3 10 11 19 20 20 20 23

Table 5.4: CPU times and memory consumption for the different values of k when
using bounded model checking with k-induction and invariant generation,
setting cpa.invariants.interestingVariableLimit to 0

The verification results are the same as in table 5.3. This emphasizes the importance
of making the right decision about when to merge states. The total CPU time used for
each value of k is shown in table 5.4. Similar to the the experiments where invariant
generation was switched off shown in table 5.3, CPU time increases when k increases.
Due to the overhead of the invariant generation algorithm, overall CPU time is higher
compared to not using invariant generation, but being able to always merge states
seems to keep this overhead low enough so that the direct proportionality between
k and the CPU time is exposed, even though higher values of k allow for skipping
invariant generation for unsafe programs. Only the notable gap between k = 5 and
k = 6 is an exception to this rule. A similar effect can be observed on memory
consumption.

Setting cpa.invariants.interestingVariableLimit to 1, as shown in table 5.5 and
figure 5.10, at least allows the verification of some of the programs, albeit partially

58 5.5 Experiments

 0

 1000

 2000

 3000

 4000

 5000

1 2 3 4 5 6 7 8 9 10 50 100

C
P
U

 t
im

e
 i
n
 s

e
co

n
d

s

k

Total CPU time for SAFE
Total CPU time for UNSAFE

Total CPU time for UNKNOWN

Figure 5.8: The consumed CPU time graph for bounded model checking with k-
induction applied on the ssh benchmark set, using invariant generation
but not guessing important variables

 0

 10000

 20000

 30000

 40000

 50000

 60000

1 2 3 4 5 6 7 8 9 10 50 100

M
e
m

o
ry

 c
o
n
su

m
p

ti
o
n
 i
n
 M

B

k

Total memory for SAFE
Total memory for UNSAFE

Total memory for UNKNOWN

Figure 5.9: The consumed memory graph for bounded model checking with k-
induction applied on the ssh benchmark set, using invariant generation
but not guessing important variables

59

 0

 5

 10

 15

 20

 25

1 2 3 4 5 6 7 8 9 10 50 100

N
u
m

b
e
r

o
f
fi
le

s
p
ro

v
e
n
 S

A
FE

 /
 U

N
S

A
FE

k

SAFE: UNSAFE:

Figure 5.10: The verification result chart for bounded model checking with k-induction
applied on the ssh benchmark set, using invariant generation with guess-
ing one important variable. In total the set contains 22 safe and 23 unsafe
programs.

 0

 1000

 2000

 3000

 4000

 5000

1 2 3 4 5 6 7 8 9 10 50 100

C
P
U

 t
im

e
 i
n
 s

e
co

n
d
s

k

Total CPU time for SAFE
Total CPU time for UNSAFE

Total CPU time for UNKNOWN

Figure 5.11: The consumed CPU time graph for bounded model checking with k-
induction applied on the ssh benchmark set, using invariant generation
with guessing one important variable

60 5.5 Experiments

 0

 10000

 20000

 30000

 40000

 50000

 60000

1 2 3 4 5 6 7 8 9 10 50 100

M
e
m

o
ry

 c
o
n
su

m
p
ti

o
n
 i
n
 M

B

k

Total memory for SAFE
Total memory for UNSAFE

Total memory for UNKNOWN

Figure 5.12: The consumed memory graph for bounded model checking with k-
induction applied on the ssh benchmark set, using invariant generation
with guessing one important variable

higher values of k are required than when using the default value of 1 for the limit.
Also, for some safe programs that can be verified without the invariant generation or
with cpa.invariants.interestingVariableLimit to 0, lower values of k are suffi-
cient to verify safe programs when using invariant generation with cpa.invariants
.interestingVariableLimit set to 1. This observation strongly supports the idea
that higher values of k enable induction to succeed with weaker invariants and that
inversely, using induction lower values of k requires stronger invariants.

With one variable being considered as interesting, the resulting fewer state merges and
thus the higher amount of states are reflected by the total CPU times and memory
consumption values, which are a lot higher than for always merging or for not using
invariant generation at all. At the same time, the CPU times and memory consumption
are lower than for using a limit of 2 as can be seen by comparing the figures 5.11 and
5.12 with the figures 5.2 and 5.3.

Again, although not shown in the tables, the runs were also executed with k = 100
without improving the results of the experiments any further.

5.5.3 Comparative Benchmark

As explained in 5.2.2, bounded model checking experiments alone are not sufficient
to show the practicability of the invariant checking algorithm. Therefore, the large
benchmark set mentioned in 5.1 was analyzed with three different configurations:

61

File k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10
s3 srvr 10 unsafe U U U U U U U U U U
s3 srvr 11 unsafe ? ? ? ? ? ? U U U U
s3 srvr 12 unsafe ? ? ? ? ? U U U U U
s3 srvr 13 unsafe ? ? ? U U U U U U U
s3 srvr 14 unsafe ? U U U U U U U U U
s3 srvr 1 safe S S S S S S S S S S
s3 srvr 1 unsafe ? ? ? U U U U U U U
s3 srvr 1a safe S S S S S S S S S S
s3 srvr 1b safe S S S S S S S S S S
s3 srvr 2 safe ? ? ? ? ? ? ? ? ? ?
s3 srvr 2 unsafe ? ? ? U U U U U U U
s3 srvr 3 safe ? ? ? ? ? ? ? ? ? ?
s3 srvr 4 safe ? ? ? ? ? ? ? ? ? ?
s3 srvr 6 safe ? ? ? S S S S S S S
s3 srvr 6 unsafe U U U U U U U U U U
s3 srvr 7 safe ? ? ? ? ? ? ? ? S S
s3 srvr 8 safe ? ? ? S S S S S S S
s3 srvr.blast.01 safe ? ? ? S S S S S S S
s3 srvr.blast.01 unsafe ? ? ? U U U U U U U
s3 srvr.blast.02 safe ? ? ? ? ? ? ? ? ? ?
s3 srvr.blast.02 unsafe ? ? ? U U U U U U U
s3 srvr.blast.03 unsafe ? ? ? U U U U U U U
s3 srvr.blast.04 unsafe ? ? ? U U U U U U U
s3 srvr.blast.06 safe ? ? ? S S S S S S S
s3 srvr.blast.06 unsafe ? ? ? ? ? U U U U U
s3 srvr.blast.07 safe ? ? ? ? ? ? ? ? S S
s3 srvr.blast.07 unsafe ? ? ? ? ? U U U U U
s3 srvr.blast.08 safe ? ? ? S S S S S S S
s3 srvr.blast.08 unsafe ? ? ? ? ? ? ? ? ? U
s3 srvr.blast.09 safe ? ? ? S S S S S S S
s3 srvr.blast.09 unsafe ? ? ? ? ? U U U U U
s3 srvr.blast.10 safe ? ? ? S S S S S S S
s3 srvr.blast.10 unsafe ? ? ? ? ? ? ? ? ? U
s3 srvr.blast.11 safe ? ? ? ? ? ? ? ? S S
s3 srvr.blast.11 unsafe ? ? ? ? U U U U U U
s3 srvr.blast.12 safe ? ? ? S S S S S S S
s3 srvr.blast.12 unsafe ? ? ? ? ? U U U U U
s3 srvr.blast.13 safe ? ? ? ? ? ? ? ? S S
s3 srvr.blast.13 unsafe ? ? ? ? ? U U U U U
s3 srvr.blast.14 safe ? ? ? S S S S S S S
s3 srvr.blast.14 unsafe ? ? ? ? ? U U U U U
s3 srvr.blast.15 safe ? ? ? S S S S S S S
s3 srvr.blast.15 unsafe ? ? ? ? ? ? ? ? ? U
s3 srvr.blast.16 safe ? ? ? S S S S S S S
s3 srvr.blast.16 unsafe ? ? ? ? ? U U U U U
CPU time in s 1140 1000 1020 1000 990 730 730 750 770 730
Total memory in MB 56200 51200 52100 52400 52400 36300 35200 36000 36500 32700
Safe results 3 3 3 14 14 14 14 14 18 18
Unsafe results 2 3 3 10 11 19 20 20 20 23

Table 5.5: Bounded model checking with k-induction applied on the ssh benchmark set,
using cpa.invariants.interestingVariableLimit = 1

62 5.5 Experiments

Analysis -predicateAnalysis
-PredAbsRefiner-ABEl

-predicateAnalysis
-invariants

-bmc-induction

CPU time in s 160900 357400 823900
Total memory in MB 1312100 2397800 6068500
Correct results 1989 1491 865
Unknown results 0 0 355
False negatives 5 8 14
False positives 89 52 53
Safe results 1555 1425 535
Unsafe results 528 126 397
Timeouts 125 323 815
Memory exceedings 2 2 80
Crashes 76 410 104

Table 5.6: Comparison between three different analyses over the large benchmark set

Predicate analysis without support by the invariant generation algorithm, predicate
analysis with invariant generation, and bounded model checking with induction using
invariant generation. The most important aspect the results of the analyses need
to be examined for is whether invariant generation leads to incorrect results where
other strategies succeed, exceeds time or memory limits where other strategies do not,
or even crashes when other strategies terminate normally, because these results show
errors or deficits in the invariant generation algorithm or its integration with predicate
analysis. As the invariant generation was designed with k-induction in mind, overall
verification success is not expected to improve much over plain predicate analysis and
might even be worse in some cases. Further aspects that can be observed are other
differences in consumption of time or space, as well as different verification results in
general.

Predicate analysis without invariant generation uses the configuration setting
-predicateAnalysis-PredAbsRefiner-ABEl, predicate analysis with invariant gen-
eration uses the configuration setting -predicateAnalysis-invariants, and bounded
model checking with induction and invariants uses the -bmc-induction configuration
setting with k = 10. All three strategies use the default invariant generation specific
parameters stated in 4.1 and 4.2.

Table 5.6 shows a summary of the results. The first and most obvious observation that
can be made is that predicate analysis without invariant generation produces far more
correct results, is faster and uses less memory than predicate analysis with invariant
generation. Moreover, there are even a few more false negatives with invariant gen-
eration than without. The only immediately visible aspect where predicate analysis
with invariant generation beats predicate analysis without invariant generation is the
lower number of false positives. At first, this seems as if invariant generation mostly
worsens the analysis. A closer view reveals a different view on the results, however.

One of the three false negatives produced with invariant generation but not without is
the result of an experiment that exceeds the time limit without invariant generation,
meaning that the false negative might also appear without invariant generation and
was simply covered by the timeout. The other two false negatives are actual errors in

63

invariant generation, likely occurring due to the lack of pointer alias handling discussed
in 4.7.1.

More important is finding the causes for the large difference in correct verification
results as well as the lower rate of false positives. Many cases where predicate analysis
without invariant generation produces correct results or false positives when the same
analysis with invariant generation does neither are due to program crashes or timeouts.

Debugging the crashes shows that the program crashes actually do not occur during
the invariant generation but when predicate analysis uses the invariants and variables
occur that are unknown to the analysis, for example because they are not in scope at
a specific location. While such an invariant certainly is of no use to the verification,
it should simply be ignored rather than leading to a program crash. Other solutions
might be including a scope analysis into invariant generation or requesting information
about specified variables only when extracting the invariants from the states produced
by the invariant generation.

Debugging the timeouts reveals that the invariant generation terminates successfully,
but that the SMT solver employed by the analysis is unable to solve the formulas pro-
duced by enhancing the information collected by the standard analysis with generated
invariants. While intuitive expectations might suggest that giving additional informa-
tion to the SMT solver by providing it with invariant assertions reduces the difficulty
of the task, satisfiability is an NP-complete task[31] and cases where increasing the
size of the checked formulas result in higher runtimes must be expected.

It is interesting to observe that while the numbers of programs verified by the two
predicate analyses to be safe are fairly close to each other, while their numbers of
programs proven unsafe are vastly different, and that even though there are a lot of
SMT solver timeouts for predicate analysis with invariant generation, there are also
many programs that can be verified with invariant generation but exceed the time
limit without invariant generation.

Overall, these experiments can be seen as a success, as the occurring errors are integra-
tion problems, not problems caused specifically by the invariant generation algorithm,
and the occurring timeouts are likely caused by the increased complexity of the con-
structed formulas presented to the SMT solver after adding the generated invariants.
The results also show the importance of determining which classes of programs are
likely to benefit most from verification with k-induction, a question already raised in
3.1.

5.5.4 Related Benchmarks

When Donaldson et al. employed k-induction to loop verification presenting their
work about combined-case k-induction, they also provided a set of benchmarks and
the experimental results they received from running their implementation over those

64 5.5 Experiments

benchmarks. The invariant generation algorithm implemented in this thesis is not
applicable to those benchmarks as of yet, because the k-induction used by bounded
model checking in CPAchecker currently only handles single loop programs and the
benchmark set used by Donaldson et al. contains many multi-loop programs. Further-
more, Donaldson et al. use their verification tool to check for direct memory access
races, a check that is not implemented in CPAchecker. No meaningful comparisons
can therefore be made between their work and this thesis. The only potentially inter-
esting observation is that their required values of k are between 1 and 4, just like in the
benchmarks shown in 5.5.1. Due to the previously mentioned incomparability of the
different benchmarks, the significance of this observation, however, is questionable.

6 Conclusion

This chapter concludes the thesis by giving a summary of the discussed aspects and
properties of the implemented light-weight approach to invariant generation for soft-
ware verification.

6.1 Summary

The first chapter gave an introduction to software verification in general and the idea
of using k-induction with bounded model checking in particular, before proceeding to
discuss related research and discussing some of the terminology and conventions used
in this thesis.

The second chapter provided information about the theoretical background required
to understand the ideas and strategies applied over the course of this elaboration.
k-induction was introduced, the basics of invariant generation were explained and the
definition of a configurable program analysis was given.

The third chapter discussed the concrete theory the implemented invariant generation
is based on. It showed how invariant assertions are used to support k-induction, what
techniques are used in this thesis to generate invariant assertions and the properties
of a configurable program analysis specifically designed to implement the invariant
generation algorithm were defined.

The fourth chapter elaborated on the details of the implementation of the algorithm
within the CPAchecker framework. The important classes representing the com-
ponents of the configurable program analysis were discussed and configuration and
initialization of the CPA were explained.

The fifth chapter presented the evaluation results and showed that there are many
programs that can successfully be proved by automatic software verification using
bounded model checking and k-induction, and that there is even one partial benchmark
subset the technique works particularly well on. It also showed, however, that there
are many cases this strategy is not suitable for and that there is still work to be done on
the integration of the invariant generation algorithm into the surrounding framework
using it.

This sixth and last chapter summarizes the thesis and discusses aspects which must
still be improved.

66 6.2 Prospects

6.2 Prospects

The first steps into using k-induction to support automatic software verification with
CPAchecker made in this thesis showed promising results. However, there is still
work to be done and there are improvements to be made.

6.2.1 Integration into the existing framework

While the integration of the invariant generation into bounded model checking seems
to work very well already, the same thing can not yet be said about its integration
into predicate analysis. If the goal of using the invariant generation for other means
than supporting k-induction is pursued, these issues need to be addressed.

The main issue was a program crash occurring because predicate analysis assumes
that it knows every variable that the invariant generation algorithm might provide
information about. The invariant generation, however, uses some helper variables to
represent unknown array slots or function return values. Furthermore, the algorithm
does not take variable scoping into account. The problem arising from the use of
helper variables has already been fixed in a recent revision, but the general problem
remains. One possibility to solve this problem might be including a scope analysis into
invariant generation, another option would be requesting information about specified
variables only when extracting the invariants from the states produced by the invariant
generation. While the latter option is probably easier to implement, the former might
bring additional benefits, because information about variable scoping can be used to
drop information that became irrelevant after the concerned variables went out of
scope.

Another issue observed were the timeouts occurring. It is generally hard to predict
how much time it takes an SMT solver to solve a given formula. While the assumption
that larger formulas result in longer solving times is backed by some results, counterex-
amples to this theory are also easy to find in the benchmarks. Adding more meaningful
configuration options to the CPA might allow the analyses using invariant generation
to to more fine-tuning. Perhaps this is sufficient to help preventing future timeouts.
Otherwise, the invariant generation algorithm itself might have to be optimized.

6.2.2 Multi-Loop Programs

Currently, the k-induction algorithm implemented in the bounded model checking
strategy of CPAchecker is unable to handle programs with more than one loop. This
is an issue that often prevents the usage of invariant generation at all. Donaldson et
al. already showed multiple approaches to solve these problems. They first presented
split-case k-induction where all loops of a program are transformed into one monolithic

67

loop which then can be verified with k-induction [27, p. 21 f.]. Then, they discussed
combined-case k-induction, where they elaborated on cutting loops one at a time[8].
Both approaches can be considered to solve the multi-loop problem.

6.2.3 Bit-Vectors

It has been mentioned that the implemented invariant generation algorithm assumes
that all values it deals with are arbitrary integers from an infinite range. In reality,
integer values used in programs are actually bit-vectors with limited ranges. Stepping
over one border then results in entering the range from the other side, a phenomenon
also known as arithmetic overflow. When this phenomenon is encountered, the invari-
ant generation produces incorrect results.

On the one hand, solving this problem seems complicated, as the currently used form
of representing values does not easily translate to the different concept. On the other
hand, the invariant generation program analysis was designed so that the value rep-
resentation type is in theory interchangeable. Of course, many program parts do rely
on operations specifically provided by the current representation due to reasons of
efficiency which were the initial argument for using this specific implementation.

6.2.4 Pointer Aliasing

Currently, the invariant generation CPA ignores the possibility of pointer aliases, which
potentially is the reason for some of the incorrect results observed in the benchmarks.
This issue could be resolved by providing the analysis with information about pointer
aliases. As CPAchecker already contains a pointer alias analysis, this task seems
feasible.

6.2.5 Further Heuristics

A heuristic for guessing which variables might be especially interesting to the analysis
has been implemented and the experiments showed that this heuristic is a significant
factor for the quality of the invariant generation algorithm. However, it also affects
the execution time and memory consumption negatively. It is desirable to explore
further options for heuristics to improve the relation between precision and resource
consumption and to evaluate these options against the results obtained in this thesis.
Potential for such an option has already been discussed in the last part of 3.2.2,
where the possibility of smartly increasing the precision of the abstraction strategy
was mentioned.

Bibliography

[1] T. Hoare, “The Verifying Compiler: A Grand Challenge for Computing Re-
search,” J. ACM, vol. 50, pp. 63–69, Jan. 2003.

[2] A. Turing, “On Computable Numbers, with an Application to the Entschei-
dungsproblem,” London Mathematical Society, vol. s2-42, pp. 230–265, november
1936.

[3] P. Bjesse, “What is Formal Verification?,” SIGDA Newsl., vol. 35, Dec. 2005.

[4] M. A. Colón, S. Sankaranarayanan, and H. B. Sipma, “Linear Invariant Gener-
ation using Non-linear Constraint Solving,” in In Computer Aided Verification,
pp. 420–432, Springer Verlag, 2003.

[5] R. Jhala and R. Majumdar, “Software Model Checking,” ACM Comput. Surv.,
vol. 41, pp. 21:1–21:54, Oct. 2009.

[6] E. M. Clarke, E. A. Emerson, and J. Sifakis, “Model Checking: Algorithmic
Verification and Debugging,” Commun. ACM, vol. 52, pp. 74–84, Nov. 2009.

[7] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic Model Checking
without BDDs,” in Proceedings of the 5th International Conference on Tools and
Algorithms for Construction and Analysis of Systems, TACAS ’99, (London, UK,
UK), pp. 193–207, Springer-Verlag, 1999.

[8] A. F. Donaldson, L. Haller, D. Kroening, and P. Rümmer, “Software Verification
using k-Induction,” in Proceedings of the 18th international conference on Static
analysis, SAS’11, (Berlin, Heidelberg), pp. 351–368, Springer-Verlag, 2011.

[9] D. Beyer and M. Keremoglu, “CPAchecker: A tool for configurable software ver-
ification,” in Computer Aided Verification (G. Gopalakrishnan and S. Qadeer,
eds.), vol. 6806 of Lecture Notes in Computer Science, pp. 184–190, Springer
Berlin Heidelberg, 2011.

[10] R. W. Floyd, “Assigning Meanings to Programs,” in Proceedings of a Symposium
on Applied Mathematics (J. T. Schwartz, ed.), vol. 19 of Mathematical Aspects
of Computer Science, (Providence), pp. 19–31, American Mathematical Society,
1967.

[11] R. W. Floyd, “The Verifying Compiler,” annual report, School of Computer Sci-
ence, Carnegie-Mellon University, Pittsburgh, PA, USA, 1967.

70 Bibliography

[12] J. C. King, A Program Verifier. PhD thesis, School of Computer Science,
Carnegie-Mellon University, Pittsburgh, PA, USA, 1970. AAI7018026.

[13] C. A. R. Hoare, “An Axiomatic Basis for Computer Programming,” Commun.
ACM, vol. 12, pp. 576–580, Oct. 1969.

[14] B. Wegbreit, “The Synthesis of Loop Predicates,” Commun. ACM, vol. 17,
pp. 102–113, Feb. 1974.

[15] M. Caplain, “Finding Invariant Assertions for Proving Programs,” in Proceed-
ings of the international conference on Reliable software, (New York, NY, USA),
pp. 165–171, ACM, 1975.

[16] S. Katz and Z. Manna, “Logical Analysis of Programs,” Commun. ACM, vol. 19,
pp. 188–206, Apr. 1976.

[17] P. Cousot and R. Cousot, “Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints,”
in Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, POPL ’77, (New York, NY, USA), pp. 238–252, ACM,
1977.

[18] P. Cousot and N. Halbwachs, “Automatic Discovery of Linear Restraints among
Variables of a Program,” in Conference Record of the Fifth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, (Tuc-
son, Arizona), pp. 84–97, ACM Press, New York, NY, 1978.

[19] R. Bryant, “Graph-Based Algorithms for Boolean Function Manipulation,” Com-
puters, IEEE Transactions on, vol. C-35, no. 8, pp. 677–691, 1986.

[20] J. R. Burch, E. Clarke, K. L. McMillan, D. Dill, and L. J. Hwang, “Symbolic
Model Checking: 1020 States and Beyond,” in Logic in Computer Science, 1990.
LICS ’90, Proceedings., Fifth Annual IEEE Symposium on e, pp. 428–439, 1990.

[21] S. Sankaranarayanan, H. B. Sipma, and Z. Manna, “Non-linear Loop Invariant
Generation using Groebner Bases,” 2004.

[22] E. Rodŕıguez-Carbonell and D. Kapur, “Automatic Generation of Polynomial
Loop Invariants: Algebraic Foundations,” in In International Symposium on Sym-
bolic and Algebraic Computation 2004 (ISSAC04), pp. 266–273, ACM Press, 2004.

[23] M. D. Ernst, J. H. Perkins, P. J. Guo, S. Mccamant, C. Pacheco, M. S. Tschantz,
and C. Xiao, “The Daikon System for Dynamic Detection of Likely Invariants,”
in Science of Computer Programming, 2006.

[24] D. Beyer, T. A. Henzinger, and G. Théoduloz, “Configurable Software Verifica-
tion: Concretizing the Convergence of Model Checking and Program Analysis,” in
Proceedings of the 19th international conference on Computer aided verification,
CAV’07, (Berlin, Heidelberg), pp. 504–518, Springer-Verlag, 2007.

Bibliography 71

[25] T. Wahl, “The k-Induction Principle.” 2009.

[26] A. Gupta and A. Rybalchenko, “InvGen: An Efficient Invariant Generator,” in
In CAV, 2009.

[27] A. F. Donaldson, D. Kroening, and P. Rümmer, “Automatic Analysis of DMA
Races using Model Checking and k-Induction,” Form. Methods Syst. Des., vol. 39,
pp. 83–113, Aug. 2011.

[28] Z. Manna and A. Pnueli, Temporal Verification of Reactive Systems: Safety. New
York, NY, USA: Springer-Verlag New York, Inc., 1995.

[29] P. Cousot, “Abstract Interpretation,” ACM Comput. Surv., vol. 28, pp. 324–328,
June 1996.

[30] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional, 1 ed., Nov.
1994.

[31] S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings of
the third annual ACM symposium on Theory of computing, STOC ’71, (New York,
NY, USA), pp. 151–158, ACM, 1971.

Declaration in Lieu of an Oath
I hereby declare that I autonomously composed the present thesis
and that I used none but the sources and resources stated.

This thesis has non been submitted to any other board of examiners
and has not yet been published.

Passau, October 10, 2013

Matthias Dangl

Eidesstattliche Erklärung
Ich erkläre hiermit, dass ich die vorliegende Arbeit selbstständig ver-
fasst und keine anderen als die angegebenen Quellen und Hilfsmittel
verwendet habe.

Die Arbeit wurde bisher keiner anderen Prüfungsbehörde vorgelegt
und auch noch nicht veröffentlicht.

Passau, den 10. Oktober 2013

Matthias Dangl

	List of tables
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Terminology
	1.3.1 Programs and Control Flow Automata
	1.3.2 Types
	1.3.3 Pure Expressions
	1.3.4 SMT Solver

	2 Background
	2.1 k-Induction
	2.2 Basics of Invariant Generation
	2.2.1 Information Extraction
	2.2.2 Information Representation
	2.2.3 Abstract Interpretation

	2.3 Configurable Program Analysis

	3 Theory
	3.1 Providing k-Induction with Invariants
	3.2 Invariant Generation
	3.2.1 Efficient Representation
	3.2.1.1 Sets of Integer Values
	3.2.1.2 Variable Environment
	3.2.1.3 Path Distinction

	3.2.2 Expression Evaluation and Abstraction

	3.3 A Configurable Program Analysis for Generating Invariants

	4 Implementation
	4.1 Overview
	4.2 InvariantsCPA
	4.2.1 Initialization
	4.2.2 Configuration

	4.3 InvariantsDomain
	4.4 SimpleInterval
	4.5 CompoundState
	4.6 InvariantsFormula
	4.7 InvariantsState
	4.7.1 Assignment Transitions
	4.7.2 Assume Transitions
	4.7.3 Joining States
	4.7.4 Invariant Extraction

	4.8 InvariantsTransferRelation
	4.9 Evaluation of Formulas

	5 Experimental Results
	5.1 Selected Benchmarks
	5.2 Analyses
	5.2.1 Bounded Model Checking
	5.2.2 Predicate Analysis

	5.3 Measured Properties
	5.3.1 Safety
	5.3.2 Time and Space

	5.4 Benchmark Environment
	5.5 Experiments
	5.5.1 Proof of Concept
	5.5.2 Guessing of Potentially Interesting Variables
	5.5.3 Comparative Benchmark
	5.5.4 Related Benchmarks

	6 Conclusion
	6.1 Summary
	6.2 Prospects
	6.2.1 Integration into the existing framework
	6.2.2 Multi-Loop Programs
	6.2.3 Bit-Vectors
	6.2.4 Pointer Aliasing
	6.2.5 Further Heuristics

	Bibliography

