
University of Passau
Faculty of Computer Science and Mathematics
Chair for Software Systems

Master’s Thesis

Block-Abstraction Memoization as an
Approach to Verify Recursive Procedures

Karlheinz Friedberger

March 11, 2015

Supervisors: Prof. Dr. rer. nat. Dirk Beyer
Prof. Dr.-Ing. Sven Apel

Advisor: M. Sc. Philipp Wendler

Abstract

Block-abstraction memoization (BAM) is a technique in program verification that
divides a program into blocks (like functions or loops) and analyses them separately.
If a block is inspected several times, BAM uses cached results of the block’s former
analyses to gain performance.
In this thesis, the operators reduce and expand of BAM are formally defined

in an analysis-independent way for the first time. Then BAM is extended with a
fixpoint algorithm and a third operator rebuild such that recursive procedures can
be analyzed in an abstract manner. The fixpoint algorithm aborts the recursion if
every function is unrolled far enough to prove the program’s safety in a sound way.
The operator rebuild allows to handle the problem of equal identifiers in recursive
function calls.

As the approach of BAM is independent from the underlying analysis, BAM
is specified for the predicate analysis (that uses lazy abstraction, predicates and
formulae to analyze a program) and the value analysis (that simply stores variables
and their assigned values in a map). The refinements of both analyses are modified
to support the verification of recursive procedures within the CEGAR approach. In
case of the predicate analysis several interpolation strategies for recursive programs
are compared.
The implementation in the framework CPACHECKER is evaluated on a set of recur-

sive source files and the results are competitive with other software model checkers
that participated in the recent International Competition on Software Verification
2015.

iii

Abstrakt

Block-Abstraction Memoization (BAM) ist eine Methode bei der Programmveri-
fikation um den zu analysierenden Zustandsraum zu verringern. Dabei wird ein
Programm in Blöcke zerlegt und diese einzeln analysiert. BAM verwendet einen
Cache und verwendet Ergebnisse von früheren Analysen wieder, wenn derselbe Block
mehrmals betrachtet wird.
Diese Arbeit definiert die Operatoren reduce und expand, welche von BAM genutzt

werden, zum ersten Mal formal und unabhängig von der verwendeten Analyse.
Außerdem wird BAM mit einem Fixpunktalgorithmus und einem Operator rebuild
erweitert, damit rekursive Programme in einer abstrakten Art und Weise analysiert
werden können. Der Fixpunktalgorithmus stellt fest, wann jede (rekursive) Funk-
tion weit genug abgerollt ist um die Sicherheit des Programms bzgl. der Spezifikation
zu garantieren. Der Operator rebuild hilft bei der Behandlung von gleichnamigen
Variablen in rekursiven Funktionsaufrufen.
Weil BAM unabhängig von der verwendeten Analyse arbeitet, werden die Oper-

atoren von BAM sowohl für die Prädikatenanalyse, welche mit Hilfe von Formeln,
Prädikaten und Abstraktionsberechnungen ein Programm analysiert, als auch für
die Value-Analyse, welche nur Variablen und deren zugewiesene Werte kennt, spez-
ifiziert. Die Refinement-Prozeduren beider Analysen wurden geändert, um die Ver-
ifikation von rekursiven Programmen mit CEGAR zu ermöglichen. Des Weiteren
werden mehrere Interpolationsstrategien verglichen, die von der Prädikatenanalyse
bei rekursiven Programmen eingesetzt werden können.
Zuletzt folgt die Evaluierung der Implementierung im Framework CPACHECKER

auf einer Reihe von rekursiven Programmen. Die Ergebnisse sind konkurrenzfähig
mit anderen Software-Model-Checkern, welche an der International Competition on
Software Verification 2015 teilgenommen haben.

v

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbständig ange-
fertigt habe. Die aus fremden Quellen direkt oder indirekt übernommenen Gedanken
sind als solche kenntlich gemacht. Die Arbeit wurde bisher keiner anderen Prüfungs-
behörde vorgelegt und auch noch nicht veröffentlicht.

Passau, 11.03.2015, Karlheinz Friedberger

vii

Contents

1 Introduction 1

1.1 Model Checking and Software Verification 1

1.2 CPACHECKER as Verification Framework 2

1.2.1 Overview . 2

1.2.2 Structure . 2

1.3 Related Work . 3

1.3.1 Bounded Model Checking . 3

1.3.2 Interpolation-Based Approach for Recursive Procedure Calls 5

1.3.3 Fixpoint-Algorithm: CPAREC 6

2 Background 9

2.1 CFA - Control Flow Automaton . 9

2.2 CPA - Configurable Program Analysis 10

2.2.1 CPA-Algorithm . 12

2.2.2 ARG - Abstract Reachability Graph 13

2.3 CEGAR - Counterexample-Guided Abstraction Refinement 15

2.4 BAM - Block-Abstraction Memoization 16

2.4.1 Blocks in BAM . 17

2.4.2 Overview of the Control Flow in BAM 17

2.4.3 Example for an ARG in BAM 17

2.4.4 Cache and Memoization in BAM 19

2.4.5 Reduce and Expand Operator 19

2.4.6 BAM-CPA . 20

2.4.7 BAM with CEGAR . 24

ix

Contents

2.5 Floyd-Hoare Logic . 24

2.5.1 Hoare-Triple . 25

2.5.2 Hoare’s Rules . 25

2.6 Interpolation Strategies . 26

2.6.1 Craig Interpolation or Binary Interpolation 27

2.6.2 Sequential Interpolation . 27

2.6.3 Tree Interpolation . 28

2.6.4 Interpolation in SMTLIB Version 2 and SMT solvers 32

3 Analyzing Recursive Procedures with Block-Abstraction Memoization 35

3.1 Motivating Example . 35

3.2 Groundwork and Necessary Preconditions in BAM 40

3.2.1 Most Outer Block . 40

3.2.2 Blocks for Functions . 41

3.3 Transfer-Relation of BAM with Support for Recursive Procedures . . 41

3.3.1 Block Stack and Unrolling Recursive Function Calls 43

3.3.2 Fixpoint-Iteration . 44

3.3.3 Rebuilding Abstract States at Function-Returns 47

3.4 Theory and Outline for the Proof of Correctness 48

3.4.1 Hoare’s Rules and Abstract States 49

3.4.2 Soundness of the Fixpoint Algorithm 50

4 Using Further Analyses in Combination with BAM 53

4.1 ARG-CPA . 54

4.2 Location-CPA . 54

4.3 Callstack-CPA . 54

4.4 Value Analysis . 56

4.4.1 Value-CPA . 56

4.4.2 Reduce and Expand . 57

4.4.3 Rebuild . 58

4.4.4 Counterexample and Refinement 59

x

Contents

4.5 Predicate Analysis . 60

4.5.1 Predicate-CPA . 60

4.5.2 Predicate Abstraction and Refinement with Interpolation . . 62

4.5.3 Reduce and Expand . 64

4.5.4 Refinement and Interpolation for Recursive Procedures . . . 65

4.5.5 Rebuild . 72

4.5.6 Example for Counterexample with Tree Interpolation and Flat-

tening . 75

5 Implementation 79

5.1 BAM-CPA . 79

5.2 Changes in CPAs . 80

5.3 Interpolation Strategies . 80

5.4 Configuration of the Analyses . 81

5.4.1 Value Analysis . 82

5.4.2 Predicate Analysis . 82

6 Evaluation 83

6.1 Benchmarks and Source Files . 83

6.2 Resources, Limitations and Measurements 83

6.3 Configurations of CPACHECKER . 84

6.3.1 Value Analysis . 84

6.3.2 Predicate Analysis . 84

6.4 Configurations of Evaluated Tools 86

6.4.1 CBMC . 87

6.4.2 CPAREC . 87

6.4.3 SMACK+CORRAL . 87

6.4.4 ULTIMATEAUTOMIZER . 88

6.4.5 Further Tools . 88

6.5 Experimental Results . 88

xi

Contents

7 Conclusion 91

7.1 BAM and Recursive Procedures . 91

7.2 Prospects . 91

7.2.1 Data Structures and Memory Model in BAM 92

7.2.2 Comparison of Interpolation Strategies 92

7.2.3 Modular Analysis through Predicate Analysis with BAM . . 92

A Tree Interpolation as Extension for SMTLIB Version 2 99

B Detailed Results of the Evaluation 101

xii

List of Figures

1.1 Overview of the control flow and basic components in CPACHECKER 3

1.2 Simple recursive program (call graph, unrolled call graph, source code) 4

1.3 Control flow in CPAREC . 7

2.1 CFA for the example program in Figure 1.2 with interprocedural edges 10

2.2 (Partial) ARG for an example program 14

2.3 Example for an ARG with blocks produced by BAM 18

2.4 Schematic diagram of the operators reduce and expand 20

2.5 Craig interpolant . 27

2.6 Sequence of formulae with interpolants 28

2.7 Sequential interpolation problem of Figure 2.6 as degenerated tree . 29

2.8 Small tree of formulae with interpolants 30

3.1 Example program with recursion . 36

3.2 CFA for the example program in Figure 3.1 36

3.3 ARG produced by the value analysis (first iteration) 37

3.4 ARG produced by the value analysis (second iteration) 39

3.5 Default function execution versus execution of function block with

operators reduce, expand and rebuild 48

3.6 Schematic diagram of the operators reduce, expand and rebuild . . 48

4.1 Schematic diagram of the operators reducecall and expandcall 55

4.2 Schematic diagram of the operators reduceval and expandval 58

4.3 Schematic diagram of the operators reducepred and expandpred . . . 65

4.4 Simple program with recursion (equal to Figure 1.2) 75

xiii

List of Figures

4.5 Infeasible counterexample of the recursive program 76

4.6 Tree of (path) formulae with resulting tree interpolants 77

4.7 Tree interpolants flattened to match the control flow of the counterex-

ample . 78

6.1 Quantile plot for the runtime of correct results of different configura-

tions of the predicate analysis in CPACHECKER 85

6.2 Quantile plot for run times of correct results of different tools 89

A.1 Input for SMTINTERPOL in SMTLIB2-format (extended for interpo-

lation) . 99

A.2 Output of SMTINTERPOL for the given input 100

A.3 Tree of formulae with interpolants 100

xiv

List of Tables

2.1 Interpolation strategies supported by SMT solvers in CPACHECKER 33

6.1 Score and runtime of correct results for combinations of SMT solvers

and interpolation strategies . 85

6.2 Statistics for results of the comparison of different tools 89

B.1 Verification result and runtime (CPU time in seconds) for different

configurations of CPACHECKER . 102

B.2 Verification result, runtime (CPU time in seconds) and memory con-

sumption (in MB) for different tools 103

xv

List of Algorithms

1 CPA(D, R0,W0) (from [9], Algorithm 1) 13

2 CEGAR(D, e0, π0) (from [9], Algorithm 2) 16

3 BAM (e, π) . 22

4 analyseBlock(B, eI , πI) . 22

5 getReducedResult(B, ei, πi) . 23

6 ITPwell−scoped(T, vr, L) . 31

7 ITPtreeCraig(T, vr, L) (from [10], Algorithm 1) 33

8 S(V ′, v) (from [10], Algorithm 2) . 33

9 BAMrec (e, π), modified version of Algorithm 3 42

10 fixpoint(Bmain, e, π, l0) . 42

11 analyseBlockrec(B, eI , πI , l), modified version of Algorithm 4 45

12 getReducedResultrec(B, ei, πi), modified version of Algorithm 5 . . . 46

13 getInterpolantsForPath(L, states) 69

14 buildTree(states) . 69

15 flattenTree(I, states) . 70

16 rebuildITP (x, y) . 70

xvii

1 Introduction

1.1 Model Checking and Software Verification

Model checking is an algorithmic technique to verify that a system description sat-
isfies a specification. A software implementing such algorithms is called a model
checker and either proves the system description against the specification or reports
a counterexample violating the specification.
Software verification is the application of model checking to implemented code

(programs) and is researched since the early days of computer science. Tony Hoare
describes the correctness of computer programs as "the fundamental concern of the
theory of programming and of its application in large-scale software engineering" [22].
He emphasizes the importance of achieving the goal of automatic software verifica-
tion not only for end-users but also for the economy and considers automatic verifi-
cation of software as one of the grand challenges for computing research. Verifying
software is undeniably a challenging task, because even the problem whether or not
a program terminates is not decidable in general.
The basic idea of software verification is checking, if the (maybe infinite) state

graph of a program is a model of its specification. Given a program description (in
form of source code) and a logical specification (for example as temporal safety prop-
erty), software verification returns either the proof of correctness for the program or
a specific execution path through the program as counterexample. This approach
is faced with the problem of representing large numbers of states for more complex
systems. To handle such situations, states are often represented through abstrac-
tions with omitting unimportant parts of the analyzed program or in an efficient
(maybe canonical) form such as intervals, SMT formulae or BDDs. Another method
to reduce the potential number of states is to divide the program into smaller parts,
verify each part separately, and then merge the results in a logical and sound way.
This thesis covers model checking of recursive program, which is more complex

than the verification of non-recursive software, because of the additional problems
of function calls that cause shadowing of identifiers, the explicit usage of the call
stack to store assignments, and the possibly unbounded deep of a recursive function

1

1 Introduction

call. We provide the theory to analyze recursive programs in an abstract manner
such that we are able to verify recursive procedures without having to unroll them
completely, which may be infeasible and sometimes impossible. The approach to
verify recursive software is specified for the value analysis and the predicate analysis
and the working implementation in the framework CPACHECKER is explained and
evaluated.

1.2 CPACHECKER as Verification Framework

CPACHECKER is the framework for configurable software verification, where the im-
plementation of this thesis is integrated. This section gives an overview of CPACHECKER,
its structure, and basic components.

1.2.1 Overview

The framework CPACHECKER1 [7] is currently developed at the Software Systems
Lab at the University of Passau and has many contributors, also from other organi-
zations. In the last years CPACHECKER was always one of the best model checkers
in the International Competition on Software Verification2. Each year one or more
different configurations of CPACHECKER (each configuration from a distinct partic-
ipant) succeed in the competitions. In 2012, the first year of the competition, the
winning configuration of CPACHECKER used block-abstraction memoization (BAM)
with predicate analysis. Other winning configurations of CPACHECKER are based on
predicate analysis or value analysis, however BAM was never used in a competition
after 2012.

1.2.2 Structure

The framework CPACHECKER was developed with the concepts of configurable pro-
gram analysis (CPA) and counterexample-guided abstraction refinement (CEGAR)
in mind such that new analyses can easily be implemented in a standardized way [7].
Both concepts are formally described later in Section 2.2 and 2.3. By providing a
modular and intuitive structure this concept aims to facilitate the implementation,
configuration, combination, and comparison of different program analyses in a conve-
nient and logical way. The default control flow of CPACHECKER shown in Figure 1.1
generates control flow automata (CFA) from source code and runs a (parametrized)
1http://cpachecker.sosy-lab.org - last check: March 5, 2015
2http://sv-comp.sosy-lab.org - last check: March 5, 2015

2

http://cpachecker.sosy-lab.org
http://sv-comp.sosy-lab.org

1.3 Related Work

Source Code

Parser &
CFA-Builder

CEGAR

Verification Result

Control Flow

CFA

CPA CompositeCPA

ARGCPA

BAMCPA

ValueCPA

PredicateCPA

CallstackCPA

LocationCPA

Components

Figure 1.1: Overview of the control flow and basic components in CPACHECKER

algorithm on them. This algorithm is mostly a CEGAR-Algorithm using CPA for
further analysis. CPAs can be nested within each other and allow the exchange of
information between several distinct analyses. CPACHECKER has bindings to several
external tools that can be accessed from the analyses, like for example libraries for
SMT solvers, BDDs, and octagons.

1.3 Related Work

As software verification is an important topic of research since many years, there
exist several approaches to analyze recursive procedures. This section will mention
some of the most important approaches for this thesis like bounded model checking
and interpolation based methods.

1.3.1 Bounded Model Checking

A bounded model checker like CBMC3 can easily handle language features like recur-
sion, because the analysis unrolls the recursive function up to a specified maximum
depth exactly in the same manner as loops, only with tracking an explicit stack for
variables and functions. The main problem of bounded model checking is finding
the right bound. As the verifier ignores any deeper recursion, the analysis might be
unsound and miss a bug.

3http://www.cprover.org/cbmc - last check: March 5, 2015

3

http://www.cprover.org/cbmc

1 Introduction

main

f

main

f

f1

f2

f3

1 void main () {
2 i n t a = 2 ;
3 i n t b = f (a) ;
4 i f (b != 2) {
5 e r r o r () ;
6 }
7 }
8

9 i n t f (i n t x) {
10 i f (x <= 0) {
11 re turn x ;
12 } e l s e {
13 i n t tmp = f (x − 1) ;
14 re turn tmp + 1 ;
15 }
16 }

Figure 1.2: Simple recursive program (call graph, unrolled call graph, source code)

Bounded Function Unwinding in CPACHECKER

CPACHECKER had no direct support for recursion in its CPA- and CEGAR-Algorithms
before the implementation of this thesis. Because of the framework’s modular struc-
ture, only one component (named CallstackCPA) knows about functions and the
call stack. Most other components can not handle recursive procedures, because
they only know the current scope and (only in case of function call or return) also
the calling function. They assume that a function’s name is unique in the current
scope and thus a function calling itself can not be handled, because the identifiers of
variables (e. g. "f::x" for a variable "x" in a function "f") would collide, when several
scopes of identically named functions are valid at one program location. A collision
also happens in case of transitive recursive function calls, for example, if a function f
calls another function g and g calls f again.

However there exists a feature in CPACHECKER that allows to copy (or clone)
a function f and assign a new name (for example with an index, like f1) for the
new function. With this little trick recursive procedures can be unrolled a certain
number n of steps (using the copied functions f1, f2,... until fn). The number n of
unrollings is static and must be given by the user, because all manipulation of the
program (like changing or copying functions) has to be done before the analysis, as
many components of CPACHECKER rely on this.

In Figure 1.2 the function f is recursive and calls itself. Thus the call graph

4

1.3 Related Work

contains a loop for the function f . With unrolling the call graph several times (here
with n = 3), the recursive function call is deep in the call graph such that an analysis
like the value analysis does not reach it (assuming a full precision, i. e. tracking all
variables and values of the program such that the criteria for aborting the recursion
can be computed).

This approach does only work with skipping the recursive function in the un-
wound graph or without the CEGAR-Algorithm. The reason for the first case is
simple: skipping recursive functions, i. e. assuming non-deterministic assignments
for all global variables, the function’s parameters and the return value, is sound
and no analysis must handle recursion. The second case disables CEGAR and thus
causes the usage of a full precision for the analysis such that all available variables
are tracked. In contrast to that, CEGAR would start its iteration with an empty
precision (without tracking any variables) and in its first iteration the recursive func-
tion would be unrolled an infinite number of steps, because the termination criteria
(or its variables) of the recursive function are not analyzed and the exploration visits
every program path as far as possible. The current implementation in CPACHECKER

aborts the analysis, if a recursive function calls is reached.

1.3.2 Interpolation-Based Approach for Recursive Procedure Calls

There are already several approaches and tools that are based on interpolation to
analyze recursive programs [1, 17]. As one of the best analyses implemented in
CPACHECKER also depends on abstraction and interpolation, here other tools are
mentioned that try to handle recursion on a more abstract level than just explicitly
tracking a stack for functions and variables.

Function Summaries: WHALE

WHALE [1] is an extension of IMPACT [25] and allows interprocedural program anal-
ysis. Just like IMPACT it is integrated within the CEGAR-approach and uses inter-
polation to get invariants for the refinement. WHALE uses two types of formulae,
namely state- and transition-interpolants, to get summaries of functions. The for-
mulae are build through a mixture of sequential and well-scoped interpolation, which
are both described in Section 2.6, combined with several formula transformations
like substitutions or existential quantification of identifiers. As the implementation
of WHALE is only a prototype, its application to a bigger number of source files was
not possible. Even a re-evaluation of the results provided in the official paper was
not achievable.

5

1 Introduction

Nested Interpolants: ULTIMATE

The most influential approach for (the interpolation-based part of) this thesis (i. e.
the operator rebuild in the predicate analysis) is based on the theory of nested
interpolants [17], which can be seen as predecessor of tree interpolation and is im-
plemented in the framework ULTIMATE4. Instead of using a tree as intermediate
data structure, the formulae are directly used as input for Craig interpolation to get
nested interpolants.
The key idea of nested interpolants is to use the information that is available at the

entry of a function for all interpolants inside the function’s scope. After returning
from the function the formulae is updated with the formulae for parameter and
return value assignment. This is very similar to the approach of nested or tree
interpolation implemented in CPACHECKER, which however only uses the parameter
assignment for rebuilding and does not need the assignment of the return value as
integral part of the interpolation procedure. This coincides better with the transfer
relation of the used analysis, because we do not need an additional transfer relation
for returning from a recursive function and keep every access to further data for the
operator rebuild (that is defined in Section 3.3.3) as limited as possible.
As nested interpolation is the predecessor of tree interpolation, it also distinguishes

between function calls with and without a corresponding function return such that
different formulae and steps are used in the interpolation procedure for both cases.

1.3.3 Fixpoint-Algorithm: CPAREC

CPAREC5 is a software model checker that uses an intraprocedural (recursion-free)
program analyzer like CPACHECKER as underlying verifier [11]. CPAREC partici-
pated in the International Competition on Software Verification 2015 and scored
slightly better than the competing version of CPACHECKER that used BAM com-
bined with the predicate analysis for the category of recursive program files. CPAREC

reached a score of 18 points of 40, CPACHECKER only 16. The tool is also evaluated
in this thesis (see Section 6.4) to compare it with CPACHECKER on a bigger set of
source files.
Figure 1.3 shows the main algorithm of CPAREC, which is a fixpoint algorithm.

It iterates until the minimal number of unwindings for recursive function calls is
determined or a valid counterexample leading to an error is found. The tool manip-
ulates (refines) the control flow of the source file such that additional assertions are
4http://ultimate.informatik.uni-freiburg.de - last check: March 5, 2015
5https://github.com/fmlab-iis/cparec - last check: March 5, 2015

6

http://ultimate.informatik.uni-freiburg.de
https://github.com/fmlab-iis/cparec

1.3 Related Work

Recursive Program

Intraprocedural Program Analyzer

Summary Candidates

Check TRUE

FALSE

Under-Approximation

Pass, Compute Summaries
Err

or,
Re
fin
e

Error

Pass

Figure 1.3: Control flow in CPAREC

inserted before and after all function calls and recursive functions are either unrolled
up to a specified bound or replaced by the corresponding function summary. The
upper bound is incremented in each execution of the loop. To unwind a function,
a copy of it is created with a renamed identifier (for example with an incremented
index) and called instead of the original function. The program analyzer checks the
transformed program. If an error is found, the algorithm terminates and reports the
counterexample. Otherwise the output of the wrapped program analyzer is used to
compute function summaries for called procedures. If all summaries are satisfied,
the source file is proven as safe. Otherwise the iteration continues.
Similar to the analysis used in this thesis the tool CPAREC uses a fixpoint al-

gorithm and is (nearly) independent from the underlying analysis, as long as some
kind of invariants can be extracted from the wrapped analyzer’s output. According
to the tool’s description, the wrapped program analyzer can be switched without
great effort if appropriate tool bindings are implemented.
However in contrast to CPACHECKER, there is no benefit for CPAREC through

internal data-structures like the cache of BAM. Thus the whole (further unwound)
control flow has to be analyzed again in each iteration of the fixpoint algorithm.
Another interesting difference between CPACHECKER and CPAREC is the fact that
CPACHECKER uses a fixpoint algorithm for under-approximating the state space,
surrounded by CEGAR, which causes an over-approximation due to a too coarse
precision. The control flow of CPAREC is exactly opposite, because the wrapped
program analyzer may use CEGAR and the surrounding algorithm computes the
fixpoint for the recursion.

7

2 Background

This chapter provides the theoretical background for this thesis and provides nec-
essary information about the framework CPACHECKER, its components, data struc-
tures and algorithms. A short description Floyd-Hoare logic is followed by a chapter
about interpolation and properties of interpolants.

2.1 CFA - Control Flow Automaton

A program in an imperative programming language like C can be modeled through
a control flow automaton (CFA). A CFA A = (L, l0, G) is defined by a set L of
program locations, an initial program location l0 ∈ L, and a set G ⊆ L × Ops × L
of possible transitions between program locations. The program language allows a
set Ops of operations to perform a transition between two program locations (e. g.
assignments, assumptions, or function calls). The program locations L model the
program counter and l0 represents the program entry (where the program counter
is zero).
The subset LE ⊂ L represents target locations (error locations) that do not match

the specification. A program is considered SAFE if no error location from LE is
reachable from the initial location l0 via a valid sequence of transitions in the CFA.
Otherwise the program is UNSAFE. CPACHECKER support the specification of targets
as automaton such that the target is independent from the CFA and compatible
with further analyses. An example beyond program locations would be properties
of variables or memory properties like invalid pointer dereference or memory leak.
Every function f of a program is represented as a single CFA Af = (L, l0, G).

The edges of a graph Af match statements in the function f . The CFAs of all
functions are connected with call- and return-edges, which handle the assignment of
parameters and return value, into one interprocedural CFA A that corresponds the
whole program.
The interprocedural CFA for the recursive program previously given in Figure 1.2

is provided in Figure 2.1. For each of the functions main and f , there is a separate
CFA named Amain and Af . The functions entry nodes are labeled with 0 and 10

9

2 Background

0

1

2

3 error 4

a = 2

b = f(a)

[b 6= 2] ![b 6= 2]

Amain
10

11 12

13

14

[x ≤ 0] ![x ≤ 0]

tmp = f(x− 1)

return(x)

return(tmp + 1)

Af

call f

return from f

call f

return from f

Figure 2.1: CFA for the example program in Figure 1.2 with interprocedural edges

and the exit nodes with 4 or 14, respectively. The call-edges are marked green, for
return-edges the color blue is used. Due to the recursive control flow of the function f
the CFA Af has a call-edge and a return-edge to itself, i. e. the function f calls itself.
Other edges contain either an assignment like a = 2 or an assumption in brackets
like [b 6= 2]. The target location of the program is marked red and labeled with 3.
Figure 2.1 shows a simplified CFA, which exactly matches the program’s state-

ments and assumptions, however ignores types of variables given in the source code.
The implementation in CPACHECKER uses several additional nodes and edges for
temporal variables that are omitted here for readability. In this thesis CFA is al-
ways used to denote the interprocedural CFA A of the whole program.

2.2 CPA - Configurable Program Analysis

A concept for program analysis is configurable program analysis (CPA) [5], which
was later extended to CPA with dynamic precision adjustment (CPA+) [6]. A
CPA+ D = (D,Π, ,merge, stop, prec) is an abstract reachability analysis for a
CFA A = (L, l0, G) and consists of an abstract domain D, a set Π of precisions, a
transfer relation , and three operators merge, stop, and prec. In the following E
always denotes a (possibly infinite) set of elements and CPA always denotes CPA+.
This section contains a description of each component of a CPA.

10

2.2 CPA - Configurable Program Analysis

Abstract Domain and Abstract State The abstract domain D = (C, E , [[·]]) ap-
points the target of the analysis and determines, which aspects of the program should
be analyzed. It is defined by a set C of concrete states, a lattice E = (E,v,t,>,⊥),
and a concretization function [[·]].

Let v⊆ E ×E be a partial order over the elements of E. The least upper bound
of a set M ⊆ E is defined as the smallest element e ∈ E that satisfies e′ v e for
all e′ ∈M , formally min{e ∈ E|∀e′ ∈M : e′ v e}. The greatest lower bound of a set
M ⊆ E is defined as the biggest element e ∈ E that satisfies e v e′ for all e′ ∈ M ,
formally max{e ∈ E|∀e′ ∈ M : e v e′}. The join operator t : E × E → E returns
the least upper bound for its two parameters and is commutative (et e′ = e′t e). A
lattice (E,v,t,>,⊥) is defined by a partial order v⊆ E×E if there is a least upper
bound for every subsetM ⊆ E. The least upper bound of the whole set E is the top
element > =

⊔
E. The greatest lower bound of the lattice is the bottom element ⊥.

Abstract states are defined by the lattice elements E. The concretization function
[[·]] : E → 2C associates an abstract state e with the set Ce ⊆ C of concrete states
represented by e. The set Ce may be infinite. For convenience the concretization
function [[·]] is also defined for a set S ⊆ E of abstract states with [[·]] : 2E → 2C

and [[S]] =
⋃
e∈S

[[e]].

Precision The set Π of precisions specifies the precisions of the abstract domain.
The precision determines the granularity of the program analysis and for example
specifies which program variables should be tracked. The program analysis keeps
track of different precisions π ∈ Π for different abstract states e ∈ E. A tuple
(e, π) ∈ E × Π is denoted as abstract state e with precision π. In the following the
precision is omitted, if it is not necessary to describe the functionality or behavior
of a component.

Transfer Relation For each abstract state e ∈ E, the transfer relation ⊆ E ×
E×Π returns possible new abstract states e′ ∈ E that are successors of e depending
on the precision π ∈ Π. We write e (e′, π) if (e, e′, π) ∈ . The transfer relation
is coupled with an edge g ∈ G in the implementation of most CPAs and then also
denoted with e

g
 (e′, π). However for BAM does not depend on this and the

transfer relation can be coupled with a whole set of edges (which is called a block
and described in Section 2.4.6).

11

2 Background

Merge Operator The operator merge : E × E → E combines two abstract states
into a new abstract state. The operator weakens its second parameter depending
on the first parameter, thus the operator merge is not commutative. With respect
to the lattice the result of merge(e, e′) can be anything between e and >. The
operator merge may be based on the join operator t of the lattice. Two important
merge operators are mergesep(e, e′) = e and mergejoin(e, e′) = e t e.

Stop Operator The operator stop : E×2E → B analyses if the abstract state e (first
parameter) is covered by the set R (second parameter) of abstract states such that
the analysis can stop. Otherwise the analysis continues with the next abstract state.
Coverage is satisfied if all concrete states represented by e are part of the concretiza-
tion of one or more abstract states in R, formally [[e]] ⊆ [[R]]. The operator stop
may be based on the partial order v of the lattice. Two important implementations
of this operator are stopsep(e,R) = (∃e′ ∈ R : e v e′) and stopjoin(e,R) = (e v

⊔
R).

Precision Adjustment Operator For a given abstract state and a set of abstract
states (each abstract state with a precision) the precision adjustment operator prec :
E×Π×2E×Π → E×Π returns a new abstract state with a precision. This operator is
applied after the transfer relation and updates the abstract state and its precision.

2.2.1 CPA-Algorithm

The CPA-Algorithm (Algorithm 1) computes the set of abstract states that are
reachable from an initial abstract state e0 and operates on the two sets reached
and waitlist, which contain abstract states combined with their precision. Every
iteration of the while-loop removes one abstract state from waitlist and computes
its abstract successors with the transfer relation . Then the dynamic precision
adjustment prec is applied. If the analysis finds a target state, the fixpoint algorithm
aborts and returns all analyzed abstract states. This eager behavior allows a direct
reaction on target states in the framework. If the fixpoint of this iteration is reached,
waitlist is empty. The algorithm merges each abstract successor with every existing
abstract state in reached. If the merge operator produces a new abstract state, the
existing abstract state is replaced with the new abstract state in the sets waitlist
and reached. At last step in the iteration the stop operator checks whether the
current abstract state must be analyzed further or it is already covered by another
previously computed abstract state. On termination the algorithm returns the set
reached of analyzed states.

12

2.2 CPA - Configurable Program Analysis

Algorithm 1: CPA(D, R0,W0) (from [9], Algorithm 1)
Input : a CPA D = (D,Π, ,merge, stop, prec),

an initial set R0 ⊆ E ×Π of abstract states with their precision,
s initial set W0 ⊆ R0 of frontier abstract states with their precision

Output : a set of reachable abstract states with their precision,
a set of frontier abstract states with their precision

Variables: a set reached ⊆ E ×Π and a set waitlist ⊆ E ×Π
1 reached := R0
2 waitlist := W0
3 while waitlist 6= ∅ do
4 choose (e, π) from waitlist
5 waitlist := waitlist \ {(e, π)}
6 foreach e′ with e (e′, π) do
7 (ê, π̂) = prec(e′, π, reached)
8 if isTargetState(e′) then
9 return (reached ∪ {(ê, π̂)}, waitlist ∪ {(ê, π̂)})

10 foreach (e′′, π′′) ∈ reached do
11 enew := merge(e′, e′′, π̂)
12 if enew 6= e′′ then
13 reached := (reached ∪ {(enew, π̂)}) \ {(e′′, π′′)}
14 waitlist := (waitlist ∪ {(enew, π̂)}) \ {(e′′, π′′)}
15 if ¬stop(e′, {e|(e, ·) ∈ reached}, π̂) then
16 reached := reached ∪ {(e′, π̂)}
17 waitlist := waitlist ∪ {(e′, π̂)}
18 return (reached, ∅)

2.2.2 ARG - Abstract Reachability Graph

The CPA-Algorithm (Algorithm 1) only tracks reached abstract states in the anal-
ysis. However the order of exploration and the dependencies between abstract
states (like transfer relation, merge and coverage) are important for further anal-
yses to extract information like an error path from the reached abstract states.
This information is stored in the abstract reachability graph (ARG) that is based
on all abstract states returned by a CPA and adds directed edges between them
if there exists a dependency. The ARG can be produced on the fly during an
analysis, because every dependency is explicitly computed in the CPA-Algorithm,
when the transfer relation, the operators merge or stop are applied. The ARG-
CPA DARG = (DARG, ARG,mergeARG, stopARG) is implemented as a wrapper
around another CPA Dw and builds the ARG during the analysis. The abstract
domain DARG adds information about dependencies to the wrapped abstract states

13

2 Background

0
[main]

1
[main]

10
[f,main]

11
[f,main]

12
[f,main]

14
[f,main]

10
[f, f,main]

11
[f, f,main] · · ·

14
[f, f,main]

13
[f,main]

14
[f,main]

2
[main]

3
[main]
error

4
[main]

a = 2

[b 6= 2] ![b 6= 2]

[x ≤ 0] ![x ≤ 0]

return(x)

return(x)

[x ≤ 0] ![x ≤ 0]

return(x)

call f

call f

return from f

return from f

b
=
f(a)

function
sum

m
ary

tm
p

=
f(x
−

1)
function

sum
m
ary

coverage

Figure 2.2: (Partial) ARG for an example program

from Dw. The operators ARG, mergeARG, and stopARG forward to their wrapped
counterparts. The ARG-CPA does not use a precision itself, but redirect every
precision-related operation to its wrapped CPA Dw.
Figure 2.2 represents a partial ARG for the example program given in Figure 1.2.

This ARG only shows the overall layout of an ARG and does not contain any
information about the wrapped analysis that was used, except the program location
and the call stack for each abstract state (as first and second line of each node,
respectively). As edges in the ARG are based on a CFA, a labeling of the edges is
provided. Call- and return-edges for function calls are marked green and blue. For
better readability the function summary edges are inserted and marked orange.
There is a highlighted coverage relation between two abstract states, which de-

pends on the used (and here not further specified) analysis. The arrow shows, which
abstract state is covering another one. Abstract states are not explored further if
they are covered. For these abstract states the program location and the call stack
are identical, thus at least those parts of the abstract states match their counterpart.
The direction of the coverage depends on the visitation strategy of the analysis, thus
for each coverage relation the first found abstract state is covered by the second one.

14

2.3 CEGAR - Counterexample-Guided Abstraction Refinement

2.3 CEGAR - Counterexample-Guided Abstraction
Refinement

The precision decides the granularity of an analysis (or the level of abstraction). A
stronger precision can lead to more exact results, whereas a weaker precision over-
approximates the state space and might improve performance. The problem, how
to choose a good precision for a program analysis, is addressed with the concept of
counterexample-guided abstraction refinement (CEGAR) [14]. This is an iterative
approach for an automatic refinement of the abstraction of a program analysis.
Therefore the analysis has to provide a counterexample path, i. e. the ARG for the
reached abstract states must be build during the analysis.

Starting with a coarse precision, CEGAR refines the precision with every found
spurious target state, i. e. the improved precision prevents the found invalid coun-
terexample from being explored again in a further iteration. The CEGAR-loop
terminates if all abstract states are analyzed or a target state is confirmed (i. e. the
error path is feasible). Basic elements of CEGAR are a feasibility check that verifies
if a counterexample corresponds to a concrete error path, and a refinement pro-
cedure that uses an infeasible counterexample to refine the available precision and
prune the reached abstract states in order to avoid finding the same counterexample
in a further exploration. The information needed to refine the precision is extracted
from the counterexample, for example through interpolation [1,9,25]. A detailed de-
scription of different refinements can be found in Section 4.5.2 for predicate analysis
or in Section 4.4.4 for value analysis.

The CEGAR-Algorithm (Algorithm 2) starts with an initial state e0 ∈ E with
a coarse precision π0 ∈ Π. The algorithm returns SAFE, if all program states are
analyzed (waitlist is empty) and no target state was found (in the last iteration).
If a target state is found and the CPA-Algorithm returns a non-empty set waitlist
(that contains at least one abstract state, the target state, with its precision), the
error path is extracted from the set reached. The error path can also be a set of
paths, starting in the initial program location, branching in the middle and ending
in the reached target state, however this case is omitted for simplicity.

If the feasibility check confirms the counterexample, the algorithm returns UNSAFE.
In that case the framework reports a bug and the counterexample. Otherwise the
algorithm uses the infeasible error path to refine the current precision and removes
all abstract states from the sets reached and waitlist that are invalidated through
the refined precision.

15

2 Background

Algorithm 2: CEGAR(D, e0, π0) (from [9], Algorithm 2)
Input : a CPA D = (D,Π, ,merge, stop, prec),

an initial abstract state e0 ∈ E with a precision π0 ∈ Π
Output : verification result SAFE or UNSAFE (with counterexample)
Variables: a set reached ⊆ E ×Π, a set waitlist ⊆ E ×Π,

an error path σ = 〈l0, ..., ln〉
1 reached := {(e0, π0)}
2 waitlist := {(e0, π0)}
3 while true do
4 (reached,waitlist) := CPA(D, reached, waitlist)
5 if waitlist = ∅ then
6 return SAFE
7 σ := extractErrorPath(reached)
8 if isFeasible(σ) then
9 return UNSAFE // use σ as counterexample

10 else
11 (reached,waitlist) := refine(reached,waitlist, σ)

The refinement not only removes invalid abstract states from the sets reached and
waitlist, but also from the ARG. The ARG is cut off at the upper most abstract
state with a new (or changed) precision. The removed subtree is re-explored with
the new precision in the next iteration of CEGAR.

2.4 BAM - Block-Abstraction Memoization

Block-abstraction memoization (BAM) is a modular approach for model checking
abstract state spaces. The idea of BAM is to divide a large program into smaller
parts, which are called blocks and can be analyzed separately. The result of a block’s
analysis, i. e. the abstraction of a block, is stored in a cache in order to reuse it later.
The original version of BAM [28,29] was heavily coupled with the predicate analysis.
As BAM and the predicate analysis are independent and orthogonal, they are now
divided from each other as far as possible in the implementation and thus also in
the description in this thesis. This not only enables other analyses to be used with
BAM easily, but also allows to describe BAM as an algorithm on a more abstract
level. This section describes the basic structure of BAM, its operators reduce and
expand, and how it is integrated in the framework CPACHECKER.

16

2.4 BAM - Block-Abstraction Memoization

2.4.1 Blocks in BAM

A basic component of BAM are blocks, which are defined as parts of a program, or
more formal: A block B = (L′, G′) of a CFA A = (L, l0, G) consists of a set L′ ⊂ L

of locations and a set G′ = {(l1, op, l2) ∈ G|l1, l2 ∈ L′} of edges. A block B has a
set In(B) = {l|l ∈ L′ ∧ ∃(lprev, op, l) ∈ G : lprev 6∈ L′} of input locations and a set
Out(B) = {l|l ∈ L′ ∧∃(l, op, lsucc) ∈ G : lsucc 6∈ L′} ∪ (LE ∩L′)} of output locations.

In the following B denotes the set of all blocks and is defined as B := {B|isBlock(B)}.
CPACHECKER supports distinct types of blocks, for instance loops or function bod-
ies. For this thesis function bodies are used as blocks, because recursion is caused
by function calls. Thus they are explicitly described in Section 3.2.2.

2.4.2 Overview of the Control Flow in BAM

BAM computes a separate set of abstract states for each block. During the analysis
BAM visits the CFA and at each input location of a block a new (nested) analysis is
started, which is executed until the output location of the block. The result of this
nested analysis represents the block’s input-output-behavior and is an abstraction
of the block. The main analysis skips the whole block by using the abstraction of
the block as summary. The abstraction of a block is stored in a cache. Whenever
the same block is reached again under the same circumstances (i. e. with the same
abstract input state and precision), BAM reuses the cached block-abstraction to
improve the performance of the analysis for the whole program.
In order to make the block’s abstraction more locally, two operators reduce and

expand are applied before and after the analysis of a block. They remove unnec-
essary information from the abstract states before analyzing the block and re-add
it afterwards, respectively. This makes the analysis more modular and leads to a
higher cache hit rate.

2.4.3 Example for an ARG in BAM

In Figure 2.3 an example for a (simplified) ARG is given, which is produced by BAM.
Each node in the ARG is labeled with an abstract state ek with an incrementing
index k, which represents the order of visitation during the analysis. For each
abstract state ek there also is a precision πk, which however is omitted in the example.
The example is based on a (not further specified) CFA with three blocks B0, B1,
and B2, which are partially nested within each other. The analysis performs a depth
first search on the CFA. When a block is entered, it is analyzed completely before

17

2 Background

B0

B1 B1
B1

B2

e1
e2

e3

e14e4

e19

e5

e6

e7 e8
e9 e10

e5

e6

e7 e8
e15 e16

e20

e21 e25

e26
e28

e5

e6

e7 e8
e22 e23

e24
e27

e11 e12

e13

e17
e31

e18

e30e29
e33e32

Figure 2.3: Example for an ARG with blocks produced by BAM

further exploration of the state space. Thus the ARG actually consists of separate
ARGs for each block. The ARG for a block reaches from its reduced abstract input
state until its abstract output states, which are expanded for further processing.
The application of the operators reduce and expand is highlighted with green and
red arrows, respectively.

The analysis starts with reducing the initial abstract state e1 to e2, which is
the input state of block B0. Then a new CPA-Algorithm is executed for program
locations in block B0, beginning with the initial abstract state e2. A few steps
later, the block B1 is reached and the abstract state e4 is reduced to e5, which
is the input state of block B1. The analysis of block B1 performs a new CPA-
Algorithm with the initial abstract state e5. The result of the algorithm consists of
two sets reachedB1 = {e5, e6, e7, e8} and waitlistB1 = ∅. The cache uses the triple
(B1, e5, π5) to identify the result of the block’s analysis, i. e. the sets reachedB1 and
waitlistB1 . The abstract states e7 and e8 are the output states of the block B1.
After expanding the output states e7 and e8 to e9 and e10, respectively, the analysis
of the block B0 continues. The block B1 is reached again with the abstract state e14,
which is reduced to an abstract state that matches e5. Instead of re-analyzing the

18

2.4 BAM - Block-Abstraction Memoization

block, the cached result of the block’s former analysis is used to summarize the block.
The output states of the block B1 are expanded and the analysis of the block B0

continues. The cached abstraction for block B1 is also used during the analysis of
block B2, when the abstract state e21 is reduced to an abstract state equal to e5.

When the analysis of block B0 terminates, the abstract states e17, e29, and e30

are expanded and used as successors of the initial program state e1. When the most
outer CPA-Algorithm terminates in this example (without the presence of a target
state), it returns the sets reachedmain = {e1, e31, e32, e33} and waitlistmain = ∅.

2.4.4 Cache and Memoization in BAM

BAM uses a cache that stores the input-output-behavior of each block B ∈ B, i. e. the
initial abstract state ei ∈ E (with precision πi ∈ Π) of the block’s analysis combined
with the sets reachedB ⊆ E × Π and waitlistB ⊆ E × Π that are returned after
executing the CPA-Algorithm for the block B beginning with the initial abstract
state ei. The input data for the analysis of a block B is the block B itself, the initial
abstract state ei at the block entry, and its precision πi. The triple (B, ei, πi) is the
key for the entry in the cache, whose value is the pair (reached,waitlist). The cache
matches the relation (B, ei, πi)→ (reached,waitlist), i. e. B×E×Π→ 2E×Π×2E×Π.
The default BAM analysis uses the cache transparently to improve performance

of the analysis. It does not depend on the cache, because a re-computation of cached
elements is always possible, i. e. a block can always be analyzed again. However to
handle recursive procedures with BAM, the cache is directly used as an important
part of the analysis, because information about already analyzed parts of recursive
blocks is necessary to avoid endless unrolling of a recursive procedure.

2.4.5 Reduce and Expand Operator

The analysis of BAM uses the two contrary operators reduce : B ×E ×Π→ E ×Π
and expand : (E × Π)× (B × E × Π) → E × Π, whose main purpose is to improve
the cache-hit-rate. As shown in Figure 2.4 the initial state eI with precision πI of a
block B is reduced with the operator reduce to an abstract state ei with precision πi.
With reduce unnecessary information of an abstract state eI and its precision πI

is removed when entering a block. The importance of some information depends
on the responsible analysis. For example variables, predicates or levels of the call
stack that are not accessed inside the entered block might be good candidates to be
removed from the abstract state and its precision. The block B is analyzed with
a new sub-analysis (a CPA-Algorithm with the transfer relation B

) starting at the

19

2 Background

(eI , πI)
B

��

reduce // (ei, πi)
B

��

(eO, πO) (eo, πo)
expand

oo

Figure 2.4: Schematic diagram of the operators reduce and expand

initial state ei with precision πi and returning abstract output states eo with their
precisions πo. After the sub-analysis terminated, the operator expand re-adds the
information to eo and πo that was removed with reduce at the block entry, to get
the abstract state eO with a precision πO.
To guarantee the soundness of the analysis the operators reduce and expand have

to fulfill the following requirement:

(reduce(B, e, π) = (e′, π′) ∧ expand(e, π,B, e′, π′) = (e′′, π′′))⇒ (e v e′′)

If we have a block B, reducing an abstract state e (with precision π) and expanding
the result e′ (with precision π′) again is over-approximating the abstract state e itself.
Each analysis that implements the operators reduce and expand has to fulfill this
requirement, otherwise the soundness of the whole analysis is not ensured.
The default BAM analysis applies the operators reduce and expand to get a higher

cache-hit-rate. BAM also works correctly (but maybe slower due to cache misses), if
those operators were omitted (i. e. return identities of the given abstract states and
precisions). Therefore we define two operators reduceid(B, eI , πI) := (eI , πI) and
expandid(eI , πI , B, eo, πo) := (eo, πo), where the abstract states eI and eo represent
the (not reduced) input state and the (not expanded) output state for the analysis
of block B with their precisions πI and πo, respectively. The operators reduceid and
expandid fulfill the given requirement for soundness.
For the analysis of recursive procedures it is at least necessary to reduce and

expand the information about the call stack to get coverage information in order to
abort unrolling recursive procedures.

2.4.6 BAM-CPA

The integration of BAM into CPACHECKER is done as a CPA, similar to many other
analyses. The BAM-CPA DBAM = (DBAM , BAM ,mergeBAM , stopBAM) can be
used in every algorithm provided by the framework, for example as CPA within the

20

2.4 BAM - Block-Abstraction Memoization

CEGAR-Algorithm (Algorithm 2). In the following the basic components of the
BAM-CPA DBAM are described.

BAM-CPA as Wrapper-CPA

The BAM-CPA DBAM is implemented as wrapper around another (more precise)
CPA Dw = (Dw,Πw, w,mergew, stopw, precw) that performs a further analysis
of the program (like tracking variables or function calls). The wrapped CPA Dw
uses the abstract domain Dw = (Cw, Ew, [[·]]w) defined as before by a set Cw of
concrete states, a lattice Ew = (Ew,vw,tw,>w) with a set Ew of elements and a
concretization function [[·]]w. Additionally the wrapped CPA Dw needs to implement
the operators reducew and expandw, which must fulfill the previously described
requirement of the abstract version of reduce and expand.
If the BAM-CPA is used with the CEGAR-Algorithm (described in Section 2.3),

the wrapped CPA Dw has to be the ARG-CPA DARG, because CEGAR depends
on tracking relations between abstract states. As the CEGAR-Algorithm is the
principal (and currently only) use case of BAM in CPACHECKER, there is currently
no support for other wrapped CPAs Dw in the BAM-CPA DBAM than the ARG-
CPA DARG. As the ARG-CPA itself is also wrapping another CPA, more complex
analyses can be configured by combining several nested CPAs.

Abstract Domain and Abstract State There is no need to store any information of
BAM itself in an abstract state. BAM uses the abstract domain Dw of its wrapped
CPA Dw, which is the ARG-CPA DARG in all relevant cases.

Merge and Stop Operator The definition of separate operators mergeBAM and
stopBAM for BAM is unnecessary, because they are only forwarded to their coun-
terparts mergew and stopw in the wrapped CPA Dw.

Transfer-Relation The most important part of BAM is the transfer relation, be-
cause most other components of BAM just forward to their wrapped counterparts.
In contrast to other edge-based transfer relations, the transfer relation BAM of
BAM does not always only return the successors e′ ∈ Ew with e

g
 BAM e′ for an

abstract state e ∈ Ew such that e′ is reachable from e via a single edge g ∈ G in the
CFA. The successors e′ of an abstract state e at an input location lin ∈ In(B) of a
block B can also be the abstract states e′ ∈ Ew with e B

 BAM e′ at the output loca-
tions lout ∈ Out(B) of the block, i. e. there can be several edges (and thus multiple

21

2 Background

ramified and merging paths) between the abstract state e at lin and its successor e′

at lout.
The algorithms of BAM use some global variables that are explained here:

• The cache Cache ⊆ B × E ×Π→ 2E × 2E denotes the central data structure
of BAM and is empty before the analysis starts.

• The block Bcur ∈ B represents the block of the current analysis. Whenever
a new sub-analysis for a block starts or terminates, this variable is updated.
The initial value of Bcur is Null.

Depending on the current program location, the transfer relation chooses between
three possibilities that can be seen in Algorithm 3.

Algorithm 3: BAM (e, π)
Input : an abstract state e with a precision π
Output : succeeding abstract states of e
Variables: a program location l ∈ L

1 l := location(e)
2 if Bcur 6= Null ∧ l ∈ Out(Bcur) then

// output location: leave block Bcur
3 return ∅
4 else if ∃B ∈ B : l ∈ In(B) then

// input location: enter block B
5 return analyseBlock(B, e, π, l)
6 else

// forward to wrapped transfer relation
7 return {e′|e w (e′, π)}

Algorithm 4: analyseBlock(B, eI , πI)
Input : a block B that should be analyzed,

an abstract state eI with a precision πI
Output : abstract successors of the abstract states of eI
Variables: two sets reducedResult ⊆ E ×Π and blockResult ⊆ E ×Π

1 (ei, πi) := reduce(B, eI , πI)
2 reducedResult := getReducedResult(B, ei, πi)
3 blockResult := {expand(eI , πI , B, eo, πo)|(eo, πo) ∈ reducedResult}
4 return blockResult

22

2.4 BAM - Block-Abstraction Memoization

Algorithm 5: getReducedResult(B, ei, πi)
Input : a block B that should be analyzed,

a reduced abstract state ei with a reduced precision πi
Output : result abstract states of e
Variables: four sets R0, W0, targetStates, blockResult (each of them ⊆ E×Π)

1 if Cache contains (B, ei, πi) then
2 (R0,W0) := Cache(B, ei, πi)
3 else
4 R0 := {(ei, πi)},W0 := {(ei, πi)}
5 (reached,waitlist) := CPA(DBAM , R0,W0)
6 Cache(B, ei, πi) := (reached,waitlist)
7 targetStates := {(et, πt) ∈ reached|isTarget(et)}
8 if targetStates = ∅ then
9 blockResult := {(eo, πo) ∈ reached|location(eo) ∈ Out(B)}

10 else
11 blockResult := targetStates
12 return blockResult

If the current program location is an output location lout ∈ Out(Bcur) of the
current block Bcur, there are no succeeding abstract states (in the current block)
and an empty set ∅ is returned by the transfer relation. The reason for this behavior
is that, if the current CPA-Algorithm terminates because of an empty waitlist, i. e.
no more successors are found, the abstract states eo at the output locations lout are
filtered from the current set reached and used by the wrapping analysis as basis for
the successors of the current block Bcur. They will be expanded and used as output
states of the current block in the next outer block.
If the current program location is an input location lin ∈ In(B) of a block B, the

transfer relation enters the block B and computes its abstraction, i. e. the abstract
states at the output locations of the block. As shown in Algorithm 4, the operator
reduce is applied to the current abstract state e and π get a new abstract state ei
and its precision πi. Algorithm 5 tries to get a result for the key (B, ei, πi) from the
cache. In case of a cache miss the abstract state ei and the precision πi are used as
basis for the new sets reached and waitlist. In case of a cache hit, the sets reached
and waitlist are taken from the cache. The CPA-Algorithm 1 is executed with the
sets reached and waitlist, and uses the same BAM-CPA DBAM again to perform its
analysis. After the algorithm has terminated, a cache update is performed: For the
key (B, ei, πi) the value (reached,waitlist) is stored in the cache. If target states
are found during the analysis of the block, they are extracted from the resulting

23

2 Background

set reached and used as abstract states eo for further processing. Otherwise the
set reached is filtered for abstract states eo (with their precisions πo) at program
locations lout ∈ Out(B). In Algorithm 4 the operator expand is applied on the
abstract states eo with precision πo to get the result of the block, i. e. abstract
states eO with precision πO at the program location lout ∈ Out(B). The resulting
abstract states eO are returned as successors of e.
If the current program location is neither an input location lin nor an output

location lout of a block, the transfer relation BAM in Algorithm 3 just forwards to
the wrapped transfer relation w and returns its result.

2.4.7 BAM with CEGAR

BAM was developed to work with the CEGAR-Algorithm 2. Thus BAM has to
provide methods to get and analyze a counterexample, and to update abstract states
and the set reached during the refinement procedure. The default refinement has
to handle one set reached and one set waitlist for the whole analysis. With BAM
there is at least one set reachedB and one set waitlistB for every analyzed block B.
If a block is analyzed several times with different initial abstract states or precisions,
there exist also several distinct sets for this block.
BAM abstracts from these details and provides a "normal" counterexample and the

corresponding sets reachedview and waitlistview for CEGAR. The implementation
is hidden behind the default interface of the expected data structure and forwards
every (important) modification of the counterexample and the sets reachedview and
waitlistview towards the corresponding sets of the blocks’ analyses that are updated
accordingly. The refinement of the sets reachedview and waitlistview is executed as
a lazy refinement that changes only the necessary parts of the corresponding sets
of the blocks’ analyses and keeps as much as possible unchanged for further cache
accesses. The cache might also be updated during the refinement.

2.5 Floyd-Hoare Logic

Floyd-Hoare logic [20, 21] is a formal system that consists of a set of logical rules
(Hoare’s rules) for proving the correctness of computer programs. This section
provides basic information about Hoare’s rules, because these rules are used to prove
the partial correctness of handling recursive procedures with BAM. Showing total
correctness would require to prove the termination of the analyzed program, which
is not necessary as our analysis checks only for reachability of abstract target states.

24

2.5 Floyd-Hoare Logic

2.5.1 Hoare-Triple

A Hoare-triple {P}T{Q}, consisting of a program statement T and two propositional
formulae P and Q, indicates that, if P is satisfied before the execution of T and T
terminates, then Q is true after T completes. P and Q are called the pre- and
the post-condition of T . A statement T can match a single program statement
like an assignment or assumption. It also can correspond to a sequence of program
statements, to a tree or DAG of program statements or to a whole function body of
the program. In those cases the pre- and postconditions are valid before and after
the whole structure, respectively.

2.5.2 Hoare’s Rules

Only three of Hoare’s proof rules are needed in this thesis. These include the rules of
consequence, for function instantiation and for recursion. Other rules concerning for
example composition of program statements, loops or branching are not considered
here. Also criteria for termination will not be analyzed with Floyd-Hoare logic.

Consequence

The rule of consequence allows to strengthen the precondition P and to weaken the
postcondition Q of a statement T .

P ′ ⇒ P {P}T{Q} Q⇒ Q′ consequence
{P ′}T{Q′}

Function Instantiation

The rule of function instantiation consists of a function f with argument a, param-
eter p, function assignment b, return value r and a function body Bf . The function
call of f with pre- and postconditions P and Q depends on the function body with
assignments of parameter p = a and return value b = r. The parameter p is used
read-only during the execution of the function body and thus has the same value
after the execution. Instead of only two identifiers p and r there can also be mul-
tiple parameters and return values. They are omitted here for simplicity, however
the formulae would contain terms for each of them.

{P ∧ p = a}Bf{Q ∧ p = a ∧ b = r}
functioncall

{P}b = f(a){Q}

25

2 Background

Recursion

The rule of recursion indicates that, if the body of a function f satisfies P and Q
(including the assignments of parameters and return values) under the condition
that all recursive calls to the function f satisfy P and Q, then the whole function f
satisfies P and Q. Because of the recursive call of f equal identifiers exist from
the calling and called function f and cause collisions. For simplicity we assume
an implicit renaming and omit collisions of identifiers in the proof. This is only
possible, because the renaming (or an equivalent operation) can be shifted into a
different part of the analysis and is handled there in a sound way.

{P}b = f(a){Q} ` {P ∧ p = a}Bf{Q ∧ p = a ∧ b = r}
recursion

{P}b = f(a){Q}

2.6 Interpolation Strategies

Interpolation denotes a special type of boolean formulae (called interpolants) re-
trieved as intermediate part between other boolean formulae, whose conjunction is
unsatisfiable. The basic idea of interpolation is to get only the necessary informa-
tion from one part of the formulae and build an interpolant from it such that the
conjunction of the interpolant with the other part of the formulae is unsatisfiable.
Depending on the type of interpolation additional properties must be fulfilled.
Significant research was done to find algorithms for computing interpolants for

various theories in SMT solving, such as integer, real number, bit-vector or even
array theory and also theories with linear arithmetic, quantifier-free logic or unin-
terpreted functions [10,13,23]. Interpolation of boolean formulae is not deterministic
in general, i. e. there can be several distinct interpolants for the same given formu-
lae. The choice of interpolants depends on the implementation of the SMT solver
and the interpolating procedure. In general there are two steps necessary to get an
interpolant: First the proof for an unsatisfiable set of formulae is computed by the
SMT solver and then the interpolant is extracted from the proof. It is possible to
receive several interpolants from the same proof for different partitions of formulae.
In the following we always assume that the solver has already computed the proof
for the unsatisfiable set of formulae.
In this section several distinct interpolation strategies are explained. The strate-

gies differ in the alignment of formulae and the computation of interpolants. The ac-
tual implementation to compute interpolants from proofs will not be shown here, but
can be looked up in articles on interpolation and proofs from SMT solvers [13, 24].

26

2.6 Interpolation Strategies

First Craig interpolants are described, then a generalization on sequential inter-
polants and tree interpolants follows. For each of them the most important prop-
erties are mentioned. Their importance and usage for the program analysis (and
especially predicate analysis) is shown in a later section.

2.6.1 Craig Interpolation or Binary Interpolation

The simplest (and most known) definition of interpolation uses only two boolean
formulae ϕ+ and ϕ− such that ϕ+ ∧ ϕ− is not satisfiable. For such formulae
ϕ+ and ϕ− there always exists a boolean formula (called a Craig interpolant)
ψ = ITPCraig(ϕ+, ϕ−), which consists of only symbols common to ϕ+ and ϕ− and
contains the necessary information from ϕ+ such that it contradicts ϕ−. A Craig
interpolant is formally defined with three properties:

• the implication ϕ+ ⇒ ψ holds,

• the conjunction ψ ∧ ϕ− is unsatisfiable, and

• the symbols of the interpolant ψ appear in ϕ+ and in ϕ−.

ϕ+ ϕ−
ψ

Figure 2.5: Craig interpolant

2.6.2 Sequential Interpolation

Binary interpolation is often insufficient for applications and thus there is an ex-
tension to sequential interpolation, where several formulae are given as input and
the interpolation procedure returns a sequence of interpolants with additional prop-
erties. Figure 2.5 and Figure 2.6 show the difference in the layout of binary and
sequential interpolation. Given a sequence ϕ1, ... ϕn of n boolean formulae with
an unsatisfiable conjunction

n∧
i=1

ϕi, there exists a sequence ψ1, ψ2, ... ψn−1 of inter-
polants such that

• the implications ϕ1 ⇒ ψ1, ψk−1 ∧ ϕk ⇒ ψk and ψn−1 ∧ ϕn ⇒ ⊥ hold, and

• the symbols of the interpolant ψk are common to ψk−1 ∧ ϕk and
n∧

i=k+1
ϕi.

27

2 Background

ϕ1 ϕ2 · · · ϕn−1 ϕn
ψ1 ψ2 ψn−2 ψn−1

Figure 2.6: Sequence of formulae with interpolants

Based on the two rules we can conclude further assumptions that are more similar
to those known from binary interpolants. However these additional assumptions
alone are not sufficient to produce an inductive sequence of interpolants. In the
following the additional assumptions are given:

•
k∧
i=0

ϕi ⇒ ψk

• the conjunction ψk ∧
n∧

i=k+1
ϕi is unsatisfiable

• the symbols of the interpolant ψk are common to
k∧
i=0

ϕi and
n∧

i=k+1
ϕi

Most SMT solvers with support for interpolation allow to generate such an induc-
tive sequence of interpolants through their API or through receiving several binary
interpolants for distinct partitions of formulae from the same proof, i. e. computing
all interpolants after the same (unsatisfiable) SAT check. As the second case depends
on the internal implementation of the SMT solver and interpolation is not deter-
ministic in general, there is no guarantee for an inductive sequence of interpolants
through repeated binary interpolation in an arbitrary logic of the SMT solver. How-
ever this seems to work for most SMT solvers and the most used theories. Thus it
is the current default implementation in CPACHECKER and for example successfully
applied in the predicate analysis, which is described in Section 4.5.

2.6.3 Tree Interpolation

In computer science a "tree" is a coherent hierarchical graph, where the root node
has no parent node and each other node has exactly one parent node. The concept
of interpolating a sequence of formulae can be extended to tree interpolation, where
each node of the tree contains a boolean formula of the interpolation problem. Then
sequential interpolation is a special case of tree interpolation with a degenerated
tree (see Figure 2.7) that has only one path, i. e. there is at most one child for each
node in the tree, and the root node of the tree corresponds to the last formula of
the sequence.

28

2.6 Interpolation Strategies

ϕn

ϕn−1

· · ·

ϕ2

ϕ1

ψ1

ψ2

ψn−2

ψn−1

Figure 2.7: Sequential interpolation problem of Figure 2.6 as degenerated tree,
each node vi contains its labeling L(vi) and underneath I(vi)
(except vn, which is the root of the tree with labeling I(vn) = ⊥)

Tree interpolation is applied for verification of programs with more complex con-
trol flow like recursive [17] or multi-threaded programs [15]. Here only the descrip-
tion and properties of tree interpolants are given, their importance and usage for
program analysis is shown in a later chapter. Especially the predicate analysis with
BAM needs tree interpolation to analyze recursive procedures in a sound way (more
details follow in Section 4.5.4).
The input for a tree interpolation problem is defined with a tree T = (V,E),

consisting of a set V of nodes and a set E ⊆ V × V of edges pointing from child to
parent nodes, and a labeling L : V → Formula that assigns a boolean formula ϕv
to each node v of the tree. The set of nodes in the subtree of a root-node v is
denoted with st(v) ⊆ V and includes the node v. Given a tree T = (V,E) with an
unsatisfiable conjunction

∧
v∈V

L(v), there exists a labeling I : V → Formula such

that

• I(vr) = ⊥, where vr is the root of T ,

• the implication
∧

(w,v)∈E
I(w) ∧ L(v)⇒ I(v) holds, and

• the symbols of an interpolant I(v) are common to
∧

(w,v)∈E
I(w) ∧ L(v) and∧

u/∈st(v)
L(u).

29

2 Background

ϕ9

ϕ8

ϕ7ϕ6ϕ5

ψ5 ψ6 ψ7

ϕ4

ϕ3

ϕ2ϕ1

ψ1 ψ2

ψ3

ψ4 ψ8

Figure 2.8: Small tree of formulae with interpolants with only 9 nodes as example,
each node vi contains its labeling L(vi) and underneath I(vi)
(except v9, which is the root of the tree with labeling I(v9) = ⊥)

Based on these basic rules we can conclude further rules that are weaker, but more
similar to those known from binary and sequential interpolation:

• the implication
∧

v∈st(v)
L(v)⇒ I(v) is valid, i. e. the interpolant I(v) is implied

by the subtree rooted at node v,

• the formula I(v) ∧
∧

u/∈st(v)
L(u) is not satisfied, and

• the symbols of the interpolant I(v) are common to
∧

w∈st(v)
L(w) and

∧
u/∈st(v)

L(u),

i. e. occur inside and outside of the subtree rooted at node v.

Figure 2.8 shows a small example tree with only a few nodes, which are labelled
with formulae ϕi and corresponding interpolants ψi underneath them. The definition
of tree interpolants works for trees with arbitrary branching, but later only binary
trees are used, i. e. each node has at most two children. They are sufficient to analyze
programs with (recursive) function calls.
In the following two procedures for tree interpolation are explained to directly

receive tree interpolants for an unsatisfiable set of formulae with every SMT solver
supporting Craig interpolation. First well-scoped interpolation is described, which
depends on the solver’s internals. Then an algorithm is provided that guarantees
valid tree interpolants, but has some computational overhead due to a larger number
of SAT queries.

30

2.6 Interpolation Strategies

Well-Scoped Interpolation

Well-scoped interpolation [18] was one of the first approaches to handle procedures
in interpolation. The idea of well-scoped interpolation is based on choosing sev-
eral distinct partitionings for the formulae to generate distinct interpolants. This
interpolation strategy can be defined as a tree interpolation problem, because the
structure for choosing the partitions matches a tree. The tree corresponds to the an-
alyzed program’s control flow (i. e. function calls) such that all symbols (identifiers)
of an interpolant are in the correct scope at the interpolation point. The benefit
of this interpolation strategy is that only one proof (and thus only one query for
satisfiability) is needed to generate all interpolants. As this strategy depends on the
internal implementation of the SMT solver’s proof, the interpolants received with
well-scoped interpolation may not fulfill all requirements on tree interpolation, be-
cause there is no guarantee to retrieve valid tree interpolants for an arbitrary theory.
Until now the current implementation of well-scoped interpolation in CPACHECKER

did not produce any invalid tree interpolant.
The strategy to get well-scoped interpolants from a tree of formulae is given in

Algorithm 6. First all formulae are asserted in the SMT solver to get a proof P
for unsatisfiability. Then this (constant) proof P is used to get Craig interpolants
ITPPCraig(ϕ+, ϕ−) for all pairs of formulae ϕ+ and ϕ−, where ϕ+ is the conjunction
of all formulae of the subtree st(v) for a node v ∈ V and ϕ− is the conjunction of
the rest of the tree.

Algorithm 6: ITPwell−scoped(T, vr, L)
Input : a tree T = (V,E) with a root-node vr ∈ V ,

where V denotes the set of nodes and E denotes the set of edges
Output : a labeling I : V → Formula

that assigns tree interpolants to all nodes of the tree
Variables: the (constant) proof P of a SAT query for an infeasible set of

formulae
1 P := checkSAT (st(vr))
2 foreach v ∈ V do
3 ϕ+ :=

∧
w∈st(v)

L(w)

4 ϕ− :=
∧

w 6∈st(v)
L(w)

5 I(v) := ITPPCraig(ϕ+, ϕ−)
6 return I

31

2 Background

Tree Interpolation through Binary Interpolation

Tree interpolants can be computes with binary interpolation and several distinct
solver-queries. This causes some overhead for computation depending on the SMT
solver’s implementation, because multiple solver-queries are more expensive than
direct tree interpolation, but with this approach tree interpolants can be computed
with all SMT solvers that support binary interpolation. An algorithm to compute
tree interpolants is given by Blanc et al [10]. There is a similar algorithm for nested
interpolants [17] that is especially written for recursive procedures and thus directly
refers to function calls and -returns in its description. As this is the theoretical
description, program-analysis-specific parts are dismissed here and mentioned in a
later section. Here the basic idea of the algorithm for general tree interpolation is
described: Algorithm 7 computes interpolants from the leaf-nodes towards the root-
node of the tree and uses already computed interpolants for further proceeding. In
contrast to Algorithm6 for well-scoped interpolants, Algorithm 7 re-uses already
computed interpolants and thus needs several distinct (unsatisfiable) SAT queries
to get the needed proofs. The number of queries coincides with the number of tree
nodes.
The algorithm implemented in CPACHECKER is based on the version described

in Algorithm 7, but differs in some details to be more efficient and to benefit from
available data-structures for the tree. The loop (line 3 in Algorithm 7) can be re-
placed by a post-order-visitation of the tree such that all children c of a node v ∈ V
are already done, when the interpolant of the node v itself is computed. As further
optimization the recursive function S(V ′, v) in Algorithm 8 is replaced through it-
erations over (parts of) the post-order-sorted tree and a stack of already computed
interpolants.

2.6.4 Interpolation in SMTLIB Version 2 and SMT solvers

As interpolants can be retrieved from a proof after checking satisfiability of for-
mulae [24], interpolation is supported directly by several SMT solvers, for example
MATHSAT1, PRINCESS2, SMTINTERPOL3 and Z34. Table 2.1 shows the available in-
terpolation strategies for those SMT solvers. All four SMT solvers are integrated in
CPACHECKER and the supported strategies are usable via a common API.

1http://mathsat.fbk.eu - last check: March 5, 2015
2http://www.philipp.ruemmer.org/princess.shtml - last check: March 5, 2015
3http://ultimate.informatik.uni-freiburg.de/smtinterpol - last check: March 5, 2015
4http://z3.codeplex.com - last check: March 5, 2015

32

http://mathsat.fbk.eu
http://www.philipp.ruemmer.org/princess.shtml
http://ultimate.informatik.uni-freiburg.de/smtinterpol
http://z3.codeplex.com

2.6 Interpolation Strategies

Algorithm 7: ITPtreeCraig(T, vr, L) (from [10], Algorithm 1)
Input : a tree T = (V,E) with a root-node vr ∈ V ,

where V denotes the set of nodes and E denotes the set of edges
Output : a labeling I : V → Formula

that assigns tree interpolants to all nodes of the tree
Variables: the proof P of a SAT query for an infeasible set of formulae

1 foreach v ∈ V do
2 I(v) :=∞
3 foreach v ∈ V with I(v) =∞ and ∀(c, v) ∈ E : I(c) 6=∞ do
4 ϕ+ := S(st(v), v)
5 ϕ− := S(V \ st(v), vr)
6 P := checkSAT (ϕ+ ∧ ϕ−)
7 I(v) := ITPPCraig(ϕ+, ϕ−)
8 return I

Algorithm 8: S(V ′, v) (from [10], Algorithm 2)
Input : a set V ′ ⊆ V of nodes and a node v ∈ V ′

(the tree T = (V,E) and the labelings L and I are also used)
Output : the interpolant of v or the conjunction of the label of v and its

children

1 return


I(v), if I(v) 6=∞∧
(w,v)∈E,w∈V ′

S(V ′, w) ∧ L(v), otherwise

SMT solver binary sequential tree
MATHSAT X
PRINCESS X X
SMTINTERPOL X X X
Z3 X X X

Table 2.1: Interpolation strategies supported by SMT solvers in CPACHECKER

33

2 Background

MATHSAT is one of the mature solvers, however it only supports binary interpo-
lation directly and the implementation of other interpolation strategies is based on
this. There exists a proposal from Christ and Hoenicke [12] to add a new set of
commands to SMT LIB version 2 [3], which is a standardized input format for SMT
solvers. The commands include queries for interpolation and receiving the types of
interpolation that are supported by the solver like binary, sequential or tree inter-
polation. Due to the importance of tree interpolation for several use cases, some
solvers (for example SMTINTERPOL and Z3) already support it directly through
their API or even on command line. The implementations in SMTINTERPOL and Z3
map each given binary or sequential interpolation problem onto a tree interpolation
problem before solving. These two tools supports tree interpolation in all theories
implemented in the solver.
The interpolation procedure in Z3 has still some restrictions that however do

not affect the theory of this thesis and the implementation in CPACHECKER. For
example each nullary function symbol in Z3 may only occur along one path from the
root to a leaf-node and all non-nullary function symbols are considered as global.
Some analyses in CPACHECKER (for example predicate analysis) encode program
variables as nullary function symbols and uninterpreted functions as non-nullary
function symbols.

34

3 Analyzing Recursive Procedures with
Block-Abstraction Memoization

The basic analysis of this thesis is an extension of BAM that is able to analyze
programs with recursive procedures. Similar to BAM, the extension also wraps
another more precise analysis (like value or predicate analysis) and can be used
within the CEGAR approach. This chapter starts with a recursive example program
that is analyzed with BAM combined with the value analysis. Then the analysis of
recursive functions as extension of BAM is explained with the fixpoint algorithm and
the operator rebuild. At last the implementation in the CPACHECKER framework is
described and the soundness of the added fixpoint algorithm is proven, i. e. why no
valid target state is missed in an abstract analysis.

3.1 Motivating Example

This section provides an introducing example in Figure 3.1 to get an overview of the
problem of recursion and its solution through the fixpoint algorithm in BAM. Due to
its simplicity the value analysis is chosen as underlying analysis, however CEGAR is
omitted in favor of using a full precision, which tracks all available variables immedi-
ately. The example program contains a non-deterministically initialized variable a,
which is used as input for the recursive function f . The function f must be unrolled
twice to reach the target location represented by a call of the function error().
The CFA for the example program is given in Figure 3.2. Figures 3.3 and 3.4 show

the development of the (simplified) ARGs for two iterations of the later described
fixpoint algorithm (Algorithm 10). The label of a node in the ARGs consists of three
parts: the first line contains two numbers that are the unique id and the program
location (number of the CFA-node) of the corresponding abstract state, the second
line represents the current call stack and followed by a list of all assignments available
in the value analysis. If a variable is assigned >, the variable is in the current scope,
however its value is unknown. A special variable ret is used for the assignment of
the return value at function returns.

35

3 Analyzing Recursive Procedures with Block-Abstraction Memoization

1 void main () {
2 i n t a = nondet () ;
3 i n t b = f (a) ;
4 i f (b == 1) {
5 e r r o r () ;
6 }
7 }
8

9 i n t f (i n t x) {
10 i f (x <= 0) {
11 re turn 0 ;
12 } e l s e {
13 i n t tmp = f (x − 1) ;
14 re turn tmp + 1 ;
15 }
16 }

Figure 3.1: Example program with recursion

0

1

2

3 error 4

a = nondet()

b = f(a)

[b 6= 1] ![b 6= 1]

Amain
10

11 12

13

14

[x ≤ 0] ![x ≤ 0]

tmp = f(x− 1)

return(0)

return(tmp + 1)

Af

call f

return from f

call f

return from f

Figure 3.2: CFA for the example program in Figure 3.1

36

3.1 Motivating Example

1−0
[main]

2−0
[main]

3−1
[main]
a = >

a = nondet()

4−10
[f,main]
a = >
x = >

5−10
[f]

x = >

6−11
[f]

x = >

7−12
[f]

x = >

call f

[x ≤ 0] ![x ≤ 0]

9−10
[f, f]
x = >

10−10
[f]

x = >

call f

8−14
[f]

x = >
ret = 0

11−14
[f,main]
a = >
x = >
ret = 0

return(0)

12−2
[main]
a = >
b = 0

13−4
[main]
a = >
b = 0

14−4
[main]
a = >
b = 0

return
from f

![b == 1]

b
=
f(a)

function
sum

m
ary

Bmain

Bf

Bf

reduce

reduce

reduce

expand
rebuild

expand
rebuild

coverage

Figure 3.3: ARG produced by the value analysis (first iteration of fixpoint algo-
rithm), each node contains its id and program location in the first line,
followed by the call stack and available assignments

37

3 Analyzing Recursive Procedures with Block-Abstraction Memoization

The effects of the operators reduce and expand are visible for abstract states at
the program locations 10, 14, and 4, which are the input and output locations of
the function blocks. The operator reduce causes the removing of all function scopes
except the current one from the call stack and the assignments are also filtered for
only the local variables (in the example this is only the symbol x). Those actions
are reverted by the operators expand and rebuild, when the blocks are left.

In the first iteration of the fixpoint algorithm BAM explores the program’s state
space along the edges of the CFA, starting from the initial program location l0 ∈ L
and entering the main block Bmain. When the block Bf is entered the second time
(with the abstract state with id 10), i. e. the function f would be unrolled again as a
recursive procedure, the fixpoint algorithm notices that the reduced initial abstract
state is covered by the abstract state from the first function call and tries to get an
already computed result from the cache for reduced initial abstract state. As the
analysis has just started, the cache is empty and thus the unrolling is aborted. The
second branch of the function f is not recursive and can be analyzed further. The
path via the program locations 11, 14, 2, and 4 leads to the program’s exit without
reaching a target location.

Now the fixpoint algorithm starts to update the abstract states in the sets reachedi
and waitlisti such that the program location of the recursive function call (here
labeled with number 10) is re-explored in the next iteration. The second iteration
benefits from the cache and the update through the fixpoint algorithm, because only
the abstract states at input and output locations of blocks must be re-computed. In
the example this includes all abstract states with the ids 1, 4, and 9 at the program
locations 0 and 10. Several abstract states remain untouched and are not re-explored
in the current analysis. In Figure 3.4 those abstract states are marked gray .

When the fixpoint algorithm reaches the recursive function call with the coverage
relation in this iteration, a cache entry for the reduced initial abstract state is found
and can be used to summarize the function’s execution. The abstract states of
the summary are an under-approximation of the function exit’s state space, because
only a subset of all possible abstract states is available as cached result of the block’s
analysis as only the non-recursive part of the block was analyzed in the first iteration
of the fixpoint algorithm.

When BAM leaves a function block in further computation, it compares the cur-
rent set of abstract states with a perhaps previously computed and cached result of
the block’s analysis. In this example, this would be done when leaving the outer
block Bf at program location 14. If the comparison shows that there exist new ab-

38

3.1 Motivating Example

15−0
[main]

16−0
[main]

3−1
[main]
a = >

a = nondet()

17−10
[f,main]
a = >
x = >

18−10
[f]

x = >

6−11
[f]

x = >

7−12
[f]

x = >

call f

[x ≤ 0] ![x ≤ 0]

19−10
[f, f]
x = >

20−10
[f]

x = >

8−14
[f]

x = >
ret = 0

21−14
[f, f]
x = >
ret = 0

cache
hit

call f

8−14
[f]

x = >
ret = 0

11−14
[f,main]
a = >
x = >
ret = 0

return(0)

22−13
[f]

x = >
tmp = 0

23−14
[f]

x = >
ret = 1

24−14
[f,main]
a = >
x = >
ret = 1

return
from f

return(tmp+ 1)

12−2
[main]
a = >
b = 0

13−4
[main]
a = >
b = 0

14−4
[main]
a = >
b = 0

return
from f

![b == 1]

25−2
[main]
a = >
b = 1

26−3
[main]
a = >
b = 1

27−3
[main]
a = >
b = 1

errorerror

return
from f

[b == 1]

b
=
f(a)

function
sum

m
ary

tm
p

=
f(x
−

1)
function

sum
m
ary

Bmain

Bf

Bf

reduce

reduce

reduce

expand
rebuild

expand
rebuild

expand
rebuild

expand
rebuild

expand
rebuild

coverage

Figure 3.4: ARG produced by the value analysis (second iteration of fixpoint algo-
rithm), each node contains its id and program location in the first line,
followed by the call stack and available assignments

39

3 Analyzing Recursive Procedures with Block-Abstraction Memoization

stract states in the current analysis, which are not covered by any previously reached
abstract states, the fixpoint algorithm has to iterate again. However in this case,
the target state is found at the end of the second iteration of the fixpoint algorithm,
thus the analysis reports the counterexample and terminates.

3.2 Groundwork and Necessary Preconditions in BAM

This section provides an overview about the preconditions needed for the fixpoint
algorithm of BAM to handle recursive procedures.

3.2.1 Most Outer Block

BAM divides the CFA into blocks, which might be nested. The analysis of a block
itself is done as part of the transfer relation BAM of BAM. Thus BAM controls
the analysis and its result. The previous definition of BAM did not use a most outer
block for the whole CFA and the first block started somewhere in the middle of the
interprocedural CFA A. This avoids using the operators reduce and expand of BAM
completely if no block is reached during the analysis.
For this thesis a block Bmain for the interprocedural CFA A was introduced such

that Bmain contains all program locations of the program and thus surrounds all
other blocks. The block Bmain has one input location l0 with In(Bmain) := {l0},
which is the initial location of the CFA A. If the program terminates, there is one
output location lexit with Out(Bmain) := {lexit}, which is the exit location of the
CFA A, i. e. the program location after the return statement of the main method. If
the program does not terminate (perhaps due to an endless loop), there is no output
location and Out(Bmain) := ∅.
As the block Bmain includes all nodes of the CFA A, it also includes every possible

program location of a target state. If BAM encounters a target state, this abstract
state is returned as successor for the current block and transitively also for each
wrapping block until the most outer block Bmain. Thus for the initial abstract
state el0 at the initial program location l0, the transfer relation BAM of BAM
returns either a single target state (from any location inside the program), the
abstract states at the exit location lexit, or no abstract state at all (if the program is
SAFE and not terminating). After the termination of the most outer CPA-Algorithm,
the set reachedmain of that algorithm only consists of the initial abstract state el0
and its successors for the transfer relation BAM of the block Bmain.

40

3.3 Transfer-Relation of BAM with Support for Recursive Procedures

3.2.2 Blocks for Functions

The definition of a block in a program analyzed with BAM allows to choose blocks
and their size very loosely. The original approach of BAM does not distinguish
different types of blocks. However as recursion is a property of functions, we now
need to handle blocks for functions in a special way.

As described earlier, each function f of a program corresponds to its CFA Af .
A "function block" Bf consists of the body of the function f and includes all further
(transitive) function calls in the body. If a function f does not contain calls to
further functions, the CFA Af and the block Bf consist of an identical set of pro-
gram locations and edges, i. e. for a CFA Af = (Lf , lf0, Gf) with a function entry
location lf0 the corresponding block is defined as Bf = (Lf , Gf). If other functions
are called from the function f , the blocks for the called functions are part of the
current block Bf such that all program locations and edges of nested blocks and
corresponding function’s call- and return-edges are included in Bf .

The input location of a function block Bf is the function entry lf0 of the CFA Af ,
i. e. In(Bf) = {lf0}. The only output location is the function exit lexit, where the
control flow merges after executing the function. If there is no function exit (the
control flow of the function leads into an endless loop), there is no output location,
i. e. Out(Bf) = ∅. The most outer block Bmain is the function block of the program’s
main function (including global declarations).

3.3 Transfer-Relation of BAM with Support for Recursive
Procedures

To analyze recursive procedures the transfer relation BAM of BAM, which is de-
fined in Section 2.4.6, is modified to take care of possible recursion when processing
function blocks. The new transfer relation BAMrec uses an additional fixpoint
algorithm (Algorithm 10), which under-approximates the state space of recursive
functions and (implicitly) increments the number of unrollings of recursive function
calls until there are no new abstract states during the analysis or a target state is
found. This guarantees that either the absence of target states in the program or
allows a further analysis of the found error-path.
This section describes the changes in BAM and the fixpoint algorithm. The

changes in the algorithms towards the original BAM-CPA DBAM are highlighted in
the algorithms 9, 11 and 12. Then a (partial) proof for soundness of the procedure
is given, where the theory of the fixpoint algorithm (Algorithm 10) is analyzed.

41

3 Analyzing Recursive Procedures with Block-Abstraction Memoization

Algorithm 9: BAMrec (e, π), modified version of Algorithm 3
Input : an abstract state e with a precision π
Output : succeeding abstract states of e
Variables: a program location l ∈ L,

a set blockResult ⊆ E ×Π
1 l := location(e)
2 if blockStack = [] ∧ l = l0 then

// use fixpoint algorithm to handle recursive function calls
3 return fixpoint(Bmain, e, π, l)
4 else if Bcur 6= Null ∧ l ∈ Out(Bcur) then

// leave block Bcur
5 return ∅
6 else if ∃B ∈ B : l ∈ In(B) then

// enter block B
7 return analyseBlockrec(B, e, π, l)
8 else

// forward to wrapped transfer relation
9 return {e′|e w (e′, π)}

Algorithm 10: fixpoint(Bmain, e, π, l0)
Input : the block Bmain,

an abstract state e with a precision π at program location
l0 ∈ In(Bmain), where l0 is the initial program location

Output : succeeding abstract states of e
Variables: a set blockResult ⊆ E ×Π

1 while true do
2 recursionFound := false
3 resultStatesStable := true
4 recursionUpdateStates := ∅
5 blockResult := analyseBlockrec(Bmain, e, π, l0)
6 if {(et, πt) ∈ blockResult|isTargetState(et)} 6= ∅ then

// target state reached
7 return blockResult

8 if resultStatesStable then
// fixpoint reached

9 return blockResult

10 foreach e ∈ recursionUpdateStates do
11 addStateToWaitlist(e)

42

3.3 Transfer-Relation of BAM with Support for Recursive Procedures

The algorithms of BAM use some global variables that are explained here:

• The cache Cache ⊆ B × E ×Π→ 2E × 2E denotes the central data structure
of BAM and is empty before the analysis starts.

• The block Bcur ∈ B represents the block of the current analysis. Whenever
a new sub-analysis for a block starts or terminates, this variable is updated.
The initial value of Bcur is Null.

• The stack blockStack is initially empty and consists of triples B×E×Π, which
can be pushed onto the stack or popped from it.

• The boolean variables recursionFound and resultStatesStable are used as
flags in the fixpoint algorithm.

• The set recursionUpdateStates ⊆ E is used to track the (not reduced) initial
abstract states from block entries on paths to recursive function calls.

3.3.1 Block Stack and Unrolling Recursive Function Calls

The transfer relation BAMrec maintains a stack blockStack that contains the cur-
rent nesting of blocks in the analysis with their current initial abstract states and
precisions. The stack blockStack is the basic data structure in the Algorithms 9
and 11 to avoid endless recursion that might be caused by a (too) weak precision or
a program with an actual endless recursion. When a block B is entered (and a new
analysis is started), a new element (B, ei, πi) consisting of the entered block B, the
reduced initial state ei, and its precision πi is pushed on the stack. After leaving
the block B, this element is removed from the stack again.

The fixpoint algorithm aborts the recursive analysis of a block B (started with
an initial abstract state ei and a precision πi), if the element (B, ei, πi) is covered
by another element (B′, e′i, π′i) already located in the stack, i. e. the assumptions
B = B′ and ei v e′i are valid. If the analysis would not abort the recursive analysis
due to the coverage relation, the whole analysis would never terminate, because the
abstract state ei (or another state covered by e′i) would be found again after the same
number of steps in the analysis as there were from ei to e′i. The path from e′i to ei
would repeat and the recursion would be unrolled forever in the current analysis.
When the analysis of a recursive block is aborted because of the coverage rela-

tion at a block entry, Algorithm 11 tries to get a previously computed result from
the cache to use it as function summary. If the cache does not contain a previous

43

3 Analyzing Recursive Procedures with Block-Abstraction Memoization

result, the analysis returns an empty set as result of the function execution. This
indicates that the recursion is completely aborted with this function call and only
non-recursive paths of the calling function are analyzed further. If a previous result
is found in the cache, this result is applied as function summary and returned as
result of the function execution. As the function is under-approximated through
the function summary from the previous function execution, the analysis (implic-
itly) increments the number of unwindings of the recursive function, because the
overall execution depth of the program is higher in this fixpoint iteration than when
analyzing the cached entry in a previous pass.

3.3.2 Fixpoint-Iteration

The previous version (Algorithm 3) of the transfer relation BAMrec performs only
three distinct actions depending on the current program location: either enter or
leave a block, if the current location is an input or output location of blocks, or just
forward to the wrapped CPA Dw in all other cases. As additional (fourth) case,
the transfer relation BAMrec given in Algorithm 9 now also checks for an empty
stack at the initial program location l0. This case only appears at the beginning
of the BAM analysis, before any other action is performed. Thus it is guaranteed
that the abstract state el0 is the initial abstract state of the main reached set (for
all iterations of the CEGAR loop) and that the most outer block Bmain is going to
be entered.
After entering the block Bmain, the fixpoint algorithm 10 is executed and iterates

until a target state is found or no further abstract states are reachable. In case of
a found target state, the fixpoint iteration aborts and the CEGAR-Algorithm will
analyze the reached abstract states to get counterexample and perform a refinement
if the counterexample is spurious. The second case is the actual fixpoint of the
algorithm, because, if no new abstract states are reached in the analysis (and no
target state was found), the recursive procedure of the analyzed program is proven
to fulfill the specification.
The fixpoint algorithm itself performs BAM analysis internally. As the first op-

eration in the analysis is pushing an element on the blockStack, the transfer rela-
tion BAMrec will start to analyze the block Bmain. If any of the loop conditions is
satisfied after analyzing the block Bmain, the fixpoint algorithm returns the result
of the current analysis. Otherwise an update of sets waitlistB for all blocks B is
performed, which is similar to the update of the ARGs after a successful precision re-
finement, where the (not yet reduced) initial abstract states of subtrees are re-added

44

3.3 Transfer-Relation of BAM with Support for Recursive Procedures

Algorithm 11: analyseBlockrec(B, eI , πI , l), modified version of Algorithm 4
Input : a block B that should be analyzed,

an abstract state eI with precision πI at a program location
l ∈ In(B)

Output : resulting abstract states after analyzing the block B
Variables: the sets reducedResult, expandedResult, and blockResult

(each of them ⊆ E ×Π)
1 (ei, πi) := reduce(eI , πI)
2 blockStack.push((B, ei, πi))
3 if isFunctionEntry(l) ∧ l 6= l0 then
4 if stack contains an element (B, ec, πc) with ei v ec then
5 recursionFound := true
6 if Cache contains (B, ec, πc) then
7 (reached,waitlist) := Cache(B, ec, πc)
8 else
9 (reached,waitlist) := (∅, ∅)

10 reducedResult := {(eo, πo) ∈ reached|
11 isTarget(eo) ∨ location(eo) ∈ Out(B)}
12 else
13 reducedResult := getReducedResult(B, ei, πi)
14 expandedResult := {expand(B, eI , πI , eo, πo)|(eo, πo) ∈ reducedResult}
15 ecall := getPredecessorStateFromARG(eI)
16 blockResult := {(rebuild(ecall, eI , eO), πO)|(eO, πO) ∈ expandedResult}
17 else

// loop-block or Bmain
18 reducedResult := getReducedResult(B, ei, πi)
19 blockResult := {expand(B, eI , πI , eo, πo)|(eo, πo) ∈ reducedResult}
20 if recursionFound then
21 recursionUpdateStates := recursionUpdateStates ∪ {eI}
22 blockStack.pop()
23 return blockResult

45

3 Analyzing Recursive Procedures with Block-Abstraction Memoization

Algorithm 12: getReducedResultrec(B, ei, πi), modified version of Algorithm 5
Input : a block B that should be analyzed,

a reduced abstract state ei with a reduced precision πi
Output : result abstract states of e
Variables: four sets R0, W0, targetStates, and blockResult

(each of them ⊆ E ×Π)
1 if Cache contains (B, ei, πi) then
2 (R0,W0) := Cache(B, ei, πi)
3 else
4 R0 := {(ei, πi)}
5 W0 := {(ei, πi)}
6 setBlock(DBAM , B)
7 (reached,waitlist) := CPA(DBAM , R0,W0)
8 Cache(B, ei, πi) := (reached,waitlist)
9 targetStates := {(et, πt) ∈ reached|isTarget(et)}

10 if targetStates = ∅ then
11 blockResult := {(eo, πo) ∈ reached|location(eo) ∈ Out(B)}
12 else
13 blockResult := targetStates
14 if blockResult is not covered by R0 then

// fixpoint criteria not reached
15 resultStatesStable := false

16 return blockResult

46

3.3 Transfer-Relation of BAM with Support for Recursive Procedures

to the corresponding sets waitlistB. All abstract states that have been reduced on
paths to (recursive) function calls are re-added to their corresponding sets waitlist.
This procedure is analogue to the lazy refinement procedure that is executed during
the refinement in BAM when CEGAR removes an infeasible counterexample. This
update guarantees that the whole program is analyzed again and uses entries from
the cache as basis for all sub-analysis. This causes the deeper unrolling of a possible
recursion. The algorithms re-adds only the minimal set of abstract states that are
necessary to re-compute all cache accesses on the current paths. Thus only a few
states need to be re-explored in the next iteration of the fixpoint algorithm.

3.3.3 Rebuilding Abstract States at Function-Returns

BAM uses a new operator rebuild : E × E × E → E that augments the expanded
function’s exit state eO with information from the function call state ecall and the
(not reduced) function entry state eI and returns a new abstract state eR in order
to rebuild knowledge about the outer function scope, which might be invalidated
during the function’s execution. The operator rebuild can, for example, re-assign
values from the calling scope to variables that have been be overridden or omitted
in the called function due to equal names and thus have an invalid value. For
a sound analysis the operator must resolve all collisions of equal-named variables
in a sound way. In Algorithm 11 the operator rebuild is applied in line 16. For
convenience we define an operator rebuildid(ecall, eI , eO) := eO that returns the
identity of the abstract output state and can be used by analyses that do not need
to re-add information at function exits.

Figure 3.5 gives an overview of the application of the operators reduce, expand,
and rebuild in BAM. The abstract state ecall is the abstract state right before
entering the function, i. e. before assigning all parameters of the function (shown
as p := a). There is only one abstract state ecall, from which eI is reachable. In
Algorithm 11 the function getPredecessorStateFromARG is used to extract ecall
from the ARG, which tracks all relations between abstract states. In Figure 3.5 the
abstract state eI is located at the function-entry-node of a procedure call b := f(a)
with an argument a and a target variable b for the return value. The function
block Bf itself is highlighted. The abstract states eR with precision πO are the
abstract successor states of eI regarding the transfer relation BAM of BAM. This
is necessary for predicate analysis to handle recursive procedures.
Figure 3.6 shows the relation between the operators reduce, expand and rebuild.

As extension to Figure 3.5 it also contains the precisions for all abstract states. In

47

3 Analyzing Recursive Procedures with Block-Abstraction Memoization

ecall eI

eReret

b
:=

f(a)
function

sum
m
ary

p := a

call

function
execution

b := r

return

ecall eI ei

eoeOeReret

Bf

b
:=

f(a)
function

sum
m
ary

B
A
M

p := a

call
reduce

function
execution

expandrebuildb := r

return

Figure 3.5: Default function execution versus execution of function block with oper-
ators reduce, expand and rebuild

(eI , πI)
B

��

reduce // (ei, πi)
B

��

(eR, πO) (eO, πO)
rebuild

oo (eo, πo)
expand

oo

Figure 3.6: Schematic diagram of the operators reduce, expand and rebuild

favor of a simple implementation of the transfer relation, we rebuild the abstract
states after every function call and not only after recursive procedures. The rebuild-
ing could be restricted to recursive function calls only as possible optimization.

3.4 Theory and Outline for the Proof of Correctness

This section describes the theory behind the fixpoint algorithm and provides an
outline of its correctness. The proof is based on Hoare’s rules, which are described
in Section 2.5.2. The fixpoint algorithm itself only computes the point, when fur-
ther unrolling of the recursive function does not lead to new abstract states at the
recursive function’s exit, because all abstract states of the recursive function’s entry
and exit are covered.
For simplicity the precision of abstract states is ignored in this section. As the

48

3.4 Theory and Outline for the Proof of Correctness

precision is only changed during the refinement step of CEGAR, the fixpoint algo-
rithm only uses a precision that is constant for each program location in the analysis.
The operators reduce and expand are omitted in this section, because the important
steps of the proof are based on complete analyses of blocks. We assume that the call
stack is implicitly reduced and expanded according to the function calls. The proof
only uses the abstract states after the application of reduce at the function’s entry
and the abstract states after expanding the block’s output states at the function’s
exit. Additionally the operator rebuild is not applied in the proof. It only removes
invalid information from abstract states at the function exit location and as this
proof uses the result of this step, i. e. valid abstract states, the operator is applied
implicitly as last step of a block’s analysis and can be omitted for the coverage rela-
tions of this proof. Thus also conflicts of identifiers are not important in this proof,
because renaming of variables or other steps that avoid collisions of identifiers are
performed with the application of the operator rebuild.

3.4.1 Hoare’s Rules and Abstract States

The concretizations [[Pe]] and [[Qe]] of sets Pe and Qe of abstract states match the
pre- and postcondition P and Q of a statement T . A Hoare-Triple {[[Pe]]}T{[[Qe]]},
consisting of a program statement T and two concretizations [[Pe]] and [[Qe]], indi-
cates that, if T is started with a concretization of a set Pe of abstract states and T
terminates, then the result is a subset of the concrete states of Qe after T completes.

Under - and Over-Approximation of Abstract States

A set S′ of abstract states under-approximates another set S of abstract states, if all
concrete states [[S′]] are a subset of the concretization [[S]], formally [[S′]] ⊆ [[S]].
The case [[S′]] ⊇ [[S]] is called over-approximation of S.
The rule of consequence allows to under-approximate (strengthen) the precon-

dition [[Pe]] and to over-approximate (weaken) the postcondition [[Qe]] of a state-
ment T . With this notation the rule of consequence can also be written as:

[[P ′e]] ⊆ [[Pe]] {[[Pe]]}T{[[Qe]]} [[Qe]] ⊆ [[Q′e]] consequence
{[[P ′e]]}T{[[Q′e]]}

Function Instantiation

Hoare’s rule for function instantiation also can be applied to abstract states. As
assignments of parameters and return values are done by the corresponding analysis,

49

3 Analyzing Recursive Procedures with Block-Abstraction Memoization

they are omitted in the rule. A function f is called with abstract states Pe at the
function entry, thus also the function body is directly entered with the abstract
state Pe. The function body Bf exits with abstract states Qe, so the resulting
abstract states after the function execution are Qe.

{[[Pe]]}Bf{[[Qe]]} functioncall
{[[Pe]]}b = F (a){[[Qe]]}

The abstract states Pe and Qe correspond to the function entry and function
exit locations of a CFA, i. e. the assignment p := a of parameters happens before
reaching Pe and the assignment of return values b := r appears after Qe. Thus
all assignments for parameters and return values are not part of this step, but are
handled by the underlying analyses in a sound way.

Recursive Procedures

Hoare’s rule of recursion indicates that, if the body Bf of a function f satisfies (the
concretizations of) abstract input states Pe and abstract output states Qe under
the condition, that all recursive calls to the function f also satisfy Pe and Qe,
then Pe and Qe also are valid abstract states for the whole function. The assignments
of parameters and return values for the function call are done implicitly through
another analyses and are omitted here.

{[[Pe]]}b = f(a){[[Qe]]} ` {[[Pe]]}Bf{[[Qe]]} recursion
{[[Pe]]}b = f(a){[[Qe]]}

3.4.2 Soundness of the Fixpoint Algorithm

A program analysis is sound if it never misses a property violation. The fixpoint
algorithm terminates either in case of a property violation or when there was no new
abstract state reachable in the last iteration. To prove the soundness of the fixpoint
algorithm, we only concentrate on the second case, because in the first case, when
the property violation is found, the fixpoint algorithm aborts and returns the target
state.
As recursive procedures should only be unrolled as little as needed, but as often

as necessary, Hoare’s rule for recursion is used as basis to know, when the fixpoint
algorithm reaches this limit and further unrolling can be aborted. In the following
the index k denotes the current iteration of the fixpoint algorithm.

For the theory we assume a function f with an initial entry state ei ∈ E. All
paths through f are analyzed, except paths containing a recursive call to f with an

50

3.4 Theory and Outline for the Proof of Correctness

entry state e′i with e′i v ei. If a function call to a function g with a not covered
entry state e′′i is reached, the function g is analyzed as far as possible. The result at
the output location Out(Bf) of the function block Bf is a set Ek ⊆ E of abstract
states. If there is not a single non-recursive path through the function f , it contains
an endless recursion and the set Ek is empty, because the output location Out(Bf)
is never reached. However this does not influence the further proof.
The fixpoint loop is executed at least once, such that at least one non recursive

path is analyzed completely. The next fixpoint iteration re-analyses the block Bf
with the initial entry state ei. If the recursive call with a covered entry state e′i v ei
is reached again, the function execution of the previous fixpoint iteration is used to
summarize the current function call. The re-usage is possible due to the cache of
BAM that contains the abstraction of the previously analyzed function block. The
over-approximation ei w e′i guarantees the soundness of using ei instead of e′i as
initial abstract state in the block Bf and the partial correctness of using the block’s
abstract states as function instantiation is also given by the rules of Hoare:

over-approx.
[[e′i]] ⊆ [[ei]]

abstraction from cache
{[[ei]]}Bf{[[Ek]]}

identity
[[Ek]] ⊆ [[Ek]] consequence

{[[e′i]]}Bf{[[Ek]]} functioncall
{[[e′i]]}b = f(a){[[Ek]]}

function summary

The block Bf is analyzed and left with a set Ek+1 ⊆ E of abstract states. The
fixpoint algorithm computes the abstract states Enew ⊆ Ek+1 that are not covered
by any previous abstract states ek ∈ Ek, formally Enew := {ek+1 ∈ Ek+1|@ek ∈ Ek :
ei v ek}. The fixpoint is reached if Enew is empty (for each analyzed function of
the program), i. e. if all abstract states of Ek+1 are covered by abstract states of Ek.
This coverage relation can be expressed with concretizations as [[Ek+1]] ⊆ [[Ek]]. In
this case the following rule of consequence is satisfied:

identity
[[ei]] ⊆ [[ei]]

analysis of the block
{[[ei]]}Bf{[[Ek+1]]}

coverage
[[Ek+1]] ⊆ [[Ek]] consequence

{[[ei]]}Bf{[[Ek]]}
transfer relation

When the fixpoint is reached and both rules given above are satisfied, i. e. the
fixpoint algorithm used a former abstraction to summarize the recursive function call
and executed the analysis for the current function block resulting in no new abstract
states, the rule of recursion can be applied and prove the (partial) correctness of the
fixpoint algorithm:

51

3 Analyzing Recursive Procedures with Block-Abstraction Memoization

function summary
{[[ei]]}b = f(a){[[Ek]]} `

transfer relation
{[[ei]]}Bf{[[Ek]]} recursion

{[[ei]]}b = f(a){[[Ek]]}

When the fixpoint algorithm terminates, these rules are fulfilled. Thus the sound-
ness of the approach is shown. �

52

4 Using Further Analyses in Combination
with BAM

This chapter describes the some analyses that can be combined with BAM. As first
some basic analyses are considered that are necessary to determine or track the
current program location, the call stack and dependencies between abstract states
like coverage, merges and transfers. Then two more precise analyses - the value
analysis and the predicate analysis - are used to show the working concept of BAM.
Both analyses are used as component in a CEGAR-loop and thus also the refinement
strategies and their precisions will be examined.

The previously explained fixpoint algorithm (Algorithm 10) in BAM allows to
abstract from an underlying program analysis (the wrapped CPA Dw) for recursive
procedures. Such a program analysis has to do the heavy work, for example the
tracking of variables and values. As most analyses identify variables with their
name (including their current scope, i. e. the function’s name), they have to handle
collisions of the identifiers that appear with recursive procedures, without omitting
the soundness of the analysis and the chance of re-using a block in BAM. The
identifier for a local variable x in a procedure f might be "f::x". In this case there
is no difference for the analysis between the variable in different function calls, even
if one identifier hides the other one in a recursive call of f . An analysis might
use indices of a static single assignment (SSA) to distinguish variables with equal
identifiers, but this avoids the re-use of verification results between the blocks of
BAM and causes problems with the operations merge and stop as they have to
work on abstract states containing information with different indices.

In the following, the solution for the problem with the identifiers is explained for
the value analysis and the predicate analysis. We also show that the implemented
operator rebuild in the described analyses is sound.

53

4 Using Further Analyses in Combination with BAM

4.1 ARG-CPA

The ARG-CPA DARG = (DARG, ARG,mergeARG, stopARG) tracks relations be-
tween abstract states, such as transfer relation, merge and coverage. Similar to the
BAM-CPA it also is implemented as a wrapper around another CPA Dw that does
the main part of the analysis. The operators ARG, mergeARG, stopARG, and also
the BAM-specific operators reduceARG, expandARG, and rebuildARG just forward
to their counterparts in the CPA Dw. As mentioned before, the ARG-CPA is a main
component of BAM, because the ARG tracks dependencies between abstract states,
and BAM needs to know about them to compute error paths for refinements.

4.2 Location-CPA

The Location-CPA Dloc = (Dloc, loc,mergeloc, stoploc) tracks the current program
location. An abstract location state eloc contains exactly one program location
l ∈ L, i. e. a node of the interprocedural CFA. The initial location state for the
CPA-Algorithm represents the initial program location l0.
The abstract domain Dloc = (C, Eloc, [[·]]) consists of the set C of concrete states,

the lattice Eloc = (Eloc,v,t,>,⊥) and a concretization function [[·]]. The lattice Eloc
uses the set L = L∪{>L,⊥L} that induces the (flat) lattice over program locations
with the least upper bound >L and the greatest lower bound ⊥L. The transfer
relation loc returns the set {l′|(l, op, l′) ∈ G}, which contains all nodes reachable
from l via a CFA edge. The default operatorsmergesep and stopsep serve asmergeloc
and stoploc. The operators reduceloc and expandloc return the identity of the given
abstract states, because the program location must always be tracked. Thus we set
reduceloc := reduceid and expandloc := expandid. The operator rebuildloc re-adds
lost information about the outer function scope. Because the LocationCPA does
not lose information through a function call, the operator rebuildloc := rebuildid is
defined to also return the identity of the given abstract state.

4.3 Callstack-CPA

The Callstack-CPA Dcall = (Dcall, call,mergecall, stopcall) tracks the current call
stack. An abstract call stack state ecall consists of the current scope information in
form of a call stack, i. e. a stack [f1, f2, ...fn] of all currently available function scopes,
where fn is the scope of the current program location and was called from fn−1. If the
current edge in the analysis is a function call, the called function is appended the

54

4.3 Callstack-CPA

[f1, f2, ...fn]
B

��

reducecall // [fn]
B

��

[f1, f2, ...fn] [fn]
expandcall

oo

Figure 4.1: Schematic diagram of the operators reducecall and expandcall

call stack of the abstract state. In case of a function return, the left function is
removed from the call stack of the abstract state. Similar to the Location-CPA the
operators mergecall and stopcall are mergesep and stopsep, respectively.
The operators reducecall and expandcall can return the identity of the given input

for the default BAM analysis, however it necessary for handling recursive procedures
that they actually change the call stack. Therefore the operators are defined as

reducecall(B, [f1, ...fn], πI) := ([fn], πI) and

expandcall([f1, ...fn−1], πI , B, [fn], πo) := ([f1, ...fn], πo).

The operator reducecall removes the tail [f1, ...fn−1] of the abstract call stack state
eI = [f1, ...fn], only the most local function scope fn remains on the stack. The
operator expandcall concatenates the previously removed tail [f1, ...fn−1] of the ab-
stract input state eI with the call stack [fn] of the abstract output state eo = [fn]
to get a complete stack again. Figure 4.1 gives an overview of the operators.
The operators reducecall and expandcall are independent of the current type of

block: both function and loop blocks are handled equally. If the current program
location is part of a nested block, the expanded call stack (after expandcall was
applied) contains only levels up to the next outer block. With function scopes as
block-size, the stack has never more than two level, because after each function call,
the operator reducedcall is applied to the call stack to get only the level of the called
function and before a function exit, the operator expandcall re-adds only the level
of the calling scope as tail of the current call stack. The Callstack-CPA only allows
blocks, where input and output location belong to the same function, because there
is no support for blocks with different input and output call stacks.
The operator rebuildcall := rebuildid returns the identity of the given abstract

state. This might be surprising, as recursion makes heavy usage of the call stack in
a program. However it is possible to distinguish different levels on the call stack,
even if the called functions have equal names. Thus no information is corrupted
through recursive procedures and has to be rebuild.

55

4 Using Further Analyses in Combination with BAM

4.4 Value Analysis

The value analysis is a more precise analysis and tracks variables with their explicit
numerical values. A detailed formal definition of the value analysis was written by
Beyer and Löwe [9], so beside the BAM-specific parts only the basic components are
described here.

4.4.1 Value-CPA

The Value-CPA Dval = (Dval,Πval, val,mergeval, stopval, precval) implements the
value analysis and provides a refinement procedure for CEGAR.

Abstract Domain The abstract domain Dval = (C, Eval, [[·]]) consists of the set C
of concrete states, the lattice Eval = (Eval,v,t,>,⊥), and a concretization function
[[·]]. The lattice Eval uses the set Eval = (X → Z) ⊂ X × Z of abstract variable
assignments with a set X of variables and a set Z = Z∪ {>Z ,⊥Z} of values, which
induces the (flat) lattice over numbers with the least upper bound >Z and the
greatest lower bound ⊥Z . This definition here uses only the set Z of integers, but
other numeral types like floats or rationals are also possible in theory and supported
in implementation. Let e(x) denote the value of a variable x ∈ X in the assignments
of e ∈ Eval, i. e. e(x) = y is equal to (x, y) ∈ e. The partial order v⊆ Eval × Eval is
given as e v e′, if the following expression is satisfied: (∀x ∈ X : e(x) = e′(x)∨e(x) =
⊥Z ∨ e′(x) = >Z).

Merge and Stop Operator The operators mergeval and stopval are mergesep and
stopsep, respectively.

Precision A precision π ∈ Πval = 2L×X specifies a set of variables and correspond-
ing program locations, where the variables should be tracked, i. e. some variables are
only tracked certain program locations.

Transfer Relation The transfer relation val evaluates all expressions of an an-
alyzed edge of the CFA and updates the abstract state accordingly. The evalu-
ation eval(exp, e) of an expression exp with an abstract value state e ∈ Eval is
defined as

56

4.4 Value Analysis

eval(exp, e) =



⊥Z , if ∃y ∈ X : (y,⊥Z) ∈ e

>Z , if ∃y ∈ X : (y,>Z) ∈ e ∧ (y occurs in exp)

v, otherwise, where exp evaluates to v after substituting

all variables x ∈ X in exp with e(x)

An assignment of an evaluation eval(exp, e) to a variable x ∈ X at a program
location l ∈ L with a precision π is defined as

e(x) =

eval(exp, e), if (l, x) ∈ π

>Z , otherwise.

The assignment overrides the value of the variable x in the abstract state e if x
should be tracked at the program location l.

4.4.2 Reduce and Expand

The operators reduceval and expandval for the value analysis are defined based on
the scope of the corresponding block. If a variable is never accessed (read- or write-
access) in a block B, the reduceval operator removes the assignment of the variable
from the initial abstract state eI and expandval re-adds it to the output states eo
of the block. For example all variables except the parameters of the called function
and global variables can be removed with the reduction in case of a function block,
because they are out of scope. The precision is reduced and expanded similarly
according to the usage of variables in the block.
The formal definition of the operators reduceval and expandval is:

reduceval(B, eI , πI) = ({(x, ei(x)) ∈ eI |x used in B}, {(l, x) ∈ πI |x used in B})

expandval(eI , πI , B, eo, πo)) =
(
{(x, eI(x)) ∈ eI |x not used in B} ∪ eo,
{(l, x) ∈ πI |x not used in B} ∪ πo

)

Proof of Soundness

To proof soundness of the operators reduceval and expandval we have to show that
the expanded output states over-approximate a direct analysis of the block without
reducing and expanding states. For the value analysis it can even be proven that
the abstract states are not only over-approximating, but identical for analyses with
BAM and without, if the same abstract state and precision is given as input for both
cases.

57

4 Using Further Analyses in Combination with BAM

(eI , πI)
B

��

reduceval // (eI|used , πI|used)
B

��

(eI|unused ∪ eo , πI|unused ∪ πo) (eo , πo)
expandval

oo

Figure 4.2: Schematic diagram of the operators reduceval and expandval

The variable assignments eI of an abstract value state can be divided into two
disjoint partitions e|used and e|unused (i. e. eI = eI|used ∪ eI|unused and ∅ = eI|used ∩
eI|unused) according to the access to variables in the block. The partition eI|used

contains the assignments of variables that are read or written in the block, the other
one consists of all unused variables along the block. Both partitions can be analyzed
separately, because there is no data-flow between them. If we ignore pointers and
arrays, there is no common memory access for the partitions. The precision πI can
also be split up into two disjoint partitions πI|used and πI|unused according to the
access to variables in the block.
In Figure 4.2 the operators reduceval and expandval and their effects are shown

in a simplified manner. The partition eI|used is changed into eo|used during the
analysis of the block. With and without BAM the value analysis performs the
same operations, computes the same new assignments, and overrides existing ones,
because the assignments and the precision are equal for all variables that are accessed
for reading or writing. The other partition eI|unused, which contains the unused
variables, remains unchanged without BAM, because not a single read- or write-
access is performed. With BAM the partition eI|unused is removed with reduceval,
i. e. all assignments for those variables are first set to >Z with reduceval. After
analyzing the block the operator expandval re-adds eI|unused to the abstract state.
This sets those assignments to their original value. As the block’s analysis does
only access variables of the block, the reduced precision πI|used is sufficient for the
analysis. Thus both analyses return equal abstract states after leaving the block
and the operators reduceval and expandval are sound.

4.4.3 Rebuild

The operator rebuildval handles collisions of identifiers as it might happen for each
(local) variable of a recursive function. As the value analysis simply tracks variables
in a map, the rebuilding is only an update of the map, where the correct assignments
are restored. The rebuild abstract state is based on the expanded function return

58

4.4 Value Analysis

state eO and the calling state ecall. The values of global variables and the value
for the function return variable (special variable for tracking the return value of
a function call) are taken unchanged from the expanded function return state eO,
because these variables survive the function scope and their identifiers are surely
not colliding, as global variables have an unique identifier in all function scopes and
the return variable only exists for the short life time of the function exit. All other
values are copied from the calling state ecall. The precision πO remains unchanged.
The formal definition of the operator rebuildval reads as follows:

rebuildval(ecall, eI , eO) ={(x, ecall(x)) ∈ ecall|¬(isGlobal(x) ∨ isRet(x))}

∪ {(x, eO(x)) ∈ eO|isGlobal(x) ∨ isRet(x)}

The functions isGlobal(x) and isRet(x) check, if an identifier x represents a global
variable or the return variable of the called function, respectively.

4.4.4 Counterexample and Refinement

The value analysis uses a single path (a sequence of abstract states) as counterex-
ample that is checked for feasibility with a concrete execution of the path (i. e. all
variables are tracked). In case of an infeasible (spurious) counterexample during the
CEGAR-loop, the value analysis uses an interpolation based refinement strategy [9]
to adjust its precision. The full description and theory of the interpolation strategy
will be omitted here in favor of a short description of only the important part for
(recursive) function calls.
As the value analysis guarantees that the counterexample is always a single path

in the program, the refinement strategy only has to handle a sequence of program
statements. The feasibility check and the refinement strategy analyze the coun-
terexample several times with distinct precisions. Each precision allows to track a
subset of variables and the target of the refinement is to find a (minimal) set of
variables for each program location needed to exclude the previously found target
state from re-exploration. To handle recursive procedures during the path’s analysis,
the call stack has to be tracked explicitly along the counterexample path and the
operator rebuildval must be executed at each return location of a (recursive) func-
tion in order to restore the assignments of variables in the calling function scope.
As the precision depends on the program location, a variable is either not tracked,
because it is not needed in the refinement to proof the counterexample as spurious,
or not only tracked in the current function scope, but also in all following (recursive)

59

4 Using Further Analyses in Combination with BAM

function calls along the counterexample, as the same program locations appear in
the functions. Thus we might track a variable in more than the necessary program
locations, however this is just computational overhead and does not lead to unsound
results. This approach always yields a valid refined precision such that the infeasible
counterexample is not re-explored in a further CEGAR-iteration.

4.5 Predicate Analysis

The predicate analysis [19, 25] uses predicates and formulae to track variables and
values. The refinement procedure is based on Craig interpolation of boolean formu-
lae and the abstraction computation is done with boolean predicate abstraction. In
this context there are two different definitions of "block": for the predicate analysis
"abstraction blocks" are the set of program locations between two abstraction loca-
tions, and in BAM a "block" represents the set of program location bounded by the
operators reduce and expand. We will never use abstraction blocks, but only the
blocks of BAM in the following parts.
The predicate analysis uses Adjustable Block Encoding (ABE) [4, 8] to decide

where to compute abstractions. To work with BAM the predicate analysis is con-
figured to use at least all input and output locations of all blocks as abstraction
locations. Additionally the predicate analysis may also use further program loca-
tions as abstraction points, like loop heads or target locations.
As this analysis is more complex, several changes were made during this thesis,

which aim to have a sound predicate analysis for recursive programs. In the following
first a short description of basic components of the Predicate-CPA and the refine-
ment process is given, then the BAM-specific parts like the operators reducepred,
expandpred and rebuildpred follow.

4.5.1 Predicate-CPA

The predicate analysis was developed in the context of CEGAR and is implemented
as Predicate-CPA Dpred = (Dpred,Πpred, pred,mergepred, stoppred, precpred). The
Predicate-CPA does not track program locations, but relies on being combined with
the Location-CPA such that the program location and the edges of the CFA are
available if necessary.

Abstract Domain The abstract domain Dpred = (C, Epred, [[·]]) consists of the
set C of concrete state, the lattice Epred = (Epred,v,t,>,⊥), and a concretiza-

60

4.5 Predicate Analysis

tion function [[·]]. The set of quantifier-free predicates of program variables is
denotes by P. The lattice elements (ψ,ϕ) ∈ Epred consist of an abstraction for-
mula ψ, which is a boolean combination of predicates from P, and a path formula ϕ
that represents the path (or the disjunction of several paths) from the last abstrac-
tion location to the current program location. The top element of the lattice E
is > = (true, true). If the current program location is an abstraction location, the
abstract state is called an abstraction state with a path formula ψ = true. The
partial order v⊂ E × E for two elements e = (ψ,ϕ) and e′ = (ψ′, ϕ′) is given as
e v e′ ⇐⇒ (ψ ⇒ ψ′∧ϕ⇒ ϕ′). The operator t : E×E → E returns the least upper
bound according to ete′ = (ψ,ϕ)t (ψ′, ϕ′) = (ψ∨ψ′, ϕ∨ϕ′). The operator joinpred
is based on the operator t and yields

joinpred(e, e′) =

e t e
′, if isSameAbs(e, e′)

e, otherwise,

where isSameAbs(e, e′) checks if the abstractions formulae ψ and ψ′ of the abstract
states e = (ψ,ϕ) and e′ = (ψ′, ϕ′) are equal and also computed at the same program
location. As paths starting in different abstraction states are never merged with
this operator, the abstraction states form a tree with the initial abstract state as
root, and a path from the initial abstract state to a possible target state consists of
a linear chain of abstraction states, where each of them is only reachable from its
direct predecessor.

Precision A precision π ∈ Πpred = 2L×P is a location-mapped set of predicates
over the variables of the program, i. e. at each program location different predicates
can be used. For a precision π the set of predicates for a certain program loca-
tion l is denoted with π(l) := {p|(l, p) ∈ π}. The precision is only important for
abstraction locations and does not contain predicates for other program locations.
The predicates of the precision are determined through interpolation of boolean for-
mulae during the refinement, where each interpolant is split up into its predicates,
which are defined as the smallest boolean parts (atoms) of a formula. For example
the three predicates a = 3, b = 4, and c > d would be retrieved from an interpolant
a = 3 ∧ (b = 4 ∨ c > d).

Transferrelation The transfer relation pred determines the abstraction formula ψ′

and the path formula ϕ′ of the next abstract state (ψ′, ϕ′) based on the last abstract
state (ψ,ϕ). The edges of a CFA (for example assignments or assumptions) are
encoded as boolean formulae with SSA-indices, i. e. a new index for each assigned

61

4 Using Further Analyses in Combination with BAM

variable. The conjunction of such formulae is denoted as path formula. A path
formula might refer to the same variable several times, but maybe with distinct
SSA-indices to distinguish their relations at different edges of the CFA. Abstrac-
tion formulae do not have SSA-indices and need to be "instantiated", when used in
computations with path formulae, i. e. in this case SSA-indices are added according
to the current context. For calculations including only other abstraction formulae
(for example to check coverage) no SSA-indices are used. For simplicity we assume
that the index-management is done implicitly and do not provide further distinction
here.
For a boolean formula α the strongest post operator SPop(α) defines the strongest

boolean formula that is satisfied after the execution of the operation op. Thus the
strongest post operator for a boolean formula α and a path formula ϕ is given as
SPϕ(α) = α∧ϕ and represents executing successive edges of the CFA starting with
an initial condition α. A boolean predicate abstraction for a formula β is denoted
with βπ(l) at an abstraction location l ∈ L. The transfer relation e op

 e′ defines the
successor state e′ of an abstract state e = (ψ,ϕ) after the operation op as

e′ =

((ψ ∧ SPop(ϕ))π(l), true), if isAbs(e′)

(ψ, SPop(ϕ)), otherwise,

where l is the program location of the succeeding abstract state and isAbs(e′) checks
whether e′ is an abstraction state. Depending on the program location l either a
new abstraction formula is computed and the path formula is reset to true or only
the path formula is updated with the strongest post operator.

4.5.2 Predicate Abstraction and Refinement with Interpolation

Predicate abstraction computes summaries for path formulae based on the current
precision, which is a set of predicates extracted from interpolants. Therefore the
predicate analysis computes a boolean predicate abstraction at each abstraction
location by searching for the strongest boolean combination of predicates from π(l)
that is valid at the abstraction location l. The dependency between the abstraction
computation and the interpolation procedure is considered here.

Usage of Inductive Sequences of Interpolants in Predicate Analysis

In case of a found target state, the error path from the initial program location l0
to the target location le is converted into a sequence ϕ1, ϕ2,... ϕn of path formulae

62

4.5 Predicate Analysis

that reach from one abstraction location to the next one along the path. If the con-
junction

n∧
i=1

ϕi of the path formulae is unsatisfiable, the counterexample is spurious.
In this case an inductive sequence ψ1, ψ2,... ψn−1 of interpolants is computed for
the path formulae. The interpolants correspond to the abstract states at abstrac-
tion locations and contain all information to exclude the path from re-exploring in
the next iteration of CEGAR. The predicate analysis splits the interpolants ψi into
predicates, which are added to the precisions πi at the corresponding abstraction
locations along the error path. In the next iteration of CEGAR the transfer rela-
tion pred uses the predicates from the interpolants for the abstraction formulae.

Proof of Soundness and Progress for the Predicate Analysis

This proof only covers the standard predicate analysis and also its BAM-specific
operators reduce and expand, because this part is based sequential interpolation.
The extension with the operator rebuild to handle recursive procedures is considered
later, as it depends on a different interpolation strategy.
Given two succeeding abstraction formulae ψAbs and ψ′Abs and a path formula ϕ

that represents the path from the first abstraction location to the second one, the
implication SPϕ(ψAbs) ⇒ ψ′Abs must be satisfied to guarantee soundness of the
predicate analysis, i. e. inductive invariants are needed. An abstraction formula ψ′Abs
does never contain more information than provided by the previous abstraction
formula ψAbs and a path formula ϕ. Thus it will not exclude any possible feasible
counterexample from exploration. The abstraction procedure is defined in a way
that the boolean predicate abstraction satisfies this criteria, because only important
and valid facts are used to build the abstraction formula ψ′Abs. Predicates that are
invalid (for example x = x + 1) or consist of identifiers that are out of scope at
the current program location are filtered out during the abstraction procedure. In
most cases the interpolation procedure avoids interpolants that cause such useless
predicates. However, invalid predicates might appear in case of recursive procedures,
if sequential interpolation is used for the refinement. Thus a different interpolation
strategy (like tree interpolation) is used there.
To ensure progress of CEGAR, i. e. no repeated counterexample is found and

causes endless iteration in the CEGAR-loop, the abstraction formulae must be strong
enough to exclude a found counterexample from re-exploration. Each abstraction
formula ψAbs that is produced with boolean predicate abstraction from predicates
π(l) is stronger than (or equal to) the corresponding interpolants ψItp, where the
predicates π(l) were extracted from, because an abstraction formula is defined as

63

4 Using Further Analyses in Combination with BAM

the strongest boolean combination of predicates. If the implication ψAbs ⇒ ψItp is
not fulfilled, the CEGAR-iteration finds the same counterexample again and again.
An inductive sequence of interpolants has the property that each interpolant of
the sequence is sufficient for the infeasibility of the rest of the path. Thus the
corresponding abstraction formula contains enough information to avoid re-exploring
the same counterexample.

4.5.3 Reduce and Expand

The predicate analysis is configured to compute boolean predicate abstractions at
the input and output locations In(B) and Out(B) of each block B. This causes
corresponding path formulae to be true and allows to use the abstraction formula of
the reduced initial abstract state ei as identifier for the block’s analysis in the cache.
The operators reducepred and expandpred use a heuristic strategy that analyses the
block B and the initial precision πI to divide the set πI of available predicates into
two disjoint partitions defined as pI|used = {(l, p) ∈ πI |l ∈ B ∧ p used in B} and
pI|unused = πI \ πI|used. The partition πI|used contains all predicates from πI|used

that reference relevant variables of the block. The partition πI|unused consists of the
rest of πI , like for example predicates never accessed during the block’s traversal.
The operator reducepred removes the set πI|unused of unimportant predicates from

the precision πI and from the abstraction state eI = (ψI , true), where the predicates
of πI|unused(l) are existentially quantified in the abstraction formula ψI (where l is
the program location of eI). The operator expandpred re-adds the removed predi-
cates πI|unused to the precision πo and the output state eo = (ψo, true). Therefore
the abstraction formula ψo is conjuncted with the rest of the initial abstraction for-
mula ψI that only consists of predicates of πI|unused and is the result of existential
quantification of πI|used(l) in ψI (where l is the program location of eI). As the path
formula is true for the input and output locations of a block due to the abstraction
computation, it is not changed through the operators reducepred and expandpred.
The formal definition of the operators reducepred and expandpred is:

reducepred(B, (ψI , true), πI) = (∃πI|unused(l) : ψI , pI|used)

expandpred((ψI , true), πI , B, (ψo, true), πo)) = (∃πI|used(l) : ψI ∧ ψo, pI|used ∪ πo)

There is a small inaccuracy in this procedure, because the expanded abstraction
formula might be weaker than the corresponding formula received through a direct
analysis of the block without applying the operators reducepred and expandpred. The

64

4.5 Predicate Analysis

(ψI , πI)
B

��

reducepred // (∃πI|unused(l) : ψI , πI|used)
B

��

((∃πI|used(l) : ψI) ∧ ψo , πI|unused ∪ πo) (ψo , πo)
expandpred

oo

Figure 4.3: Schematic diagram of the operators reducepred and expandpred

soundness of the predicate analysis with BAM is guaranteed, because the expanded
abstraction formula over-approximates its counterpart without BAM.

If the operator expandpred is applied to abstract states received from the cache as
result of a previous analysis (cache hit), the SSA-indices of the path formula might be
wrong for the current program location. As consistent SSA-indices over a sequence
of several abstraction states are only important for the counterexample check in the
refinements, the path formulae (and their SSA-indices) are re-constructed for these
cases to avoid wrong indices from cache hits with BAM.

Figure 4.3 omits the path formulae, as they are always true for the abstraction
states and thus unimportant for the operators reducepred and expandpred.

4.5.4 Refinement and Interpolation for Recursive Procedures

Analyzing recursive procedures with the predicate analysis is complex and needed
several changes in the default control flow. The main problem is based on colliding
identifiers in formulae, which are used and produced during the refinement step of
CEGAR. After a short description of the changes to the SSA-indices, this section
considers the problem of the predicate analysis with colliding identifiers in recursive
procedures. Then the solution is explained, which replaces the default sequential
interpolation procedure with tree interpolation.

The extraction of predicates from interpolants and the boolean abstraction compu-
tation remain unchanged for the analysis of recursive procedures and their execution
is equal to the default predicate analysis. Only the interpolation strategy and parts
of the formula encoding are modified to allow tree interpolation of found (infeasible)
counterexamples.

65

4 Using Further Analyses in Combination with BAM

Parameters for Global and Local Identifiers

To analyze recursive procedures, all function scopes are divided into completely
distinct parts. The default predicate analysis only uses an extra identifier for the
return value of a function. Additional identifiers for parameters are introduced for
formulae to separate the data flow between functions. Also an extra parameter and
an extra return variable is added to all function entries and exits for each global
variable such that they effectively become local variables.
The proceeding assigns the evaluated arguments of a function call to temporary

identifiers that are later assigned to the formal parameters of the function call. The
first assignment happens before analyzing the function’s entry location, the second
one afterwards. Similarly, the assignment of the return variables is done before the
function exit location. The return variables are assigned to their target variables
after leaving the called function.
The extra variables are encoded transparently while building path formulae. The

overhead caused by these additional identifiers is small, because they only appear
at function entries and exits and the path formulae only contain more equivalences
than before.

SSA for Counterexample

In the context of BAM the path formulae for the counterexample must be re-
computed, because the SSA-indices from cached blocks might be invalid. As BAM
already provides the counterexample as separate data structure, the path formulae
can be constructed by a visitation of its edges. In case of recursive procedures the
SSA-indices must be updated after returning from a (recursive) function call, be-
cause the called function might have changed the index of an identifier that shadows
an equal-named variable from the calling function. Therefore the implementation of
the SSA-indices was modified to allow arbitrary increments of indices.

Problem with (Sequential) Interpolation: Collision of Identifiers in the
Abstractions

As already mentioned, the predicate analysis computes abstraction formulae at spe-
cific program locations. The computation itself uses SSA-indices to distinguish iden-
tifiers, even if they represent the same variables. A abstraction formula has no SSA-
indices because of its usage for further processing, for example to check coverage
between abstract states.

66

4.5 Predicate Analysis

With recursive procedures the analysis has to manage equal-named identifiers
from different function scopes, which might be nested and hiding variables from other
scopes. The differentiation of identifiers with identical names is only possible as long
as SSA-indices are used. Thus in abstraction formulae equal-named variables can
not be distinguished any more, i. e. a contradicting predicate like a < a from a SSA-
indexed term a2 < a3 might be used in an abstraction computation. Unsatisfiable or
too weak abstraction formulae may lead to either an unsound analysis or an endless
iteration in CEGAR or the fixpoint algorithm in BAM.
The problem is caused by sequential interpolation, because this interpolation strat-

egy does not consider scopes of functions. An interpolant (and thus the extracted
predicates and the abstraction formulae) might contain the same identifier with dif-
ferent SSA-indices, because all of those indices are valid at the current program
location, even if only one index belongs to an identifier that can be accessed in to
the current scope and all other indices are out of scope.

Tree Interpolation as Solution for the Collision of Identifiers

The problem of colliding identifiers in abstraction formulae can be circumvented with
a better interpolation strategy, where function scopes are considered such that at
most one SSA-index for an identifier appears in each interpolant. Tree interpolation
guarantees this if the tree of formulae is build according to the control flow of the
analyzed program. This section only shows the alignment of formulae in the tree
and does not include the dependencies towards BAM-specific components like blocks
or the operator rebuild, which are considered later.

Interpolation is done as part of the refinement of an infeasible counterexample.
Thus the underlying data structure is a (unsatisfiable) sequence of path formulae
along the counterexample, where each path formula reaches from one abstraction
location to the next one. Abstraction locations are chosen according to function
calls such that three abstraction points are present for each function execution: the
function call, the function entry and the function return. Those three program
location are marked as abstraction points and the interpolation strategy has to
provide interpolants for them. The sequence of path formulae of the counterexample
will be transformed into a tree of formulae to get a tree interpolation problem instead
of sequential interpolation.
Therefore it is important to distinguish two types of function calls along the

counterexample. The first type of function calls belongs to function entered and left
on the way to the target state, i. e. the function return corresponding to a function

67

4 Using Further Analyses in Combination with BAM

call is executed. The other type consists of functions that are only entered, but
never left. This happens if the target state is reached inside a called function. The
difference for the analysis is that after leaving a function and further executing
the calling function all of the caller’s variables are in scope again. If a function
is never left, all identifiers from surrounding scopes (except global variables) are
invalid in this function. The difference between these two kinds of functions was
already considered by Heizmann, Hoenicke and Podelski [17], as their algorithm for
nested interpolation also uses distinct steps for both types. With the differentiation
of function calls, the building of the tree of formulae can be formulated.
Algorithm 13 gives an overview of the control flow of the interpolation procedure

in the refinement: At first a tree of states is build with Algorithm 14 from the
abstraction states of the counterexample path depending on the control flow. Then
the SMT solver is called to compute tree interpolants. Instead of the SMT solver also
similar routines can be executed that return valid tree interpolants, e. g. algorithms
for nested or well-scoped interpolation. As the resulting interpolants also form a
tree-like structure, Algorithm 15 re-arranges them to a linear sequence of abstraction
states to match the abstraction locations along the error path. In the following the
mentioned algorithms are explained in detail.
As the abstraction states in the counterexample are unique, the algorithms di-

rectly use them as tree-nodes. The labeling L : V → Formula for the interpolation
problem is implicitly given by the abstraction states along the counterexample, be-
cause for each of them there is a path formula that corresponds to the path from the
abstraction state to the next one. The path formulae for the labeling are taken from
the counterexample, because a path formula ϕ from an abstraction state e = (ψ,ϕ)
is always true. The following algorithms use several functions:

• isMainEntry(s) returns whether the current abstraction state s is located at
the initial program location l0. This check is important, because the main
function is never left, i. e. there is no corresponding function exit along the
counterexample.

• isFunctionEntryWithExit(s) returns whether the current abstraction state s
is located at the entry of a function that is left via an exit location.

• isFunctionExit(s) returns whether the current abstraction state s is located
at the exit location of a function.

Algorithm 14 builds the complete tree from several (temporary) subtrees. Each
of the subtrees represents an executed function that appears in the counterexample

68

4.5 Predicate Analysis

Algorithm 13: getInterpolantsForPath(L, states)
Input : a list states of pairwise distinct abstraction states,

a labeling L : states→ Formula
that assigns a (path) formula to each abstraction state

Output : a list flattened of formulae based on the interpolants of the tree
Variables: a tree T = (states, E) with edges E ⊆ states× states and a root

node vr ∈ states, a labeling I : states→ Formula
that assigns a tree interpolant to each abstract state

1 T, vr := buildTree(states)
2 I := computeTreeInterpolants(T, vr, L) // ← computed with SMT solver
3 flattened := flattenTree(I, states)
4 return flattened

Algorithm 14: buildTree(states)
Input : a list states of pairwise distinct abstraction states
Output : a tree T = (states, E) with a root-node vr ∈ states,

where E ⊆ states× states denotes the set of edges,
which are directed from the child node to the parent node

Variables: a stack stack ⊆ states of abstraction states
1 E := ∅
2 stack = ∅
3 foreach s ∈ states do
4 if isMainEntry(s) ∨ isFunctionEntryWithExit(s) then

// new leaf, has no children
5 stack.push(s)
6 break
7 else if isFunctionExit(s) then

// first connect the subtree with the exit location
8 E := E ∪ {(stack.pop(), s)}

// then add it to the calling function
9 E := E ∪ {(stack.pop(), s)}

10 stack.push(s)
11 break
12 else

// just create a new edge and switch the top element
13 E := E ∪ {(stack.pop(), s)}
14 stack.push(s)
15 break
16 vr := stack.pop()
17 T := (states, E)
18 return T, vr

69

4 Using Further Analyses in Combination with BAM

Algorithm 15: flattenTree(I, states)
Input : a list states of pairwise distinct abstraction states,

a labeling I : states→ Formula as solution of a tree interpolation
problem

Output : a list flattened of formulae
Variables: a stack stack of formulae

1 flattened := ∅
2 stack := ∅
3 foreach s ∈ states do
4 if isMainEntry(s) ∨ isFunctionEntryWithExit(s) then

// function entry, start new scope
5 flattened.append(true)
6 stack.push(I(s))
7 break
8 else if isFunctionExit(s) then

// merge function summary and function execution
9 flattened.append(rebuildITP (I(s), stack.pop()))

10 break
11 else

// add the interpolant to the sequence
12 flattened.append(I(s))
13 break
14 return flattened

Algorithm 16: rebuildITP (x, y)
Input : two boolean formulae x and y
Output : one boolean formula containing all predicates from x and y

1 return


x, if y = true

y, if x = true

x ∨ y, otherwise

70

4.5 Predicate Analysis

and is left via its function exit location. The stack stack consists of the root nodes
of currently available subtrees. The algorithm iterates over all abstraction states
and chooses further steps depending on the control flow at the current program
location. For each function entry with a corresponding function return a new subtree
is started, i. e. a new leaf is created from the abstraction state at the function’s entry
location and each abstract state of the function’s body is appended as parent of the
current subtree. At a function exit the subtree of the called function is connected
with the subtree of the calling function. Thus the function exit location has two
children: the first one represents the trace of the calling function and the second
child is the root of the called function’s subtree. Due to the iteration order the
called function is already handled completely, when the function exit is reached.
If a function in the counterexample has no function exit, the target location of
the current counterexample was found during the analysis of this function and its
abstraction states are just appended as parents of the current subtree.

The resulting tree T = (V,E) with the root node vr ∈ V consists of nodes V
of abstraction states and edges E ⊆ V × V between them. The tree is the input
for the SMT solver that computes a solution for the tree interpolation problem.
Instead of the direct application of the SMT solver, also similar routines that return
tree interpolants can be executed, e. g. an algorithm for well-scoped interpolation
(Algorithm 6) or tree interpolation via binary interpolation (Algorithm 7). The
resulting labeling I : V → Formula allows to get an interpolant I(v) for every
node v ∈ V of the tree, where v is represented by an unique abstraction state from
the counterexample.

The tree-like structure of interpolants is flattened such that it matches the se-
quence of abstraction points along the counterexample. Algorithm 15 transforms
the tree of formulae into a sequence that is used as input for further steps in the
predicate analysis, i. e. the interpolant can be split into predicates and utilized for
abstraction computations in the next iteration of the CEGAR-loop. Every function
call (with a corresponding function exit) starts with an interpolant true, which does
not consist of any useful predicate. At function exits Algorithm 16 merges two in-
terpolants into one boolean formula such that all predicates from both interpolants
are used afterwards and can be extracted from the merged formula. Algorithm 16
filters out formulae without predicates through the elimination of formulae like true
and false and the disjunction of the rest.

71

4 Using Further Analyses in Combination with BAM

Predicate Abstraction at Function Entries vs BAM Cache Hit Rate

Due to Algorithm 15 the reader might expect that the refinement procedure with
tree interpolation always yields the interpolant true for function entry locations.
However this assumption is invalid, because it only considers function calls with
a corresponding function exit. If a spurious target state was found in a (maybe
recursive) function, the corresponding infeasible counterexample never leaves this
function and thus the tree interpolant for the corresponding function entry might
differ from true.
In the case of a recursive function (or several nested functions) without any inner

target state, for example if the target state is part of the (non-recursive) main func-
tion, the interpolant (and thus also the abstraction formula) for the function entry is
indeed guaranteed to be true. Such a situation causes a high hit rate for the cache,
because each function block is identified in the cache by its (reduced) abstraction
formula true of the function entry state (and the corresponding precision).

4.5.5 Rebuild

The operator rebuildpred is based on the function call state ecall = (ψcall, true), the
(not yet reduced) function entry state eI = (ψI , true), and the expanded function
return state eO = (ψO, true). Due to the chosen abstraction locations, the path
formulae of those abstract states are true, which simplifies further steps.
The path formula ϕcall of the CFA edge that is between the program locations

of the abstract states ecall and eI is the conjunction of all assignments of the argu-
ments to the parameter variables (including additional parameters for global vari-
ables). The rebuilding changes the abstraction formula appearing ψO at function
exit, because ψO might contain of variables that are out of scope at the function exit
location. If all SSA-related parts is omitted, the operator rebuildpred is defined as

rebuildpred(B, ecall, eI , eO, πO) =
(
(ψcall ∧ ϕcall ∧ ψO)π(l) , πO

)
.

The SSA-indices for all variables are updated with correct values, because the
variables (i. e. their equal-named counterparts) might have been used and overridden
in the calling function’s scope. Parameters and return variables are updated with
their latest SSA-index that is used in the called function. The precision πO remains
unchanged.

72

4.5 Predicate Analysis

Abstracting Twice at One Program Location

BAM allows to compute predicate abstraction twice at the same program location, if
it is the output location of a block. The two abstractions are done in different anal-
yses of BAM: The first abstraction is computed as (last) part of the block’s analysis
and results in the abstraction formula ψo of the abstract state eo = (ψo, true).
The abstraction ψo (and in many cases also its expanded form ψO) only con-
tains identifiers corresponding to parameters or return variables of the called pro-
cedure and summarized the function’s execution. The second abstraction is com-
puted with the operator rebuild in the analysis of the enclosing block of BAM,
when the transfer relation BAM analyzed the step from the initial abstract state
eI = (ψI , true) to the rebuild abstract state eR = (ψR, true). At the function
exit location l the function call’s abstraction ψcall, the parameter assignment ϕcall,
and the summarized function’s abstraction ψO are used to compute a new abstrac-
tion ψR = (ψcall ∧ ϕcall ∧ ψO)π(l) that represents the abstract state in the calling
function including the called function’s result.
If we ignore the application of the operator expand, which might change the

set π(l) of available predicates at the function exit location l between the two ab-
straction computations, both abstraction formulae ψR and ψo are build from the
same set π(l) of predicates, which is extracted from the combination of boolean
formulae during the flattening of the tree interpolants with Algorithm 15.

Proof of Soundness and Progress for the Predicate Analysis for Recursive
Procedures

This proof extends the previous proof (see Section 4.5.2) for the default predicate
analysis, which only uses sequential interpolation. Proofing the correctness of the
predicate analysis for BAM especially with using the operator rebuild is more com-
plex, as it uses tree interpolation. For recursive procedures the control flow must be
taken into account. As the operator rebuild is only applied at function exits, these
program locations are specifically considered here.
As mentioned before the soundness of the predicate analysis relies on inductive

invariants. For all program location except those function exits, where the oper-
ator rebuild is applied, the input for the abstraction computation is the previous
abstraction formula ψ and the path formula ϕ representing the path from the last
abstraction location to the current one. At function exits the operator rebuild
uses three formulae as input for the abstraction computation: two abstraction for-
mulae ψcall and ψexit that correspond to the pre-condition of the called function

73

4 Using Further Analyses in Combination with BAM

and the function summary, and a path formula ϕcall consisting of the parameter
assignments at the function entry. Due to the boolean predicate abstraction the
resulting abstraction formula ψ′ is implied by the conjunction of given formulae, i. e.
ψcall ∧ ϕcall ∧ ψO ⇒ ψ′. Thus there is no exclusion of a possible feasible counterex-
ample during further exploration of the state space.
The progress of CEGAR, i. e. no repetition of counterexamples, is guaranteed by

abstraction formulae that are strong enough to exclude all found counterexamples
from re-exploration. Each boolean predicate abstraction at a program location l (ex-
cept function exits) causes an abstraction formula ψ from predicates π(l) implying
the corresponding interpolant ψItp, thus ψ ⇒ ψItp is satisfied. For each function exit
two interpolants ψItpExit and ψItpR exist, which are both computed in one refine-
ment from one counterexample, but for different positions in the tree interpolation
problem. The first interpolant ψItpExit is computed for the root-node c of a sub-
tree and the second interpolant ψItpR is the label I(v) for the corresponding merge
node v, which is the parent node of the node c in the interpolation tree. The two
interpolants are merged into one boolean formula by Algorithm 16. Thus there are
two valid implications ψexit ⇒ ψItpExit and ψR ⇒ ψItpR, with a boolean formula
ψexit as the abstraction formula retrieved after computing the last transfer relation
inside the function block and a formula ψR as the result of the predicate abstraction
of the operator rebuild. The operator rebuild computes the abstraction formula
ψR = (ψcall ∧ ϕcall ∧ ψO)π(l), which is the strongest post condition of the function
call and the function execution, i. e. after executing the function call and the whole
body of the function.
Due to the properties of tree interpolants each interpolant ψItp (and thus also

the corresponding abstraction formula ψ) is sufficient, if it is combined with other
formulas according to the tree of formulae (i. e. matching the control flow), to make
the rest of the previously found error path infeasible and the same counterexample
is not re-explored in further CEGAR-iterations.

Rebuilding for All Procedure Calls

This thesis only analyzed the usage of tree interpolation for recursive procedures,
but there is no necessity for recursion. The interpolation strategy also works for all
function calls. As future work the benefit of such an interpolation strategy could
be considered to get a modular analysis, because the abstraction formulae received
at function exits summarize those functions and might be useful in contexts beyond
BAM.

74

4.5 Predicate Analysis

4.5.6 Example for Counterexample with Tree Interpolation and
Flattening

The following example describes the refinement procedure for a specific counterex-
ample that might be reached during the analysis of the recursive program in Fig-
ure 4.4 with BAM combined with the predicate analysis. Figure 4.5 provides such
a counterexample encoded as path formulae along the target path, which unrolls
the recursive procedure twice. Only abstraction states are shown and each function
scope (i. e. main, the first and second unrolling of f) corresponds to another column
of nodes in Figure 4.5. Only the function call, function entry, and function exit are
necessary for the analysis, but abstractions are also computed at the function return
to get a well-formed example.
Under the assumption that the predicate analysis is configured to use LBE, several

edges of the CFA are combined into one path formula. The conjunction of all path
formulae is unsatisfiable and thus the given counterexample is infeasible. Function
summaries are represented as dashed lines and are no part of error path. In contrast
to path formulae function summaries do not contain SSA-indices and are only given
as hint for the reader. While the variables a, b, x, and tmp belong to the program,
the identifiers p and r correspond to additional variables for parameters and return
values of function calls. As the identifiers are unique above all functions of the
example program, the plain name is used in the formula.

1 void main () {
2 i n t a = 2 ;
3 i n t b = f (a) ;
4 i f (b != 2) {
5 e r r o r () ;
6 }
7 }
8

9 i n t f (i n t x) {
10 i f (x <= 0) {
11 re turn x ;
12 } e l s e {
13 i n t tmp = f (x − 1) ;
14 re turn tmp + 1 ;
15 }
16 }

Figure 4.4: Simple program with recursion (equal to Figure 1.2)

75

4 Using Further Analyses in Combination with BAM

0

1

2

3

10

12

13

14

10

14

a0 = 2

b
=
f(a)

b0 6= 2

p0 = a0

x0 = p0 ∧ x0 > 0

tm
p

=
f(x
−

1)

r1 = tmp0 + 1

b0 = r1

p1 = x0 − 1

x1 = p1 ∧ x1 ≤ 0 ∧ r0 = x1

tmp0 = r0

Figure 4.5: Infeasible counterexample of the recursive program in Figure 4.4 with
path formulae along the edges, each node is labelled with its program
location

In Figure 4.6 the path formulae of the counterexample are arranged in form of
a tree that is the result of Algorithm 14 and is the input for the tree interpolation
problem. Each node v of the tree is labeled with its formula L(v). Each function call
corresponds to a new subtree. The parameter assignment of a function call is the
label of the merging node, which is the connection between subtrees of the function’s
execution and the surrounding scope. Below each node v the computed interpolant
I(v) is written in the tree.
Figure 4.7 contains all tree interpolants flattened to match the control flow of

the given counterexample. Each function entry corresponds to a new formula true
that is introduced with Algorithm 15. At each function exit two interpolant are
combined into one formula by Algorithm 16. The extraction of predicates is done
by the predicate analysis and not shown in this example. The last abstraction state
in the counterexample does not have a matching interpolant.

76

4.5 Predicate Analysis

b0 6= 2

b0 = r1

p0 = a0

r1 = tmp0 + 1

tmp0 = r0

p1 = x0 − 1

x1 = p1 ∧ x1 ≤ 0 ∧ r0 = x1x0 = p0 ∧ x0 > 0
p0 ≤ x0 p1 ≤ 0

p0 ≤ 1

p0 ≤ 1

a0 = 2
2 ≤ a0 p0 ≤ 1

false

false

Figure 4.6: Tree of (path) formulae with resulting tree interpolants, each node is
labelled with its formula, the interpolants are shown below the nodes

77

4 Using Further Analyses in Combination with BAM

0
true

1
2 ≤ a0

2
false

3

10
true

12
p0 ≤ x0

13
p0 ≤ 1

14
p0 ≤ 1 ∨ false

10
true

14
p1 ≤ 0 ∨ p0 ≤ 1

b
=
f(a)

tm
p

=
f(x
−

1)

Figure 4.7: Tree interpolants flattened to match the control flow of the counterex-
ample, each node is labelled with its program location and its (rebuild)
interpolant

78

5 Implementation

This chapter describes the implementation in CPACHECKER that was done as part
of this thesis. As the development of CPACHECKER uses a subversion repository, the
development took place in a separate branch bamRecursion. Parts of the code were
already integrated into the main branch trunk as bug fixes or as preparation for the
International Competition on Software Verification 2015. This section provides an
overview of the parts that were modified and extended for the analysis of recursive
procedures with BAM.

5.1 BAM-CPA

BAM had been implemented as BAM-CPA within the framework CPACHECKER

before this thesis and was already used as analysis in the International Competition
on Software Verification 2012 [28]. The code of the BAM-CPA, which is available in
the package org.sosy_lab.cpachecker.cpa.bam, was refactored and last parts of
the predicate analysis were removed from the BAM-CPA to get a clean code base.

During the preparation of this thesis, the fixpoint algorithm in the transfer re-
lation of BAM, special handling of function blocks, and the operator rebuild were
added to the BAM-CPA in order to analyze recursive procedures. It is possible
to disable the added components and execute BAM as before by setting the op-
tion cpa.bam.handleRecursiveProcedures=false. The export the CFA and all
ARGs for an execution of BAM was introduced such that blocks and their ARGs
are highlighted and connected according the application of the operators reduce and
expand. The output format is DOT 1, which is a simple language to describe graph-
like structures. The graphs were mainly used for debugging problems in BAM and
its components.

1http://www.graphviz.org/doc/info/lang.html - last check: March 5, 2015

79

http://www.graphviz.org/doc/info/lang.html

5 Implementation

5.2 Changes in CPAs

The operator rebuild is defined in the interface of BAM. The implementation was
done for several analyses including ARG-CPA, CallstackCPA, CompositeCPA, Lo-
cationCPA, PredicateCPA, and ValueCPA. Here only the two most important im-
plementations of the operator rebuild for the PredicateCPA and the ValueCPA are
explained, because for the other CPAs the operator returns the identity that was
previously defined with rebuildid.

The package of the ValueCPA is org.sosy_lab.cpachecker.cpa.value. The im-
plementation of rebuildval (defined in Section 4.4.3) in the ValueAnalysisReducer
was straight forward, because updating an assignment that is stored in an abstract
value state is a simple operation on a map. For the refinement in the value analy-
sis the call stack information for the counterexample had to be accessible and was
added for several components including ValueAnalysisFeasibilityChecker and
ValueAnalysisEdgeInterpolator.
The PredicateCPA is located in org.sosy_lab.cpachecker.cpa.predicate. The

operator rebuildpred (defined in Section 4.5.5) was added to BAMPredicateReducer.
The refinement procedure (described in Section 4.5.4) had to support recursive coun-
terexample paths and tree interpolation. The path formulae for the counterexample
are build with the BAMPredicateRefiner, where support for recursion was intro-
duced.
Several utilities to build, modify and check formulae (including the integration of

SMT solvers) can be found in org.sosy_lab.cpachecker.util.predicates. The
interpolation strategies were added in the InterpolationManager. Therefore the
class CtoFormulaConverter encodes global variables in path formulae with addi-
tional identifiers that are introduced at each function entry and exit according to
the description in Section 4.5.4. The reason for the encoding procedure are some
combination of interpolation strategies with SMT solvers, because equal identifiers
(with equal SSA-indices) in several subtrees of a tree interpolation problem may
cause problems.

5.3 Interpolation Strategies

Several strategies for interpolation were implemented in the InterpolationManager
for this thesis. Beyond the existing strategies for binary and sequential interpola-
tion, CPACHECKER is now able to use tree interpolation, nested and well-scoped
interpolation with various SMT solvers. The strategies themselves are implemented

80

5.4 Configuration of the Analyses

in an abstract manner that is (nearly) independent of a specific SMT solver. As al-
ready shown in Table 2.1, not all solvers support all interpolation strategies directly.
However all available combinations of methods and solvers were implemented and
are also compared in Section 6.
The interpolation-related part of the API in SMTINTERPOL was used as main ref-

erence, because it uses simple data structures, which can be reused in CPACHECKER.
SMTINTERPOL needs only two arrays to represent a tree of formulae: the first ar-
ray contains the post-order sorted formulae of the tree, the second one contains
plain integer numbers, where each number is the index of the left-most node in the
subtree that belongs to the current array-element. The integration of tree interpola-
tion directly via the solver’s API was done for SMTINTERPOL and Z3 in the classes
SmtInterpolInterpolatingProver and Z3InterpolatingProver, respectively. In
contrast to SMTINTERPOL, there was more effort to get tree-interpolation working
with Z3, because its API uses a special operator to build a tree of formulae and the
integration of Z3 into CPACHECKER is not as stable as it could be.

5.4 Configuration of the Analyses

This section provides the necessary configuration options to analyze recursive pro-
cedures with the predicate analysis and the value analysis. Therefore the following
options are set in CPACHECKER as basis for all analyses that handle recursive func-
tion calls:

• cpa.bam.aggressiveCaching=false enables the usage of the precision as part
of the key to access the cache in BAM.

• cpa.bam.blockHeuristic=FunctionAndLoopPartitioning configures the heuris-
tic to choose functions and loops as block size for BAM.

• cpa.bam.handleRecursiveProcedures=true enables the usage of the fixpoint
algorithm and operator rebuild in BAM.

• cpa.callstack.depth=1 allows to analyze recursive procedures in the Call-
stackCPA. The value 1 is sufficient, because BAM applies the operator reduce
to the call stack at every function entry.

81

5 Implementation

5.4.1 Value Analysis

The value analysis does not need special options. The used property file is named
valueAnalysis-bam-rec.properties. It configures BAM with the value analysis
and uses the refinement strategy described in Section 4.4.4.

5.4.2 Predicate Analysis

The implementation of BAM and the predicate analysis work with ABE such that
both SBE and LBE would be available. The choice of LBE as default configuration
has its reasons in the smaller number of formulae per program than with SBE.
The file predicateAnalysis-bam-rec-plain.properties was used to set the

basic properties. It configures the set of used CPAs (including BAM-CPA and
Predicate-CPA) and enables the handling of recursive functions for BAM. Following
options configure the abstraction computations and the refinement procedure:

• cpa.predicate.blk.alwaysAtFunctions=true and
cpa.predicate.blk.alwaysAtFunctionCallNodes=true choose the abstrac-
tion locations according to function blocks.

• cpa.predicate.refinement.strategy chooses the strategy for interpolation
and can be either TREE, TREE_WELLSCOPED, TREE_NESTED, or TREE_CPACHECKER
corresponding to the defined strategies in Section 2.6.3.

• cpa.predicate.solver chooses the SMT solver that is used for the analy-
sis. Depending on the configured interpolation strategy the solvers MATHSAT,
PRINCESS, SMTINTERPOL, and Z3 are available.

• cpa.predicate.useParameterVariables=true and
cpa.predicate.useParameterVariablesForGlobals=true enable the encod-
ing of additional identifiers in formulae.

In the evaluation (Section 6) different combinations of interpolation strategies and
SMT solvers are compared. Therefore additionally following option is set:

• cpa.predicate.encodeBitvectorAs=INTEGER and
cpa.predicate.encodeFloatAs=INTEGER set the type of encoded variables to
INTEGER, which is commonly supported by all SMT solvers and sufficient for
the program files of the evaluated benchmark set.

82

6 Evaluation

In this chapter, the implementation of BAM to analyze recursive procedures in
CPACHECKER is evaluated. After a description of the benchmarking environment,
conditions, and source files, different configurations of CPACHECKER are analyzed.
Then the implementation of BAM in CPACHECKER is compared with other tools
that have support for recursive procedures. In the following the token task always
denotes an execution of a tool, that tries to verify a program.

6.1 Benchmarks and Source Files

The benchmarks consist of 49 recursive programs generated for this thesis and 24
source files taken from the category of recursive programs from the benchmark set of
the International Competition on Software Verification 20151. All 73 source files only
consist of simple calculations over integers. The only data type used is the default int
of the C programming language. There is no usage of data structures like pointer
of structs. The source files are intended to be free of possible integer overflows and
bit vector computations like binary operations & or |. The property to be verified
is the reachability of a function named __VERIFIER_error(). If this function can
never be called during the program’s execution, the program is considered as Safe.

6.2 Resources, Limitations and Measurements

The verification tasks are executed on dedicated compute servers with a 3.4GHz 64-
bit Quad Core CPU (Intel i7-2600) and a Linux operating system (Ubuntu 14.04,
x86_64, Linux 3.13.0). Each machine has (at least) 16GB of RAM, of which the
evaluated tools can use exactly 15GB. For each single verification task the run-time
limit is 15min, measured as CPU time. The tools are allowed to use all 8 available
CPU cores (4 physical plus 4 hyper-threading cores).
For each task the values for CPU time, wall time and memory consumption are

1http://sv-comp.sosy-lab.org/2015/benchmarks.php - last check: March 5, 2015

83

http://sv-comp.sosy-lab.org/2015/benchmarks.php

6 Evaluation

measured. If a tool runs out of limits for a single task, its process is terminated and
the corresponding results are withdrawn.

6.3 Configurations of CPACHECKER

CPACHECKER is used in SVN revision 15572 from the branch bamRecursion, which
was used during the development of this thesis. The options for CPACHECKER are
chosen as stated in Section 5.4. In this section different configurations to process
recursive programs are compared, which enable different CPAs or strategies to verify
programs. For all configurations the options -noout (disable all writing of output)
and -heap 12000M (size of heap for the Java virtual machine) are set.

6.3.1 Value Analysis

The value analysis in CPACHECKER is configured as described in Section 5.4.1. The
drawback of the value analysis lies in uninitialized program variables, which cause
spurious counterexamples and cannot be sufficiently analyzed by this analysis.

6.3.2 Predicate Analysis

The configuration of CPACHECKER for the predicate analysis in described in Sec-
tion 5.4.2. As the runtime of the predicate analysis relies on the interpolation strat-
egy and the used SMT solver, several different combinations are compared here.
In CPACHECKER four distinct tree interpolation strategies are implemented: nested

interpolation, well-scoped interpolation, tree interpolation directly via the SMT
solver’s internal implementation, and tree interpolation in CPACHECKER with the
Algorithm 7. The executed interpolation strategy can be configured with the op-
tion cpa.predicate.refinement.strategy. In the tables these four approaches
are denoted as nested, wellscoped, tree, and treeCPA, respectively. Due to the
availability of distinct SMT solvers with different properties, the benchmarks were
executed for several combinations of interpolation strategies and solvers.
MATHSAT and PRINCESS lack support for direct tree interpolation. SMTINTERPOL

does not permit using several distinct solver environments with shared symbols,
which is needed for nested interpolation and also for CPACHECKER’s own implemen-
tation of tree interpolation. Thus no benchmarks were executed for these combina-
tions. To allow a direct comparison of all available SMT solvers, numeral formulae
are encoded as integers. This is valid, because floats or bit vector-related properties
are not used in the recursive source files.

84

6.3 Configurations of CPACHECKER

nested tree treeCPA wellscoped

MATHSAT 75 - 69 64
1,400 s 190 s 550 s

PRINCESS
44 - 41 43

1,300 s 1,300 s 1,100 s

SMTINTERPOL - 62 - 62
450 s 460 s

Z3 57 44 56 54
720 s 99 s 570 s 320 s

Table 6.1: Score and runtime of correct results for combinations of SMT solvers and
interpolation strategies in the predicate analysis of CPACHECKER (max.
score is 112)

1

10

100

1000

T
im

e
in

s

MathSat-nested
MathSat-treeCPA
MathSat-wellscoped
Princess-nested
Princess-treeCPA
Princess-wellscoped
SMTInterpol-tree
SMTInterpol-wellscoped
Z3-nested
Z3-tree
Z3-treeCPA
Z3-wellscoped

0 10 20 30 40 50
n-th fastest correct result

Figure 6.1: Quantile plot for the runtime of correct results of different configurations
of the predicate analysis in CPACHECKER

85

6 Evaluation

Table 6.1 shows the reached score and the runtime of correct results for different
combinations of interpolation strategies and SMT solvers. The first entry in each
cell of Table 6.1 represents the reached score, the scoring scheme is taken from of the
International Competition on Software Verification 2015. The second line contains
the runtime (in seconds) of CPACHECKER for the correct results only. A smaller
runtime does not imply a better strategy if the score is lower. Figure 6.1 shows the
quantile plot for the mentioned combinations of interpolation strategies and SMT
solvers. The plot contains the successful tasks of each configuration sorted by their
runtime.
In Table 6.1 the winner is the combination of nested interpolation with MATHSAT,

which reached a score of 75. This combination was already successfully applied in
the International Competition on Software Verification 2015 and reached the fourth
place in the category of recursive programs. Detailed results can be looked up in
Appendix B.
As all described interpolation strategies are valid to verify programs or confirm

counterexamples, differences come from the solvers’ implementation and from the
predicates extracted from interpolants. Details for different formulae are omitted
here, but the overall tendency for the results with different SMT solvers is explained.
There are some files that are analyzed instantly and all analyses return correct results
for them. Differences between the results are often caused by bugs in BAM that
appear in the refinement of the ARGs and cause endless iteration of the CEGAR-
loop. PRINCESS is slower than other solvers, because it is a young SMT solver in
comparison with the other ones. MATHSAT is not only a mature program, it also
has support for the primitive arithmetic operation modulo (with a constant numeric
divisor), which appears in one of the source files. All solvers except MATHSAT find
a counterexample in this bug-free source file.

6.4 Configurations of Evaluated Tools

This section provides information about some other software model checkers. All of
the evaluated tools participated in the International Competition on Software Veri-
fication 20152 and scored well in the category of recursive source files. All evaluated
tools (except CPACHECKER) are configured as for the International Competition on
Software Verification 2015 and are expected to be optimized for good results.
The comparison of CPACHECKER with other tools is based on two configurations.

2http://sv-comp.sosy-lab.org/2015/participants.php - last check: March 5, 2015

86

http://sv-comp.sosy-lab.org/2015/participants.php

6.4 Configurations of Evaluated Tools

The first configuration consists of BAM combined with the value analysis, as this
is a simple approach and it is expected to find possible bugs fast. The second
configuration uses BAM and the predicate analysis with the nested interpolation
strategy and MATHSAT as SMT solver.

6.4.1 CBMC

One of the most known bounded model checkers is CBMC3, which is used in the
version 4 that participated in the International Competition on Software Verification
2015. As bounded model checkers only unwind recursive function up to a certain
limit, CBMC is executed with a script that iteratively increments the limit until the
program is analyzed completely.

6.4.2 CPAREC

CPAREC5 allows to verify recursive C programs via source-to-source program trans-
formation [11]. It needs another program analyzer as underlying verifier and uses
function summaries from the verifier’s output as inductive invariants to check recur-
sive programs. The current underlying verifier is CPACHECKER, which is configured
to verify the given program with the predicate analysis.

6.4.3 SMACK+CORRAL

SMACK+CORRAL6 is a translator from the LLVM compiler’s intermediate repre-
sentation into the Boogie intermediate verification language [27] that is given to
either the Boogie or (in this case) the Corral verifier. Because of the usage of
LLVM, SMACK+CORRAL is able to analyze several program languages like for exam-
ple C/C++, Java, Fortran, Erlang and Ruby. Also each optimization available in
LLVM can be applied to a program. This includes preprocessing of source code such
as constant propagation, dead code elimination, partial loop unwinding and function
inlining. The optimized verification problem is given to the verification routine that
uses a SMT solver to analyze the program. The tool SMACK+CORRAL scored well in
the competition and got the first place for the category of recursive source files.

3http://www.cprover.org/cbmc - last check: March 5, 2015
4http://www.eecs.qmul.ac.uk/~mt/cbmc-sv-comp-2015.tar.gz - last check: March 5, 2015
5https://github.com/fmlab-iis/cparec - last check: March 5, 2015
6http://soarlab.org/research/projects/smack - last check: March 5, 2015

87

http://www.cprover.org/cbmc
http://www.eecs.qmul.ac.uk/~mt/cbmc-sv-comp-2015.tar.gz
https://github.com/fmlab-iis/cparec
http://soarlab.org/research/projects/smack

6 Evaluation

6.4.4 ULTIMATEAUTOMIZER

The analysis of recursive programs with ULTIMATEAUTOMIZER7 is based on nested in-
terpolants [17]. Due to the high stage of the tool’s development, the approach works
better in ULTIMATEAUTOMIZER than its implementation does within CPACHECKER.
ULTIMATEAUTOMIZER8 is a twin of ULTIMATEAOJAK and is based on the same frame-
work. Due to the low score for recursive files in the International Competition on
Software Verification 2015 the evaluation of ULTIMATEAOJAK was omitted here.

6.4.5 Further Tools

The tools LLBMC9 and ESBMC10 are bounded model checkers for C programs and
use SMT solvers to verify programs. They are able to unwind recursive functions up
to a certain limit. As the limit has to be given by the user, an automatic evaluation
on a bigger set of programs is not practical.
The verifier WHALE that is mentioned in Section 1.3.2 is only a prototype and does

not support the specification of the error location. It was impossible to evaluate the
tool on the source files of the benchmark.
The framework SEAHORN11 converts a program into Horn-clauses and solves them

by using Z3 as SMT solver [16]. Its predecessor UFO12 uses an interpolation tech-
nique to get invariants for a program’s analysis [2]. Both tools do not support the
analysis of recursive programs.

6.5 Experimental Results

This section provides information and reasons for the diverse results of the executed
tools. Table 6.2 contains statistics for the tools. Beside the reached score and the
runtime for all correct results, it lists the numbers of correct results, false positives
and false negatives. Figure 6.2 shows the quantile plot for the executed tools, where
the results are sorted by their runtime. Detailed data for each executed task is
provided in Appendix B.
CBMC does not only limit the number of unwindings for recursive functions to

either 6 or 12, depending on the already analyzed parts of the program, but it also
7http://ultimate.informatik.uni-freiburg.de - last check: March 5, 2015
8https://ultimate.informatik.uni-freiburg.de/Kojak - last check: March 5, 2015
9http://llbmc.org - last check: March 5, 2015

10http://www.esbmc.org - last check: March 5, 2015
11https://bitbucket.org/lememta/seahorn/wiki/Home - last check: March 5, 2015
12https://bitbucket.org/arieg/ufo/wiki/Home - last check: March 5, 2015

88

http://ultimate.informatik.uni-freiburg.de
https://ultimate.informatik.uni-freiburg.de/Kojak
http://llbmc.org
http://www.esbmc.org
https://bitbucket.org/lememta/seahorn/wiki/Home
https://bitbucket.org/arieg/ufo/wiki/Home

6.5 Experimental Results

C
B
M
C

C
PA

C
H
EC

K
ER

Pr
ed

ic
at
e

C
PA

C
H
EC

K
ER

Va
lu
e

C
PA

R
EC

SM
A
C
K

+C
O
R
R
A
L

U
LT

IM
AT

EA
U
T
O
M
IZ
ER

Score (max. 112) 2 75 -24 64 18 89
Runtime 10,000 s 1,400 s 660 s 960 s 3,600 s 1,700 s
#Correct Results 59 51 56 45 65 59
#False Positives 0 0 17 0 2 0
#False Negatives 8 0 0 0 6 0

Table 6.2: Statistics for results of the comparison of different tools

1

10

100

1000

T
im

e
in

s

CBMC
CPAchecker-Predicate
CPAchecker-Value
CPArec
SMACK
UltimateAutomizer

0 10 20 30 40 50 60
n-th fastest correct result

Figure 6.2: Quantile plot for run times of correct results of different tools

89

6 Evaluation

limits its runtime to 850 s. If one of the limitations is violated, CBMC aborts its
analysis and considers the current source file as Safe. This results in some false
negatives, i. e. some valid counterexamples are not found. The time limitation of
CBMC is distinctly visible as horizontal line at 850 s, where the tool terminates and
returns a result. On the other side the performance of CBMC can be seen, when the
analyzed programs only use initialized variables. Several source files can be proven
correct in less than one second of runtime.
SMACK+CORRAL is not able to find bugs in several cases, because the tool at-

tempts to get the minimal number of unrolling loops and recursion by stratified
inlining. This method does not work for counterexamples that need deep unwinding
of function calls. Thus there are also several false negatives for this verifier.

CPACHECKER, CPAREC and ULTIMATEAUTOMIZER are sound tools and do not re-
turn false negatives in the benchmark. CPACHECKER does not return an invalid
counterexample, i. e. a false positive, when the predicate analysis is used (with
MATHSAT). Due to its lack of handing relations between variables, CPACHECKER

finds and returns several spurious counterexample with the value analysis, thus some
results are false positive. However the value analysis has a high number of correctly
solved verification tasks and allows to analyze even deep recursion within a few
second. It is the only analysis that unrolls the source file id_o1000_false.c com-
pletely, where the recursive function is called 1,000 times, and reports the correct
counterexample after a runtime of only 500 s.

90

7 Conclusion

In this thesis the potential of BAM was explored as a basis for the analysis of recur-
sive procedures. The conceptual contribution is an extension in BAM that allows
to handle recursion in an analysis-independent way. The approach was evaluated
in several distinct analyses. This chapter concludes this thesis by summarizing the
discussed aspects and properties of the extension of BAM to analyze recursive pro-
cedures.

7.1 BAM and Recursive Procedures

This thesis contains the first formalization of BAM and its operators in a way that
is independent from the underlying analysis. The extension of BAM, which includes
the fixpoint algorithm and the operator rebuild, to verify recursive procedures is
successfully integrated into the framework CPACHECKER and is competitive with
other state-of-the-art tools.
The formalization and the soundness of the operators reduce and expand is shown

for the predicate and value analysis, and also for other analyses that for example
track the program location or the call stack. The operator rebuild and the refinement
procedure are defined to handle recursion in combination with some CPAs.

7.2 Prospects

The first steps into automatic software verification of (recursive) programs with
BAM showed promising results in this thesis. However, there is still work to be
done and the analysis can be improved. This section describes some ideas and future
work that might be a topic of research and implementation in order to increase the
benefit of BAM.
As future work the basic operators of BAM can be defined and implemented

for further analyses that for example represent their abstract states with BDDs,
intervals, or octagons. Also the combination of different analyses to analyze recursive
programs can be beneficial.

91

7 Conclusion

7.2.1 Data Structures and Memory Model in BAM

Programs with data types like floating point numerals or bit vectors can already
be handled by the current implementation, but the current set of recursive source
files only uses integers. The set of source files could be increased to get a better
comparison of distinct analyses, tools and their features.
The operators reduce, expand and also rebuild for predicate and value analysis

currently only handle variables that are assigned without pointer dereferencing. The
current implementation of these operators does not take into account that a program
(in the C programming language) might contain pointers and structs, which are
used in more complex data structures. The importance of some variable in a block
is mainly based on direct access to its identifier. In case of pointer aliasing and
complex data structures this is not possible and other methods must be used to
distinguish important and unused variables in a block.

7.2.2 Comparison of Interpolation Strategies

There are several distinct interpolation strategies implemented in CPACHECKER.
Some of them are based on tree interpolation and allow valid refinements for recursive
programs. The interpolation strategies should all result in a similar (or maybe even
equal) behavior of the predicate analysis. As small discrepancies in interpolants
might have a huge effect on the runtime (and termination) of the analysis, the
structure of interpolants and extracted predicates is a topic for further research.

7.2.3 Modular Analysis through Predicate Analysis with BAM

If the predicate analysis within the BAM approach is configured to use the operator
rebuild and tree interpolation, it generates function summaries that consist of only
parameter and return variables of the corresponding function call. Such a function
summary might be re-used for further analyses of the same program, as it is already
done in BAM due to the cache. Additionally the formulae can be applied to other
programs that contain the same function call. This modularity might increase the
performance of an analysis.

92

Bibliography

[1] Aws Albarghouthi, Arie Gurfinkel, and Marsha Chechik. Whale: An
interpolation-based algorithm for inter-procedural verification. In Viktor Kun-
cak and Andrey Rybalchenko, editors, Verification, Model Checking, and Ab-
stract Interpretation - 13th International Conference, VMCAI 2012, Philadel-
phia, PA, USA, January 22-24, 2012. Proceedings, volume 7148 of Lecture Notes
in Computer Science, pages 39–55. Springer, 2012.

[2] Aws Albarghouthi, Arie Gurfinkel, Yi Li, Sagar Chaki, and Marsha Chechik.
UFO: verification with interpolants and abstract interpretation - (competition
contribution). In Piterman and Smolka [26], pages 637–640.

[3] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Stan-
dard: Version 2.0, 2010. Available at http://smtlib.cs.uiowa.edu/papers/
smt-lib-reference-v2.0-r12.09.09.pdf - last check: March 5, 2015.

[4] Dirk Beyer, Alessandro Cimatti, Alberto Griggio, M. Erkan Keremoglu, and
Roberto Sebastiani. Software model checking via large-block encoding. In
Proceedings of 9th International Conference on Formal Methods in Computer-
Aided Design, FMCAD 2009, 15-18 November 2009, Austin, Texas, USA, pages
25–32, 2009.

[5] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Configurable soft-
ware verification: Concretizing the convergence of model checking and program
analysis. In Werner Damm and Holger Hermanns, editors, Computer Aided
Verification, 19th International Conference, CAV 2007, Berlin, Germany, July
3-7, 2007, Proceedings, volume 4590 of Lecture Notes in Computer Science,
pages 504–518. Springer, 2007.

[6] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Program analysis
with dynamic precision adjustment. In 23rd IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE 2008), 15-19 September 2008,
L’Aquila, Italy, pages 29–38. IEEE, 2008.

93

http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r12.09.09.pdf
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r12.09.09.pdf

Bibliography

[7] Dirk Beyer and M. Erkan Keremoglu. CPAchecker: A tool for config-
urable software verification. In Ganesh Gopalakrishnan and Shaz Qadeer, edi-
tors, Computer Aided Verification - 23rd International Conference, CAV 2011,
Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume 6806 of Lecture
Notes in Computer Science, pages 184–190. Springer, 2011.

[8] Dirk Beyer, M. Erkan Keremoglu, and Philipp Wendler. Predicate abstraction
with adjustable-block encoding. In Roderick Bloem and Natasha Sharygina,
editors, Proceedings of 10th International Conference on Formal Methods in
Computer-Aided Design, FMCAD 2010, Lugano, Switzerland, October 20-23,
pages 189–197. IEEE, 2010.

[9] Dirk Beyer and Stefan Löwe. Explicit-state software model checking based on
CEGAR and interpolation. In Vittorio Cortellessa and Dániel Varró, editors,
Fundamental Approaches to Software Engineering - 16th International Confer-
ence, FASE 2013, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Pro-
ceedings, volume 7793 of Lecture Notes in Computer Science, pages 146–162.
Springer, 2013.

[10] Régis Blanc, Ashutosh Gupta, Laura Kovács, and Bernhard Kragl. Tree inter-
polation in vampire. In Kenneth L. McMillan, Aart Middeldorp, and Andrei
Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reason-
ing - 19th International Conference, LPAR-19, Stellenbosch, South Africa, De-
cember 14-19, 2013. Proceedings, volume 8312 of Lecture Notes in Computer
Science, pages 173–181. Springer, 2013.

[11] Yu-Fang Chen, Chiao Hsieh, Ming-Hsien Tsai, Bow-Yaw Wang, and Farn
Wang. Verifying recursive programs using intraprocedural analyzers. In Markus
Müller-Olm and Helmut Seidl, editors, Static Analysis - 21st International Sym-
posium, SAS 2014, Munich, Germany, September 11-13, 2014. Proceedings,
volume 8723 of Lecture Notes in Computer Science, pages 118–133. Springer,
2014.

[12] Jürgen Christ and Jochen Hoenicke. Interpolation in SMTLIB 2.0, 2012.
Available at http://ultimate.informatik.uni-freiburg.de/smtinterpol/
proposal.pdf - last check: March 5, 2015.

[13] Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. Proof tree preserving
interpolation. In Piterman and Smolka [26], pages 124–138.

94

http://ultimate.informatik.uni-freiburg.de/smtinterpol/proposal.pdf
http://ultimate.informatik.uni-freiburg.de/smtinterpol/proposal.pdf

Bibliography

[14] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking. J.
ACM, 50(5):752–794, 2003.

[15] Ashutosh Gupta, Corneliu Popeea, and Andrey Rybalchenko. Predicate ab-
straction and refinement for verifying multi-threaded programs. In Thomas Ball
and Mooly Sagiv, editors, Proceedings of the 38th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2011, Austin, TX,
USA, January 26-28, 2011, pages 331–344. ACM, 2011.

[16] Arie Gurfinkel, Temesghen Kahsai, and Jorge A. Navas. SeaHorn: a framework
for verifying c programs - (competition contribution). In TACAS 2015, Held as
Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, 2015.

[17] Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Nested inter-
polants. In Manuel V. Hermenegildo and Jens Palsberg, editors, Proceedings of
the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2010, Madrid, Spain, January 17-23, 2010, pages 471–482.
ACM, 2010.

[18] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L. McMil-
lan. Abstractions from proofs. In Neil D. Jones and Xavier Leroy, editors,
Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2004, Venice, Italy, January 14-16, 2004,
pages 232–244. ACM, 2004.

[19] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre.
Lazy abstraction. In John Launchbury and John C. Mitchell, editors, Con-
ference Record of POPL 2002: The 29th SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Portland, OR, USA, January 16-18,
2002, pages 58–70. ACM, 2002.

[20] Charles A. R. Hoare. An axiomatic basis for computer programming. Commu-
nications of the ACM, 12(10):576–580, 1969.

[21] Charles A. R. Hoare. Procedures and parameters: An axiomatic approach.
In Erwin Engeler, editor, Symposium on Semantics of Algorithmic Languages,
volume 188 of Lecture Notes in Mathematics, pages 102–116. Springer, 1971.

95

Bibliography

[22] Charles A. R. Hoare. The verifying compiler, a grand challenge for comput-
ing research. In Radhia Cousot, editor, Verification, Model Checking, and
Abstract Interpretation, 6th International Conference, VMCAI 2005, Paris,
France, January 17-19, 2005, Proceedings, volume 3385 of Lecture Notes in
Computer Science, pages 78–78. Springer, 2005.

[23] Krystof Hoder, Laura Kovács, and Andrei Voronkov. Playing in the grey
area of proofs. In John Field and Michael Hicks, editors, Proceedings of the
39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012,
pages 259–272. ACM, 2012.

[24] Kenneth L. McMillan. An interpolating theorem prover. Theoretical Computer
Science, 345(1):101–121, 2005.

[25] Kenneth L. McMillan. Lazy abstraction with interpolants. In Thomas Ball
and Robert B. Jones, editors, Computer Aided Verification, 18th International
Conference, CAV 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings,
volume 4144 of Lecture Notes in Computer Science, pages 123–136. Springer,
2006.

[26] Nir Piterman and Scott A. Smolka, editors. Tools and Algorithms for the Con-
struction and Analysis of Systems - 19th International Conference, TACAS
2013, Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings,
volume 7795 of Lecture Notes in Computer Science. Springer, 2013.

[27] Zvonimir Rakamaric and Michael Emmi. SMACK: decoupling source language
details from verifier implementations. In Armin Biere and Roderick Bloem, ed-
itors, Computer Aided Verification - 26th International Conference, CAV 2014,
Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July
18-22, 2014. Proceedings, volume 8559 of Lecture Notes in Computer Science,
pages 106–113. Springer, 2014.

[28] Daniel Wonisch. Block abstraction memoization for CPAchecker - (competi-
tion contribution). In Cormac Flanagan and Barbara König, editors, Tools and
Algorithms for the Construction and Analysis of Systems - 18th International
Conference, TACAS 2012, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 -

96

Bibliography

April 1, 2012. Proceedings, volume 7214 of Lecture Notes in Computer Science,
pages 531–533. Springer, 2012.

[29] Daniel Wonisch and Heike Wehrheim. Predicate analysis with block-abstraction
memoization. In Toshiaki Aoki and Kenji Taguchi, editors, Formal Methods and
Software Engineering - 14th International Conference on Formal Engineering
Methods, ICFEM 2012, Kyoto, Japan, November 12-16, 2012. Proceedings, vol-
ume 7635 of Lecture Notes in Computer Science, pages 332–347. Springer, 2012.

97

A Tree Interpolation as Extension for
SMTLIB Version 2

This section provides useful information about tree interpolation with the SMT
solver SMTINTERPOL and uses the path formulae of an example program that was
mentioned before in this thesis (see Figure 4.6). The interpolants in the thesis were
simplified to improve readability, but here the exact result of SMTINTERPOL is given.

1 (set −opt ion : pr int −s u c c e s s f a l s e)
2 (set −opt ion : produce−proo f s t rue)
3 (set −opt ion : v e r b o s i t y 3)
4 (set −l o g i c QF_UFLIA)
5

6 (dec la re −fun a0 () Int)
7 (dec la re −fun b0 () Int)
8 (dec la re −fun p0 () Int)
9 (dec la re −fun p1 () Int)

10 (dec la re −fun r0 () Int)
11 (dec la re −fun r1 () Int)
12 (dec la re −fun x0 () Int)
13 (dec la re −fun x1 () Int)
14 (dec la re −fun tmp0 () Int)
15

16 (a s s e r t (! (= a0 2) : named F1))
17 (a s s e r t (! (and (= x0 p0) (> x0 0)) : named F2))
18 (a s s e r t (! (and (= x1 p1) (<= x1 0) (= r0 x1)) : named F3))
19 (a s s e r t (! (= p1 (− x0 1)) : named F4))
20 (a s s e r t (! (= tmp0 r0) : named F5))
21 (a s s e r t (! (= r1 (+ tmp0 1)) : named F6))
22 (a s s e r t (! (= p0 a0) : named F7))
23 (a s s e r t (! (= b0 r1) : named F8))
24 (a s s e r t (! (d i s t i n c t b0 2) : named F9))
25

26 (check−sa t)
27 (get−i n t e r p o l a n t s F1 (F2 (F3) F4 F5 F6) F7 F8 F9)
28

29 (e x i t)

Figure A.1: Input for SMTINTERPOL in SMTLIB2-format (extended for interpola-
tion)

99

A Tree Interpolation as Extension for SMTLIB Version 2

The input and output of the solver is given in Figure A.1 and Figure A.2. The
input first configures the solver with some default properties, then all symbols are
declared the formulae are pushed onto the solver’s stack. Each formula has an
unique name (F1-9) to identify them in the tree. The tree interpolation problem is
formatted as suggested in the proposal [12], i. e. each right subtree of formulae is
written in brackets. The tree structure matches Figure A.3, where the identifiers
of the formulae and the corresponding interpolants are shown. The solution for the
tree interpolation problem is printed in post order in Figure A.2.

1 unsat
2 (
3 (<= 0 (+ a0 (− 2)))
4 (<= p0 x0)
5 (<= 0 (− p1))
6 (<= p0 1)
7 (<= p0 1)
8 (<= p0 1)
9 f a l s e

10 f a l s e
11)

Figure A.2: Output of SMTINTERPOL for the given input

F9

F8

F7

F6

F5

F4

F3F2(<= p0 x0) (<= 0 (− p1))

(<= p0 1))

(<= p0 1)

F1(<= 0 (+ a0 (− 2))) (<= p0 1)

false

false

Figure A.3: Tree of formulae with interpolants, each node is labelled with the iden-
tifier of its formula, the interpolants are shown near beside the nodes

100

B Detailed Results of the Evaluation

Table B.1 and Table B.2 show the detailed result and data for each task of the
benchmarks. The first table contains the verification result and the measured CPU
time for the comparison of different interpolation strategies and SMT solvers, which
are evaluated in Section 6.3.2. The second table compares different tools according
to Section 6.5. Each line of a table contains the results for one source file, whose
name appears in the first column. A source file is considered as Safe if its name ends
with "_T". Otherwise the program ends with "_F" and has a bug, i. e. a feasible
counterexample violating the specification. The columns of the tables show the
result of the analysis, the needed CPU time (up to a time limit of 900 s) and (only
in the second table) the amount of used memory. The score is computed following
the scoring scheme of the International Competition on Software Verification 2015.
In the tables we notice that the predicate analysis is not able to analyze recursion,

where deep unrolling or many function calls are needed to verify a program. For
example the source files fibo*, Fibonacci*, and Ackermann contain recursive imple-
mentations of the Fibonacci-sequence or the Ackermann function and need several
unrollings of the recursive functions, which is called with distinct input values.

101

B Detailed Results of the Evaluation

MATHSAT PRINCESS SMTINTERPOL Z3

ne
st
ed

tr
ee
C
P
A

w
el
ls
co
p
ed

ne
st
ed

tr
ee
C
P
A

w
el
ls
co
p
ed

tr
ee

w
el
ls
co
p
ed

ne
st
ed

tr
ee

tr
ee
C
P
A

w
el
ls
co
p
ed

afterrec_2calls_F X 1.9 X 1.9 X 1.9 X 4.4 X 4.5 X 3.9 X 2.0 X 2.0 X 2.0 X 2.0 X 1.9 X 1.9
afterrec_2calls_T X 1.9 X 1.9 X 1.9 X 4.2 X 4.0 X 3.3 X 2.0 X 2.0 X 1.9 X 2.0 X 1.9 X 1.9
afterrec_F X 1.9 X 1.9 X 1.9 X 4.9 X 5.0 X 4.5 X 2.1 X 2.0 X 2.0 X 2.0 X 2.1 X 2.0
afterrec_T X 1.8 X 1.9 X 1.9 X 4.1 X 4.0 X 3.4 X 1.9 X 2.0 X 1.9 X 1.9 X 2.1 X 2.0
fibo_10_F TO TO TO TO TO TO TO TO TO TO TO TO
fibo_10_T TO TO TO TO TO TO TO TO TO TO TO TO
fibo_15_F TO TO TO TO TO TO TO TO TO TO TO TO
fibo_15_T TO TO TO TO TO TO TO TO TO TO TO TO
fibo_2calls_10_F X 430 TO X 110 TO TO TO X 19 X 24 X 210 TO X 180 TO
fibo_2calls_10_T X 450 TO X 63 TO TO TO TO TO TO TO TO TO
fibo_2calls_2_F X 2.0 X 2.0 X 2.2 X 6.9 X 5.6 X 5.2 X 2.2 X 2.2 X 2.1 X 2.0 X 2.0 X 2.4
fibo_2calls_2_T X 4.7 X 5.1 X 4.7 X 29 X 20 X 30 X 4.1 X 4.1 X 6.0 TO X 5.9 X 4.3
fibo_2calls_4_F X 5.3 X 5.6 X 5.0 X 78 TO TO X 6.2 X 6.3 X 5.5 TO X 8.1 TO
fibo_2calls_4_T X 8.1 X 7.5 X 8.5 X 63 TO X 39 TO TO TO TO TO TO
fibo_2calls_5_F X 5.5 TO X 6.4 TO X 720 X 630 X 7.7 X 7.7 TO TO ? 5.8 TO
fibo_2calls_5_T X 17 TO TO X 480 X 180 X 51 TO TO TO TO TO ? 3.6
fibo_2calls_6_F X 17 TO X 9.9 TO TO TO X 11 X 14 X 11 TO X 12 TO
fibo_5_F X 3.6 X 3.9 TO X 190 TO TO X 11 X 11 X 14 TO TO TO
fibo_5_T TO TO TO TO TO TO TO TO TO TO TO TO
fibo_7_F X 360 X 12 TO TO TO TO X 22 X 23 TO TO TO TO
fibo_7_T TO TO TO TO TO TO TO TO TO TO TO TO
id2_b2_o3_T X 1.9 X 2.0 X 2.0 X 10 X 9.3 X 11 X 2.0 X 2.1 X 2.0 X 2.0 X 1.9 X 2.0
id2_b3_o2_F X 2.1 X 2.1 X 2.1 X 9.8 X 9.9 X 9.5 X 2.4 X 2.4 X 2.3 X 2.2 X 2.3 X 2.5
id2_b3_o5_T X 1.9 X 2.0 X 2.0 X 16 X 16 X 13 X 2.1 X 2.1 X 2.0 X 2.0 X 2.1 X 1.9
id2_b5_o10_T X 2.0 X 2.0 X 2.0 X 24 X 22 X 20 X 2.1 X 2.2 X 2.0 X 2.0 X 2.0 X 2.0
id2_i5_o5_F X 2.1 X 2.1 X 2.0 X 12 X 11 X 9.7 X 2.4 X 2.3 X 2.3 X 2.2 X 2.2 X 2.2
id2_i5_o5_T X 4.3 X 4.2 X 4.1 TO TO TO X 6.8 X 7.0 X 6.0 X 5.3 X 5.7 X 5.4
id_b2_o3_T X 2.0 X 1.9 X 1.9 TO TO TO X 2.1 X 2.1 X 2.0 X 2.1 X 2.3 X 2.0
id_b3_o2_F X 2.0 X 2.1 X 2.0 X 7.6 X 7.0 X 6.3 X 2.3 X 2.2 X 2.1 X 2.1 X 2.1 X 2.2
id_b3_o5_T X 1.9 X 1.9 X 1.9 TO TO TO X 2.2 X 2.1 X 2.1 X 2.1 X 2.0 X 2.1
id_b5_o10_T X 1.9 X 1.9 X 1.9 TO TO TO X 2.1 X 2.3 X 2.0 X 2.0 X 2.1 X 2.0
id_i10_o10_F X 4.2 X 4.2 TO X 25 X 23 X 20 X 11 X 11 X 5.0 X 6.1 X 4.6 X 6.9
id_i10_o10_T X 5.5 X 5.5 TO TO TO TO X 11 X 12 X 9.7 X 6.8 X 8.6 X 7.4
id_i5_o5_F X 2.6 X 2.4 TO X 13 X 13 X 9.9 X 3.7 X 3.8 X 3.0 X 2.8 X 3.0 X 2.9
id_i5_o5_T X 3.3 X 3.2 TO TO TO TO X 5.3 X 5.2 X 4.1 X 3.5 X 4.0 X 3.9
id_o1000_F TO TO TO TO TO TO TO TO TO TO TO TO
id_o100_F TO TO TO TO TO TO TO TO TO TO TO TO
id_o10_F X 4.2 X 4.3 X 4.2 X 25 X 26 X 22 X 7.5 X 7.5 X 6.2 X 4.0 X 5.1 X 4.4
id_o200_F TO TO TO TO TO TO TO TO TO TO TO TO
id_o20_F X 13 X 13 X 12 X 80 X 82 X 60 X 20 X 19 X 15 X 12 X 14 X 13
id_o3_F X 2.1 X 2.1 X 2.1 X 9.3 X 9.4 X 7.6 X 2.3 X 2.3 X 2.3 X 2.3 X 2.3 X 2.2
sum_10x0_F X 6.2 X 5.9 X 4.6 X 93 X 32 X 26 X 6.8 X 7.0 X 6.5 X 4.6 X 5.5 X 5.1
sum_10x0_T X 6.9 X 5.8 X 5.4 X 42 X 39 X 31 X 13 X 14 X 88 TO X 13 X 12
sum_2x3_F X 2.0 X 2.0 X 1.9 X 7.5 X 6.5 X 5.6 X 2.2 X 2.1 X 2.1 X 2.0 X 2.0 X 2.0
sum_2x3_T X 2.9 X 2.4 X 2.4 X 9.2 X 9.0 X 7.2 X 3.5 X 3.3 X 3.4 TO X 2.8 X 2.8
sum_non_eq_F X 1.9 X 1.9 X 1.9 X 3.0 X 2.9 X 3.0 X 2.1 X 2.0 X 1.9 X 1.8 X 1.9 X 1.9
sum_non_eq_T X 2.1 X 2.0 X 1.9 X 6.7 X 6.2 X 5.6 X 2.3 X 2.5 X 2.2 X 2.1 X 2.1 X 2.1
sum_non_F X 1.8 X 1.9 X 1.9 X 3.0 X 3.0 X 2.9 X 2.2 X 1.9 X 1.9 X 1.9 X 1.8 X 2.0
sum_non_T X 2.3 X 2.1 X 2.0 X 6.6 X 6.4 X 5.6 X 2.6 X 2.5 X 2.2 X 2.4 X 2.2 X 2.2
Ackermann02_F X 2.9 X 2.7 X 2.6 ? 10 ? 10 ? 8.4 X 4.0 X 3.9 TO TO TO X 3.7
Addition02_F X 2.1 X 2.0 X 2.0 X 5.6 X 6.3 X 5.4 X 2.2 X 2.2 X 2.1 X 2.0 X 2.1 X 2.1
Addition03_F TO TO TO TO TO TO TO TO TO TO TO TO
BallRajamani_F X 2.0 X 2.0 X 2.0 X 6.5 X 6.1 X 4.7 X 2.1 X 2.1 X 2.1 TO X 2.0 X 2.0
EvenOdd03_F X 1.9 X 1.9 X 1.9 X 3.3 X 3.3 X 3.3 X 2.1 X 2.1 X 2.0 X 1.9 X 1.9 X 2.0
Fibonacci04_F X 4.1 X 3.6 X 3.9 X 35 X 34 X 34 X 7.2 X 7.3 X 7.3 TO X 6.4 X 6.0
Fibonacci05_F TO X 40 X 240 TO TO TO X 200 X 200 X 260 TO X 240 X 190
McCarthy91_F X 2.0 X 1.9 X 1.9 X 3.1 X 3.0 X 3.0 X 2.0 X 2.0 X 1.9 X 1.9 X 2.0 X 1.9
Ackermann01_T TO TO TO TO TO TO TO TO TO TO TO TO
Ackermann03_T TO TO TO TO TO TO TO TO TO TO TO TO
Ackermann04_T TO TO TO ? 10 ? 11 ? 8.0 TO TO TO TO TO TO
Addition01_T TO TO TO TO TO TO TO TO TO TO TO TO
EvenOdd01_T X 3.7 X 4.0 X 2.6 X 3.3 X 3.3 X 3.3 X 2.1 X 2.0 X 1.9 X 1.9 X 1.9 X 1.9
Fibonacci01_T TO TO TO TO TO TO TO TO TO TO TO TO
Fibonacci02_T TO TO TO TO TO TO TO TO TO TO TO TO
Fibonacci03_T TO TO TO TO TO TO TO TO TO TO TO TO
McCarthy91_T X 2.1 X 2.1 X 2.1 X 9.2 X 9.2 X 8.0 X 2.8 X 2.8 X 2.4 X 2.2 X 2.3 X 2.3
MultCommutative_TTO TO TO TO TO TO TO TO TO TO TO TO
Primes_T TO TO TO TO ? 140 TO TO TO TO TO TO TO
gcd01_T TO TO TO TO TO TO TO TO TO TO TO TO
gcd02_T TO TO TO ? 260 ? 49 ? 45 TO TO TO ? 32 TO ? 30
recHanoi01_T X 2.0 X 2.2 TO TO TO TO X 2.2 X 2.1 TO X 2.7 TO TO
recHanoi02_T X 2.0 X 2.0 X 1.9 X 6.3 X 6.2 X 5.3 X 2.1 X 2.1 X 2.1 X 2.1 X 2.1 X 2.0
recHanoi03_T X 7.3 X 6.0 X 5.9 TO TO TO X 10 X 11 X 3.5 TO X 3.2 X 3.2
Score (max. 112) 75 69 64 44 41 43 62 62 57 44 56 54
#Correct Results 51 47 44 36 34 35 48 48 44 34 43 41
#False Positive 0 0 0 1 1 1 1 1 1 1 1 1
#False Negative 0 0 0 0 0 0 0 0 0 0 0 0

Table B.1: Verification result and runtime (CPU time in seconds) for different con-
figurations of CPACHECKER (correct result: X, wrong result: X, timeout
(900 s): TO, unknown: ?)102

CBMC CPACHECKER CPACHECKER CPAREC SMACK+CORRAL
ULTIMATE

Predicate Value AUTOMIZER
afterrec_2calls_F X 0.14 24 X 1.9 150 X 1.8 120 X 9.8 170 X 1.2 68 X 7.2 240
afterrec_2calls_T X 0.61 24 X 1.9 160 X 1.8 140 TO 900 460 X 1.8 61 X 6.7 250
afterrec_F X 0.14 24 X 1.9 160 X 1.8 140 X 9.4 160 X 1.1 57 X 7.1 250
afterrec_T X 0.63 24 X 1.8 160 X 1.8 120 TO 900 470 X 1.6 53 X 6.8 240
fibo_10_F X 0.40 26 TO 900 5,900 X 2.4 160 OOM 860 15,000 X 48 1,400 X 58 550
fibo_10_T X 0.82 24 TO 900 5,600 X 4.2 240 OOM 870 15,000 X 44 1,400 X 93 480
fibo_15_F X 4.2 58 TO 900 6,100 X 5.0 230 TO 900 5,900 X 45 1,300 ? 310 4,300
fibo_15_T X 11 28 TO 900 5,900 X 41 3,400 TO 900 5,800 X 45 1,400 ? 320 4,900
fibo_2calls_10_F X 0.29 26 X 430 290 X 2.5 160 TO 900 1,200 X 110 4,900 X 280 640
fibo_2calls_10_T X 0.90 25 X 450 340 X 5.0 360 TO 900 1,200 X 110 4,800 X 330 690
fibo_2calls_2_F X 0.15 24 X 2.0 160 X 1.9 130 X 6.6 170 X 100 4,900 X 7.8 250
fibo_2calls_2_T X 0.64 24 X 4.7 220 X 1.8 140 TO 900 8,600 X 100 5,600 X 8.8 270
fibo_2calls_4_F X 0.15 32 X 5.3 220 X 2.2 140 X 18 240 X 100 4,700 X 12 270
fibo_2calls_4_T X 0.63 24 X 8.1 240 X 2.0 140 TO 900 2,200 X 100 4,900 X 15 290
fibo_2calls_5_F X 0.15 24 X 5.5 170 X 1.9 150 X 27 240 X 100 5,100 X 17 290
fibo_2calls_5_T X 0.64 24 X 17 330 X 2.1 150 TO 900 3,500 X 100 5,800 X 20 360
fibo_2calls_6_F ? 0.14 24 X 17 250 X 2.0 150 X 42 560 X 100 4,800 X 23 360
fibo_5_F X 0.26 25 X 3.6 210 X 1.9 140 X 25 390 X 2.6 130 X 14 390
fibo_5_T X 0.63 25 TO 900 5,600 X 2.3 130 X 30 380 X 45 1,400 X 15 290
fibo_7_F X 0.26 24 X 360 4,800 X 2.0 150 X 130 1,800 X 3.0 130 X 24 360
fibo_7_T X 0.66 32 TO 900 6,700 X 3.1 210 TO 900 1,700 X 44 1,400 X 29 370
id2_b2_o3_T X 0.95 32 X 1.9 150 X 2.1 130 X 5.9 150 X 1.7 54 X 8.0 270
id2_b3_o2_F ? 0.14 24 X 2.1 150 X 1.9 140 X 11 170 X 1.2 59 X 7.8 270
id2_b3_o5_T X 0.95 33 X 1.9 150 X 1.9 120 X 5.8 150 X 1.7 56 X 9.5 280
id2_b5_o10_T X 0.94 32 X 2.0 160 X 2.0 130 X 5.9 150 X 1.7 56 X 14 420
id2_i5_o5_F ? 0.13 24 X 2.1 130 X 1.9 140 X 24 170 X 1.2 59 X 9.1 270
id2_i5_o5_T X 0.64 24 X 4.3 230 X 1.8 140 TO 900 780 X 1.6 54 X 11 290
id_b2_o3_T X 0.71 27 X 2.0 130 X 1.8 120 X 3.8 150 X 1.6 52 X 7.8 280
id_b3_o2_F ? 0.13 24 X 2.0 160 X 1.8 140 X 10 180 X 1.1 58 X 8.1 250
id_b3_o5_T X 0.70 27 X 1.9 160 X 1.9 120 X 3.8 140 X 1.6 52 X 9.1 280
id_b5_o10_T X 0.70 29 X 1.9 150 X 1.8 140 X 3.8 140 X 1.6 54 X 13 270
id_i10_o10_F X 0.32 24 X 4.2 220 X 1.9 150 X 48 220 X 1.8 60 X 15 270
id_i10_o10_T X 0.61 24 X 5.5 240 X 1.9 140 X 59 190 X 1.5 54 X 18 280
id_i5_o5_F X 0.24 24 X 2.6 160 X 1.8 140 X 23 170 X 1.1 54 X 8.9 270
id_i5_o5_T X 0.61 24 X 3.3 170 X 1.9 140 X 31 160 X 1.5 52 X 11 270
id_o1000_F X 0.69 26 TO 900 890 X 500 1,500 TO 900 2,200 X 1.5 52 TO 900 430
id_o100_F X 0.69 27 TO 900 830 X 3.7 210 TO 900 2,200 X 1.5 52 TO 900 440
id_o10_F X 0.33 25 X 4.2 150 X 1.9 150 X 49 210 X 1.8 61 X 12 270
id_o200_F X 0.69 26 TO 900 910 X 5.7 230 TO 900 2,200 X 1.5 52 TO 900 450
id_o20_F X 0.56 25 X 13 240 X 2.1 150 X 110 360 X 1.6 52 X 35 360
id_o3_F X 0.26 24 X 2.1 160 X 1.8 140 X 15 150 X 1.1 57 X 7.2 250
sum_10x0_F X 0.35 24 X 6.2 230 X 1.8 150 X 49 260 X 1.8 61 X 15 270
sum_10x0_T X 0.61 24 X 6.9 240 X 2.3 160 X 3.8 150 X 1.5 52 X 21 280
sum_2x3_F X 0.14 33 X 2.0 160 X 1.8 150 X 10.0 170 X 1.1 53 X 7.2 250
sum_2x3_T X 0.61 24 X 2.9 200 X 1.9 140 X 3.9 150 X 1.5 52 X 8.7 270
sum_non_eq_F X 0.15 24 X 1.9 130 X 1.8 140 X 2.1 140 X 1.2 56 X 6.4 250
sum_non_eq_T X 8.7 39 X 2.1 160 X 1.7 150 X 3.8 150 X 1.1 51 TO 900 440
sum_non_F X 0.15 24 X 1.8 150 X 1.8 140 X 2.0 160 X 1.1 54 X 6.6 240
sum_non_T X 11 45 X 2.3 160 X 1.8 120 X 3.8 150 X 1.1 54 X 31 290
Ackermann02_F X 1.8 74 X 2.9 140 X 1.7 140 X 22 370 X 35 1,200 X 8.1 240
Addition02_F X 0.16 25 X 2.1 130 X 1.9 130 X 6.3 170 X 3.1 170 X 7.3 240
Addition03_F X 850 10,000 TO 900 5,200 X 1.8 140 TO 900 1,700 X 70 2,200 TO 900 470
BallRajamani_F X 0.15 24 X 2.0 160 X 1.8 140 X 6.2 170 X 1.2 59 X 7.3 250
EvenOdd03_F ? 0.15 33 X 1.9 160 X 1.9 120 X 2.1 170 X 1.1 53 X 6.7 250
Fibonacci04_F X 0.56 33 X 4.1 140 X 1.8 140 X 31 410 X 2.7 120 X 14 290
Fibonacci05_F X 850 230 TO 900 5,600 X 1.8 140 TO 900 390 X 3.2 120 X 48 400
McCarthy91_F ? 0.14 26 X 2.0 130 X 1.8 140 X 2.1 160 X 2.2 180 X 6.3 240
Ackermann01_T X 850 320 TO 900 1,100 X 1.8 140 X 4.0 150 X 340 10,000 X 11 290
Ackermann03_T X 850 320 TO 900 6,600 X 1.8 140 TO 900 1,500 X 340 10,000 X 41 290
Ackermann04_T X 850 310 TO 900 6,400 X 1.8 140 TO 900 1,600 X 340 10,000 X 32 290
Addition01_T X 850 9,100 TO 900 4,900 X 1.9 130 X 9.2 140 X 70 2,200 TO 900 460
EvenOdd01_T X 1.1 33 X 3.7 180 X 1.7 140 ? 2.1 170 X 1.7 57 TO 900 450
Fibonacci01_T X 850 230 TO 900 5,000 X 1.8 140 X 82 920 X 46 1,500 X 140 340
Fibonacci02_T X 0.74 24 TO 900 5,700 X 3.6 220 TO 900 4,300 X 46 1,600 X 59 530
Fibonacci03_T X 850 230 TO 900 5,700 X 1.8 140 TO 900 380 X 45 1,500 X 71 660
McCarthy91_T X 850 1,200 X 2.1 160 X 1.8 140 X 8.6 170 X 29 1,100 X 8.1 250
MultCommutative_TX 850 370 TO 900 450 X 1.9 150 ? 29 160 X 130 3,100 TO 900 470
Primes_T X 850 250 TO 900 360 X 2.0 120 TO 900 1,100 X 510 6,000 TO 900 580
gcd01_T X 850 3,500 TO 900 4,300 X 1.8 140 X 4.1 150 X 96 2,300 X 9.5 280
gcd02_T X 850 220 TO 900 350 X 1.8 150 TO 900 8,900 X 340 4,100 TO 900 490
recHanoi01_T X 850 670 X 2.0 160 X 1.8 140 TO 900 1,200 X 53 1,900 ? 390 2,900
recHanoi02_T X 0.70 27 X 2.0 150 X 2.4 170 X 3.8 150 X 1.6 52 X 7.0 240
recHanoi03_T X 0.74 34 X 7.3 190 X 1.8 140 TO 900 880 X 1.6 52 ? 56 320
Score (max. 112) 2 75 -24 64 18 89
#Correct Results 59 51 56 45 65 59
#False Positive 0 0 17 0 2 0
#False Negative 8 0 0 0 6 0

Table B.2: Verification result, runtime (CPU time in seconds) and memory con-
sumption (in MB) for different tools (correct result: X, wrong result: X,
timeout: TO, out of memory: OOM, unknown: ?)

103

	Introduction
	Model Checking and Software Verification
	CPAchecker as Verification Framework
	Overview
	Structure

	Related Work
	Bounded Model Checking
	Interpolation-Based Approach for Recursive Procedure Calls
	Fixpoint-Algorithm: CPArec

	Background
	CFA - Control Flow Automaton
	CPA - Configurable Program Analysis
	CPA-Algorithm
	ARG - Abstract Reachability Graph

	CEGAR - Counterexample-Guided Abstraction Refinement
	BAM - Block-Abstraction Memoization
	Blocks in BAM
	Overview of the Control Flow in BAM
	Example for an ARG in BAM
	Cache and Memoization in BAM
	Reduce and Expand Operator
	BAM-CPA
	BAM with CEGAR

	Floyd-Hoare Logic
	Hoare-Triple
	Hoare's Rules

	Interpolation Strategies
	Craig Interpolation or Binary Interpolation
	Sequential Interpolation
	Tree Interpolation
	Interpolation in SMTLIB Version 2 and SMT solvers

	Analyzing Recursive Procedures with Block-Abstraction Memoization
	Motivating Example
	Groundwork and Necessary Preconditions in BAM
	Most Outer Block
	Blocks for Functions

	Transfer-Relation of BAM with Support for Recursive Procedures
	Block Stack and Unrolling Recursive Function Calls
	Fixpoint-Iteration
	Rebuilding Abstract States at Function-Returns

	Theory and Outline for the Proof of Correctness
	Hoare's Rules and Abstract States
	Soundness of the Fixpoint Algorithm

	Using Further Analyses in Combination with BAM
	ARG-CPA
	Location-CPA
	Callstack-CPA
	Value Analysis
	Value-CPA
	Reduce and Expand
	Rebuild
	Counterexample and Refinement

	Predicate Analysis
	Predicate-CPA
	Predicate Abstraction and Refinement with Interpolation
	Reduce and Expand
	Refinement and Interpolation for Recursive Procedures
	Rebuild
	Example for Counterexample with Tree Interpolation and Flattening

	Implementation
	BAM-CPA
	Changes in CPAs
	Interpolation Strategies
	Configuration of the Analyses
	Value Analysis
	Predicate Analysis

	Evaluation
	Benchmarks and Source Files
	Resources, Limitations and Measurements
	Configurations of CPAchecker
	Value Analysis
	Predicate Analysis

	Configurations of Evaluated Tools
	CBMC
	CPArec
	Smack+Corral
	UltimateAutomizer
	Further Tools

	Experimental Results

	Conclusion
	BAM and Recursive Procedures
	Prospects
	Data Structures and Memory Model in BAM
	Comparison of Interpolation Strategies
	Modular Analysis through Predicate Analysis with BAM

	Tree Interpolation as Extension for SMTLIB Version 2
	Detailed Results of the Evaluation

