Softwa r Systems

Software and Computational .
Systems Lab LMU |

Master Thesis

in Computer Science

Symbolic Heap Abstraction with
Automatic Refinement

Johannes Knaut

Aufgabensteller: Prof. Dr. Dirk Beyer
Betreuer: Karlheinz Friedberger
Abgabedatum:  30.09.2018



Declaration of Authorship

I hereby declare that the thesis submitted is my own
unaided work. All direct or indirect sources used are
acknowledged as references.

This paper was not previously presented to another
examination board and has not been published.

Munich, 30.09.2018

Johannes Knaut



Abstract

Programs with error conditions that depend on the length of a list can be
analysed if the threshold for abstraction is higher than the length that the
error condition depends on. The best threshold is just as high that the list
is not getting abstracted. This thesis at first looks at the obvious approach
of using the longest list length encountered on the error path. Then, a more
fine-grained approach is developed that introduces loose connections between
lists and their maximum encountered length.



Contents

5

6

Introduction

Background

2.1 Literature Review . . . . . . . . . . . ... ... ... . ... ..

2.2 Symbolic Memory Graphs (SMGs) . ... ... ... ... ...
2.2.1 Propertiesof SMGs . . . . ... ...
2.2.2 SMG Consistency . . . . . . . ...
2.2.3 SMG List Abstraction . . . .. ... ... ... .....

SMG Analysis in CPAchecker

3.1 Erroneous Candidates for Circular DLLs . . . . . . .. ... ..
3.2  Materialisation of Nullified DLL Segments . . . . . .. ... ..
3.3 Value Replacement of Abstracted Segments . . . . .. ... ..

Symbolic Heap Abstraction with Automatic Refinement

4.1 Motivating Examples . . . . . . . .. ... ... L.
4.1.1 Symbolic Heap Abstraction . . . .. ... ... ... ..
4.1.2 CEGAR-based Approach using Maximum Length . . . .
4.1.3 Threshold Candidate Generation . . . .. .. ... ...

4.2 Refinement of Heap Abstraction Threshold . . . . . . . . .. ..
4.2.1 Naive Maximum Length Approach . . . ... .. .. ..
4.2.2  Threshold Candidate Approach . . . . . ... ... ...

Conclusion

Acknowledgments

List of Figures

Bibliography

14
14
19
20

22
22
22
24
26
27
27
28

32

33

34

35



Chapter 1

Introduction

In contrast to an array, a linked list is a very flexible data structure. Its length
can grow without limits just by adding new links. Items can be inserted just
by destroying a connection, adding a new link and renewing the connection.
Data management can be done very efficiently, nodes can be allocated on-the-
fly and released whenever they are not needed anymore. Lists can be traversed
forward and backward, the end of a list can link to its beginning, also so-called
sentinel nodes can be kept. Lists can have nested lists, that can be nested
once again. And lists are also collections of elements and can be thought of
as abstractions for linked elements that are all of the same size and share a
common type.

This thesis is revolving around Doubly-Linked List Segments, which are the
major abstraction used in the analysis of Symbolic Memory Graphs (SMGs).
SMGs are a graph-based notation that can be used to model the heap during
the analysis of a program. There can be situations in the analysis of a program,
where an abstraction of single objects into a comprising structure is necessary
for the analysis to make progress, for example in order to find a fixed point
for a loop and to escape unlimited unrollings. So, one problem is to get to
such an abstraction. Then, there is also the problem, that there can be many
different possible abstractions as there can be many possible candidates on the
heap. Also, it is not clear where to begin with an abstraction, i.e. how high
should the number of linked elements become until an abstraction is executed,
and is the implied threshold a global threshold or can it be attached to certain
properties.

An important concept in this context is counterexample-guided abstraction
refinement, a technique which uses a very abstract model in the beginning
and gets incrementally more concrete, while being guided by counterexamples.



CHAPTER 1. INTRODUCTION

As described in [5], if the counterexample that was found by the analysis is
feasible, the user is provided with a witness and the analysis terminates. When
the path is found to be infeasible, the abstract model was too coarse and will be
refined by exploiting information from the counterexample. Then, the analysis
can continue with the refined abstraction. If no counterexamples are found,
the analysis terminates and reports that the program is safe.

Outline. The thesis has two main chapters, that follow a background chapter
that looks at research in shape analysis in a chronological fashion. After going
over selected literature, Symbolic Memory Graphs are introduced and some
properties of their nodes and edges as well as other concepts are explained. The
chapter closes with the important algorithm for list abstraction. After that,
the first main chapter details three encountered problems in SMG analysis in
CPAchecker and suggests solutions. Then, in the last chapter two approaches
for refinement of the heap abstraction threshold are motivated by example
programs and then the approaches are presented.



Chapter 2

Background

2.1 Literature Review

In the following, selected research papers of the last 20 years are reviewed with
the aim to give a broader overview over past work on shape analysis before
focusing entirely on Symbolic Memory Graphs.

Estimating Trees, DAGs and Cycles. According to Ghija and Hen-
dren [8] the goal of shape analysis is to estimate the shape of dynamic data
structures, that are accessible from a given pointer. Knowledge about the
shape of a data structure can give useful information to exclude paths be-
tween specific pointers or to decide if different heap accesses from a pointer
can lead to the same heap object. After estimating a useful shape for a data
structure accessible from a pointer, the goal is also to retain this information
as long as possible and not to exchange a tree or directed acyclic graph at-
tribute with a cyclic one, that has much less information to offer. The authors
present an analysis that is directed at programs that use simple recursive data
structures, that are built compositionally. The analysis uses approximation of
the shape for each heap-directed pointer and direction and interference rela-
tionships for pairs of heap-directed pointers. Instead of using more complex
abstractions, the focus is on providing practical abstractions. The implemen-
tation as a context-sensitive interprocedural analysis in a C compiler performs
well for programs using simple data structures but is not powerful enough for
programs with more complicated structural changes.

Detecting Memory Leaks using a Pointer Graph. Once a reference
to previously allocated memory is lost, subsequent operations cannot restore
it. Programs with memory leaks can waste high amounts of memory, may
slow down the program or even crash due to shortage of available memory.



CHAPTER 2. BACKGROUND

Scholz et al. [12] present an approach to detect memory leaks that is based on
symbolic evaluation of programs, which is a static symbolic analysis, that uses
symbolic variable values and path conditions. Also the notion of a pointer
graph is introduced, which if disconnected, implies occurrence of a memory
leak. For the description of the heap they use a heap algebra and for referring
to allocated objects and symbolic pointers are used, such that all allocated
objects are given a unique symbolic number. A pointer graph describes the
connectivity of the objects on the heap. One of the heap operations new, free
or put can destroy the connectivity if after the operation at least one object
can no longer be referenced in the program. The nodes of the tree are heap
objects as well as pointer variables and an artificial root node. If the root node
can be found in the predecessor sets of each node in the tree, the graph can
be proven to be connected. If not succeeding in approximating the solution,
respective predecessor sets are assumed to be empty and it can be reported
that a memory leak may occur.

Detecting Invalid Memory Access by a two-step approach. Besides
leaking memory, another source of program failures is the access to parts of
the memory that are not meant to be accessed, for example by dereferencing a
pointer that points to invalid memory. This can result in a program crash or
the program to get into an undefined state which is usually worse if undetected.
Some programming language environments automatically check before a mem-
ory access if it is safe to access it, but for C this is not the case. The memory
safety analyzer CCURED [11, 6] can transform C programs to memory-safe
programs by proving memory accesses safe and inserting run-time checks for
accesses for which proving does not succeed. Beyer et al. [2] use CCURED
in a first step to annotate the program locations that cannot be proven by a
type-based approach with run-time checks, then in a second step they use the
more powerful and more expensive analysis of the model checker BLAST [9]
to check remaining annotated accesses and either prove their safety or give an
execution trace in case of a property violation, or in case of a timeout keep the
run-time check that was inserted by CCured in the program.

Using Lazy Abstraction Refinement for Shape Analysis. Shape anal-
ysis can detect recursive data structures and use compact representations for
them, however it is an expensive analysis. In [3], Beyer et al. therefore do not
apply shape analysis globally but only where necessary by applying the lazy ab-
straction paradigm to shapes. An abstract reachability graph is computed on
the fly and its nodes are annotated with both predicate and shape information.
This can be summarized as lazy abstraction construction. When applying lazy
abstraction refinement only nodes on the path of a spurious counterexample



CHAPTER 2. BACKGROUND

Figure 2.1: Shape graph and possible instance of the graph.

are refined. For each location on this path the developed algorithm decides
which pointers and predicates to track and how to refine the heap abstraction
in order to remove the spurious error path. Initially the predicates are set to
true and the heap abstraction is set to the trivial shape graph. A shape graph
is a representation of recursive heap data structures comparable to SMGs.
Figure 2.1 shows in the upper part a shape graph annotated by predicates and
in the bottom part a possible instance of the graph. The graph represents all
instances of lists that store 1 in the field h of all of their nodes except the last
node which stores 3, and which have pointers a and p point to the list’s first
element.

Combining Shape Analysis with Arithmetic Analysis. Magill et al. [10]
use an arbitrary arithmetic analysis as back-end for processing counterexam-
ples found in a shape analysis using shape invariants. The counterexamples
are generated such that they only contain arithmetic statements and represent
all paths that satisfy the shape formulas and could lead to the potential error.
By conjoining shape invariants with arithmetic invariants, that are found by
arithmetic analysis while trying to prove that a counterexample is not reach-
able, the strengthened shape invariant can be used in shape analysis and is
more likely to rule out the memory error. Also the generated counterexample
may contain loop constructs instead of a specific number of loop unrollings in
order to generate a strengthening that rules out all spurious counterexamples
for the loop because the counterexample program over-approximates the set
of counterexample paths.

Discussion. The paper of Magill et al. [10] contains a motivating example
which corresponds to the example used in this thesis in listing 4.2 to motivate
a CEGAR-based approach for the analysis using the maximum list length in



CHAPTER 2. BACKGROUND

the precision. Generally, since properties of heap data structures such as the
list length are integer valued and shape analyses are not inherently designed
to reason about arithmetic relationships, the combination with an arithmetic
analysis can be used to support shape analysis in cases where reachability
of errors depends on list lengths or tree depths, which are commonly not
explicitly tracked in heap analysis. Comparing the paper with this thesis,
although in this thesis no shape invariants are used, the focus on finding an
abstraction threshold that is as small as possible, is similar to strengthening an
invariant. Both approaches aim to be only as concrete as necessary to refute
the counterexample using shape analysis as efficient as possible.

2.2 Symbolic Memory Graphs (SMGs)

In [7], Dudka et al. have introduced the notion of Symbolic Memory Graphs
(SMGs), a graph-based representation of sets of heaps, that supports low-level
memory operations.

SMGs are bipartite graphs: According to Asratian et al. [1], a graph is
bipartite if its vertices can be sorted into two groups such that edges only join
vertices from different groups. Furthermore, SMGs are directed graphs and
their nodes and edges are labelled. SMGs consist of two types of nodes and
two types of edges:

e Nodes

— Objects
*x Regions
« Doubly-linked list segments (DLSs)
* [Singly-linked list segments (SLSs)]
« Null object (#)

— Values

* 0
x All values other than 0

e Edges

— Has-Value Edges
— Points-To Edges



CHAPTER 2. BACKGROUND

af )
] O
hfo(d), fst hfa(d), Ist
¥ d b 4
foid). ph fo(d), pt
¢ C[PUHF” 1.DLS nUE]F”]C 3
dp ap
of, all level(ag) =1
levelir’) =1

Figure 2.2: SMG with DLS and nested abstract region.

2.2.1 Properties of SMGs

Nodes. Nodes are divided into objects and values. Regarding the differ-
ent object kinds, this thesis focuses on regions and doubly-linked list segments
(DLSs). Another object kind is the singly-linked list segment (SLS), that how-
ever can be viewed as a restriction of a DLS and is omitted in the description
for simplification. A region represents memory allocated either on the stack or
on the heap. As a special region, the null object, also written as #, represents
the NULL target. All NULL-pointers point to this region. A DLS is the result
of merging a sequence of doubly-linked regions during heap abstraction. Val-
ues represent either addresses or data. Two values can only be distinguished
by checking if their concrete values are equal or different. The only special
value is the value 0, which represents sequences of zero bytes of any length,
including nullified blocks of any size, and is used as the address of the null
object.

Edges. There are two kinds of edges, one that leads from objects to values,
and one that leads from values to objects. Has-value edges lead from objects to
values and express that an object stores a value. The has-value edge is labelled
by an offset and a type, which determine at which offset the field lies in which
the value is stored and of which type this field is. Fields are allowed to overlap
but they must lie within the boundaries of the object. Points-to edges lead
from values to objects and express that an address points to an object. The
points-to edge is labelled by an offset and a target specifier. The address can
point before, inside or behind the object. The target specifier specifies if the
target of the pointer is either a region (reg), the first element of a list (fst), the
last element of a list (Ist) or if each element of a top-level list is pointed from



CHAPTER 2. BACKGROUND

8 piojd), a
ptr
hia(d). reg hfo(d). Ist
fo(d), ptr Y nfo(d), ptr
< OEP (d). p ry gf[?[d_. o (d). p >O—»
ap an

of, reg l of, reg
(I) 2 level{ag) =1

a fT level(r’) =1

r'1 I"E

Figure 2.3: Possible concretisation of SMG with DLS and nested abstract
region.

af a)
@] O
hio(d). fst hfo(d). Ist
¥ d b 4
fo(d), pt fo(d), pt
< O‘pﬂi J. ptr 1:DLS nfo( ].pr,o »
ap an

of, Ist leveliag) =0
levelir’)=0

Figure 2.4: SMG with DLS and shared region.



CHAPTER 2. BACKGROUND

& piold), 3
ptr
hia(d). reg hfo(d), Ist
fo(d). ptr Y nfo(d). ptr
< o(Pi]P ry ;{Ecd_. o i]P,O 3
ag an

of. reg level{ag) =0
as levelir’)=0

Figure 2.5: Possible concretisation of SMG with DLS and shared region.

its nested list (all). An example for the use of the all specifier is depicted in
figure 2.2, where a DLS d is shown that has a nested region r’ which stores a
pointer that points back to d with the target specifier set to all. In figure 2.3
a possible concretisation of d is shown. If r’ is not a nested region but on
the same level as d, then the concretised regions of the DLS both point to the
shared object 1’ as depicted in figures 2.4 and 2.5. Because 1’ is not nested, we
also cannot use the all target specifier but let r’ point to the last list element.

Attributes. Nodes are labelled by several attributes. Each object is labelled
by its kind, size, nesting level and validity. DLSs additionally are labelled by
their minimum length, their head offset and their next and prev field offsets.
Values are labelled by their nesting level only. The object kind is one of {reg,
dls}, the null object is defined as a region. The size of a region is the amount
of memory allocated for it. The size of a DLS is the size of one of its nodes
or the size of one of the regions that were merged into the DLS. The nesting
level specifies at which hierarchical level the object or value appears, whereas
0 is the top level and 1 is the level of objects or values nested below it. The
validity of the null object and of deallocated regions is false.

2.2.2 SMG Consistency

Consistency Rules An SMG is called a consistent SMG, iff the following
consistencies hold:

e Basic object consistency:

— The null object is invalid, has size, level and address 0.

10



CHAPTER 2. BACKGROUND

— All DLSs are valid.

— Invalid regions have no outgoing edges.
e Field consistency:

— Fields do not exceed boundaries of objects.
e DLS consistency:

— Each DLS has a next and a prev pointer
— The next pointer is always stored in memory before the prev pointer

— The offsets of points-to edges to the first and last node of a DLS
must be equal to the head offset of the DLS

— There is no cyclic path of only 04+DLSs and their addresses
e Nesting consistency:

— Each nested object of level x has exactly one parent DLS with level
x-1

— There must be a path from the parent object to its nested object

— The inner nodes of a nested object on level x must be of level x or
higher

— Addresses with target specifier fst, Ist or reg are always of the same
level as the object they point to

— Addresses with the all target are one level higher than the object
they point to

— Points-to edges to a DLS that have the all target specifier can only
lead from objects nested below that DLS

Examples of Inconsistent SMGs If in figure 2.2 we only change the level
of r’ to 0, we create an inconsistent SMG because the last condition for nesting
consistency is violated. The violation exists because the all target specifier is
used in the points-to edge to d, which demands r’ to be a nested object of d.
Therefore, we change the all target specifier to the Ist target specifier. We also
could use the fst target specifier. The consequence of this change is that the
SMG is still inconsistent because the fourth condition for nesting consistency
is violated because address aq has not the same level as the object it points to.
Therefore, the next change is to set the level of aq to 0, which is the same level
as of DLS d. After this change we obtain a consistent SMG as in figure 2.4.

11



CHAPTER 2. BACKGROUND

2.2.3 SMG List Abstraction

Join of SMGs. The join of SMGs is a binary operation that takes two
SMGs G1 and G2 and returns their common generalisation, the SMG G. If
both SMGs are semantically equal, G is semantically equal to both the input
SMGs and the join status is ~. If G1 is a generalisation of G2, G is required to
be semantically equal to G1, and the join status is . In the symmetric case,
if G2 is a generalisation of G1, G and G2 must be semantically equal and the
join status is . If neither G1 nor G2 is a generalisation of the other SMG,
it must only hold, that G is a common generalisation of both SMGs, and the
join status is <.

List Abstraction Algorithm. SMG List Abstraction uses a candidate ap-
proach, such that at first the valid list candidates are searched on the heap and
then these candidates are processed in an order that is cost-efficient, whereas
high cost corresponds to a big loss of precision. The DLL finder, that is looked
at more closely in the next chapter, will find a set of abstraction candidates
that store the actual list candidates together with their detected length and
join status. After each time the DLL finder finds that the current object is
properly linked to the next object, it will increment the length of the list can-
didate for the corresponding join status. The join status is found by executing
a join on the sub-SMGs of the two objects. Note however, that in this case
the join is only used to check if the objects are mergeable and for recording
the join status, the join itself is discarded after that. After the DLL finder
traversal has finished detecting lists on the heap, the returned set of abstrac-
tion candidates is checked for valid candidates, which are the ones, that have
a greater length than the length threshold based on the join status. There
are three different thresholds, one for equality, one for entailment and one for
incomparability. For instance Dudka et al. found (equalityThreshold = 2,
entail Threshold = 2, incomparableThreshold = 3) to be a good configuration.
After obtaining the final set of valid abstraction candidates, it can now be
searched for the best candidate, i.e. the candidate that achieves the lowest
cost, or in case of ambiguity, the one with the greatest length or a random
member of the best group. In CPAchecker [4] a score is computed, where an
equality join status gives 50 points, an entailment status gives 30 or 31 points
and an incomparability status gives no points. In CPAchecker also the length
of the list is added to the score and if the candidate has recursive fields or a
list is already included in the candidate, the score gets another small increase.
The higher the score, the lesser cost and the lesser the precision loss. The best
candidate then gets abstracted by iteratively merging the first two elements
of the candidate making the merge result the first object in the next iteration

12



CHAPTER 2. BACKGROUND

Oz

fs

Merge Input Merge Qutput

Figure 2.6: Merging two neighbouring objects.

until all elements have been merged.

Elementary Merge Operation. Each of these single merge operations is
performed as in figure 2.6. At first, objects 0o; and oy are merged, resulting
in the DLS d, which has a minimum length that is the sum of the minimum
lengths of the merged DLSs. Then the sub-SMG is created by joining the
sub-SMGs of 0; and 0s. In the join algorithm used for abstraction, two simul-
taneous searches are started from o; and oy which are part of the same SMG.
As the searches are done on the same SMG, they can arrive at the same object
at the same time. In figure 2.6 the object ry is found to be a shared object
reachable from both objects and is therefore not included in the resulting sub-
SMG, which is colored blue in the figure. After obtaining the merged DLS and
it s new sub-SMG all pointers that pointed to the start of o; or to the end of
0o before the merge have to be redirected to d using the target specifier fst or
respectively the target specifier Ist. In the end, all objects and values on the
heap, that are not reachable from the stack anymore are removed from the
SMG as well as all adjacent edges.

13



Chapter 3

SMG Analysis in CPAchecker

3.1 Erroneous Candidates for Circular DLLs

The detection of a list candidate of length 5 for a circular doubly linked list
of length 4 depicted in figure 3.1 is obviously wrong. However, this bug was

disguised in two different ways:

e In the later actual merging of list candidates, the incremental funda-

mental merge operation as described in 2.2.3 is done in a loop over the
length of the candidate. This is fine, if the candidates are computed
correctly, but in the case of a candidate that represents a circular list,
the continued abstraction of the DLS with the next object, which is in
the last step the DLS itself, leads in the case of the candidate of length 5
to a DLS with minimum length 8, because the DLS of length 4 is merged
with itself. To not let this happen again, a check was inserted, which in
the case of identity of the two objects that are to be merged, triggers an
exception such that the programmer can be made aware of it.

Because the score which was described in 2.2.3 is dominated by the join
status, even if the list is longer than it should be, there is still a chance
that it will not be merged such that the error stays undetected.

Starting the traversal for node NO. Following a trimmed-down version
of the DLL finder algorithm in listing 3.1, the traversal starts with the first
object on the heap, in this case NO. The algorithm maintains a data structure
which is called the join progress, which contains a candidate map that maps
start objects and an offset pair to their list candidates. The join progress
also maintains a candidate length map which maps candidates to their length.

14



CHAPTER 3. SMG ANALYSIS IN CPACHECKER

OOOQO

(No, 1) (N1, 1) (N2, 1 ) ( No, 1)

: ./"/
(N3, 2)
O ( Nz‘ 3) 'f.

(N1, 4) i

( N0, 5) Lt

Invalid Candidate! ‘__,--"

Figure 3.1: Erroneous traversal of a circular DLL.

15



CHAPTER 3. SMG ANALYSIS IN CPACHECKER

When the traversal for NO starts, the algorithm checks at first in its progress
if there is already a candidate map for this object. If this is the case, the
traversal would finish for NO and the algorithm would continue with the next
heap object. In this case NO has no candidate map and the algorithm proceeds
to create candidates for the object. It proceeds with several checks on the
object, being a valid object, having the same size and a fitting object kind.
NO can only be part of a DLL if itself is a DLL or a region, in other cases
the traversal stops. Then the has-value edges are checked, and if the number
is lower than 2, the object cannot be part of a DLL, because the minimum
requirement of a prev and a next edge. Then, each has-value edge is considered
as the next pointer edge, the object pointed by it is checked to have the same
kind, size and level like NO and then the has-value edges are checked in order to
find NO by a possible prev pointer edge. If all checks succeed for an object and
an offset, an initial list candidate with length 1 is created for NO and inserted
into the candidate map. This list length candidate is depicted in the upper
left part of figure 3.1.

Continue traversal for N1 and the current candidate. The traversal
now continues directly with the next object which is N1. After this call finishes,
the traversal for NO will finish too and the next heap object is considered. As
N1 is not in the candidate map yet, the algorithm starts a new traversal for N1.
This will trigger traversals for N2 and N3 in the same way. The next object
of N3 is NO. After creating the candidate of length 1 for N3, the traversal
continues with NO and this candidate. The algorithm will find NO in the
candidate map and will not start a new traversal for it, but will retrieve the
candidate for NO.

Missing check if first and last objects collide. At this point the traversal
should stop for NO, but it does not stop and proceeds to update the previous
candidate, which is the candidate with start object N3 and length 1 which is
updated to length 2. The recursion then returns to the traversal of N3, which
leads to an increment of the previous candidate length again, resulting in (N2,
3). Then the traversal of N2 continues and at last the one of N1, eventually
producing a candidate with length 5, which is wrong because the list only has
four nodes.

16



CHAPTER 3. SMG ANALYSIS IN CPACHECKER

I
I

(No,No,1) (N1,N1,1) (N2,N2,1) NS (No,No,1)

2
O (Ns,No,z) ',/..
No == NoO

(N2,No0,3) » -
Traversal stops (N1,No,4) Y
with correct P
candidate length g
&~

Figure 3.2: Improved traversal using last object as stop condition.

17



w

AW N e

10

12

13

15

16

CHAPTER 3. SMG ANALYSIS IN CPACHECKER

Improving the DLL finder algorithm. The problem in the algorithm
which is shown in listing 3.1 is that there is no way to check if an object
is already responsible for an increment of a list candidate length in the case
of circular DLLs. If the length is incremented again for the same node, the
candidate is wrong and can lead to unnoticed errors in abstraction. By letting
a doubly linked list candidate additionally store the last object, the algorithm
has a possiblity to check if the previous candidate is going to be linked to a
candidate that has the previous candidate already as its last object. This way
overly long list candidates can be prevented.

for (object : smg.getObjects()) {
startTraversal (object , progress);
}

return progress.getValidCandidates(threshold);

Listing 3.1: Simplified DLL finder algorithm

‘,)}

if (progress.hasCandidates(object)) {
return ;

(nextObject ,nfo, pfo)= checkDoublyLinked (object , smg.getHVEdges());
candidate = Candidate(object , (nfo,pfo), 1);

progress .addCandidate (candidate) ;

continueTraversal (nextObject , candidate);

Listing 3.2: startTraversal

if (! progress.hasCandidates(nextObject)) {
startTraversal (nextObject) ;
}

candidate = progress.getCandidate (nextObject, (nfo, pfo));
checkMergeability (startObject , nextObject);

// prevent merge at circular link

if (candidate.getLastObject () = previousCandidate.getStartObject ()

) A

return ;

if (isLastInSequence (nextObject)) {

progress .updateLength (previousCandidate , 2);
} else {

progress .updateLength (previousCandidate , candidate.length+1);
¥

// update last object of previous candidate
previousCandidate . updateLastObject (candidate . getLastObject ());

Listing 3.3: continueTraversal

18




CHAPTER 3. SMG ANALYSIS IN CPACHECKER

32-54‘), o_szb’
NULL <— 2+DLS o » NULL
ptr
64-96b, ptr
hfo, fst
0-64b,

24DLS [55 > NULL

Figure 3.3: One summarized has value edge for a nullified region of 64 bytes.

3.2 Materialisation of Nullified DLL Segments

As depicted in figure 3.3 the result of joining nullified fields of an SMG object
can lead to temporary removal of link edges like the missing prev edge of
the DLL in the lower part of the figure. Because the offsets are still stored
in the shape of the abstract list and the type of the field is known to be a
pointer to a DLL, the missing link can be retrieved. However, after the edge
is removed from the set of has value edges of the SMG, program code, that
retrieves has value edges from this edge set can fail, if it does not account for
the possibility of joined nullified fields. This was the case in CPAchecker for
the materialisation procedures, which in a materialisation of a segment like in
the figure, tried to retrieve the prev edge of the DLL from the set of has value
edges, where it was not found which led to an exception.

Hidden link edges. According to page 8 in the technical report of Dudka
et al. [7], for an SMG to be consistent, DLS consistency must hold, which
states that the next offset is never greater than the prev offset. There is
accordingly a check for this consistency condition in the list finder algorithms,
which otherwise stops the traversal. It is possible that both link edges will be
hidden by joining nullified fields, if the respective object has a nullified field
directly before the two link fields. Only the next field edge is hidden if there is
a nullified field directly before it and one or more non-nullified fields directly
before the prev field edge. Only the prev field edge is hidden if there is a
nullified field directly before it, and no nullified field directly before the next
field edge. Note that a link field cannot be hidden if itself is not nullified.

19



CHAPTER 3. SMG ANALYSIS IN CPACHECKER

Solution by using read reinterpretation operator. There are already
operators implemented that reinterprete nullified memory and retrieve link
edges that are missing due to a previous field join. By using the read rein-
terpretation operators to read the value of a field, exceptions of missing edges
can not occur.

3.3 Value Replacement of Abstracted Segments

For some programs the SMG analysis reported an inconsistent SMG due to a
region, that was stored in an address value. The object present in an address
value represents the memory of the address. As explained in section 2.2.3,
after the elementary merge operation has finished, all pointers that pointed to
the first and last object before the merge have to be redirected to the newly
abstracted DLS. However, if the first or the last object of the sequence was a
region, and was pointed to by an address value, the address value will then
point to the DLS but still store the reference to the old region, as depicted in
figure 3.4. In this way the redirection of the pointers introduces inconsistency
in the SMG, because the region could still be used even if it is not explicitely
in the SMG anymore. To avoid this, pointers that are address values are now
replaced by fresh symbolic values leading to figure 3.5.

20



CHAPTER 3. SMG ANALYSIS IN CPACHECKER

(id:1, addr: (obj: reg_01, off: 0)) (id:2, addr: (obj: reg_02, off: 0))

Q hfo, fst

hfo, Ist

2+DLS
dil_o1

Figure 3.4: Known Address Values store an id and an address.
(id:4) (id:5)

G hfo, fst

hfo, Ist

2+DLS
dll_o1

Figure 3.5: Symbolic Values only store an id.

21



Chapter 4

Symbolic Heap Abstraction
with Automatic Refinement

4.1 Motivating Examples

4.1.1 Symbolic Heap Abstraction

Listing 4.1 shows a motivating example for using abstract list segments in SMG
analysis. In the loop starting in line 5 a nondeterministic number of freshly
allocated DLL nodes is appended to each other and all nodes are initialized
with the same data value. In the following traversal starting in line 10, the
data of the list is checked and if a node’s value is found to be different from the
initial value, an error function is called. (Note that due to line 14 the second
pointer to the list is necessary to keep track of allocated memory.)

void example_that_requires_abstraction () {
int data = 1;
// create list of nondeterministic length
DLL s = NULL;
while (nondet ()) {
append(&s, data);

// check data of all elements
DLL ptr = s;
while (ptr) {
if (data != ptr—>data) {
error () ;
}

ptr = ptr—>next;

Listing 4.1: Motivating example for using abstraction

22




CHAPTER 4. SYMBOLIC HEAP ABSTRACTION WITH AUTOMATIC
REFINEMENT

o
o
O
O
O
o O
==
== —=E
Figure 4.1: Truncated sim-
plified ARG for SMG analy- Figure 4.2: Simplified ARG for
sis without abstraction on list- SMG analysis with abstraction

ing 4.1 on listing 4.1

Without abstraction. Running an SMG analysis without heap abstraction
on this input results in non-termination because each time a new node is
appended to the list in line 6, a fresh region is created on the heap resulting in
a fresh SMG state that is not covered by the reached set. Thus line 6 will be
revisited infinitely often, such that the analysis never comes to the conclusion
that the error function in line 12 cannot be reached. In figure 4.1 the upper
part of the resulting ARG is shown. The circled states mark the states which
are reached whenever the append function entry is examined. We can see that
each time a new state is created and no coverage relations exist.

With abstraction. When instead using SMG analysis with heap abstraction
on the example in listing 4.1, the analysis terminates with the correct result.
In the loop starting at line 5, the analysis will detect a list structure when the
specified length threshold is reached for some list candidate. By appending
further nodes to the resulting abstract list segment, only the minimum length
of the segment can increase but the type and number of objects on the heap
stay constant. If two states only differ in the minimum length of a list segment,
the state with the list with the higher value is covered by the other state, which
means that a fixed point will be reached eventually and the analysis of the loop
will terminate.

23



CHAPTER 4. SYMBOLIC HEAP ABSTRACTION WITH AUTOMATIC
REFINEMENT

Figure 4.2 shows the resulting finite ARG when using a heap abstraction
threshold of two, which means that lists are detected and abstracted at length
two and higher. The circles mark the states reached at each entry of the append
function and green states mark states that are covered by another state. The
append function is entered only three times in this case. After the second
time the list gets abstracted to an abstract list segment. The third time then
symbolizes the case when a node is appended to a list, such that another entry
of the append function is not needed anymore in the analysis because from
this point on the loop just keeps appending nodes to a list. Following the path
in the ARG after the third append, the resulting list of minimum length three
could also represent a list of four or more nodes due to the concept of minimum
length. For this case there is also a state in the ARG, the second green state
from the left. The path ends with this state, because it is already covered by
the state with the list of minimum length three, which is the left-most green
state in the graph.

4.1.2 CEGAR-based Approach using Maximum Length

In listing 4.1 a fixed global heap abstraction threshold had to be specified to run
SMG analyis with abstraction. To keep track of as much structure on the heap
as possible, a small length threshold like two or three seems like the proper
choice. The reasoning for that is that a small threshold leads to a higher
probability that lists are abstracted to segments. However, there are cases
where the abstraction of a data structure is not the best option. An example
is when there is a part in the code that aggregates features of a data structure,
for example using aggregate functions like sum, count or average, and an error
condition depends on the knowledge of the exact number of elements of a data
structure. In this case forgetting the exact length by abstraction has to be
avoided.

Listing 4.2 gives an example where the call of an error function depends
on the precise count of list elements. In the loop starting in line 6, a list of
fixed length five is created. Then, in the next loop starting in line 13, the
elements of the list are counted and in each iteration a check is done if the
count has exceeded five. Another example instead of the element count would
be if the error condition depends on the exact sum of the data stored in all list
elements.

i|void example_that_requires_precision () {

3

1

int data = 1;
// create list of length 5
DLL s = NULL;

24



CHAPTER 4. SYMBOLIC HEAP ABSTRACTION WITH AUTOMATIC
REFINEMENT

int i = 0;
while (i < 5) {
append(&s, data);

14+
}
// check length of list
i=0;
DLL ptr = s;

while (ptr) {
ptr = ptr—>next;
i+
if(i > 5) {
error () ;
}

Listing 4.2: Example showing limitations of a fixed abstraction threshold

Running SMG analysis with a heap abstraction threshold of less than 6 on
this example leads to a false result, because the error function in line 17 is
reachable. Using a threshold of 6 or higher leads to the correct result. The
same correct result is produced when using no abstraction at all, which raises
the question if the approach to use no abstraction whenever such a case is
detected, would be sufficient. However, this is not the case as the following
example shows. By combining the last two listings in listing 4.3 an example
is given where SMG analysis without abstraction does not terminate due to
the reasons described in section 4.1.1, and by using SMG analysis with heap
abstraction wrong results are possible depending on the choice of the heap
abstraction threshold.

void example_that_requires_refinement () {
example_that_requires_abstraction () ;
example_that_requires_precision () ;

Listing 4.3: Motivating example for refining the abstraction threshold

A solution is to use a CEGAR-based approach and start the analysis with
a minimal abstraction threshold, that can be refined in case of a spurious
counterexample. By inspecting the error path and finding out the maximum
length of all lists that can be detected at each path position, a threshold can
be found that guarantees that no list on the path will be abstracted such that
the error paths due to too coarse abstractions can be refuted.

25




CHAPTER 4. SYMBOLIC HEAP ABSTRACTION WITH AUTOMATIC
REFINEMENT

4.1.3 Threshold Candidate Generation

Using Maximum Length. When a counterexample is found by the analy-
sis, it has to be checked for feasibility to find out if the analysis can stop with
a false result in case of a feasible counterexample or continue analysis after
refinement of the counterexample. This check can be done by inspecting the
error path without heap abstraction and checking if the target state is then
reachable or not. During this inspection the heap of each encountered SMG
state can be used as input for the SLL and DLL finders in order to find all
abstraction candidates and their lengths. This way the maximum list length
that can occur on the error path can be found and can be used as an over-
approximation of the length that is necessary to avoid the list abstractions on
the path that are the cause for the counterexample.

// create two lists with different lengths
DLL s = create_dll(5);

DLL t = create_dl1(20);

// check length of shorter list

slint 1 = 0;

;| DLL ptr = s;

while (ptr) {
ptr = ptr—>next;
i++;
if (i >5) {
error () ;
}

Listing 4.4: Motivating example for using maximum length candidates

Using Object-Length Mapping. Listing 4.4 gives an example where the
maximum of all encountered list lengths does not give the optimal threshold.
In this example the threshold found would be 21, because 20 is the maximum
list length found on the error path, but the optimal threshold would be 6,
because it would suffice to refute the counterexample in an SMG analysis
using abstraction. In general, if other lists than the ones responsible for the
counterexample are created on the error path, the overall maximum length can
be much higher than the actual length necessary to refute the counterexample.
If there can be found a mapping between start objects of list candidates and
the corresponding maximum encountered list length, the resulting lengths can
be used as candidates for a threshold that is as small as possible and as high
as necessary of all lengths in the candidate set. The candidates can then be
sorted in ascending order and tried as threshold by rechecking if the target
is reachable by using abstraction with the current threshold. As soon as the

26




CHAPTER 4. SYMBOLIC HEAP ABSTRACTION WITH AUTOMATIC
REFINEMENT

target is not reachable anymore, the most recent threshold can be used for
refinement.

4.2 Refinement of Heap Abstraction Thresh-
old

If the analysis finds a target state, the CEGAR algorithm will trigger the
refinement of the reached set. The refiner will then make a cut at a specific
state in the abstract reachability tree and remove this state and its subtree.
Then it will readd states with a new precision to the waitlist. It will readd
parents of children that were removed and of children that were covered by
removed states because they may not be covered anymore. In both of the
following approaches, the state at which position to remove the subtree as
well as the new precision for states to be readded have to be found. Both
approaches assume that merge, is used as merge operator in the SMG CPA,
such that each target has only one target path. Also, as the analysis stops after
a target state is reached, there is only one target state in each refinement.

Cut State. Both approaches use as cut state the first state in the target path
for which at least one list abstraction candidate using two as threshold is found.
This state potentially contains the list that causes the target to be reachable,
such that states at a later path position cannot be easily removed instead. To
remove at an earlier position in the path does not make sense because no list
candidates are found at these positions which would not change with another
heap abstraction threshold of the new precision.

New Precision. The new precision uses the new abstraction threshold which
is in both cases the increment of the found maximum length.

4.2.1 Naive Maximum Length Approach

Listing 4.5 shows a basic approach of refinement of the abstraction threshold
using the maximum list length on the error path. To find out if the error
path is feasible, the states encountered on the path have to be considered. For
each state all abstraction candidates are collected by calling the SLL and DLL
finders which detect list structures on the heap by systematically following
next and prev links of SMG regions. The maximum length is updated each
time a list candidate is found that is longer than the previous longest list.
The first time that a list candidate is encountered, the cut state is set to the
current state and keeps unchanged for the rest of the refinement. If the target

27



CHAPTER 4. SYMBOLIC HEAP ABSTRACTION WITH AUTOMATIC
REFINEMENT

state is reached, the path is feasible and reported to the CEGAR algorithm.
If however, a state which is not the target, has no successor state, the path
is found infeasible or spurious and a refinement is started. In this case the
cut state and its subtree are removed from the reached set and the parents of
removed children and of children that were covered by removed elements are
readded to the waitlist with a new precision that contains the increment of the
found maximum length as abstraction threshold. The counterexample is then
reported to CEGAR as spurious.

for (state : errorPath.getStates()) {

2 listCandidates = state.getAllCandidates(dllFinder, sllFinder);
3 maxLen = max(maxLen, listCandidates.getMaxLen());

1 if (cutState = null && maxLen > 0) {

5 cutState = state;

7 if (I'state.hasSuccessor () && !state.isTarget()) {

8 reached.removeSubtree(cutState , SMGPrecision (maxLen + 1));
9 return ”"spurious”;

10 }

11 }

2l return 7 feasible”;

Listing 4.5: Naive refinement

4.2.2 Threshold Candidate Approach

As seen in listing 4.4, there are examples where the maximum length over all
list candidates on a path is not the best threshold to use. Listing 4.6 shows
an approach where a mapping from start objects of lists to their maximum
encountered length is used to keep track of more than one list length such that
a list of several threshold candidates can be produced from it if refinement is
necessary. In line 3, the current SMG state is used to update the mapping.
In line 5, the cut state is set to the first state for which the mapping is not
empty, which means that it is the first state for which there is a list candidate
on the heap, which is done similarly in the naive refinement. In the case of a
non-target state which does not have a successor, refinement is necessary. In
the loop starting in line 8, a feasibility check uses heap abstraction with the
current thresholdCandidate until the error path is not found to be feasible. In
this case, the best threshold was found and the refinement of the ARG can be
executed with the new precision. Also the counterexample can be reported as
spurious.

I|mapping = Map.empty () // maps start objects to list lengths
ol for (state : errorPath.getStates()) {
mapping = updateMapping (mapping, state);

28



11
12

13

1

>

CHAPTER 4. SYMBOLIC HEAP ABSTRACTION WITH AUTOMATIC

a8

REFINEMENT
if (cutState = null && !mapping.isEmpty()) {
cutState = state;

if (I'state.hasSuccessor () && !state.isTarget()) {
for (threshold : getSortedCandidates (mapping)) {
if (! feasibleWithAbstraction (errorPath, threshold)) {
reached . removeSubtree (cutState , SMGPrecision (
threshold));

}

return ”"spurious”;

}

return " feasible”;

Listing 4.6: Threshold candidate refinement

Object-Length Mapping. In order to keep track of more than one list
length, there needs to be some way to map lists to their maximum lengths.
The idea is to use the start object of a list candidate for this mapping. Over the
course of a program path the same start object can however belong to different
lists. Also it is not guaranteed that a list has the same start object over a series
of states. For example if a circular doubly linked list, for which the list pointer
moves to the next node, is newly abstracted, the new abstraction can have
another start object although the list nodes have not changed at all. This
can lead to many more threshold candidates than necessary. In the following,
a partial mapping from start objects to the maximum encountered length is
maintained. If only a set of encountered lengths would be kept instead, there
would likely be very man of them. For example, if a list of 5 nodes is built, the
set would contain all values from 2 to 5, because they could all represent the
maximum encountered lengths of different lists. By using a map instead, we
hope to achieve a result for this example that has only one entry which maps
the start object of the list to the maximum encountered length 5.

Heuristic for exchanged start objects. To identify lists between states,
that are likely the same lists, we need to look at cases where they can be
detected as similar even if the start object changes. When comparing the
abstractions of the heaps of two consecutive states there are cases when exactly
one start object has changed. If after abstraction of a state we find a start
object that is not yet in the current mapping and at the same time only
one object is missing in comparison to the last abstraction, the list has likely
changed its start object. In this case we remove the old entry and insert the
new object with the maximum of the new and the old entries’ lengths. To

29




CHAPTER 4. SYMBOLIC HEAP ABSTRACTION WITH AUTOMATIC
REFINEMENT

continue the example of the list with 5 elements, we can imagine that the first
node of the list was removed by the program, such that the start object would
change and we would get a newly encountered maximum length of 4. By using
the above explained heuristic, we however keep only tracking 5 as a maximum
length and update the old start object to the new start object.

The heuristic is implemented by putting the start object of an abstraction
candidate in one of two maps based on it being already in the object-length
mapping or not. If the mapping does not contain the startObject, it is put
into tempMap in line 11. Otherwise it is put into checkMap in line 14. In
this case its length is also updated, if it is greater than its previously stored
maximum length. After all abstractions are done, it can be decided what
to do with the entries in tempMap. In the case that there has been one
change in comparison to the mapping of the last state and there is also one
newly encountered start object, the old entry is removed and the new entry is
inserted into the mapping with the maximum length of the two entries. This
way soundness is not violated even if the assumption does not hold, because
there is still kept track of the maximum length.

Keeping the threshold set small. In the cases where the above condition
does not hold, all newly found entries are checked for their length. The entry is
only inserted into the object-length mapping, if the length is not yet contained.
This way the mapping is kept small while soundness is not violated because
all encountered maximum lengths, and thus also the overall maximum length,
are still present.

updateMapping (mapping, state) {
stateCopy = state.copy();
do {
// Execute heap abstraction on a state copy step by step
abstractionCandidate = stateCopy.
executeHeapAbstractionOneStep () ;
startObject = abstractionCandidate.getStartObject () ;
len = abstractionCandidate.getLength () ;

// Put new start objects into temp map

if (! mapping.contains (startObject)) {
tempMap . put (startObject , len);

} else {
// Put already seen start objects in check map
checkMap . put (startObject , len);
if (len > mapping. get (startObject)) {

mapping. put (startObject , len);

}

30




J [V} [\V] [\V] [V
© o -

CHAPTER 4. SYMBOLIC HEAP ABSTRACTION WITH AUTOMATIC
REFINEMENT

} while (! candidate .isEmpty () ) ;
diff = Sets.difference (mapping.keys(), checkMap.keys());
if (tempMap.size () = 1 && diff.size() = 1) {
diffObject = getOnlyElement (diff);
tempObject = getOnlyElement (tempMap. keys () ) ;
mapping. put (tempObject , max(mapping. get (diffObject),
tempMap. get (tempObject ) ) ) ;
mapping . remove ( diffObject ) ;
} else {
for (entry : tempMap.entries()) {
if (!mapping.values().contains(entry.getValue())) {

mapping. put (entry);
}

Listing 4.7: Update of the Object-Length Mapping

31




Chapter 5

Conclusion

The assumption that only one start object changes during a state change is
according to first tests not very promising. However, the approaches are in
need of a proper evaluation in order to make statements on the heuristic’s
performance. The copying of the SMG state at each path position during
the feasibility check and the exhaustive use of execution of heap abstraction
which is usually only used at function and loop heads gives reason to question
the efficiency of the approach. There is also the possibility to use a very
high number for the threshold, which could analyse programs like the first
motivating example has shown and still be effectively as concrete as the pure
SMG analysis without abstraction.

32



Chapter 6

Acknowledgments

I would like to express my appreciation to Karlheinz Friedberger for his pa-
tience and for his valuable suggestions during the course of this master thesis.
Also especially for making time for meetings and answering emails whenever
needed as well as reminding me of my time plan from time to time. I would
also like to thank Marie-Christine Jakobs for valuable insights into CPAchecker
during the practical course prior to the thesis and her willingness to help. Fur-
ther thanks to Martin Spiessl as well as Michal for their offers to ask them
anything I want, to Dirk Beyer, Martin Hofmann, Thomas Lemberger and
Leah Neukirchen for their informative advanced course on formal specifica-
tion and verification and at last to Philipp Wendler for the comprehensible
introduction to available thesis topics.

33



List of Figures

2.1
2.2
2.3

24
2.5
2.6

3.1
3.2
3.3
3.4
3.5

4.1

4.2

Shape graph and possible instance of the graph. . . . . . . .. 6
SMG with DLS and nested abstract region. . . . . ... .. .. 8
Possible concretisation of SMG with DLS and nested abstract

TEGIOM.  © o v o o e 9
SMG with DLS and shared region. . . . .. ... ... .. ... 9
Possible concretisation of SMG with DLS and shared region. . 10
Merging two neighbouring objects. . . . . . . .. ... ... .. 13
Erroneous traversal of a circular DLL. . . . . .. ... ... .. 15
Improved traversal using last object as stop condition. . . . . . 17
One summarized has value edge for a nullified region of 64 bytes. 19
Known Address Values store an id and an address. . . . . . . . 21
Symbolic Values only store anid. . . . . . ... ... ... ... 21
Truncated simplified ARG for SMG analysis without abstrac-

tion on listing 4.1 . . . . . . . ... 23
Simplified ARG for SMG analysis with abstraction on listing 4.1 23

34



Bibliography

[1]

2]

A.S. Asratian, T.M. Denley, and R. Haggkvist. Bipartite graphs and their
applications. In vol. 131, Cambridge University Press, 1998.

D. Beyer, T.A. Henzinger, R. Jhala, and R. Majumdar. Symbolic pointer
analysis for detecting memory leaks. In FASE’ 05 Proceedings of the Sth
international conference, held as part of the joint European Conference on
Theory and Practice of Software conference on Fundamental Approaches
to Software Engineering, pages 2—-18, 2005.

D. Beyer, T.A. Henzinger, and G. Theoduloz. Lazy shape analysis. In
Proceedings of the 18th International Conference on Computer-Aided Ver-
ification (CAV), pages 532-546, 2006.

D. Beyer and M.E. Keremoglu. Cpachecker: A tool for configurable soft-
ware verification. In Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pages 184-190, 2011.

D. Beyer and S. Lowe. Explicit-state software model checking based on
cegar and interpolation. In V. Cortelessa and D. Varré (Eds.): FASE
2013, LNCS 7793, pages 146-162, 2013.

J. Condit, M. Harren, S. McPeak, G.C. Necula, and W. Weimer. Ccured
in the real world. In Proc. PLDI, pages 232—-244, 2003.

K. Dudka, P. Peringer, and T. Vojnar. Byte-precise verification of low-
level list manipulation. In Logozzo F, Fihndrich M (eds) SAS, Lecture
Notes in Computer Science, vol 7935, Springer, pages 215-237, 2013.

R. Ghija and L.J. Hendren. Is it a tree, a dag, or a cyclic graph? a shape
analysis for heap-directed pointers in c¢. In POPL 96 Proceedings of the
23rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 1-15, 1996.

T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software verifica-
tion with blast. In Proc. SPIN, LNCS 2648, pages 235239, 2003.

35



BIBLIOGRAPHY

[10] S. Magill, J. Berdine, E. Clarke, and B. Cook. Arithmetic strengthening
for shape analysis. In Static Analysis, 14th International Symposium, SAS
2007, pages 419-436, 2007.

[11] G.C. Necula, S. McPeak, and W. Weimer. Ccured: Type-safe retrofitting
of legacy code. In Proc. POPL, pages 49-61, 1995.

[12] B. Scholz, J. Blieberger, and T. Fahringer. Symbolic pointer analysis
for detecting memory leaks. In PEPM ’00 Proceedings of the 2000 ACM
SIGPLAN workshop on Partial evaluation and semantics-based program
manipulation, pages 104-113, 1999.

36



