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Abstract

Program slicing and counterexample-guided abstraction (CEGAR) are
two established approaches to program abstraction in software verification.
Both are similar in their concept, with one main difference: Program
slicing works on the syntactic level, while CEGAR works on the semantic
level. Because of the complexity of software and the complex behavior of
the two algorithms, the difference in the capabilities of the two is not clear.
To contribute towards understanding this technique, we design a program
slicing technique that is based on CEGAR and that performs program
slicing on dynamically computed slicing criteria. We implement this
technique in the widely used software verification framework CPAchecker,
and extend it to be combine-able with any other, existing abstraction
refinement based on CEGAR. As a proof of concept, we combine it with
the CEGAR-based symbolic execution engine in CPAchecker.

In a next step, we extend the existing state-of-the-art, Llvm-based
program slicer Symbiotic to use CPAchecker as a verification back-end.
To combine theses two tools, we also implement a new Llvm front-end in
CPAchecker that enables CPAchecker to analyze Llvm programs.

As a last step, to get a better understanding of the behavior of our
analyses, we implement an abstract graph visualization technique, called
pixel trees. Pixel trees allow users to grasp the structure of the program-
state space that got explored by an analysis run, even for graphs that are
too large to comprehend in a detail view.

We perform a thorough evaluation of all presented techniques. Through
this, we are able to show that program slicing and CEGAR are two com-
plementing technologies, and that their combination can have a significant
impact on verification performance.
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1 Introduction

In the last decade, model checking of programs has shown large improvements,
even leading to its prominent use in large software companies, e.g, Facebook 1

or Linux 2. Work has shown that model checking may actually surpass au-
tomatic testing in finding bugs in software [12].

Most of such improvements in model checking are based on heuristics that
exploit known or at least assumed code characteristics. Examples for such
heuristics are program slicing [49], counterexample-guided abstraction refine-
ment (CEGAR) [22], search heuristics [28] or bounded model checking [17].
But despite the success of them, it is still unclear how they affect code in de-
tail. For two of these techniques, program slicing and CEGAR, it is even
unclear how different their capabilities are.

This work tries to contribute towards understanding this. Program slic-
ing and CEGAR both exploit code structure for abstraction. CEGAR uses
the understanding that, to prove most error paths *infeasible*, only few in-
formation about the states of a program must be tracked. Program slicing,
similarly, assumes that only few program operations determine the seman-
tics that decide whether an error occurs. While CEGAR is an iterative ap-
proach that works on the semantic level, program slicing works on the syn-
tactic level, only, and is usually a pre-processing step.

Figure 1 shows an example program and its analysis with symbolic execution
with CEGAR. CEGAR is able to derive that x must not be tracked to prove
function error() to be infeasible, and it can thus evade the first loop, but it then
tracks y and infinitely unrolls the second loop that is controlled by y and w.
Program slicing, on the other hand, would be able to derive that function error()

can never be reached from the second loop, because it is not even syntactically
reachable. But what if we have a program property that is not bound to one loca-
tion, e.g., if we want to check a program for division by zero? In this case, slicing
techniques may instrument the program with all possible error locations [21],
but this may create a program slice that is significantly larger than necessary.

As a new approach, we design a CEGAR-based program slicing technique.
First, we implement our own technique in CPAchecker, a state-of-the-art soft-
ware verification framework. In CPAchecker, many analyses are implemented
as configurable program analyses, a concept that allows easy combination of
different techniques. Instead of using slicing as a fixed pre-processing step
that requires us to know the slicing criterion (i.e., the target states that we
don’t want to encounter), we implement slicing as a dynamic analysis. To
derive program slices, we use ourselves a CEGAR-based approach that builds
an incremental program slice from encountered target states. Following the
basic idea of slicing, we do not create a completely new program that misses
program operations, but only replace the program operations in a program
by noop operations during analysis, dynamically.

1http://fbinfer.com/ 2http://linuxtesting.org/ldv
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1 int main() {
2 int w;
3 int x;
4
5 while (x > 0) {
6 x--;
7 }
8
9 w = w ∗ 2;

10 int y = 1;
11
12 if (x < 0 && y < 0) {
13 error();
14 } else {
15 while (y < y + w) {
16 y--;
17 }
18 }
19 }

(a) Example program

{pc→ l2}, ∅

{pc→ l3}, ∅

{pc→ l5}, ∅

{pc→ l6}, ∅

{pc→ l5}, ∅

{pc→ l9}, ∅

{pc→ l10}, ∅

{pc→ l12, y → 1}, ∅

{pc→ l13, y → 1, x→ s1},
{s1 < 0 ∧ 1 < 0}

{pc→ l15, y → 1}, ∅

{pc→ l16, . . .}, ∅

{pc→ l15, y → 0}, ∅

{pc→ l18, y → 0}, ∅

{pc→ l19, y → 0}, ∅

∞

{pc→ l18, y → 1}, ∅

{pc→ l19, y → 1}, ∅

w := ?

x := ?

[x > 0][x ≤ 0]

x := x− 1w := w ∗ 2

y := 1

[x < 0 ∧ y < 0] [!(x < 0 ∧ y < 0)]

[y < y + w]

y := y − 1

[y < y + w][y ≥ y + w]

[y ≥ y + w]

(b) Infinite state space computed by a CEGAR-based
technique

Figure 1: Running example

Through delegation, we allow an easy combination with other analyses that
use, or do not use, CEGAR themselves. No code is necessary, slicing can be
added to analyses through a single configuration file. With this, we are able
to both easily combine program slicing and CEGAR-based techniques, and are
not constraint to knowing our slicing criterion beforehand.

To get more data on the difference between program slicing and CEGAR,
we do not only use our new, own implementation of program slicing, but also
the successful slicing-based program verifier Symbiotic. This third-party tool
ensures that our implementation does not have any major flaws leading to wrong
conclusions. To allow the combination of Symbiotic and CPAchecker, we have
to a) extend Symbiotic to accept CPAchecker as a verification back-end, and b)
implement a Llvm-front-end into CPAchecker, because Symbiotic performs slicing
on a Llvm transformation input programs that can’t be translated back to C code.

We tackle one additional issue: While we are interested in the parts of
the program-state space that were explored by a verification technique, these
data become quickly hard to comprehend because of their sheer size. While
an established graph representation (similar to Fig. 1b) for the program-state
space exists, it is still hard to comprehend, and even to display, for large graphs.
As an alternative, we provide a more abstract representation of graphs that
we call pixel trees. The pixel tree of Fig. 1b is shown in Fig. 2. Through this
representation, we are able to quickly comprehend even large computations of
program-state spaces, and see their high-level differences in the blink of an eye.
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. . .

Figure 2: Pixel tree representation of the graph in Fig. 1b.

Contributions Our work provides the following contributions:

• We provide a generic program slicing algorithm based on CEGAR that can
be used by all analyses in CPAchecker and that is able to derive program
slices incrementally.

• We provide an Llvm front-end for CPAchecker, i.e., we a) enable analysis
with CPAchecker for an additional programming language, and b) pro-
vide the possibility to combine CPAchecker with existing verification and
program transformation techniques based on Llvm.

• We provide a new graph representation of the program-state space to help
easily comprehend the high-level characteristics of large graph structures.

• We provide a thorough evaluation and analysis of verification results
and verification behavior for our implementation, showing the benefits of
combining program slicing with CEGAR techniques.

1.1 Related Work

Improvements to Symbolic Execution Next to program slicing and
CEGAR, many other abstraction-based techniques exist that improve the per-
formance of symbolic execution. Combinations with concrete execution, namely
concolic execution [19, 31], or combinations with model checking [47] can improve
the performance of symbolic execution, but are aimed at creating test cases, not
exploring the full state space of a given program and proving it correct. This
is also true for search heuristics that aim find program errors faster [19, 20].
Techniques that can be applied for formal verification are compositional ex-
ecution [2, 30], invariant generation for unbounded loops [33], and invariant
template generation [46], which is similar to loop invariants.

Slicing Techniques A vast amount of different program slicing techniques
exists [40] and there are different techniques for constructing a dependence
graph [38, 43] efficiently. The main technique of importance is dynamic slic-
ing [35, 36], which performs slicing based on program run-time information and
only preserves the semantics for a specific (set of) program input(s). Why we
don’t do the latter, through our CEGAR-based choice of slicing criteria, we
also partly use run-time information to select our slicing criterion.
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li

lj

x := 1 + 1

(a) Assign
operation

li

lj lk

lm

[x > 0] [x ≤ 0]

(b) Assume operations

li

lj

(c) noop
operation

li
lf

le

lj

call(f, x→ a, y → b)

a := b+ b

x := ret(li, a)

(d) call and ret
operation

Figure 3: Example CFAs for the five program operations we support

Improvements to CEGAR Many approaches exist that try to improve
the performance of CEGAR, by getting better interpolants [14, 15, 44] or op-
timizing the number of solver calls [5, 37]. These approaches are orthogonal
to our approach of program slicing, which can delegate to techniques using
these improvements. An alternative to CEGAR, when using interpolation,
is lazy abstraction, also called IMPACT [16, 42].

2 Background

2.1 Proposition

We want to present all concepts in a way that puts focus on their specific
characteristics and ignores unimportant technicalities. To do so, all concepts are
formalized for a simple, inter-procedural and imperative programming language
that supports two types of program operations: assume operations and assign
operations. All program variables and all constant values range over arbitrary
integers. Function parameters are passed by value and functions do have a single
return value. There is no scoping, except for function parameters: These are only
valid within a function. The set X is the set of all program variables of a program.

2.2 Formal Verification Basics

The definition of a partial function f is denoted by def(f). The restriction of a par-
tial function f to a new definition d is defined as f|d = {x→ f(x) |x ∈ def(f)∩d}.

2.2.1 Control-flow Automaton

We represent a program as control-flow automaton (CFA). A CFA A is defined as
A = (L, l0, le, G). It consists of the set L of program locations, the program entry
location l0 ∈ L, the program exit location le ∈ L and the set G ⊆ L×Ops×L of
edges. Each CFA has exactly one program entry location l0 and exactly one pro-
gram exit location le. Each edge g = (l, op, l′) describes the control flow from a ori-
gin location l to a target location l′ through evaluation of a program operation op.
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The set P of predicates represents all boolean expressions in first-order logic
over program variables X and integers Z. A program operation can be an assign
operation w := exp with program variable w and arithmetic expression exp, an
assume operation [p] with predicate p ∈ P, a noop operation noop, a function
call operation call(f, a1 → p1, . . . an → pn) with program variables a1 to an and
p1 to pn, or the return operation w := ret(l, x) with program location l ∈ L and
program variables w, x ∈ X. The special symbol ? represents a non-deterministic,
non-constant integer value. Expressions and predicates may only use program
variables that are defined. To do so, program variables without an initial concrete
value should be assigned the non-deterministic value ?. The interpretation of
above program operations may differ, according to the application. We assume
the following semantics: If the operation of an edge g = (l, op, l′) is an assign
operation op = w := exp, control flow continues to l′ after assigning the new
value of expression exp to program variable w. If the operation is an assume
operation op = [p], control flow only continues from l to l′, if p is true. If the
operation is a noop operation op = noop, control flow continues from l to l′

without any further effect. For noop operations, we omit the edge label. If the
operation is a call operation op = call(f, a1 → p1, . . . an → an), control flow
continues from l to a function entry location l′ of function f , after assigning
the given function arguments a1 to an to the n function parameters p1 to pn.
And if the operation is a return operation op = w := ret(l, x), then control flow
continues from function exit location l to location l′ after writing the value of
function program variable x to w. Thus, the return operation carries information
of the call site of a function. This makes it easy to track the calling context.

Figure 3 shows four small example CFAs. Figure 3a shows a CFA with
a single assign operation x := 1 + 1. The edge (li, x := 1 + 1, lj) represents a
transfer from program location li to program location lj through the assignment
of integer value 2 (because 1 + 1 = 2) to program variable x. In this example, the
set X of all program variables has to contain x, i.e., {x} ⊆ X. Figure 3b shows
a CFA with two assume operations [x > 0] and [x ≤ 0]. The edge (li, [x > 0], lj)

represents a transfer from program location li to program location lj , under
the condition x > 0.. Analogous, the edge (li, [x ≤ 0], lk) represents a transfer
from li to lk under condition x ≤ 0. This is called an if-else-branching (with
condition x > 0). Figure 3c shows a CFA with a noop operation. The edge
(li, noop, lj) represents a transfer from program location li to program location lj
without any further effect. Figure 3d shows a CFA with a function call. The
call operation passes program variables x and y as arguments to a function f
with parameters a and b. This function then stores the double of b in a, and it
then returns a to location lj of the callee. Then, x will be the double of y at lj .

If (l, op, l′) ∈ G, we say that l has an outgoing edge to l′, and l′ has an
in-going edge from l. Program location l is a predecessor of program location l′,
and l′ is a successor of l. Set succs(l) describes all successors of a program
location l. Set preds(l′) describes all predecessors of a program location l.
A path α = 〈li

opi−−→ li+1
opi+1−−−→ . . .

opn−2−−−−→ ln−1
opn−1−−−−→ ln〉 from li to ln is a

sequence of connected CFA edges gi = (li, opi, li+1) to gn−1 = (ln−1, opn−1, ln)

11



1 int main() {
2 int w;
3 int x;
4
5 while (x > 0) {
6 x--;
7 }
8
9 w = w ∗ 2;

10 int y = 1;
11
12 if (x < 0 && y < 0) {
13 error();
14 } else {
15 while (y < y + w) {
16 y--;
17 }
18 }
19 }

(a) Source code representation

l2

l3

l5

l9 l6

l10

l12

l13 l15

l18 l16

l19

w := ?

x := ?

[x ≤ 0] [x > 0]

x := x− 1

w := w ∗ 2

y := 1

[x < 0 ∧ y < 0] [!(x < 0 ∧ y < 0)]

[y ≥ y + w] [y < y + w]

y := y − 1

error()

(b) CFA representation with entry location
l2 and exit location l19

Figure 4: Example program

in the CFA. The length |α| of path α is the number of edges it consists of.
For example, for the CFA in Fig. 3b, |〈(li, [x > 0], lj), (lj , noop, le)| = 2. The
distance dist : L×L→ N is the length of the shortest path between two program
locations. For example, dist(li, le) = 2. For every location l ∈ L, there is a path
through A that starts at the program entry location l0, ends in the program
exit location le, and contains l. There is no edge (le, op, l

′) ∈ G that starts
at le. Every program location l has a) zero outgoing edges, if l = le, b) one
outgoing edge, if the edge contains an assign operation, a call operation, a return
operation or a noop operation, or c) two outgoing edges, if the edges contain an
assume operation or an noop operation. A program location may never have
more than two outgoing edges. If a program location has two outgoing edges,
we call it a branching location. The number of in-going edges is not restricted.

CFAs can be used to represent programs of various programming languages
by introducing additional program operations. A CFA representing our example
program is shown in Fig. 4b. The function call error() is an external function
and thus not interpreted. In the CFA, it is a noop-operation—but for better
visualization, we still label the edge in the shown examples.

Function uses : Ops → 2X returns all variables used in a given operation.
An operation op uses a program variable x, i.e., x ∈ uses(op), iff:

1. op is an assign operation op = w :=exp for some w ∈ X and expression exp
contains x,

2. op is an assume operation [p] and predicate p contains x,

12



3. op is a call operation call(f, a1 → p1, . . . , an → pn) and x = ai for any
1 ≤ i ≤ n, or

4. op is a return operation w := ret(l, x) and there is, in the CFA, a CFA
edge g′ = (l, call(f, a1 → p1, . . . , an → pn), l′).

The noop operator uses no program variables, i.e., uses(noop) = ∅. Function
uses : 2Ops,→ 2X returns all variables used in a given set of operations. Func-
tion defs : Ops → 2X returns all variables defined in a given operation. An
operation op defines a program variable x, i.e., x ∈ defs(op), iff:

1. op is an assign operation op = x := exp that assigns to x the value of some
expression exp,

2. op is a call operation call(a1 → p1, . . . , an → pn) and x = pi for any
1 ≤ i ≤ n, or

3. op is a return operation x := ret(l, y) that assigns to x the return value y.

If op is an assume operation or noop, then defs(op) = ∅.

2.2.2 Reachability

A concrete state c : {pc}∪X → Z of a program assigns to the program counter pc
and all program variables X concrete values. The set of all concrete states of a
program is denoted by C. A concrete state c of a program is reachable, if a path
from the program entry exists on which c is assumed at some point. We call the
set of all reachable concrete states of a program its state space. A region σ ⊆ C
is a sub-set of concrete states of a program. Region σ is reachable, if at least
one c ∈ σ is reachable. The goal of the reachability problem is to prove whether
a given target region σt is reachable. Every safety property of a program can
be reduced to a reachability problem through instrumentation [4]. Thus, we
can verify that a safety property holds by solving the corresponding reachability
problem. If a target region is reachable, the safety property does not hold. If
it is unreachable, the safety property does hold. If a safety property does not
hold, we say that the program violates the safety property and that it is unsafe.
If all safety properties of a program hold, we say that it is safe.

The number of possible concrete states of a program may be infinite. Figure 5
shows two CFAs with an infinite number of concrete states. Figure 5a may
assume the infinite number of concrete states {{pc→ l0, i→ x} |x ∈ Z}∪{{pc→
l1, i→ x} |x ∈ N0} due to the loop that never holds. And Fig. 5b may assume
the infinite number of concrete states {{pc→ l, i→ x} |x ∈ Z, l ∈ {l0, l1}} since
the non-deterministic assignment to i may be any concrete value.

13



l0

l1

l2

le

i := 0

i := i+ 1 [true]

[false]

(a) Infinite loop

l0

le

i := ?

(b) Non-deterministic value

Figure 5: Examples for a program with an infinite number of concrete states

2.2.3 Abstract Domain

An abstract domain D = (C, E , [[ · ]]) consists of the set C of concrete states,
a semi-lattice E = (E,v,t,>) and a concretization function [[ · ]]. We call
the elements E of E abstract states.

One can over-approximate the reachability of a concrete state c by abstracting
from concrete states through abstract states. If we compute that an abstract
state a is reachable, and c ∈ [[a]], we assume that c is reachable. This may
significantly reduce the number of computations necessary.

Abstract Reachability Graph An abstract reachability graph (ARG) rep-
resents the reachable abstract states of a program and their relation to each
other. For some abstract domain with abstract states E, an ARG is defined
as AG = (E, a0, R). Its nodes are abstract states E, it has an initial abstract
state a0 ∈ E, and edges R ⊆ E × Ops × E. An edge (a, op, a′) ∈ R exists, if
the application of program operation op to a results in a′. Figure 6b shows
an example ARG for the domain of symbolic execution.

2.3 Symbolic Execution

Symbolic execution [18, 25, 34] is a technique for exhaustive state-space explo-
ration. Symbolic execution extends concrete execution with two components: a
symbolic memory, and path constraints. The symbolic memory stores assignments
of program variables to symbolic values S. We define the set of all possible vari-
able values in symbolic execution as ZCS = Z∪S. The partial function v : X→ZCS

contains all possible program variable assignments, both concrete and symbolic.
We call v(x) the abstract variable assignments. The set of all possible abstract
variable assignments is V . The path constraints pc = 〈p0, . . . , pn〉 are a sequence
of predicates pi ∈ P. The conjunction

∧
p∈pc p of path constraints describes the

constraints on variable values. The set of all possible path constraints is 〈P 〉.
The abstract domain of symbolic execution is thus ESE = (C,V × 〈P 〉, [[.]]SE).
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l0

l1

l2

l4

l5 l6

l3

le

z := ?

[z > 0]

z := z − 1

[z > 0]

z := z − 2

[z ≤ 0]

z := z + 1

[z ≤ 0]

z := z + 3

(a) CFA

{pc→ l0}, ∅

{pc→ l1, z → s1}, ∅

{pc→ l2, z → s1}, {s1 > 0} {pc→ l3, z → s1}, {s1 ≤ 0}

{pc→ l4, z → s1 − 1}, {s1 > 0}

{pc→ l5, z → s1 − 1}, {s1 > 0, s1 − 1 > 0} {pc→ l6, z → s1 − 1}, {s1 > 0, s1 − 1 ≤ 0}

{pc→ le, z → s1 − 3}, {s1 > 0, s1 − 1 > 0} {pc→ le, z → s1 − 1 + 1}, {s1 > 0, s1 − 1 ≤ 0}

{pc→ le, z → s1 + 3}, {s1 ≤ 0}

z := ?

[z > 0]

z := z − 1

[z > 0]

z := z − 2

[z ≤ 0]

z := z + 1

[z ≤ 0]

z := z + 3

(b) ARG

Figure 6: Example for symbolic execution

To compute the state space of a program P , symbolic execution traverses
through the CFA of P : It starts at l0 with the initial set v0 = {} of no abstract
variable assignments and the set pc = {} of no path constraints. If an assign
operation w := exp is encountered, w is assigned the evaluation evalv(exp) of
exp. To compute evalv(exp), each program variable x in p is replaced with
its abstract variable assignment v(x). If a non-deterministic value 3 occurs
in exp, symbolic execution introduces a new symbolic value. If no (new or
existing) symbolic value occurs in evalv(exp), the expression can be evaluated to
a single integer. Otherwise, it is stored as-is. Whenever a program branch is
encountered, symbolic execution splits into two separate executions; one following
each branch. If an assume operation [p] is encountered, the evaluation evalv(p)
of predicate p is appended to the path constraints pc. If the conjunction of
path constraints is unsatisfiable, the current program path is infeasible and
symbolic execution of this program path stops. If the conjunction of path
constraints is satisfiable, then it describes, through its satisfying assignments,
the class of concrete values that may be assumed for non-deterministic values
on the path so that the program takes that path.

Figure 6 shows an example CFA and the abstract states computed by the
corresponding symbolic execution. At the non-deterministic assignment z := ?, a
new symbolic value s1 is introduced and assigned to z. Next, at the branching
conditions [z > 0] and [z ≤ 0], both paths are feasible. Thus, symbolic execution
splits into two separate executions. The first execution takes the left branch and
adds evalv(z > 0) = s1 > 0 to its path constraints. The second execution takes
the right branch and adds evalv(z ≤ 0) = s1 ≤ 0 to its path constraints. The
first execution then encounters assignment z := z − 1. Since z is assigned the
symbolic value s1, the new symbolic value evalv(z − 1) = s1 − 1 is assigned to z.

3For example, user input is a typical non-deterministic value in practice.
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{pc→ l2}, ∅

{pc→ l3, w → s1}, ∅

{pc→ l5, w → s1, x→ s2}, ∅

{pc→ l6, . . .}, {s2 > 0}

{pc→ l5, w → s1, x→ s2 − 1}, ”

{pc→ l9, . . .}, {s2 > 0, s2 − 1 ≤ 0}

∞

{pc→ l6, . . .}, {s2 > 0, s2 − 1 > 0}

{pc→ l5, w → s1, x→ s2 − 2}, ”

{pc→ l9, . . .}, {s2 > 0, s2 − 1 > 0, s2 − 2 ≤ 0}

∞

{pc→ l6, . . .}, {s2 > 0, s2 − 1 > 0, s2 − 2 > 0}

{pc→ l5, w → s1, x→ s2 − 3}, ”

∞ ∞

{pc→ l9, w → s1, x→ s2}, {s2 ≤ 0}

{pc→ l10, w → s1 ∗ 2, x→ s2}, ”

{pc→ l12, w → s1 ∗ 2, x→ s2, y → 1}, ”

{pc→ l13, . . .}, {s2 ≤ 0, s2 < 0 ∧ 1 < 0} {pc→ l15, . . .}, {s2 ≤ 0, !(s2 < 0 ∧ 1 < 0)}

{pc→ l16, . . .}, {s2 ≤ 0, !(s2 < 0 ∧ 1 < 0), 1 < 1 + s1 ∗ 2}

{pc→ l15, w → s1 ∗ 2, x→ s2, y → 0}, ”

{pc→ l18, . . .}, {s2 ≤ 0, !(s2 < 0 ∧ 1 < 0), 1 < 1 + s1 ∗ 2, 0 ≥ 0 + s1 ∗ 2}

{pc→ l19, . . .}, ”

∞

{pc→ l18, . . .}, {s2 ≤ 0, !(s2 < 0 ∧ 1 < 0), 1 ≥ 1 + s1 ∗ 2}

{pc→ l19, . . .}, ”

w := ?

x := ?

[x > 0][x ≤ 0]

x := x− 1

[x > 0][x ≤ 0]

w := w ∗ 2 x := x− 1

[x > 0][x ≤ 0]

w := w ∗ 2 x := x− 1

[x > 0][x ≤ 0]

w := w ∗ 2

y := 1

[x < 0 ∧ y < 0] [!(x < 0 ∧ y < 0)]

[y < y + w]

y := y − 1

[y < y + w][y ≥ y + w]

[y ≥ y + w]

Figure 7: Part of the ARG computed by symbolic execution for our running example—the ARG has infinite elements.
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Symbolic execution continues in this fashion until every execution reaches
the program exit location le. We can construct a set of test cases that covers
all feasible paths of a program from the computed path constraints. For each
execution, its final path constraints represent the set of values for which the
program takes the same path through the program as the execution. Thus,
if we take for each set of path constraints one satisfying assignment, we have
exactly one variable assignment for each path through the program.

In general, symbolic execution may not always halt: if symbolic execution runs
on our running example, it infinitely produces new states (Fig. 7). The running
example (Fig. 4b) stays in the first loop until x ≤ 0. Since x may be an integer of
arbitrary size, it may stay in the loop for an arbitrary number of iterations. Every
time the loop head l5 is visited, symbolic execution splits into two execution runs:
one execution leaves the loop and continues through the program (and encounters
a similar problem at the next loop), the other execution stays in the loop and
decreases x by 1. It then encounters l5 again and splits again, since x could be 0

now, but may also still be positive. Symbolic execution continues this forever.

2.4 Program Slicing

As an example, we want to check the property that function error is never
called. In our example program, error is only called at program location l13.
If we take a closer look at the program, we see that l13 is only reachable if
x < 0 is true at l12 (Fig. 8a). If we then want to find out whether x can be
less than 0, we see that the value of variable w has no influence on expression
x < 0, and thus that we can ignore it. If we continue this process, we also
find out that the right branch of l12, including its potentially endless loop, can
be ignored. A study [48] suggests that professional programmers perform such
a backwards analysis throughout a program from a point of interest to the
beginning of a program and only consider relevant parts of a program, whenever
a program is hard to comprehend. Inspired by this human behavior, program
slicing [50] takes an input program P and a slicing criterion c, and creates a
slice of P on criterion c, denoted P/c. Slice P/c is a program that is a subset
of P and behaviorally equivalent regarding slicing criterion c. We adjust this
notion to our CFA representation of a program. Formally, program slicing
takes an input CFA A = (L, l0, le, G) and a slicing criterion c = 〈g, V 〉, with
a CFA edge g ∈ G and a set V ⊆ X of program variables whose values are
of interest. From these inputs, it creates a slice A/c = (L, l0, le, R) of A on
slicing criterion c that has to fulfill the following two properties:

1. A/C can be obtained from A by deleting zero or more program operations.
A program operation op at an edge h = (l, op, l′) is deleted by replacing h
with (l, noop, l′).
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l2

l3

l5

l9 l6

l10

l12

l13 l15

l18 l16

l19

w := ?

x := ?

[x ≤ 0] [x > 0]

x := x− 1

w := w ∗ 2

y := 1

[x < 0 ∧ y < 0] [!(x < 0 ∧ y < 0)]

[y ≥ y + w] [y < y + w]

y := y − 1

error()

(a) Original source code. The edge of
special interest is highlighted.

l2

l3

l5

l9 l6

l10

l12

l13 l15

l18 l16

l19

x := ?

[x ≤ 0] [x > 0]

x := x− 1

y := 1

[x < 0 ∧ y < 0]

error()

(b) Program slice of the source code

Figure 8: Program slicing example

2. Whenever A exits on an input I, A/C also exits on I, and the values of
all program variables in V at location l of program A are equivalent to the
values of all program variables in V at location l of slice A/C. Note that
program location l is the program location before executing the program
operation op at edge g = (l, op, l′).

Figure 8b shows a possible slice for our example program on slicing criterion
< (l13, error(), l19), {} >. The condition [x < 0 ∧ y < 0] must be true to reach
that edge. Since the values of program variable w have no influence on the values
of x and y at l12, all program operations on w can be removed. The same is true
for all program operations at successor locations li with i > 12. The resulting
slice only contains program operations relevant to our slicing criterion.

Program slicing is an abstraction of an original program that preserves the
program semantics regarding a certain criterion. One trivial slice of any program
P for an arbitrary slicing criterion is P itself. But just like with counterexample-
guided abstraction refinement (CEGAR), we want to find an abstraction as
coarse as possible, i.e., an abstraction that only contains program operations
really necessary to preserve certain program semantics.

We use an algorithm [32] that computes smaller slices than the original
program slicing algorithm [50]. This improved algorithm uses a program depen-
dence graph (PDG) [29] to represent different types of dependencies between
program operations. As a restriction, the algorithm only works on slicing crite-
ria c = 〈g, uses(op)〉. i.e., a slicing criterion for a specific CFA edge g = (l, op, l′)
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always includes all program variables used by its program operation. This allows
less concise slicing criteria, but produces more abstract slices for them.

2.4.1 Program Dependence Graph

A PDG is a program representation that connects program operations according
to their dependences on other program operations, independent of their sequential
order in a program. A PDG DGA = (N,ED, EC) for CFA A = (L, l0, le, G) is a
directed graph that has the set N = G ∪ {nentry} of nodes. Set N consists of
the CFA edges G and a node nentry that describes the program entry. The PDG
DGA has two different types of edges: the set ED ⊆ N ×N of flow-dependence
edges and the set EC ⊆ N × N of control-dependence edges.

Data Dependence For CFA edges g1, g2, edge g2 = (l2, op2, l
′
2) is flow depen-

dent on g1 = (l1, op1, l
′
1) for variable x ∈ X, iff the following holds:

1. g1 defines x, i.e., x ∈ defs(op1),

2. g2 uses x, i.e., x ∈ uses(op2), and

3. there is a path from l′1 to l2 without any new assignment to x, i.e., g2 may
use the definition of x at g1.

Flow dependence can be computed in linear time. To get the list of reachable
definitions of used variables at an operation, a reaching-definitions [1] analysis
can be used. A reaching-definitions analysis computes the set RDlk of reachable
definitions at each program location. A reachable definition (li, x, lj) ∈ RDlk

says that at program location lk, the definition of x at the program operation
from program location li to program location lj is reachable. This analysis can
be augmented to compute flow dependences: At each CFA edge g = (lk, op, lm)

visited, the set of used program variables uses(op) can be extracted by travers-
ing through the AST of the expression of the edge’s assignment or predicate,
and collecting all program variables encountered. For each used program vari-
able x ∈ uses(op), and all reachable definitions (li, x, lj) ∈ RDlk , CFA edge g
is flow dependent on the CFA edge (li, ., lj).

If g2 is flow dependent on g1, then there is a flow-dependence edge from
g1 to g2 in the PDG, i.e., (g1, g2) ∈ ED.

Control Dependence For program locations l, l′ ∈ L, l is dominated by l′, if
every path in A from l0 to l contains l′ and l 6= l′. Location l is post-dominated
by l′, if every path in A from l to le contains l′ and l 6= l′. To compute
post-dominators in a CFA, we can compute dominators on the reverse CFA.

We represent the post-dominator relations of the program locations in a CFA
through a post-dominator tree T = (L, le, E) with set L of program locations as
nodes, program exit node le ∈ L as root node and set E ⊆ L× L of tree edges.
The post-dominator tree T determines for each program location the program
locations it post-dominates and the program-locations it is post-dominated by.
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l19

l12l13 l18

l10

l9

l5

l3 l6

l2

l15

l16

Figure 9: Post-dominator tree for running example

If a program location l post-dominates another program location l′, then l is an
ancestor of l′ in T , i.e., there is a path in T from l to l′. If l is post-dominated by
l′, then l is a successor of l′ in T . Since every program location is post-dominated
by the program exit le, it is the root of the tree. The dominator tree of the
program locations in a CFA is defined analogous. Figure 9 shows the post-
dominator tree for our running example. The program exit node l19 is at the root
of the tree - it post-dominates all other program locations. Program location l13

does not post-dominate any other program location, because every program
location l2 to l12 can take the alternate path 〈l12 → l15 → l18 → l19〉 through
the CFA from l12 to l19. Contrary, l18 post-dominates locations l15 and l16

because every path from either of them to l19 contains l18. Program location l15

also post-dominates l16. The program entry location l2 can not post-dominate
any other node, because it is for every path either the first node in it, or not
contained in it. The ancestors of l2 in the post-dominator tree describe all of the
program locations that always have to be visited if a program execution halts.

A generic algorithm [38] for computing the dominator tree of all nodes of an
arbitrary flow graph runs in O(nα(n)), but we will later present an algorithm
that fits our use-case of control dependence computation better.

CFA edge g2 = (l2, ., l
′
2) is control dependent on g1 = (l1, ., l

′
1), iff:

1. there exists a path P from l1 to l2 for which all l ∈ P with l 6= l1, l 6= l2
are post-dominated by l2, and

2. l1 is not post-dominated by l2.

If g2 is control dependent on g1, then there is a control-dependence edge from
g1 to g2 in the PDG, i.e., (g1, g2) ∈ EC . In addition, if a CFA edge g is not
control dependent on any other CFA edge, then there is a control-dependence
edge from the entry node nentry to g, i.e., (nentry, g) ∈ EC .

20



l0

l1

l2

a := 0

b := a+ 1

entry

(l0, a := 0, l1) (l1, b := a+ 1, l2)

control dependence

data dependence

Figure 10: PDG for the CFA on the left

Figure 10 shows a small CFA and its PDG. We denote control-dependence
edges with dashed arrows and flow-dependence edges with full arrows. CFA
edge g2 = (l1, b := a+ 1, l2) is flow-dependent on g1 = (l0, a := 0, l1), because

1. g1 defines a

2. g2 uses a, and

3. there is no re-definition of a between g1 and g2.

In addition, neither CFA edges g1 or g2 are control dependent on the other,
so they are both control dependent on the entry node. Figure 11 shows the
full dependence graph for our example program. Because of its size, we refrain
from giving a detailed explanation of its construction.

System Dependence Graph For inter-procedural slicing, the program de-
pendence graph can be extended to a system dependence graph [32] A system
dependence graph 4 contains additional nodes: For each CFA edge g that contains
an operation call(a1 → p1, . . . , an → pn), the system dependence graph has an
actual-in node for each function parameter pi of the called function, in addition to
the existing node for g itself. This allows a differentiation of dependencies to the
individual function parameters. All actual-in nodes are control-dependent on g.

2.4.2 Slicing Algorithm

To compute a slice A/c = (L, l0, le, R) of A = (L, l0, le, G) on a single slicing
criterion c = 〈g, uses(op)〉 with g = (l, op, l′), we first build the PDG DG =

(G,ED, EC) of A. Next, we use Algorithm 1 to compute the set H of CFA edges
that g has a transitive flow- or control-dependence on, i.e., all CFA edges from
which g is reachable in the PDG. It takes as input the CFA A = (L, l0, le, G),
the PDG DG = (G,ED, EC) corresponding to the CFA, and a single slicing
criterion c = 〈g, uses(op)〉 with g = (., op, .). For every CFA edge h visited,
starting with h = g, it adds h to the set H of relevant CFA edges, marks h
as visited, and adds to the waitlist of CFA edges to visit each CFA edge on

4We present a simplified version of the system dependence graph, adjusted to our notion of
CFAs
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Algorithm 1 Slice(A,DG, c). Adjusted worklist algorithm [32] for computation
of relevant CFA edges

Input: CFA A = (L, l0, le, G), PDG DG = (G,ED, EC) of A, slicing criterion
c = 〈g, uses(op)〉 with g = (., op, .)

Output: set H of relevant CFA edges,
Variables: set waitlist of CFA edges to visit, CFA edges h,w
1: H = ∅
2: waitlist = {g}
3: while waitlist 6= ∅ do
4: pop h from waitlist

5: mark h as visited
6: H = H ∪ {h}
7: for all (w, h) ∈ ED ∪ EC with w not marked visited do
8: waitlist = waitlist ∪ {w}
9: return H

entry

(l10, y := 1, l12)(l3, x := ?, l5) (l2, w := ?, l3)

(l5, [x > 0], l6) (l5, [x ≤ 0], l9) (l9, w := w ∗ 2, l10)

(l6, x := x− 1, l5) (l12, [x < 0 ∧ y < 0], l13) (l12, [!(x < 0 ∧ y < 0)], l15)

(l13, noop, l19) (l15, [y ≥ y + w], l18)
(l15, [y < y + w], l16)

(l18, noop, l19)
(l16, y := y − 1, l15)

Figure 11: PDG of running example with relevant edges for previous slicing
criterion highlighted

which h is flow- or control-dependent on and that was not yet visited. The
algorithm returns H once it has visited all relevant CFA edges. This is the
case if waitlist = ∅ after visiting a CFA edge. We then construct the set R
of CFA edges of A/c using H. Set R contains all CFA edges of H, i.e., all
CFA edges of the original CFA on which g has a transitive flow dependence
or transitive control dependence. For each other edge (l, op, l′) ∈ G \H, set R
contains a CFA edge (l, noop, l′). We can then build slice A/c = (L, l0, le, R)

from R and the components of the original CFA A = (L, l0, le, G).
A slice A/C = (L, l0, le, R) of a CFA A on a set C = {c1, . . . , cn} of n

slicing criteria c1 to cn can be computed by using the union H1 to Hn of
CFA edges relevant for the separate slicing criteria c1 to cn, i.e.,

⋃
i∈[1,n]Hi and

constructing the set R of CFA edges of A/C based on this union.
Figure 11 shows the PDG of our running example. We highlighted the

CFA edges visited during computation of relevant CFA edges H for slice A/c
with c = 〈g, {}〉 and g = (l13, error(), l19). The relevant CFA edges that
(l12, [x < 0 ∧ y < 0], l13) is directly dependent on are highlighted in a light blue
color. The two edges (l5, [x > 0], l6) and (l5, [x ≤ l9], l9) are dependences of
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{pc→ l2}, ∅

{pc→ l3}, ∅

{pc→ l5, x→ s1}, ∅

{pc→ l6, . . .}, {s1 > 0}

{pc→ l5, x→ s1 − 1}, ”

{pc→ l9, . . .},
{s1 > 0, s1 − 1 ≤ 0}

∞

{pc→ l6, . . .}, {s1 > 0, s1 − 1 > 0}

{pc→ l5, x→ s1 − 2}, ”

{pc→ l9, . . .},
{s1 > 0, s1 − 1 > 0, s1 − 2 ≤ 0}

∞

{pc→ l6, . . .},
{s1 > 0, s1 − 1 > 0, s1 − 2 > 0}

{pc→ l5, x→ s1 − 3}, ”

∞ ∞

{pc→ l9, x→ s1}, {s1 ≤ 0}

{pc→ l10, . . .}, ”

{pc→ l12, x→ s1, y → 1}, ”

{pc→ l13, . . .},
{s1 ≤ 0, s1 < 0 ∧ 1 < 0}

{pc→ l15, . . .}, ”

{pc→ l16, . . .}, ”

{pc→ l15, . . .}, ”

{pc→ l18, . . .}, ”

{pc→ l19, . . .}, ”

w := ?

x := ?

[x > 0][x ≤ 0]

x := x− 1

[x > 0][x ≤ 0]

w := w ∗ 2
x := x− 1

[x > 0]
[x ≤ 0]

w := w ∗ 2 x := x− 1

[x > 0][x ≤ 0]

w := w ∗ 2

y := 1

[x < 0 ∧ y < 0]

Figure 12: Part of the ARG computed by symbolic execution for the computed
slice of our running example—the ARG still has infinite elements in the right
subtree, but stops at the loop in the left subtree after one iteration due to the
higher level of abstraction.

edge (l6, x := x − 1, l5), and thus also part of the transitive dependences of g.
These two nodes are highlighted in a dark blue color. Using this set of relevant
CFA edges, we can construct R and get the slice A/c as seen in Fig. 8b. If we
run symbolic execution on this slice, it computes the state space as shown in
Fig. 12. In the left subtree of program location l5, every node of the loop starting
at l15 is only visited once due to the higher abstraction. When traversing this
loop and visiting l15 the second time, analysis stops since no new information
is computed (abstract state in green color and dotted lines). This way, the
previously infinite amount of abstract states in this subtree is reduced to only
4 states. Symbolic execution still produces an infinite amount of states for the
loop starting at l5, though, since no additional abstraction happens there.

Performance

2.5 Counterexample-guided Abstraction Refinement

The strongest-post operator SPopi(δ) for a program operation opi and an ab-
stract state δ represents the most concrete abstract state that can hold af-
ter applying opi to δ. For a program path σ = 〈l0

op0−−→ . . .
opn−1−−−−→ ln〉

and an initial restriction δ0, we define the strongest-post operator SPσ(δ0)

as SPσ(δ0) = SP
〈l1

op1−−→...
opn−1−−−−→ln〉

(SPop0(δ0)).

CEGAR [22] is a technique that aims to automatically derive an abstraction
to a program that is appropriate for proving a program safe or unsafe. It starts
with an initial abstraction of the program that may be too abstract for reliable
verification. If a violation of a safety property is reported during verification, a
counterexample can be given as potential proof. CEGAR checks whether this
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initial
abstraction

Verify
program

1.

Check
counterexample

2.

Program safe

Program unsafe

Refine
abstraction

3.

no counterexample found

counterexample found

counterexample feasible

counterexample spurious

restart

Figure 13: Concept of CEGAR

counterexample is feasible on the original program. If it is, the counterexample
is a true counterexample and verification has found a property violation. If it
is not, the counterexample is spurious and we have an example for which our
abstraction is too abstract. CEGAR then refines the abstraction based on this
spurious counterexample, i.e., makes its abstraction more concrete/less abstract.
It then restarts verification with the new abstraction. Figure 13 illustrates
this iterative approach. One technique of performing abstraction is precision
adjustment [41]. A precision adjustment operator prec uses a given precision π

and modifies each abstract state according to π. This happens directly after
each abstract state is computed, so that the further computation is performed
on the modified state. The concrete functionality of prec and the type Π of
π depend on the abstract domain used by a verification technique. Since the
concrete adjustment depends on π, π describes the abstraction.

One successful technique for abstraction refinement based on a counterex-
ample is Craig interpolation [26]. CEGAR was originally created to tackle path
explosion of symbolic model checking [24], but has since been extended to other
domains, e.g., explicit-state model checking [13] and symbolic execution [11].

Figure 14 shows symbolic execution with CEGAR applied to our running
example. In the first iteration (Fig. 14a), the initial precision of symbolic
execution does track no variable assignments and no path constraints. As a
result, the computed state-space is finite, but symbolic execution reports that the
function call at location l13 is reachable, due to the abstraction. The reported
error path is marked in the color red in Fig. 14a. CEGAR checks this error path
with full precision of symbolic execution and finds that it actually is infeasible.
Thus, precision is refined: since only y:=1 and the branching condition x < 0∧y <
0 must be tracked to prove the function call at l13 unreachable, the new precision
is πSE = ({y}, {x < 0 ∧ y < 0}). This precision tells symbolic execution to track
all variable assignments to program variable y and the constraint x < 0 ∧ y < 0.
CEGAR now starts a new symbolic execution run with this new πSE. This time,
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{pc→ l2}, ∅

{pc→ l3}, ∅

{pc→ l5}, ∅

{pc→ l6}, ∅

{pc→ l5}, ∅

{pc→ l9}, ∅

{pc→ l10}, ∅

{pc→ l12}, ∅

{pc→ l13}, ∅ {pc→ l15}, ∅

{pc→ l16}, ∅

{pc→ l15}, ∅

{pc→ l18}, ∅

{pc→ l19}, ∅

w := ?

x := ?

[x > 0][x ≤ 0]

x := x− 1w := w ∗ 2

y := 1

[x < 0 ∧ y < 0] [!(x < 0 ∧ y < 0)]

[y < y + w]

y := y − 1

[y ≥ y + w]

(a) First iteration
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∞
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[y ≥ y + w]

[y ≥ y + w]

(b) Second iteration

Figure 14: Iterations of CEGAR

the function call to error() at location l13 is correctly computed as infeasible.
But, since all assignments to program variable y are tracked, symbolic execution
unrolls the loop starting at l15; this again results in an infinite state-space.

2.6 Configurable Program Analysis

The concept of configurable program analysis (CPA) [7] is a flexible approach to
formal program verification that combines the notions of model checking [23] and
program analysis [1]. The CPA approach consists of the CPA+ algorithm (Al-
gorithm 2) and CPAs. The CPA+ algorithm [8] is a waitlist-based reachability
algorithm that provides a framework for state-space exploration and dynamic
precision adjustment of the abstract domain. A CPA influences different aspects
of the CPA+ algorithm and determines the shape of the explored state space.

2.6.1 CPA Algorithm

The CPA+ algorithm takes as input a CPA D, an initial set R0 of reachable
abstract states (usually the initial abstract state e0) and an initial set W0 of
frontier abstract states that have been computed, but that have not been visited
yet (usually also the initial abstract state e0). First, the set reached of all
computed reachable abstract states and the waitlist of abstract states that must
be visited are initialized with R0 and W0, correspondingly. Until the waitlist
is empty, an element e and its precision π are picked (and removed) from the
waitlist by some arbitrary strategy. The algorithm then computes all abstract
successor states of e based on the transfer relation  of the given CPA D. Each
abstract successor state e′ is first adjusted according to the precision π, using the
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Algorithm 2 CPA+(D, R0,W0), adapted from [39]

Input: a CPA D = (D,Π, ,merge, stop, prec), an initial reached setR0 ∈ E×Π,
and an initial waitlist W0 ∈ E ×Π, where E set of elements of D

Output: pair (reached,waitlist) of the set reached ⊆ E×Π of computed reachable
abstract states and their precisions and the set waitlist ⊆ E ×Π of frontier
abstract states that haven’t been visited yet, and their precisions

1: reached :=W0

2: waitlist :=R0

3: while waitlist 6= ∅ do
4: choose and remove (e, π) from waitlist

5: for all e′ with e (e′, π) do
6: (ê, π̂) = prec(e′, π, reached)

7: if isTargetState(ê) then
8: return (reached ∪ {(ê, π̂)},waitlist ∪ {(ê, π̂)})
9: for all (e′′, π′′) ∈ reached do

10: enew := merge(ê, e′′, π̂)

11: if enew 6= e′′ then
12: waitlist := (waitlist ∪ {(enew, π̂)}) \ {(e′′, π′′)}
13: reached := (reached ∪ {(enew, π̂)}) \ {(e′′, π′′)}
14: if ¬stop(ê, {e | (e, ·) ∈ reached}, π̂) then
15: waitlist := waitlist ∪ {(ê, π̂)}
16: reached := reached ∪ {(ê, π̂)}
17: return reached

precision adjustment operator prec of D. The result is a more abstract state ê
and its precision π̂. State ê may represent a target state, i.e., a state that is in the
target region. If this is the case, the algorithm stops and returns the computed
reached set and the remaining waitlist (both including the just computed (ê, π̂)).
Otherwise, each pair (ê, π̂) is used for two computations: First, each already
computed, reachable state e′′ for (e′′, π′′) ∈ reached is merged with ê using
the merge operator of D and the current precision π̂. If the result enew of the
merge is different from e′′, e′′ is removed from the reached set and (potentially)
from the waitlist and enew with precision π̂ are added to both, even if e′′ was
already visited and not in the waitlist anymore. After performing this merge
for all states of reached, the algorithm checks whether ê is already covered by
reached. To do this, it uses the stop operator, whose behavior also depends
on D. If ê is not yet covered by reached, it is added to both the waitlist and
the reached set. The algorithm then continues with the next pair of state and
precision in the waitlist, until a target state is found, or the full state space is
explored (i.e., no more frontier states exist, the waitlist is empty).
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2.6.2 CPA

A CPA [8] D = (D,Π, ,merge, stop, prec) with dynamic precision adjustment
consists of an abstract domain D, the set Π of precisions, a transfer relation
 , the merge operator, the stop operator and the prec operator.

Abstract Domain For soundness, the abstract domain D = (C, E , [[ · ]])

(c.f. Sect. 2.2.3) with semi-lattice E = (E,>,v,t) has to fulfill the fol-
lowing requirements:

1. [[>]] = C

2. ∀e, e′ ∈ E : e v e′ ⇒ [[e]] ⊆ [[e′]]

3. ∀e, e′ ∈ E : [[e t e′]] ⊇ [[e]] ∪ [[e′]]

Whenever we define a new abstract domain, we will not give a definition
of the concretization function for conciseness.

Precision Set The set Π of precisions determines the precisions the CPA
uses. The precision adjustment operator prec uses precisions, which decides
which information is tracked by the analysis.

Transfer Relation The transfer relation  ⊆ E × G × E × Π assigns to
each abstract state e ∈ E all possible abstract successor states e′ ∈ E with
precision π ∈ Π, based on a control-flow edge g ∈ G. If (e, g, e′, π) ∈  , we
write e g (e′, π). If g ∈ G with e

g
 (e′, π), we write e (e′, π).

For soundness, the transfer relation has to fulfill, that

∀e ∈ E, g ∈ G :
⋃

e
g
 (e′,.)

[[e′]] ⊇
⋃
c∈[[e]]

{c′ | c g−→ c′}

Merge Operator The merge operator merge : E ×E ×Π→ E weakens the
information of the given second abstract state based on the first abstract state.
The returned, weakened abstract state has the given precision. For soundness,
merge may only weaken a state, i.e., return an abstract state that is equal to
or more abstract than the given second abstract state. Formally,

∀e, e′ ∈ E, π ∈ Π : e′ v merge(e, e′, π) .

Two common merge operators are mergesep and mergejoin:

mergesep(e, e′, π) = e′

mergejoin(e, e′, π) = e t e′

Operator mergesep does not weaken any abstract state—it returns the same
abstract state that was given as second parameter; mergejoin weakens the
given second abstract state using the join operator t.
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Stop Operator The stop operator stop : E×2E×Π→ B determines whether
a given abstract state e ∈ E with a precision π ∈ Π is covered by a given
set R ∈ 2E of abstract states. If e with π is covered by R, stop(e,R, π)

returns true. Otherwise, it returns false.
Two common stop operators are stopsep and stopjoin:

stopsep(e,R, π) = ∃e′ ∈ R : e v e′

stopjoin(e,R, π) = e v
⊔
R

Operator stopsep checks every abstract state in R separately, while stopjoin

first joins all states in R and then checks whether e is smaller than that
join. For soundness, stop has to fulfill that

∀e ∈ E,R ∈ 2E , π ∈ Π : stop(e,R, π) = true⇒ [[e]] ⊆
⋃
e′∈R

[[e′]]

Because of this requirement, operator stopjoin can only be used with abstract
domains for which [[e t e′]] = [[e]] ∪ [[e′]] (so-called power-set domains).

Precision Adjustment The precision adjustment operator prec : E × Π ×
2E×Π → E ×Π computes a new abstract state and precision for a given abstract
state e ∈ E based on a given precision π ∈ Π and a set reached ∈ 2E×Π of
abstract states with their corresponding precisions.

For soundness, the computed new abstract state has to represent a subset
of the concrete states the given abstract state represents, i.e.:

∀e, ê ∈ E, π, π̂ ∈ Π, reached ∈ 2E×Π : (ê, π̂) = prec(e, π, reached)⇒ [[e]] ⊆ [[ê]] .

2.6.3 Composite CPA

The composite CPA C = (D×,Π×, ×,merge×, stop×, prec×) allows the com-
bination of multiple CPAs through composition. This allows a separation
of concerns as well as the combination of strengths of different abstract do-
mains. For the composition of two CPAs 5 D1 = (D1,Π1, 1,merge1, stop1, prec1)

and D2 = (D2,Π2, 2,merge2, stop2, prec2), with D1 = (C, E1, [[ · ]]1) and
D2 = (C, E2, [[ · ]]2), E1 = (E1,>1,v1,t1) and E2 = (E2,>2,v2,t2), the com-
posite CPA C has abstract domain D× = D1 × D2 = (C, E×, [[ · ]]×) with
semi-lattice E× = E1 × E2 = (E1 × E2, (>1,>2),v×,t×). The precision Π×
is a composition of the precisions Π1 and Π2. For

1. composite transfer relation  × ⊆ (E1 × E2)×G× (E1 × E2)×Π×,

2. composite merge operator merge× : (E1×E2)×(E1×E2)×Π× → (E1×E2),

3. composite stop operator stop× : (E1×E2)×2E1×E2×Π× → (E1×E2)×Π×,
and

5This notion can be generalized to an arbitrary amount of component CPAs.
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4. composite precision adjustment operator

prec× : (E1 × E2)×Π× × 2(E1×E2)×Π× → (E1 × E2)×Π× ,

the operations of the component CPAs D1 and D2 may be used. In addition,
they may use (a) the strengthening operator ↓ and (b) the compare relation �.

Strengthening Operator The strengthening operator ↓ : E1 × E2 → E1

computes a stronger abstract state of type E1 by using information from a
second abstract state of type E2. It allows the use of a transfer relation × that
is stronger than the simple composition of  1 and  2. The computed abstract
state has to be more concrete than the first given abstract state, i.e., ↓(e, e′) v1 e.

Compare Relation The compare relation �: E1 × E2 allows the compar-
ison of two abstract states of different types.

Merge Operator A common merge operator for composite analysis is
mergeagree, which merges the components of a composite abstract state based
on the corresponding merge operators merge1 and merge2 under one condi-
tion: Both merges have to weaken the given second abstract state so that it
is less or equal to both given abstract states. Formally,

mergeagree((e1, e2), (e′1, e
′
2), (π1, π2)) =

(merge1(e1, e
′
1, π1),merge2(e2, e

′
2, π2)) if merge1(e1, e

′
1, π1) v1 e1, e

′
1

and merge2(e2, e
′
2, π2) v2 e2, e

′
2

(e′1, e
′
2) otherwise

2.6.4 Location CPA

The location CPA [8] L = (DL, Π̃, L,mergesep, stopsep, p̃rec) represents the
syntactic position in a program. It can be used to analyze the syntactic reach-
ability of program locations, and is mainly used in composition with other
CPAs to track the program location and thus the control flow. This enables
simpler other CPAs, since they don’t have to handle location tracking. The
location CPA consists of the following components.

Location CPA Domain The abstract domain DL = (C,L, [[ · ]]L) consists
of the set C of concrete program states, the semi-lattice L and concretiza-
tion function [[ · ]]L. Semi-lattice L = (L ∪ {>L},>L,vL,tL) consists of: The
set L ∪ {>L} of all program locations and a top element >L that represents all
possible program locations; the less-or-equal relation vL that contains l vL l

′

if l = l′, or l′ = >L. the join operator tL with

l tL l′ =

{
l if l = l′

>L otherwise
.
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Static Precision The precision Π̃ of the location CPA only contains a sin-
gle precision π̃ that represents that all information is tracked: Π̃ = {π̃}.
We call this precision static precision.

Location Transfer Relation The transfer relation L has transfer l g L(l′, π̃)

if g = (l, ·, l′).

Location CPA Merge The location CPA uses the merge operator mergesep

that never merges states.

Location CPA Stop The location CPA uses the stop operator stopsep

that considers each state separately.

Location CPA Precision Adjustment The location CPA never weak-
ens states: p̃rec(l, π̃) = (l, π̃).

2.6.5 Callstack CPA

The callstack CPA keeps track of the callstack in a program. It is a CPA F =

(DF , Π̃, F ,mergesep, stopsep, p̃rec) with the following components.

Callstack Domain The abstract domain DF = (C, EF , [[ · ]]F ) consists
of the set C of concrete program states, the semi-lattice ESE and the con-
cretization function [[ · ]]SE.

An element of the semi-lattice EF = (Ξ ∪ {>F},>F ,vF ,tF ) is a stack ξ =

[ln, . . . , lm] of function call sites ln, . . . , lm ∈ L, where elements are always added
to the left, i.e., lm is the function call site of the first function that was called and
that was not returned from yet, and ln is the function call site of the function
we are currently in. The top element >F is a special element that represents
that we could be in any function call stack. The less-or-equal relation contains

ξ vF ξ′, if ξ′ = ξ or ξ′ = >F . The join is defined as ξtF ξ′ =

{
ξ if ξ = ξ′

>F otherwise
.

Callstack Precision The precision Π̃ of the callstack CPA is the static
precision.

Callstack Transfer Relation The callstack transfer relation  F has trans-
fer ξ

g
 F (ξ′, π̃) for g = (l, op, l′), if:

1. op = [p] or op = x := w and ξ′ = ξ,

2. op = call(f, . . .) and ξ′ = [l] + ξ, or

3. op = w := ret(li, x), ξ = [li, lj , . . .] and ξ′ = [lj , . . .].
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Callstack CPA Merge The callstack CPA uses the merge operator mergesep

that never merges states.

Callstack CPA Stop The callstack CPA uses the stop operator stopsep

that considers each state separately.

Callstack CPA Precision Adjustment The location CPA never weakens
states; it uses the static precision adjustment operator p̃rec.

2.6.6 Symbolic Execution CPA

The symbolic execution CPA [11] implements symbolic execution in the CPA
framework. It is a CPA SE = (DSE,ΠSE, SE,mergesep, stopsep, precSE).

Symbolic Execution Domain The abstract domain DSE = (C, ESE, [[ · ]]SE)

consists of the set C of concrete program states, the semi-lattice ESE and
the concretization function [[ · ]]SE.

The elements of the semi-lattice ESE = (V × 〈P 〉),>SE,vSE,tSE) are
a tuple (v, pc) of an abstract variable assignment v ∈ V and path con-
straints pc. The less-or-equal relation vSE contains (v, pc) vSE (v′, pc′) if
both of the following holds:

1. def(v′) ⊆ def(v) and for all x ∈ def(v′) : v(x) = v′(x); and

2. pc′ ⊆ pc.

This relation also implies the join tSE.

Symbolic Execution Precision Set The set ΠSE = 2X × 2P defines
the precisions of the symbolic execution CPA as tuples (πX , πP). Compo-
nent πX determines the abstract variable assignments to track, and πP de-
termines the constraints to track.

Symbolic Execution Transfer Relation The transfer relation SE contains
transfer (v, pc)

g
 SE(v′, pc′, (πX , πP)) if one of the following three holds:

1. g = (., w := exp, .), pc = pc′ and

v′(x) =


exp/v if x = w and for each program variable x

that occurs in exp, x ∈ def(v)

v(x) if x ∈ def(v) ∧ x 6= w

where exp/v is the evaluation of expression exp based on abstract variable
assignment v. To evaluate exp, we replace the occurrence of every program
variable x ∈ def(v) in exp with its assignment v(x). If no symbolic
value occurs in exp/v, the expression can be evaluated to a single integer.
Otherwise, the expression is stored as symbolic value.

31



2. g = (., [p], .), v = v′, pc′ = pc ∪ p/v and
∧
p∈pc′ p 6= false, where p/v is

the evaluation of predicate p based on abstract variable assignment v,
analogous to the evaluation of expressions. If the conjunction of path
constraints is unsatisfiable, no successor state exists.

3. g = (., op, .), op is a noop, call or return operation, v′ = v and pc′ = pc.

Symbolic Execution Merge and Stop Operator The symbolic exe-
cution CPA does not merge abstract states when the control flow meets
(i.e., it uses mergesep). It checks each abstract state individually in the
stop operator (stopsep).

Symbolic Execution Precision Adjustment The precision adjustment
operator precSE adjusts both the abstract variable assignment and the path
constraints according to a given precision:

precSE(v, pc) = (v|πX
, pc ∩ πP)

for precision π = (πX , πP) ∈ ΠSE. It only keeps abstract variable assign-
ments for program variables x that are in the first component of the pre-
cision, i.e., x ∈ πX , and only path constraints p that are in the second
component of the precision, i.e., p ∈ πP .

2.6.7 Reaching Definitions CPA

The reaching definitions CPA [6] tracks possibly active definitions of program
variables. It is a CPA RD = (DRD, Π̃, RD,mergejoin, stopsep, p̃rec).

Reaching Definitions Domain The abstract domain DRD = (C, ERD, [[ · ]]RD)

consists of the set C of concrete states, the semi-lattice ERD and the concretiza-
tion function [[ · ]]RD. The semi-lattice ERD = (2E,>RD,vRD,tRD) consists of
the set 2E of all sets of reaching definitions, with E = X × (L × L). A reach-
ing definition (x, (l, l′)) ∈ E pairs a program variable x with a CFA edge that
goes from l to l′ and that contains a defining program operation. The top
element >RD = E represents all possible definitions for every program vari-
able. the less-or-equal operator vRD contains S vRD S′ if S ⊆ S′, i.e., if S
contains a subset of the possible reaching definitions that S′ contains, and
the join operator tRD is defined as S tRD S′ = S ∪ S′.

Reaching Definitions Precision Set The precision set of the reaching-
definitions CPA is the static precision Π̃. Only one precision exists.

Reaching Definitions Transfer Relation The transfer relation  RD con-
tains S g

 RD(S′, π̃), if one of the following is true:

1. g = (., [p], .) and S′ = S
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2. g = (l, op, l′) with op = w := exp, and

S′ = (S \ {(w, k, k′) | k, k′ ∈ L}) ∪ {(w, l, l′)}

3. g = (l, op, l′) with op = call(f, a1 → p1, . . . , an → pn) and

S′ = S ∪ {(ai, l, l′) | 1 ≤ i ≤ n}

4. g = (l, op, l′) with op = w := ret(li, x) and

S′ = (S \ {(ai, k, k′) | k, k′ ∈ L, 1 ≤ i ≤ n}) ∪ {(w, l, l′)}

with the corresponding CFA edge

g = (li, call(f, a1 → p1, . . . , an → pn), lj) .

Reaching Definitions Merge Operator The reaching-definitions CPA uses
mergejoin—it always joins abstract states when the control flow meets.

Reaching Definitions Stop Operator The stop operator of the reaching-
definitions CPA checks each abstract state individually (i.e., stopsep).

Reaching Definitions Static Precision Adjustment The precision adjust-
ment operator of the reaching-definitions CPA never performs abstraction; it
is the static precision adjustment operator p̃rec(S) = S.

2.7 Relevant Technology and Tools

2.7.1 LLVM

The Llvm 6 compiler infrastructure aims to provide a modern, SSA-based compi-
lation strategy, aimed at a flexible set of source languages. The center of the Llvm

project is the Llvm assembly language 7 (just called Llvm). All source languages
are translated to Llvm as intermediate language. Compiler optimizations and
other compiler steps are then performed on the Llvm representation. Since our
work is based on analysis of C programs, we will focus on the aspects of Llvm rel-
evant for C, only. Llvm code is stored in two different formats: Human-readable
code, and so-called bitcode. Llvm is a static single assignment (SSA) based,
type-safe program representation over a small set of low-level operations. Due
to its assembly-like nature, understanding Llvm involves a significant amount of
low-level technical knowledge. For our purpose, this is not necessary - thus, we
will ignore technical details like data layouts, compiler information and meta-
data. Instead, we will give a short overview over the main components of the
language that are necessary to understand its connection to C.

6https://llvm.org/ 7https://llvm.org/docs/LangRef.html
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1 int x = 10;
2
3 int decr(int x) {
4 return x - 1;
5 }
6
7 int main() {
8 while (x > 0) {
9 x = decr(x);

10 }
11 }

(a) C program

1 @x = global i32 10, align 4
2
3 ; Function Attrs: nounwind uwtable
4 define i32 @decr(i32) #0 {
5 %2 = alloca i32, align 4
6 store i32 %0, i32∗ %2, align 4
7 %3 = load i32, i32∗ %2, align 4
8 %4 = sub nsw i32 %3, 1
9 ret i32 %4

10 }
11
12 ; Function Attrs: nounwind uwtable
13 define i32 @main() #0 {
14 %1 = alloca i32, align 4
15 store i32 0, i32∗ %1, align 4
16 br label %2
17
18 ; <label>:2:

; preds = %5, %0
19 %3 = load i32, i32∗ @x, align 4
20 %4 = icmp sgt i32 %3, 0
21 br i1 %4, label %5, label %8
22
23 ; <label>:5:

; preds = %2
24 %6 = load i32, i32∗ @x, align 4
25 %7 = call i32 @decr(i32 %6)
26 store i32 %7, i32∗ @x, align 4
27 br label %2
28
29 ; <label>:8:

; preds = %2
30 %9 = load i32, i32∗ %1, align 4
31 ret i32 %9
32 }

(b) Llvm translation

Figure 15: Example of C program and corresponding Llvm translation

LLVM Values Llvm knows two types of identifiers: global (prefix @) and
local (prefix %); and three different formats for identifiers: (1) Named values
(prefix + string, e.g., @main), (2) unnamed values (prefix + unsigned integer,
e.g., %1), and (3) constants (reserved words, constant values, e.g., 0). A pro-
gram variable can be a named value, as well as an unnamed value: Named
values are derived from identifiers that exist in the source program, and un-
named values are used by the Llvm compiler as an easy way to avoid name
conflicts when introducing temporary variables.

LLVM Program Structure An Llvm program consist of multiple modules.
Each module is one translation unit and consists of (a) functions, (b) global
variables and (c) symbol table entries. Each function consists of multiple blocks.
Each block starts with a label and consists of a linear sequence of program
operations. This sequence ends with either an unconditional jump to one
block (br operation with one argument), or a conditional jump that selects one
of two blocks (br operation with three arguments). Branching conditions and
loops in a C program are represented through these conditional jumps.

Figure 15 shows an example C program and its corresponding Llvm translation.
The while loop in the original C program (Fig. 15a, Lines 8–9) is represented by the
two blocks with labels 2 and 5 in the Llvm program (Fig. 15b, Lines 18–27). Block 2
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describes the loop head: The value of global variable @x is loaded into temporary
program variable %3, the value of the signed integer comparison (operation icmp

with option sgt) of variable %3 and constant value 0 is stored in temporary
program variable %4, and a conditional jump is performed based on the value of
%4: If %4 is 1 (i.e., @x > 0), control jumps to block 5, which contains a jump back
to block 2 at its end. Otherwise, control leaves the loop and jumps to block 8.

LLVM Type System Llvm knows the following types: the void type, the
function type, and first-class types. The void type represents no value and
has no size. The function type represents a function signature and consists
of a return type and a list of formal parameter types. First-class types are
all types that can be produced by program operations. There are single
value types, aggregate types, the label type, the token type and the meta-
data type. The single value types of Llvm are:

1. Integer types with an arbitrary bit width between 1 and 223 − 1 bits, e.g.,
integer type i32 of bit-width 32. Integer types do not have a signedness.
Instead, program operations can interpret given integers as either signed,
or unsigned. For example, in Fig. 15b, Line 20, the icmp operation is told
to perform a signed integer comparison with option sgt.

2. Six different floating point types with a different bit width and a different
mantissa bit width, e.g., half (16 bit), float (32 bit), fp128 (128 bit).

3. The pointer type, representing a memory location, e.g. pointer type i32 ∗

specifying a pointer to an integer with bit-width 32.

4. The vector type which represents a vector of elements of another single
value data type, e.g. vector type <2 x float> specifying a vector of 2 32 bit
floating point values.

The aggregate types of Llvm are:

1. The array type, which represents a fixed size of elements of a single arbitrary
data type (excluding void and metadata) in sequential order. For example,
the array type [2 x i32] specifies an array of size 2, with element type i32.

2. The structure type, which represents a collection of data members of
arbitrary data types (excluding void and metadata). For example, the
structure type {i32, i18, i14} specifies a structure with three members:
one 32 bit integer, one 18 bit integer, and one 14 bit integer.

3. The opaque structure type, which represents a named structure type that
does not have a body.

The label type represents a code label, the token type is a specific type carrying
special information for the compiler, and the metadata type represents metadata.
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LLVM Constants Llvm knows simple constants and complex constants. Sim-
ple constants are boolean, integer and floating point values (e.g., true, 100,
and 1.5), as well as the null pointer and the token constant ‘none’. Com-
plex constants are structure, array and vector constants, as well as the
zero initialization and metadata:

1. A structure constant is a comma separated list of elements, each pre-
ceded by its type, that specify a corresponding structure. A struc-
ture constant always has a structure type. For example, structure con-
stant { i1 true, i32 100, float 1.5} is a structure of type { i1, i32, float}

with member values true, 100 and 1.5.

2. An array constant is a comma separated list of elements, each preceded
by its type, that specify a corresponding array. An array always has an
array type. For example, array constant [i32 42, i32 24] is an array of
type [2 x i32] with element 42 at position 0 and 24 at position 1.

3. Analogous, vector constants specify a vector and always have a vector
type, e.g., <double 3.14, double 159.265> is a vector of type <2 x double> with
elements 3.14 and 159.265.

4. The zero initialization constant zeroinitialization can be used to initialize
a value of any type to zero, including aggregate types.

5. A metadata node is constant tuple without types, which contains some
metadata about the module. Metadata may, for example, hold debug
information.

LLVM Operations Llvm contains multiple low-level program operations
(called instructions). Instructions are divided into the following instruction
classes: terminator, binary, bitwise binary, memory, and other instructions.

Terminator Instructions Terminator instructions are used to transfer
control or stop the program. They include the already seen br instruction
that gives control to a different basic block. Other noteworthy instructions
are the ret instruction that is similar to the return-statement of C and the
unreachable instruction that represents an unreachable portion of code.

Binary Instructions Binary and bitwise binary instructions require two
operands of the same type, execute an operation on them, and produce a
single new value. The result value always has the same type as its operands.
Common examples are arithmetic operations like add (sum of two operands),
sub (difference of two operands), mul (product of two operands), div (quotient
of two operands), as well as bitwise operations like shl (binary shift to the left
of first operand by number of bits specified by second operand), or (binary
or of two operands), and (binary and of two operand), etc.
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Memory Instructions Memory instructions exist to extract and insert
values into aggregate types (extractvalue and insertvalue), as well as allocate
memory on the stack (alloca), read a value from a memory address (load),
and write a value to a memory address (store).

Other Instructions Other instruction include the comparison of inte-
ger and float values (icmp and fcmp) and the function call instruction call

that transfers control into a specified function and assigns the function pa-
rameters with the given arguments.

2.7.2 Symbiotic

Symbiotic [21] is a formal verification tool for C programs that uses a combina-
tion [45] of instrumentation, static program slicing and symbolic execution. It
can check C programs for any program specification that can be represented
by a finite state machine. This allows Symbiotic to check for, for example,
reachability and memory violations, e.g., invalid memory accesses and memory
overflows. Since the property that a program does not terminate can not be
represented by a finite state machine, Symbiotic can not check programs for
termination. Symbiotic uses Llvm as an intermediate language, in version 3.9.1.
Figure 16 shows the verification steps of Symbiotic: It first translates a given
C program to Llvm using clang, instruments it to (a) make it compatible with
the conventions of symbolic execution tool Klee, and to (b) reflect the consid-
ered program specification. Symbiotic then performs a first set of optimizations
to improve the performance of the next steps. It uses a points-to-analysis to
support the next step of intra-procedural program slicing [32]. A second set
of optimizations is applied to the resulting program slice, before it is given to
Klee [20] for symbolic execution. Symbiotic has a modular structure: The parser
(clang) and the verification step (Klee) can be replaced with other tools easily,
and the instrumentation process can be adjusted as needed.
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2.7.3 CPAchecker

CPAchecker [9] is a software verification framework for C programs 8 that is
based on configurable program analysis. It provides a large amount of exist-
ing program analysis techniques implemented in the CPA framework, e.g., a
predicate analysis [10], explicit-state model checking [13], and symbolic execu-
tion [11]. It also includes an implementation of the reaching-definitions CPA
and, in addition to an implementation of the CPA algorithm, an implemen-
tation of the CEGAR algorithm (amongst others). The precision of a CPA
is used as interface for storing the current abstraction.

As an intermediate representation, CPAchecker uses CFAs. Figure 17 shows
the general verification steps of CPAchecker in a configuration that uses symbolic
execution with CEGAR. A given C program is parsed and a CFA is created as
intermediate representation. This CFA is given as input to the CEGAR algorithm.
The CEGAR algorithm starts the CPA algorithm with an initial precision and
gets a result, which consists of the ARG of the computed set of reachable abstract
states and a verdict (target found/not found). If a target was found, the CEGAR
algorithm extracts a counterexample from the ARG and checks whether it is
feasible. If it is, the algorithm returns ‘unsafe’. If it is not, the algorithm refines
the precision with the counterexample. It then restarts the CPA algorithm with
the new precision and repeats this process until the CPA algorithm returns
that no target was found. If this is the case, the CEGAR algorithm returns
‘safe’. (If a timelimit is reached, the running machine runs out of memory, or an
unsupported program feature is encountered, the analysis returns ‘unknown’.)
The CPA algorithm itself uses multiple CPAs: The composite CPA is used to
create a composition of the following CPAs: The location CPA to track program
locations, the callstack CPA to track the function callstack of the program, the
symbolic execution CPA that performs a symbolic execution on the program, and
an automaton CPA, which represents the specification as a finite state automaton.

CPAchecker has a modular structure: The parser & CFA builder can be
replaced by a parser for another programming language and a CFA builder that

8With some analyses, CPAchecker can also analyze Java programs.
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builds a CFA from that language’s AST, and the CPAs can be replaced by any
other combination of CPAs. In addition, multiple optimization options exist.

3 Iterative Slicing

Existing verification approaches that use slicing use it as a pre-processing step.
For a set of known slicing criteria, the program slice of a given program is
created and further analysis is performed on that slice. We don’t do this for
two reasons: 1. If a new, intermediate program is used for analysis, it may
be difficult to create fitting back-references to the program under analysis (for
example necessary for verification-result validation). And 2. the potential target
region in a program may be significantly larger than the reachable target region;
eager slicing may thus result in a slice that is larger than necessary.

Instead, we use a slicing CPA to perform slicing in tandem with the original
verification technique on the original program. To create a program slice that
is as small as possible, we start with an empty slice and add relevant edges
on demand, through the use of CEGAR. Since we see slicing not as a removal
of program operations, but only as a replacement with a noop operation, this
can be done dynamically and without the need to construct a new CFA. The
current program slice is defined by the slicing precision.

Figure 18 shows the workflow diagram of CPAchecker with slicing: In addition
to the original workflow (Fig. 17), we create the dependence graph from the
CFA. This is then used by the CEGAR algorithm in refinement of the slicing
precision. The slicing CPA (on the left) uses this for dynamic program slicing.

3.1 Program Dependence Graph Construction

The system dependence graph contains one node for each CFA edge. In
addition, it contains one actual-in node for each parameter of each CFA
edge with a function call operation, and one actual-out node for each CFA
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edge with a function return statement. The edges of the dependence graph
are separately computed as follows.

3.1.1 Flow-Dependence Computation

To compute flow dependences in a CFA, we use the CPA algorithm with a
flow-dependence CPA. For flow-dependence computation, it is necessary to
track reaching definitions in the CFA—the flow-dependence CPA delegates
this to a wrapped reaching definitions CPA. To keep track of the current pro-
gram location and the function call stack, we combine the flow-dependence
CPA with a location CPA and a callstack CPA. The flow-dependence CPA
is a CPA FD = (DFD, Π̃, FD,mergejoin, stopsep, p̃rec).

Abstract Domain The abstract domain DFD = (C, EFD, [[ · ]]FD) consists of the
set C of concrete states, the semi-lattice EFD and concretization function [[ · ]]FD.
The semi-lattice EFD = (EFD,vFD,tFD,>FD) has the set EFD = 2E × (G×X ×
L × L) of abstract states. An abstract state is a pair (S, d) of a set S ⊆ E of
reaching definitions and a set d ⊆ G×X × L× L of flow dependences. A flow
dependence (g, x, l, l′) ∈ d represents that CFA edge g is, through the use of
x, flow-dependent on the CFA edge that goes from l to l′. The less-or-equal
relation vFD contains (S, d) vFD (S′, d′) if S vRD S′ and d ⊆ d′. The join
operator tFD for two states (S, d) and (S′, d′) is defined as the pairwise join of
the reaching-definition states S and S′ using the join of the reaching-definitions
CPA, and the union of flow dependence sets d and d′:

(S, d) tFD (S′, d′) = (S tRD S′, d ∪ d′) .

The top element >FD = (E, EFD) is the abstract state with all possible reach-
ing definitions and all possible flow dependences between CFA edges.

Precision Set The flow-dependence CPA uses the static precision Π̃.

Transfer Relation The transfer relation FD has transfer (r, d)
g
 FD(r′, d′, π̃),

if g = (l, op, l′), r
g
 RDr

′, and

d′ = d ∪ {(g, x, l, l′) | x ∈ uses(op) ∧ (x, l, l′) ∈ r} .

It does two things: It (a) performs the reaching-definitions transfer for the
reaching-definitions state r, and (b) adds to the flow-dependence state d

all flow dependences of g, computed from the variables used by op and the
reaching definitions for these used variables.

Merge and Stop Operators The flow-dependence CPA always joins abstract
states when the control flow meets, i.e., it uses mergejoin. The stop operator
considers each abstract state separately, i.e., stopsep.
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Algorithm 3 Doms(A)

Input: CFA A = (L, l0, le, G)

Output: Mapping D : L→ 2L of program locations to their post-dominators
Variables: CFA node l ∈ L, set waitlist ⊆ L of CFA nodes,
1: D(l) = L for all l 6= l0
2: D(l0) = ∅
3: waitlist = {l0}
4: while waitlist 6= ∅ do
5: choose and remove l from waitlist

6: for all (l, ·, l′) ∈ G do
7: δnew = D(l′) ∩ (D(l) ∪ {l})
8: if δnew 6= D(l′) then
9: D(l′) = δnew

10: waitlist = waitlist ∪ {l′}
11: return D

Precision Adjustment The flow-dependence CPA uses the static preci-
sion adjustment operator p̃rec. It always returns the given abstract state
and does not perform any adjustment.

If we apply the CPA algorithm with a composition of the location CPA (to
track the control flow), the callstack CPA (to track the callstack), and the flow-
dependence CPA (to track flow dependences) to a CFA, the computed reached set
contains all flow dependences in the CFA. For each such dependence, we add both
CFA edges and the corresponding flow dependence edge to the dependence graph.

Augmentation for C Programs To analyze C programs, we have to take
care of pointer aliasing and call-by-reference parameter passing of arrays. To do so,
we add a points-to-analysis CPA to the composition of analyses, and handle array
parameters and array arguments as additional return values at each return edge.

3.1.2 Post-Dominator Computation

To compute control dependences between CFA edges, we first have to compute
the post-dominators of each program location in the CFA. To compute post-
dominators, we can compute the dominators of each program location on the
reverse CFA. Thus, we first present an algorithm for dominator computation,
and then apply this algorithm to the reverse CFA.

For a given CFA A = (L, l0, le, G), Algorithm 3 computes the function D :

L → 2L that maps each program location to its set of dominators in the
CFA. It performs a waitlist-based fix-point computation over the map D of
candidate dominators for each l ∈ L. By definition, the entry location has no
dominators: D(l0) = ∅. For all other program locations l 6= l0, we start with the
full set of program locations as candidates: D(l) = L. The algorithm traverses
through A, starting at the program entry location l0. For each program location
l that it visits, it computes new candidate dominators D(l′) for all successors l′ of
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Figure 19: Example CFA and its dominator computation. The CFA edges are
numbered in the order in which they are considered by Algorithm 3.

l. For a location l′, dominators can only be locations that have been candidates
in the past and that are either also dominators of the predecessor location l, or
the predecessor l itself. Thus, the set of candidate dominators can be restricted
to these locations. Formally, the new set of dominators δnew is

δnew = D(l′) ∩ (D(l) ∪ {l}) .

If the candidate dominators of l′ change (i.e., the new set δnew of candidate
dominators is smaller then the previous one D(l′)), then it is possible that the
candidate dominators of all successors of l′ may also need to change—thus, l′

is added to the waitlist. If the waitlist is empty, all dominator sets are final
and D(l) represents the set of dominators for each l ∈ L. Figure 19 shows an
example CFA and the intermediate steps of the dominator computation with
Algorithm 3. All edges of the CFA contain noop operations—instead, the edges
of the CFA are numbered in the order they are visited by Algorithm 3. The
table shows the candidate dominators D(l) for each program location l for each
time l is chosen from the waitlist. Final dominators are marked green. The
algorithm starts at l0 with dominators ∅, looks at edge (l0, noop, l1), computes
the new candidate dominators {l0} for l1, and adds it to the waitlist, because its
candidate dominators changed. It then continues to l1, visits edges (l1, noop, l2)

and (l1, noop, l3), computes the new candidate dominators D(l2) = {l0, l1} and
D(l3) = {l0, l1} and adds both l2 and l3 to the waitlist. Since l2 and l3 are on
the same level, the selection strategy could choose both l2 or l3, first. In this
example, we first choose l3: From there, the algorithm visits edges (l3, noop, l4)

and (l3, noop, l5), computes the new candidate dominators for l4 and l5, and
adds both to the waitlist. The waitlist now contains l2, l4, l5. Because of the
reverse post-order selection strategy, the algorithm continues with l2, visits
(l2, noop, l8) and computes the new candidate dominators D(l8) = {l0, l1, l2}.
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Algorithm 3 continues in this fashion and visits l8, lloop and l7. At l7, the CFA
contains the back-edge (l7, noop, lloop). Thus, the algorithm visits (l7, noop, l8)

and (l7, noop, lloop), computes the new candidate dominators D(l8) = {l0, l1}
and D(lloop) = {l0, l1, l3, l5} ∩ ({l0, l1, l3} ∪ {l7}) = {l0, l1, l3} and re-adds lloop
to the waitlist. It continues with lloop, re-visits (lloop, noop, l7) and computes
the candidate dominators {l0, l1, l3} ∩ ({l0, l1, l3} ∪ {lloop}) = {l0, l1, l3}. Since
the candidate dominators don’t change for l7, it is not added to the waitlist.
Instead, the algorithm continues with l8, again re-visits lloop, which has now
its final dominator set, re-visits l7 and also adjusts its candidate dominators
to the final set {l0, l1}, and then visits l9 and halts.

We design a dominator CPA with which the CPA algorithm performs ex-
actly the same steps as Algorithm 3. The dominator CPA is a component
CPA that only works in composition with the location CPA, and is defined
as D = (DD, Π̃, D,mergejoin, stopsep, p̃rec).

Abstract Domain The abstract domain DD = (C, ED, [[ · ]]D) consists of the
set C of concrete states, the semi-lattice ED, and the concretization function [[ · ]].
The semi-lattice ED = (D,vD,tD,>D) has elements D = 2L. In composi-
tion with a location CPA, δ represents the set of dominators for a program
location. The less-or-equal relation vD contains δ vD δ′, if δ ⊇ δ′. The
join tD computes the intersection of elements, i.e., δ tD δ′ = δ ∩ δ′. The
top element >D = ∅ is the empty set.

Precision Set The dominator CPA uses the static precision Π̃.

Transfer Relation The transfer relation D has transfer δ g Dδ
′, if g = (l, ·, l′)

and δ′ = δ ∪ {l}. The transfer relation always adds to program location l′

the predecessor location l as (potential) dominator.

Merge Operator The dominator CPA always joins states when the con-
trol flow meets:

mergejoin(δ, δ′) = δ tD δ′ = δ ∩ δ′

Through this intersection, the sets of potential dominators at each location
are reduced to the dominators that are common to all sets.

Stop Operator The dominator CPA checks states separately (stopsep).

Precision Adjustment The dominator CPA uses the static precision ad-
justment operator p̃rec. It always returns the given abstract state and does
not perform any adjustment.

Post-dominator CPA To compute post-dominators, we combine the dom-
inator CPA with a backwards-location CPA. The backwards-location CPA
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traverses through the CFA in reverse order. As initial abstract state, we have
to provide (le, ∅) to the CPA algorithm, so that it not only traverses the CFA
backwards, but also starts at the program exit location. With these two ad-
justments, we can model a reverse CPA. The reached set computed by the
CPA algorithm will contain abstract states that are tuples (l, δ) ∈ L× 2L. Such
a tuple represents that program location l has post-dominators δ.

Performance To build a PDG, we require to get the set of post-dominators
per program location. If we compute the post-dominator tree, the computation
of the set of post-dominators for a single program location is in O(n), for n
program locations in the CFA. If we compute the set of post-dominators for
each program location, the total cost is in O(n2). The fastest algorithm for
post-dominator computation known to us is in O(nα(n)), but can only construct
the post-dominator tree. Thus, the total time for computing the full sets for
each location with this algorithm is in O(n3α(n)).

Instead, we can directly compute the set of post-dominators for each pro-
gram location with Algorithm 3 in O(n2), if we implement the waitlist with
a reverse post-order selection strategy.

Claim 1. Algorithm 3 with a reverse post-order waitlist runs in the worst case
in O(n2).

Proof. Let’s assume the waitlist is implemented in a way that program locations
are chosen based on their location in the CFA: If a node is not the head of a loop,
it is only selected if none of its transitive predecessors are in the waitlist. If a
node is the head of a loop, it is only selected if none of its transitive predecessor
that are not part of the loop are in the waitlist. This selection strategy requires
the use of a sorted waitlist. Each insertion and removal in the waitlist is then in
O(log n).

For a CFA A = (L, l0, le, G), one of the following cases is true for each
program location l ∈ L, with predecessor set preds(l):

C1: The program location is the program entry (l = l0).
The entry location l0 has reached its fix point even before the first visit,
because initially D(l0) = ∅ (see Fig. 19)

C2: The program location is not a loop head.
The program location reaches its fix point the next time it is visited after
each predecessor has reached its fix point.

C3: The program location is a loop head.
The program location reaches its fix point after each predecessor that is
not in the governing loop has reached its fix point, and after the governed
loop is traversed one more time (in the described reverse post order). If the
loop contains other loops, the corresponding loop head and its members
must be visited accordingly. See Fig. 19 and the loops starting at lloop for
an example.
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Figure 20: Example CFA and its control dependences (dashed lines)

For C1, the algorithm requires 1 step to set D(l0) = ∅. For C2, program
location l reaches its fix point in 1 step after its predecessors have reached their
fix point. Thus, for a set of m program locations that are connected, that do
not contain a loop and that start with entry location l0, the algorithm requires
m steps. For C3, program location l reaches its fix point in m steps if the
loop consists of m nodes and does not contain a nested loop. If the loop does
contain nested loops, it requires at most m ∗ k steps for k nested loops. Since
the maximum number of loops k ≤ m is less or equal to the number of nodes,
the algorithm requires at most m2 steps. If we combine these three steps, we
require at most n steps for n connected program locations without any loops
and n2 steps for n connected program locations with loops. Thus, Algorithm 3
runs in O(n2).

The only difference between a CFA A and its reverse A− is, that each
node in A may only have two successors, while each node in A− may only
have two predecessors, but an infinite amount of successors. Since we did
not rely on the number of successors or predecessors in above proof, it is a
valid proof that the performance of both dominator-, and post-dominator-
computation with Algorithm 3 is in O(n2).

3.1.3 Control-Dependence Computation

CFA nodes can only be control dependent on branching nodes, i.e., nodes that
have more than one successor. Thus, we only have to consider these for control
dependence computation: For each branching node lb in a CFA, we consider its
two branches separately. Starting with the first node in a branch, we iterate
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through the branch, and check for each node l that we visit, that it is not a post-
dominator for lb. If it is, the two branches of lb meet at l, and we continue with
the next branching node. If it isn’t, we are still in one of the branches. In this
case, we check that all nodes on the path from lb to l are post-dominated by l. If
they are, then l is control dependent on lb and we add the corresponding control
dependence edge to the dependence graph. If they aren’t, then we have entered
a nested loop. In this case, we continue without adding a control-dependence
edge, because the nested branching node, which is control-dependent on lb, will
already create a transitive dependence. Figure 20 shows an example CFA with
its control dependences as computed by our algorithm. The control dependences
are marked as dashed lines, the CFA edges are grayed out. The example shows
that program locations l4 and l5 have a transitive control dependence through l3
on l1, thus there is no need for tracking these control dependences explicitly.

3.2 Slicing CPA

We implement slicing not as a pre-processing step, but as component of the main
analysis. The idea is the following: A slicing CPA wraps the original analysis and
decides for each transfer g

 , whether the transfer’s CFA edge g = (l, op, l′) is part
of the current slice. If it is, the transfer of the wrapped analysis for g is performed
as-is. Otherwise, the transfer is replaced with g′

 , where g′ = (l, noop, l′).
The slicing CPA SC = (DSC,ΠSC, SC,mergeSC, stopSC, p̃rec) for a wrapped

CPA D = (D,Π, ,merge, stop, prec) with abstract domain D = (C, E , [[ · ]]) and
E = (E,v,⊆,>) consists of the following components.

Abstract Domain The slicing CPA does not have to track any informa-
tion itself. Thus, the abstract domain of the slicing CPA is the abstract
domain of the wrapped CPA:

DSC = D

Precision Set The precision set ΠSC = 2G ×Π consists of the CFA edges of
the current program slice and the wrapped CPA’s precision set Π.

Transfer Relation The transfer relation  SC : E × G × E × ΠSC contains
transfer e g SC(e, (πSC, π)) if g = (l, op, l′) and either

1. g ∈ πSC and the transfer e g (e, π) of the wrapped CPA exists, or

2. g 6∈ πSC and the transfer e g
′

 (e, π) with g′ = (l, noop, l′) of the wrapped
CPA exists.

Merge Operator The merge operator mergeSC : E × E × ΠSC → E dele-
gates to the merge operator of the wrapped CPA:

mergeSC(e, e′, (πSC, π)) = merge(e, e′, π) .
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Algorithm 4 refineSC(A,DGA, σ)

Input: CFA A = (L, l0, le, G), dependence graph DGA = (N,ED, EC) of A,
and infeasible path σ = 〈l0

op0−−→ . . .
opn−1−−−−→ ln〉

Output: precision (πSC, π)

Variables: Slicing criterion c.
1: c = getCriterion(σ)

2: πSC = Slice(A,DGA, c) ∪ πSC
3: [π = refineD(σ) � Call refinement procedure of wrapped CPA]

4: return (πSC, π)

Stop Operator The stop operator stopSC : E × 2E × ΠSC delegates to
the stop operator of the wrapped CPA:

stopSC(e,R, (πSC, π)) = stop(e,R, π) .

Precision Adjustment The precision adjustment operator

precSC : E ×ΠSC × 2E×ΠSC → E ×ΠSC

delegates to the wrapped CPA’s precision adjustment operator:

precSC(e, (πSC, π), R) = (ê, (π′SC, π
′))

where prec(e, π, R̃) = (ê, π′). Reached set R̃ ∈ 2E×Π is the same as the original
reached set R ∈ 2E×ΠSC , but stripped of the slicing CPA’s precision.

3.3 Slicing Refinement

Initially, our slicing algorithms assumes that no program operation is relevant—
we run analysis with the empty slice πSC = ∅. With this, all CFA edges are
replaced with corresponding noop-edges during analysis.

Slicing Refinement If an error path σ = 〈l0
op0−−→ . . .

opn−1−−−−→ ln is found, we
first get the program slice A/c for that target location and run the counterexample
check checkPath(σ,A/c) on that. The counterexample check checkPath(σ,A/c)

performs a counterexample check on the given target path σ based on the
program slice A/c. To do so, it runs the slicing CPA on that target path,
using the corresponding program slice. Since the error path σ ends in the
target state, we take the last program operation opn−1 before the target state
as a slicing criterion c, i.e., c = 〈(ln−1, opn−1, ln, X〉. We use all program
variables X for c, because we have no way of telling which program variables
that occur in opn−1 are relevant for reaching the target state.

If the target path on that program slice is infeasible, we use refinement proce-
dure refineSC (Algorithm 4) to refine the program slice: We use the same slicing cri-
terion as for the feasibility check, i.e., getCriterion(σ) = 〈(ln−1, opn−1, ln), X〉.
We call this target-location slicing. We then call Slice(A,DGA, c) (Algorithm 1)
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error()

(a) Invalid counterexample found with
target-location slicing

l0

l1

l2 l3

l4

l5

x := 0

[x ≥ 0] [x < 0]

x := 2 x := 1

error()

(b) Valid counterexample found with
target-path slicing

Figure 21: Example CFA that requires target-path slicing for correct counterex-
ample

with CFA A, dependence graph DGA and the slicing criterion c to get the
relevant edges of A/c. These are added to our slicing precision πSC. This way, we
are able to incrementally build a program slice for arbitrary program properties.

Slicing Refinement with valid Counterexamples If a target location is
found and we want to produce a counterexample for verification-result validation,
we have to use the counterexample check on the full path, i.e. checkPath(σ,A),
to make sure that only paths feasible on the original program are allowed.
We also have to adjust our slicing criterion to contain all assume edges of an
infeasible target path, i.e. getCriterion(σ) = 〈assumeEdges(σ), X〉. We call
this target-path slicing. If we use target-location slicing, target paths that are
actually infeasible due to contradicting program operations may be presented as
counterexamples. Figure 21 shows an example CFA for which target-location
slicing finds an invalid counterexample. Let’s consider the program property
that error() is never called. This is violated by the example CFA (called A in
the following). The first iteration of our slicing CPA uses the empty program
slice and finds the target path σ = 〈l0 → l1 → l3 → l4 → l5〉 (??). It then
performs a counterexample check on the program slice A/c(l4, noop, l5)X, which
only contains (l4, noop, l5). Thus, the counterexample check returns that the
target path is feasible and an invalid counterexample is returned. Instead, we
have to perform our counterexample check on the full CFA A. If we do this, the
counterexample check returns that the target path is infeasible, and we refine the
slicing precision. Let’s assume we use target-location slicing. Then, the resulting
new precision would only contain (l4, noop, l5), and the same infeasible target
path would again be encountered in the next iteration of the analysis, leading to
an infinite loop (or a failure). If we use target-path slicing, we add the slice for
criterion c{(l4, noop, l5), (l1, [x < 0], l3)}X to the slicing precision. This includes
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{pc→ l2}, ∅

{pc→ l3}, ∅

{pc→ l5}, ∅

{pc→ l6}, ∅

{pc→ l5}, ∅

{pc→ l9}, ∅

{pc→ l10}, ∅

{pc→ l12, y → 1}, ∅

{pc→ l13, y → 1, x→ s1},
{s1 < 0 ∧ 1 < 0}

{pc→ l15, y → 1}, ∅

{pc→ l16, y → 1}, ∅

{pc→ l15, y → 1}, ∅

{pc→ l18, y → 1}, ∅

{pc→ l19, y → 1}, ∅

x := ?

[x > 0][x ≤ 0]

x := x− 1

y := 1

[x < 0 ∧ y < 0]

Figure 22: ARG created by symbolic execution, with a combination of CEGAR
and program slicing, for our running example. Note that the state space is finite.

edges (l0, x := 0, l1) and (l1, [x < 0], l3), and thus the same target path will not
be encountered again. Instead, the algorithm finds the feasible target path (??).

Combination with other Abstraction Refinements It is possible to com-
bine the slicing refinement with other abstraction techniques based on CEGAR:
Target-path slicing takes all CFA edges that could be relevant for proving the
infeasibility of a program path, because it takes all CFA edges that have any
influence on the feasibility of the target path. Thus, it describes an upper bound
for possibly necessary information and any other precision derived from the
same error path is compatible with it. All CEGAR techniques can be used
with our slicing approach, freely. To do so, we delegate to the refinement proce-
dure refineD of the CPA D wrapped by the slicing CPA (Algorithm 4, line 3).
If the wrapped CPA does not use CEGAR, refineD always returns the static
precision π̃. Otherwise, it returns a refined precision for the wrapped CPA (that,
by default, works with the current program slice). This allows us, for example,
to combine program slicing with symbolic execution with CEGAR.

We consider our running example one more time. For this, we have al-
ready seen that symbolic execution fails to compute a finite state space that
shows that the example is free of errors—even when using slicing or CEGAR
(on their own). But when we combine both, we are able to derive that nei-
ther the first loop (thanks to CEGAR), nor the second (thanks to slicing)
have to be unrolled. Fig. 22 shows the corresponding ARG computed by
symbolic execution when using CEGAR and slicing. The ARG edges show
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the program operations considered through slicing. Program operations that
are ignored because of CEGAR are grayed out.

In addition to the combination of the CEGAR algorithm in CPAchecker

and our newly implemented slicing CPA, we extended Symbiotic to use
CPAchecker as a verification back-end. Since Symbiotic works on Llvm code,
we have to create a corresponding front-end for CPAchecker to be able to
verify the sliced Llvm programs.

3.4 LLVM Front-end in CPAchecker

To be able to use the optimized slice produced by Symbiotic (c.f. Sect. 2.7.2), with
the CEGAR-based analysis of CPAchecker, we implemented an Llvm front-end
in CPAchecker. The Llvm front-end consists of a) an Llvm parser that parses
Llvm bitcode to an abstract syntax tree (AST), and b) a CFA builder, that
transforms the AST to a CFA for analysis with the CPA algorithm (Fig. 18).

LLVM Parser We have two requirements for an Llvm parser: 1. Since
CPAchecker is implemented in Java, it should be written in Java for easy
integration. And 2. we want to use an official parser. Llvm does not guarantee
backwards-compatibility between versions, so only if we use an official parser,
we can make sure to be able to update to new Llvm versions in the future.

There is no official Llvm parser for Java, so we build, as a compromise,
Java bindings that act as a bridge to the official parser: llvm-j9. llvm-j is a
Java parser for Llvm bitcode that uses automatically generated Java bindings
to the official C Llvm parsing library to make updates to new Llvm versions
easy. To create these bindings, we use JNAerator10. Proxy classes are provided
for the created bindings and the native C objects, so that the API of llvm-j

doesn’t change, even if the official C library does.

CFA Builder In addition to the widely used C front-end, CPAchecker also
supports Java input programs [27]. This front-end uses dedicated Java CFA
edges to map the Java semantics to the CFA. This creates the problem that
Java CFA edges have to be explicitly supported by analyses. Thus, it is only
possible to use a CPAchecker analysis with a Java program, if the developer
of that analysis implemented it for Java—since this is barely the case, only
few analyses can be used with Java programs, to this point. To prevent this
situation from happening to our Llvm front-end, we restrict our Llvm front-end
to that functionality of Llvm that can be mapped to C semantics, and build
an original C CFA from Llvm programs. This loses information of Llvm that is
meant for compiler optimization and does not allow us to analyze Llvm programs
that were created from C++ code (because of missing support for exceptions,
classes, etc.), but gives us the opportunity to apply all existing analyses in
CPAchecker to the CFA created from Llvm programs.

9https://github.com/sosy-lab/llvm-j
10https://github.com/nativelibs4java/JNAerator
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l1

l14
main:0:

l15

l16

l19
main:2:

l20

l21

l30
main:8:

l31

l24
main:5:

l25

l26

l27

l5
decr:0:

l6

l7

l8

l9

g_x := 10

t_1

t_1 := 0

t_3 := g_x

t_4 := t_3 > 0

[t_4 != 0]

[t_4 == 0]

t_9 := t_1

t_6 := g_x

call
(dec

r,
t_6
→f:t

_0)

g_x:=t_7

f:t_2

f:t_2 := f:t_0

f:t_3 := f:t_2

f:t_4 := (f:t_3 -1)

t_7 :=ret(l25 ,
f:t_4)

Figure 23: CFA for Llvm program from Fig. 15b

The CFA construction consists of three phases:

1. Create partial CFAs for global definitions

2. Create partial CFAs for each function

3. Link partial CFAs to final CFA

We first iterate over all global definitions in the parsed Llvm program and
create CFA nodes and edges for these. We then visit each function definition
individually: For each function, we first visit each basic block individually,
create a partial CFA for each of it and then link them together. The CFAs
of basic blocks have a fixed, sequential structure: They always start with a
CFA node that represents the label of the basic block, and always end with
either a (conditional) jump to other basic blocks or the function exit. The only
time that the CFA of a basic block is not strictly sequential, is if the select

instruction is used. This equals the ternary operator in C and is translated to
an if-else statement with the corresponding variable assignments. This fixed
structure of basic blocks makes it easy to link them: The last node of each basic
block is linked to the labels of the following blocks through either a noop edge
for an unconditional jump, or two assume edges for a conditional jump. If
the end of a block is a function exit, no linking is done.

After creating the CFAs for each function definition, we give the par-
tial CFAs (in C semantics) to a module of the existing CFA builder for
C. This creates the final CFA.

Figure 23 shows the CFA for the example Llvm program from Fig. 15b.
The program locations in the CFA refer to the line numbers in Fig. 15b. A
rectangle frames each basic block, and entry nodes to basic blocks are ad-
ditionally labeled with their function name and label (e.g., main:0:). The
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. . .

(a) Start of ARG of Fig. 7

. . .

(b) Start of ARG of Fig. 12 (c) ARG of Fig. 22

Figure 24: Example pixel trees

global variable prefix @ is replaced by g_, to be a valid C identifier (e.g., @x

→ g_x). The local variable prefix % is removed, and each temporary variable
%i of Llvm is renamed to a program variable t_i. In the example, local vari-
ables of function decr are additionally prefixed with f:.

The CFA starts with the global definitions. The CFA edge of the last
global definition (in the example edge (l1, g_x := 10, l14)) ends in the en-
try node to the main function. From there, functions and basic blocks
are built as described above.

3.5 Pixel Trees: Visualization of Analyses

While quantitative analyses of software verification algorithms are pointers
towards the capabilities of algorithms, it is often vital to perform a qualitative
analysis of the behavior of algorithms to get proper insights into their behavior.
When we want to perform a qualitative analysis of a verification algorithm,
we face a challenge: As soon as we step away from small examples and turn
towards a real-world program, the explored state space (called search space)
of the program quickly becomes too large to comprehend. While measures
can be applied to ’measure’ the search space of the program, these are often
unintuitive and their proper interpretation is unclear. A visualization of the
search space is necessary, that must be easy to comprehend by a human reader
and still contain the information important to the user. For our application,
the important information is the structure of the search space. Abstraction
techniques like program slicing and CEGAR aim to explore as little of the
state space as necessary to prove a program safe or unsafe. Thus, we want
to know how many states were explored even though not necessary, and how
the algorithm traversed through the search space.

To visualize this, we propose the structure of so-called pixel trees. The
search space of an algorithm can be represented by a tree, e.g., by an ARG.
The algorithm starts at one initial, given state: this state is the root of the
ARG. From there, successors of that state are computed. Successors of the
state are the direct children of it in the ARG, and each computation step is
one additional edge in the ARG from the root. Thus, the distance of a state in
the ARG to the root of the ARG is the number of computations necessary to
reach it (in a tree, we can simplify this to the depth of a state in the tree). If
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we represent the ARG as a traditional tree structure with information in the
nodes (e.g., Fig. 7), it quickly becomes too big to comprehend.

Instead, we abstract the node labels and omit the edges and represent the
ARG through continuous, horizontal lines. The length of each line represents
the number of elements on that level: Each unit of length represents one state.
The row of the line (starting from the top) represents the distance from the
root. E.g., the root is represented by a line of length 1 and is the first row.
If the root has two successors, the line in the second row will be of length 2.
We do always align lines to the center, i.e., the position of a line does not
guarantee any specific information about the parent. In addition to the line
length and position, we color special states to transport additional information:
Abstract successors that are already covered by the reached set, i.e., for which
the stop operator held, and which were not added to the reached set, are still
displayed and colored green. Target states are colored red, and states that
were merged and replaced by another state are colored yellow.

Figure 24 shows the pixel trees for the ARG of our running example when
using plain symbolic execution (Fig. 24a), when using symbolic execution with
slicing (Fig. 24b), and when using symbolic execution with a combination
of slicing and CEGAR (Fig. 24c). Since the first two ARGs have an infi-
nite amount of states, we only display the pixel trees up to the last level
displayed in the corresponding ARG figures. In the evaluation, we present
the pixel trees created by different analyses (Fig. 26).

The creation of pixel trees is performant: it requires a single breadth-first
search, where each node must only be visited once. While we focus on the
creation of pixel trees for ARGs in this work, they can be used to represent any
graph-like structure that contains exactly one entry or start node. They could,
for example, also be used to visualize dependence graphs or CFAs.
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4 Evaluation

4.1 Setup

Computing Resources We performed our experiments on machines with an
Intel Xeon E3-1230 v5 CPU, with 3.4GHz and 8 processing units. Each machine
has 33GB of memory. We used Ubuntu 16.04 with Linux kernel 4.4 as operating
system. We limited each analysis run to 15GB of memory, 4 processing units,
and a time limit of 900 s. We always give CPU time with 2 significant digits.

Benchmark Tasks A verification task consists of an input program and a pro-
gram specification/property to check the program against. For our experiments,
we use a subset of the largest benchmark set of verification tasks for C to this
date, the sv-benchmarks benchmark set11. The set has been used for each
of the yearly iterations of the International Competition of Software Verifi-
cation (SV-COMP) since 2012 [3], and is thus widely used and has a high
probability of good quality. We use it in revision 604cca4.

The sv-benchmark set consists of multiple task categories and program prop-
erty categories. For our evaluation, we use all benchmark tasks with a reachability
property—the property defines that function __VERIFIER_error may not be called.
Because symbolic execution in CPAchecker can not handle recursion, we exclude
the category Recursive of verification tasks with recursive function calls.

In total, we use a set of 5 590 verification tasks for our experiments. Ta-
ble 1 gives an overview over the size in lines of code (LOC) and the different
characteristics of these tasks, sorted by their categories.

Tools We use CPAchecker in revision r27515 12 of the trunk and Symbiotic in the
latest release, spin-2018 13. For the combination of CPAchecker and Symbiotic,
we use the same CPAchecker version, but a modified version of Symbiotic in
our fork 14, revision 4509c83. For reliable benchmarking, we use BenchExec in
version 1.14 15. BenchExec allows the individual isolation of each verification
run, and thus reduces the risk of measurement errors.

Availability All experimental data are available on our supplementary web
page 16. We also provide an artifact 17 that contains the experimental data
and all tools necessary to repeat our results.

11http://github.com/sosy-lab/sv-benchmarks
12https://github.com/sosy-lab/cpachecker
13https://github.com/staticafi/symbiotic/tree/spin-2018
14http://github.com/leostrakosch/symbiotic
15https://github.com/sosy-lab/benchexec/tree/1.14
16http://www.cip.ifi.lmu.de/∼lembergerth/slicing
17https://doi.org/10.5281/zenodo.1194263
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Table 1: Overview of used tasks of sv-benchmarks benchmark set

Category Tasks
LOC

Prominent C features
Overall Min. Max. Avg. Median

Arrays 167 7 275 14 1 161 44 36 C Arrays
True 123 5 700 14 1 161 46 36

False 44 1 575 15 57 36 37

BitVectors 50 10 511 13 696 210 39 Bit vector arithmetics
True 36 8 275 15 696 230 47

False 14 2 236 13 636 160 32

ControlFlow 94 183 904 94 22 300 2 000 1 600 Complicated control flow
True 52 100 866 94 22 300 1 900 1 100

False 42 83 038 220 10 835 2 000 1 700

ECA 1149 29 685 918 344 185 053 26 000 4 300 Lots of branching and many different dependencies between program variables
True 738 17 737 301 344 185 053 24 000 2 600

False 411 11 948 617 566 185 053 29 000 4 800

Floats 172 47 518 9 1 122 280 37 Floats (+ arithmetics)
True 141 46 548 9 1 122 330 50

False 31 970 15 154 31 31

Heap 181 142 378 11 4 605 790 650 C heap structures
True 110 88 544 11 4 576 800 500

False 71 53 834 19 4 605 760 660

Loops 163 10 026 14 1 647 62 25 C loops
True 111 5 991 14 476 54 26

False 52 4 035 14 1 647 78 23

ProductLines 597 1 160 305 838 3 789 1 900 1 000 Lots of branching because of software product line options
True 332 539 446 838 3 693 1 600 980

False 265 620 859 847 3 789 2 300 3 000

Sequentialized 273 580 463 330 18 239 2 100 1 100 Sequentialized, previously multi-threaded programs
True 103 255 265 330 18 239 2 500 1 200

False 170 325 198 331 15 979 1 900 970

LDV 2744 40 335 619 339 227 732 15 000 9 400 Linux device driver modules
True 2389 34 219 364 339 227 732 14 000 8 300

False 355 6 116 255 1 389 85 772 17 000 13 000

Total 5590 72 163 917 9 227 732 13 000 3 500

True 4135 53 007 300 9 227 732 13 000 4 000

False 1455 19 156 617 13 185 053 13 000 3 000
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Table 2: Verification results of different symbolic execution techniques

SymEx SymExS SymExC SymExSC Symbiotic

Correct 787 1477 2527 2062 1709
Correct proof 203 1088 2058 1742 1075
Correct alarm 584 389 469 320 634

Incorrect 23 20 20 19 16
Incorrect proof 1 0 0 0 8
Incorrect alarm 22 20 20 19 8

Unknown 4780 4093 3043 3509 3865

Total 5590 5590 5590 5590 5590

4.2 Slicing and CEGAR in CPAchecker

First, we want to compare the performance of symbolic execution in CPAchecker

with program slicing (SymExS), CEGAR (SymExC), and a combination of
both (SymExSC). As a baseline, we use the symbolic execution implementation
without CEGAR (SymEx), and Symbiotic with its symbolic execution-back-end
Klee (Symbiotic). For slicing in CPAchecker, we always use target-path slicing.

Table 2 shows the results of these experiments. It shows the correct and
incorrect verification results of each technique. A correct proof means that
the technique correctly computed that the input program fulfills the reach
property, i.e., it is safe. A correct alarm means that the technique correctly
computed that the input program does not fulfill the reach property, and that
it provided a counterexample for it. An incorrect proof means that the tech-
nique claims that the input program fulfills the reach property, even though
it does not, and an incorrect alarm means that the technique claims that
the input program does not fulfill the reach property (i.e., violates the prop-
erty) even though the program is actually safe.

The results show that SymExS can find significantly more proofs than plain
symbolic execution, SymEx, but that it also finds significantly less property
violations. SymExS also performs worse than SymExC in both finding proofs
and alarms. SymExS is comparable to Symbiotic in the number of found proofs,
but it can only find half the amount of property violations (389 vs. 634).
The combination of CEGAR and slicing, SymExSC, is better than both SymExS

and Symbiotic, but is still worse than SymExC. Of all techniques, SymExSC

finds the least amount of bugs, i.e., 320.
Figure 25 visualizes the performance of the different techniques. It shows

for each technique, for an x-coordinate n, the CPU time (in seconds) required
to solve the n-th fastest solved task. It reflects the data from the results table
(Table 2), and additionally shows, that SymExSC is also comparable in speed
to the other techniques implemented in CPAchecker, in general. Symbiotic

is very fast for the first, approximately, 1000 tasks, but its time consump-
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Figure 25: Quantile plot for the performance of the considered techniques on
our benchmark set

Table 3: Different capabilities of the three symbolic execution techniques. Each
cell shows the number of safe (t) and unsafe (w) verification tasks, that the
technique of the corresponding row can solve, but that the technique of the
corresponding column can’t.

SymEx SymExS SymExC SymExSC

that can’t solve

SymEx –
18 t 94 t 96 t

202 w 189 w 286 w

SymExS
903 t

–
84 t 83 t

7 w 89 w 107 w

SymExC
1949 t 1054 t

–
318 t

74 w 169 w 149 w

SymExSC
1635 t 737 t 2 t

–
22 w 38 w 0 w

can solve

tion increases steeply after that, and is slower than SymExSC and SymExC for
the approximately last 200 tasks that it can solve.

We are not only interested in the overall performance of the different tech-
niques, but want to go into more detail. In the following, we leave Symbiotic out
because it is less comparable, due to its implementation outside of CPAchecker.
Table 3 shows the difference in the capabilities of the techniques. Each cell
shows the number of safe tasks without a property violation (t) and the number
of unsafe tasks with a property violation (w), that the technique of the corre-
sponding row can correctly solve and the technique of the corresponding column
can not solve correctly. Most notably, the combination of slicing and CEGAR,
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(a) SymExS (trimmed at both sides)

(b) SymExS (c) SymExSC

Figure 26: Pixel trees for Problem01_label44-false-unreach

SymExSC, can only solve 2 additional tasks, compared to using CEGAR alone,
and is able to solve a lot less tasks. SymExS, that uses slicing without CEGAR,
on the other hand, has capabilities more different: While it also can’t solve
many of the tasks that SymExC can, it is able to proof 84 tasks safe and find
property violations in 89 tasks that SymExC can’t proof or find.

One of the two tasks that SymExSC can solve and that SymExC can’t, can only
be solved by SymExSC. It is a task from the Linux Device Drivers category, and we
provide on our supplementary web-page the pixel tree of the ARG of its analysis
with SymExS, SymExC and SymExSC. The second task is from the ReachSafety-
Loops category, trex01_true-unreach-call_true-termination.i, and can be solved by
slicing alone or slicing with CEGAR. To illustrate how different program slicing,
CEGAR and the combination of both can behave on the same verification task,
we present Fig. 26. It shows the pixel tree of the computed ARGs of SymExS,
SymExC and SymExSC for verification task Problem01_label44-false-unreach. The
trees are not in the same size ratio. All three tasks are able to solve the task and
correctly produce an alarm, but compute significantly different ARGs. SymExS,
which uses the full symbolic execution precision and only abstract through
slicing, computes an ARG that is typical for path explosion: An exponential
number of states is produced by the algorithm: the state space ‘explodes’ due
to the high precision. Because of its breadth, the pixel tree is trimmed at
both sides for better visibility. Since symbolic execution in CPAchecker uses
breadth-first traversal through the search space, the target state is still found
at some point. SymExS, in contrast, only tracks information that is really
necessary, is able to abstract more states and creates a lean ARG. Interestingly,
the combination of slicing and CEGAR, SymExSC, produces an ARG that is a
mixture of the both previous ones. Apparently, CEGAR finds, through slicing,
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Figure 27: CPU time required by symbolic execution with slicing (SymExS)
compared to plain symbolic execution (SymEx) and symbolic execution with
CEGAR (SymExC)

for this (specially selected) example worse target paths, or interpolants with
information that is not as crucial, as when running CEGAR alone.

Figures 27a, 27b, 28a and 28b compare the CPU time required by the
individual techniques for each verification task. The figures only show data
for verification tasks that both of the corresponding techniques produced a
valid result for. A result is valid, if is is either correct, or the tool ran into
a timeout. This omits incorrect results, errors and early termination due to
unsupported features. When we compare SymExS to SymEx (Fig. 27a), we ob-
serve two interesting things: 1., SymExS is for many tasks slower than SymEx

(points below the diagonal), but 2. can solve a large amount of tasks below
10 seconds, for which SymEx takes more than 900 seconds and runs into a time-
out (points in the upper left). Most of the tasks for which SymEx is faster
than SymExS are below 100 s. This means two things:

1. The technique with the higher abstraction (SymExS) is for tasks slower,
for which the abstraction is not necessary (or even unhelpful) because the
task requires a high precision or is simple enough that the technique with
a lower abstraction (SymEx) can already solve it. And

2. the technique with the higher abstraction can, in turn, solve a significant
amount of tasks a lot faster than the technique without abstraction, for
which the abstraction helps because of a high, but irrelevant complexity in
the program.

When we compare SymExS to SymExC (Fig. 27b), we see that slicing shows
worse run-time performance than CEGAR. But SymExS can also solve a signif-
icant amount of tasks that SymExC can’t solve. Because both techniques use
abstraction with slightly different capabilities (as our running example through-
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Figure 28: CPU time required by symbolic execution with slicing and CEGAR
(SymExSC) compared to symbolic execution with slicing (SymExS) and symbolic
execution with CEGAR (SymExC)

out this work showed), there are again tasks that only one of the two can solve
successfully (points at the top and right edges of the figure).

The comparison of SymExSC to SymExS and SymExSC over only valid results
shows the potential of the combination of program slicing and CEGAR. When
we compare SymExS to SymExSC (Fig. 28a), there are a few tasks that SymExS

can solve and SymExSC can’t (points at right edge), but for the vast majority of
tasks, SymExSC performs better. Figure 28b shows the comparison of SymExSC

and SymExC: For some tasks, SymExSC, the a combination of both abstractions,
is slower than the coarser abstraction technique SymExC (points below diagonal).
But there is a significant amount of tasks that SymExSC can solve that SymExC

can not. The time required by SymExSC for these is not always high, but is in
the range of approximately 1 s to 900 s. This is an additional indicator that
the combination with slicing does not only improve the time performance of
CEGAR, but enables it to solve completely new types of problems.

Overhead of Slicing For most tasks, slicing itself produces little overhead. The
slicing CPA only performs a single, hash-based check whether a given CFA
edge is in the current program slice and then delegates to the wrapped analysis’
transfer relation. Its merge operator and stop operator also simply delegate.

Two components may produce overhead: The creation of the dependence
graph, and the refinement procedure computing a new slice. In the median,
dependence graph construction requires 1.3 s of CPU time, but rises exponen-
tially for large programs (Fig. 29), in general. Figure 29a shows on the x-axis
the number of program locations of a verification task, and on the y-axis the
CPU time required to construct its dependence graph. The maximum CPU time
for dependence graph construction over tasks that can be solved is 65 s, For
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Figure 29: Indicators for the CPU time required for dependence graph construc-
tion

most tasks, the construction time is small and exponential to the number of
program locations, but there is a set of tasks for which dependence graph con-
struction takes even longer than the time limit of 900 s. For these, the number
of program locations is no indicator, and they are a significant reason for a
bad performance of the combination of slicing and CEGAR.

Another program property that may indicate the time required for depen-
dence graph construction is the number of relevant variables in a program.
A program variable is relevant, if it used in a branching condition, or if it
is a transitive flow dependence to another program variable that is part of a
branching condition. Figure 29b shows that over our experiments, only a small
correlation exists: for an increasing number of relevant variables in a program,
dependence graph construction time increases very weakly.

The second cause for overhead, the computation of new program slices, is also
negligible for most tasks. Originally, our approach computes a new program slice
at every refinement. Figure 30 shows on how many tasks how many refinements
were performed, by slicing (SymExS), CEGAR (SymExC) and the combination
of both (SymExSC). While slicing on its only requires a low amount of slices
(one outlier at 31 refinements and one at 34, Fig. 30a), the more fine-grained
abstraction of CEGAR requires a lot more refinements, up to 87 (Fig. 30b). This
influences the combination of slicing and CEGAR (Fig. 30c). To optimize the slic-
ing procedure over a high amount of refinements, we only compute a new slice if a
slicing criterion is not in the existing slice. This reduces the amount of performed
slice computations by 63%, on average. On average, computation of a new slice
requires 1.3 of CPU time, and 0.0025 s in the median. For large dependence
graphs, computation time can increase significantly, though. The maximum
CPU time required for computing a new slice was 180 s in our experiments.
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Figure 30: Counts of the number of refinements of each abstraction technique
over all verification tasks. Fig. 30c has one outlier at coordinate (120, 1)

Table 4: Verification results of Symbiotic, Symb+, Symb+C and SymExSC

Symbiotic Symb+ Symb+C SymExSC

Correct 1263 722 770 1446
Correct proof 813 604 650 1190
Correct alarm 450 118 120 256

Incorrect 5 13 44 2
Incorrect proof 0 8 8 2
Incorrect alarm 5 5 36 0

Unknown 1682 2215 2136 1502

Total 1867 1867 1867 1867

4.3 Slicing with Symbiotic

Next, we want to compare our own slicing procedure to the one implemented
in Symbiotic. While our Llvm front end in CPAchecker aims to support all
Llvm instructions necessary for C code, Symbiotic performs optimizations to the
program code that create code that can’t be clearly mapped to C code e.g.,
integers of arbitrary bit width. In addition, our front end is still a prototype.
Because of this, we restrict our benchmark set to a set of verification tasks that
can be parsed by CPAchecker. Of the original set of 5 590 verification tasks,
we use 2 953 tasks that don’t produce an error for any of the used techniques.
Of these, 2 135 tasks are safe, and 815 contain a property violation.

Table 4 shows the results of our experiments for combinations of Symbi-

otic with CPAchecker. It shows the results for Symbiotic with Klee (Symbi-

otic), Symbiotic with CPAchecker with symbolic execution and without CEGAR
(Symb+), Symbiotic with CPAchecker with symbolic execution and with CEGAR
(Symb+C), and SymExSC. While the total numbers of Symb+ and Symb+C are
significantly lower than the other two tools, Symb+ can solve 47 tasks that
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Figure 31: CPU time per verification task of Symb+ and Symb+C, compared to
SymExSC

neither Symbiotic nor SymExSC can solve, and Symb+C can solve 87 tasks
that neither Symbiotic nor SymExSC can solve.

Pre-processing through Symbiotic can also provide a major speed-up: both
Symb+ and Symb+C are significantly faster for a set of verification tasks, as
visualized by Figs. 31a and 31b. Even though our implementation is an incom-
plete prototype, it shows that the use of Symbiotic as a pre-processing step to
CPAchecker can provide a significant advantage for some verification tasks.

4.4 Threats to Validity

Every benchmark set is biased, and the chances are high that this is also
true for the sv-benchmark set. Even though it consists of a high number of
tasks, these may not be representative for real-world software. That said, the
sv-benchmark set is the largest benchmark set of C programs, to this date.
Since the implementation was not only, but mostly tested on this benchmark
set, it may be tuned towards it, and other, less frequent or absent C fea-
tures may not be supported. This is also true for Symbiotic and the default
configuration of symbolic execution in CPAchecker.

Measurements may be imprecise, but we ran all our experiments with
BenchExec in isolated containers, and only used a single type of machine
to produce our data. Thus, it is highly unlikely that significant measure-
ment errors are present.

Our implementation is a prototype implementation and certainly con-
tains bugs. While these may worsen the results of our analysis, it is highly
unlikely that a high amount of correct results are the accidental result of
bugs because CPAchecker runs a feasibility check with a predicate analy-
sis on every found counterexample.

63



To increase the validity of our results, we did not only implement slicing
in CPAchecker to improve comparability with other analyses in CPAchecker,
but we also extended the third-party tool Symbiotic so that it supports
CPAchecker. Thus, we used two completely different and independently de-
veloped program slicing tools.

5 Conclusion

In this work, we successfully designed and implemented the Slicing CPA in
CPAchecker. As a novelty, this approach to program slicing uses CEGAR
to derive program slices for dynamically computed slicing criteria. Thanks
to the versatility of the CPA framework, this slicing approach can be freely
combined with arbitrary analyses. It is, for example, possible to augment the
flow dependence analysis with arbitrary other analyses to reduce the dependence
graph and keep slices small. As a next step, we extended our CEGAR-based
slicing CPA to allow the combination with arbitrary other CEGAR approaches.
As an example, we combined it with the CEGAR-based symbolic execution
analysis. While this decreased the overall performance of the analysis with
CEGAR, it resulted in a significant speed-up for a large amount of tasks, and it
performed significantly better than slicing on its own. We were able to provide,
through an extensive evaluation and a detailed running example, proof that
program slicing is not a mere subset of CEGAR, and that the combination
of both techniques can yield vast performance improvements.

To increase confidence in our results, We extended the existing Llvm pro-
gram slicer and program verifier Symbiotic to support CPAchecker as veri-
fication engine, and implemented an Llvm front-end to CPAchecker. This
front-end allows, unlike other front-ends in CPAchecker, to apply all tech-
niques for C programs that exist in CPAchecker to Llvm programs. Even
though still a prototype, we were able to confirm our previous results with
this combination of Symbiotic and CPAchecker.

To get a better understanding of the state space of a program that got
explored by an analysis run, we implemented the creation of pixel trees. Pixel
trees are an abstract representation of ARGs that can give a concise image
of the structure of any graph with a single entry node.

Future work will explore the change in behavior of the combination of
program slicing and CEGAR on symbolic execution and other abstract do-
mains, and explore different further optimizations for the slicing CPA and
dependence graph construction. A main part of this will be the adoption
of more ideas from dynamic slicing [35].

64



References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 1986.

[2] S. Anand, P. Godefroid, and N. Tillmann. Demand-driven compositional
symbolic execution. In Proc. TACAS, LNCS 4963, pages 367–381. Springer,
2008.

[3] D. Beyer. Competition on software verification (SV-COMP). In Proc.
TACAS, LNCS 7214, pages 504–524. Springer, 2012.

[4] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar. The
Blast query language for software verification. In Proc. SAS, LNCS 3148,
pages 2–18. Springer, 2004.

[5] D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Sebastiani.
Software model checking via large-block encoding. In Proc. FMCAD, pages
25–32. IEEE, 2009.

[6] D. Beyer, S. Gulwani, and D. Schmidt. Combining model checking and
data-flow analysis. In E. M. Clarke, T. A. Henzinger, and H. Veith, editors,
Handbook on Model Checking. Springer, 2017, to appear.

[7] D. Beyer, T. A. Henzinger, and G. Théoduloz. Configurable software
verification: Concretizing the convergence of model checking and program
analysis. In Proc. CAV, LNCS 4590, pages 504–518. Springer, 2007.

[8] D. Beyer, T. A. Henzinger, and G. Théoduloz. Program analysis with
dynamic precision adjustment. In Proc. ASE, pages 29–38. IEEE, 2008.

[9] D. Beyer and M. E. Keremoglu. CPAchecker: A tool for configurable
software verification. In Proc. CAV, LNCS 6806, pages 184–190. Springer,
2011.

[10] D. Beyer, M. E. Keremoglu, and P. Wendler. Predicate abstraction with
adjustable-block encoding. In Proc. FMCAD, pages 189–197. FMCAD,
2010.

[11] D. Beyer and T. Lemberger. Symbolic execution with CEGAR. In Proc.
ISoLA, LNCS 9952, pages 195–211. Springer, 2016.

[12] D. Beyer and T. Lemberger. Software verification: Testing vs. model
checking. In Proc. HVC. Springer, 2017, to appear.

[13] D. Beyer and S. Löwe. Explicit-state software model checking based on
CEGAR and interpolation. In Proc. FASE, LNCS 7793, pages 146–162.
Springer, 2013.

[14] D. Beyer, S. Löwe, and P. Wendler. Refinement selection. In Proc. SPIN,
LNCS 9232, pages 20–38. Springer, 2015.

65



[15] D. Beyer, S. Löwe, and P. Wendler. Sliced path prefixes: An effective
method to enable refinement selection. In Proc. FORTE, LNCS 9039, pages
228–243. Springer, 2015.

[16] D. Beyer and P. Wendler. Algorithms for software model checking: Predicate
abstraction vs. Impact. In Proc. FMCAD, pages 106–113. FMCAD, 2012.

[17] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking
without BDDs. In Proc. TACAS, LNCS 1579, pages 193–207. Springer,
1999.

[18] R. S. Boyer, B. Elspas, and K. N. Levitt. Select&mdash;a formal system
for testing and debugging programs by symbolic execution. In Proc. ICRS,
pages 234–245. ACM, 1975.

[19] J. Burnim and K. Sen. Heuristics for scalable dynamic test generation. In
Proc. ASE, pages 443–446. IEEE, 2008.

[20] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In Proc.
OSDI, pages 209–224. USENIX Association, 2008.

[21] M. Chalupa, M. Vitovská, M. Jonáš, J. Slaby, and J. Strejček. Symbiotic 4:
Beyond reachability (competition contribution). In Proc. TACAS. Springer,
2017.

[22] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement for symbolic model checking. J. ACM,
50(5):752–794, 2003.

[23] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT, 1999.

[24] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press,
Cambridge (MA), 1999.

[25] L. A. Clarke. A program testing system. In Proceedings of the 1976 Annual
Conference, Houston, Texas, USA, October 20-22, 1976, pages 488–491.
ACM, 1976.

[26] W. Craig. Linear reasoning. A new form of the Herbrand-Gentzen theorem.
J. Symb. Log., 22(3):250–268, 1957.

[27] A. Driemeyer. Software-Verifikation von Java-Programmen in CPAchecker.
Bachelor’s Thesis, University of Passau, Software Systems Lab, 2012.

[28] M. B. Dwyer, S. G. Elbaum, S. Person, and R. Purandare. Parallel random-
ized state-space search. In Proc. ICSE, pages 3–12. IEEE, 2007.

[29] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence
graph and its use in optimization. ACM Trans. Program. Lang. Syst.,
9(3):319–349, 1987.

66



[30] P. Godefroid. Compositional dynamic test generation. In Proc. POPL, pages
47–54. ACM, 2007.

[31] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed automated random
testing. In Proc. PLDI, pages 213–223. ACM, 2005.

[32] S. Horwitz, T. W. Reps, and D. Binkley. Interprocedural slicing using
dependence graphs. ACM Trans. Program. Lang. Syst., 12(1):26–60, 1990.

[33] J. Jaffar, J. A. Navas, and A. E. Santosa. Unbounded symbolic execution
for program verification. In Proc. RV, LNCS 7186, pages 396–411. Springer,
2011.

[34] J. C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, 1976.

[35] B. Korel and J. W. Laski. Dynamic program slicing. Inf. Process. Lett.,
29(3):155–163, 1988.

[36] B. Korel and J. Rilling. Dynamic program slicing methods. Information &
Software Technology, 40(11-12):647–659, 1998.

[37] Y. Köroglu and A. Sen. Design of a modified concolic testing algorithm
with smaller constraints. In Proc. ISSTA, pages 3–14. ACM, 2016.

[38] T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators
in a flowgraph. Transactions on Programming Languages and Systems,
1(1):121–141, 1979.

[39] S. Löwe. Effective approaches to abstraction refinement for automatic
software verification. PhD Thesis, University of Passau, Software Systems
Lab, 2017.

[40] A. D. Lucia. Program slicing: Methods and applications. In Proc. SCAM,
pages 144–151. IEEE, 2001.

[41] K. L. McMillan. Interpolation and SAT-based model checking. In Proc.
CAV, LNCS 2725, pages 1–13. Springer, 2003.

[42] K. L. McMillan. Lazy abstraction with interpolants. In Proc. CAV,
LNCS 4144, pages 123–136. Springer, 2006.

[43] T. W. Reps. Program analysis via graph reachability. Information &
Software Technology, 40(11-12):701–726, 1998.

[44] P. Rümmer and P. Subotic. Exploring interpolants. In Proc. FMCAD,
pages 69–76. IEEE, 2013.

[45] J. Slaby, J. Strejcek, and M. Trtík. Checking properties described by state
machines: On synergy of instrumentation, slicing, and symbolic execution.
In Proc. FMICS, LNCS 7437, pages 207–221. Springer, 2012.

67



[46] J. Slaby, J. Strejcek, and M. Trtík. Compact symbolic execution. In
Proc.ATVA, LNCS 8172, pages 193–207. Springer, 2013.

[47] T. Su, Z. Fu, G. Pu, J. He, and Z. Su. Combining symbolic execution and
model checking for data flow testing. In Proc. ICSE, pages 654–665. IEEE,
2015.

[48] M. Weiser. Programmers use slices when debugging. Commun. ACM,
25(7):446–452, 1982.

[49] M. Weiser. Program slicing. IEEE Trans. Softw. Eng., 10(4):352–357, 1984.

[50] M. Weiser. Program slicing. IEEE Trans. Software Eng., 10(4):352–357,
1984.

68



Eidesstattliche Erklärung

Hiermit versichere ich, dass ich diese Arbeit selbstständig und ohne Benutzung
anderer als der angegebenen Quellen und Hilfsmittel angefertigt habe und alle
Ausführungen, die wörtlich oder sinngemäß übernommen wurden, als solche
gekennzeichnet sind, sowie dass ich die Arbeit in gleicher oder ähnlicher Form
noch keiner anderen Prüfungsbehörde vorgelegt habe.

München, den 9.März 2018

Thomas Lemberger


	1 Introduction
	1.1 Related Work

	2 Background
	2.1 Proposition
	2.2 Formal Verification Basics
	2.3 Symbolic Execution
	2.4 Program Slicing
	2.5 Counterexample-guided Abstraction Refinement
	2.6 Configurable Program Analysis
	2.7 Relevant Technology and Tools

	3 Iterative Slicing
	3.1 Program Dependence Graph Construction
	3.2 Slicing CPA
	3.3 Slicing Refinement
	3.4 LLVM Front-end in CPAchecker
	3.5 Pixel Trees: Visualization of Analyses

	4 Evaluation
	4.1 Setup
	4.2 Slicing and CEGAR in CPAchecker
	4.3 Slicing with Symbiotic
	4.4 Threats to Validity

	5 Conclusion

