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Abstract

Abstraction Slicing is a CEGAR-based software verification technique
that is used in different contexts by the software model checkers SLAB and
Ultimate Kojak. Based on the predicates gained by an spurious counterex-
ample, states in the abstract model are split and infeasible edges removed.
Other CEGAR-based approaches like predicate abstraction and lazy abstrac-
tion with interpolants remove infeasible states instead of checking edges for
infeasibility.

In this thesis, basic versions of SLAB and Kojak are implemented in the
CPAchecker framework. This allows to compare them to each other as well to
other similar approaches like predicate abstraction or lazy abstraction with
interpolants. Optimizations for abstraction slicing are presented that are
similar to adjustable-block encoding, thus making it possible to observe the
effect of different block sizes on the performance of the new analyses. The
evaluation shows that for single-block encoding the new implementation
of Kojak can be faster than predicate abstraction. For larger block sizes the
overhead of slicing edges instead of just checking states becomes dominant
and predicate abstraction becomes faster.
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1 Introduction

1.1 Motivation

Computers have an ever increasing impact on our daily lives. From economics,
medicine and engineering to the way we socially interact. So when a computer
program does not do what it is supposed to do, this can have a wide range
of implications. Sometimes it might just be annoying, but it might also cost
a lot of money or worse, even lives might be at risk. Just imagine a medical
imaging device that fails in the middle of surgery due to a unexpected bug in
the software it is running. This explains why a lot of effort is put into ways to
write software that works as expected.

One standard technique that is nowadays used in industry is testing, where
the program is run multiple times with different input in order to increase the
chance of finding bugs before the program is run in the production environment.
While testing is an indispensable and useful method, it can almost never give
complete certainty that all bugs have been found.

For applications where this certainty is desired, methods of formal verification
can be used. Here, one tries to find a mathematical proof that the software fulfills
a set of formally specified properties. This can happen manually, interactively
with the help of a computer, or even automatically.

Over the past two decades, a wide range of automatic verification techniques
have been presented. These have to be compared on a theoretical level in
order to find conceptual similarities and differences. On a practical level, their
implementations need to be compared in order to find out which technique has
the best performance. Both of these goals can be difficult to achieve. When it
comes to theory, a common concept can be obscured by the usage of different
formalisms. When it comes to empirical results, differences in performance
might stem from other factors such as usage of different libraries or programming
languages.

It is therefore desirable to have a tool that implements a wide range of
techniques and makes them comparable by just changing the blocks that really
need to differ. For that, a theoretical framework is needed that can unify different
approaches. A way to achieve this is the concept of configurable program analysis
(CPA) [1]. The software model checker CPAchecker uses this framework to
implement a number of different verification algorithms. Comparing them
using CPAchecker can give interesting insights into performance differences
and their reasons [2].

The objective of this thesis is to add a specific class of verification techniques,
namely the concept of abstraction slicing, to the set of algorithms that can
be expressed in the CPA framework. This allows to find further conceptual
similarities to existing approaches and also to better understand the influence
of certain components on the overall performance.

1.2 Related Work

While deductive model checking [3] uses slicing and splitting of abstractions
for verification of infinite state systems, this approach does require some user
interaction in order to select the right predicates for splitting.
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The slicing-abstractions approach [4] automates this step by using Craig
interpolation in a CEGAR loop. The resulting abstraction graph can be seen as
correctness certificate. The approach is tailored for general concurrent systems
because there is no explicit program counter and optimizations like partial-
order reduction aim to mitigate state-space explosion. The algorithm contains
many optimizations, e. g., the number of abstract states can be reduced by an
optimization called state bypassing. Slicing abstractions is implemented in the
software model checker SLAB [5].

A similar approach models the program counter explicitly [6]. This allows
to make direct use of the information encoded in the control flow automaton
but potentially increases the number of abstract states. Large-block encoding is
used as an optimization in order to counteract this effect. The implementation
of this algorithm is known as Ultimate Kojak [7].

There is also a relatively new verifier called THETA whose architecture is based
around splitting of abstract states [8, 9]. It is however not using abstraction
slicing and is therefore much closer related to predicate abstraction or lazy
abstraction with interpolants.

Adjustable-block encoding [10] is a generalization of large-block encoding.
Instead of transforming the CFA, ABE decides for each new abstract state
whether it represents the end of a block using the so-called block operator.

In this work, the algorithms behind Kojak and SLAB are expressed using
the CPA framework. For Kojak ABE is used instead of LBE. For SLAB, state
bypassing is realized using a new approach called flexible-block encoding that
works similar to ABE, but allows to change whether an abstract state is at the
block end afterwards.

2 Background

In order to express abstraction slicing using the CPA framework, we ne to get
an overview of the different approaches that are also formulated using varying
terminology and definitions.

First we need to establish a mathematical notion of the term program.
Programs are normally written in high-level programming language and then
executed on a computer, which is a finite approximation of a Turing machine.
During program execution, the computer will take a series of actions, each
changing its internal state, which will be called concrete state from now on.

We will start by defining a labeled transition system. Later we define a
notion of control flow for these transition systems, which will then lead to our
definition of a program.

2.1 Labeled Transition Systems

A labeled transition system L is a 4-tuple L = (T,C,C0,→). T is a set of labels
(actions). C ⊆ X→ V is the set of concrete states which are modeled as mapping
from a set X of variables to the set of possible concrete valuesV. The initial states
are given by a set C0 ⊆ C. The transitions are determined by the transfer relation
→∈ C × T × C. The transfer relation can be split into a relation for every action
τ
→⊆ C×C. For c1, c2 ∈ C we will write c1

τ
→ c2 if (c1, τ, c2) ∈→ and c1 → c2 if there

exists a τ such that (c1, τ, c2) ∈→. Note that a transfer relation like→∈ C × T × C
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can also always be expressed as a transfer function f→ : C × T→ P(C) that maps
each element of C to the set of its successor under a certain action in T. τ

→ has
the corresponding function f τ

→
: C→ P(C).

The transfer relation for a program can be expressed with predicates of
first-order logic that range over sets X and X′ of unprimed and primed variables,
representing the state before and after the transition. This means that for every
variable x in X there exists a corresponding x′ in X′. We will write Φ→(X,X′) for
the predicate corresponding to→, and Φτ(X,X′) for the predicates corresponding
to the individual τ

→. A predicate Φτ(X,X′) over sets X and X′ of primed and
unprimed variables will be called a transition formula. The variables in the
predicates can be substituted, e. g. Φ[X′′/X] denotes the predicate where all
variables x in X are replaced by their corresponding variable x′′ in X′′. Likewise
Φ[c(X)/X] denotes the predicate where all variables x in X are replaced by the
corresponding value of c(x). The transfer relation and these predicates are
equivalent in the following sense:

→ = {(c1, τ, c2) | τ ∈ T ∧Φ→[c1(X)/X, c2(X′)/X′]}

Transition formulas can be sequentially composed in order to express con-
secutive transitions in a path formula:

(Φ1 ◦Φ2)(X,X′) = ∃X′′ : Φ1[X′′/X′] ∧Φ2[X′′/X]

2.2 Control Flow

In an imperative programming language, a program is usually given in the
representation of its source code. An example is shown in Fig. 1a. The source
code implies a certain control flow, i. e., the order in which the statements are
traversed. This can be visualized by a control flow graph (CFG), as can be seen
in Fig. 1b. Here the nodes are labeled with integers, the program locations.

We can describe this control flow by demanding that the transfer predicates
have a certain form that models the program locations with a special variable,
the program counter pc. This means the set of variables has the form X = V∪

{
pc

}
where V is the set of variables that correspond to the concrete data state. All
initial states from C0 shall assign the same value for the program counter. The
transfer predicate for each action shall have the following form:

Φτ(X,X′) ≡ pc′ = l′ ∧ pc = l ∧ ϕτ(V,V′)

Here ϕτ(V,V′) is a special transition formula over primed and unprimed data
variables which we will call the data transition formula. These data transition
formulas can also be composed into data path formulas

(
ϕ0 ◦ ϕ1 ◦ · · · ◦ ϕn

)
(V,V′).

Every data transition formula for itself is already a data path formula. l and l′

are values of the program counter before and after the transition. The notion
l τ
→ l′ can be used to indicate that the transition τ transfers the control flow from

l to l′.
For a simple imperative programming language in which each statement is

either an assignment of a single variable or an assumption, the data transition
formulas will have a simple structure, either ϕτ(V,V′) ≡ (v′ = h(V)) for some

3



1 void main() {

2 int error = 0;

3 int i = 0;

4 while (i < 2) {

5 i++;

6 }

7 if (i != 2) {

8 ERROR:

9 error = 1;

10 return;

11 }

12 }

(a) Source code
representation

2

3

4

5

7

9

11 10

error = 0

i = 0

[i < 2]i = i + 1
![i < 2]

[i! = 2]

error = 1
![i! = 2]

(b) CFG representation

2

4

11 10

error = 0
i = 0

[i < 2]
i = i + 1

![i < 2]
[i! = 2]

error = 1

![i < 2]
![i! = 2]

(c) CFG representation
with LBE

Figure 1: Different representations of the example program. Note that line
numbers in the source code match the node labels in the CFG.

function h(V) and variable v′ ∈ V′ or ϕτ(V,V′) ≡ g(V) for some predicate g(V).
It is sufficient to look at programs that have this structure because more complex
statements can be decomposed into several of these simple statements. The
example program in Fig. 1 is of such a form. In the control flow graph, the
transitions are given in a C-like syntax. Assumptions are given in brackets,
assignments without brackets. For example, the assignment "i = i + 1" is
equivalent to the transition formula "i′ = i + 1" and the assertion [i < 2] is equal
to the transition formula i < 2.

2.3 Concrete paths

Each program defines a set of possible concrete paths of execution. A concrete
path is a sequence (c0, τ0, c1), (c1, τ1, c2), . . . . . . , (cn−1τn−1, cn) of triples from the
transition relation→, where c0 is a state from the set C0 of initial states. Note
that it is not enough to just give the concrete states or just give the actions in
order to identify a concrete path uniquely, as there might be multiple actions
that transfer from a ci to a ci+1 and there might also be multiple pairs of concrete
states for the same action.

If just a sequence τ0, τ1, . . . , τn of actions is given, this corresponds to a path
formula (Φ0 ◦Φ1 ◦ · · · ◦Φn) (X,X′) that will be satisfiable if there exists a concrete
path with the same sequence of actions (the converse does not hold).

2.4 Specification

All the possible concrete paths of a program can be divided into those that
exhibit wanted (good) behavior and those that exhibit unwanted (erroneous)
behavior.
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A (formal) specification is a way to determine for a concrete path whether it
is acceptable or not. An example would be that a certain variable, e. g. err ∈ X,
may never be set to a value different than 0. In this case, a certain subset of
concrete states becomes error states, namely all c ∈ C that fulfill c(err) , 0.

Note that a specification does not need to be limited to properties of a single
state. In general, it can be given by an arbitrary formula of temporal logic. For
simplicity however, we will only look at specifications where certain concrete
states can be identified as concrete error states. The specification can then be
given as a predicate over the program variables. In the previous example,
this would be error(X) ≡ err , 0. This predicate is what determines whether
a concrete state is a concrete error state. The problem of finding out whether a
program fulfills a formal specification is known as model checking.

A concrete error path in this framework is a concrete path whose last state cn ful-
fills the error predicate (and is therefore a concrete error state): error[cn(X)/X] ≡ >.
These are the concrete paths that exhibit unwanted behavior and thus lead to a
specification violation.

2.5 Large-Block Encoding

It is logical that control flow graphs for programs that use such a simple, imper-
ative language are larger than those that allow for more complex instructions.
For an analysis this can come at a performance cost. In this case the CFG can
be transformed into one where all edges that do not form a loop are composed
together, which is known as large-block encoding(LBE) [11]. Points at which
branchings merge are modeled by disjunction of the path formulas. This means
that one transition in LBE can model different paths through the program at
once.

In the notion of program that is used here, the result of LBE is a different tran-
sition system and as such a different program. There is however a equivalence
relation between the two programs that ensures that the important properties of
the so-called single-block encoding are also present in the large-block encoding.
For this equivalence, LBE must not remove intermediate error states, a sequence
of two transitions error = 1 and error = 0 for example must not be combined into
the same block, as this would hide the intermediate error state. The result of
LBE applied to the example program is shown in Fig. 1c.

2.6 Abstract Models

For model checking, enumerating over all concrete paths is often not feasible. A
elegant way to get around this is to make use of a abstract representation of the
program and then try to show that certain properties of the abstract system also
hold for the concrete system.

In order to talk about such abstract representations, we introduce the concept
of abstract models. An abstract model (A, ν,D) for a program (T,C,C0,→) consists
of

• a labeled transition system A = (T,N,N0,�) over a set N of abstract nodes

• a the unwrap-function ν : N → E that maps each abstract node to an
abstract state out of a set E of abstract states

5



• an abstract domain D = (C,E, ~·�) that links the abstraction to the concrete
representation of the program

This layer on top of the abstract domain might seem superfluous at first, but
it will later allow us to describe splitting and slicing in a more rigorous way.
The concretization function ~·� : E → P(C) assigns each abstract state the set
of concrete states it represents. It is often convenient to directly concretize an
abstract node, this can be done by sequentially composing the unwrap-function
and the concretization function: ~·�ν B ~ν(·)�. E is a lattice (E,v,t,>,⊥) over
the set E of abstract states. This allows us to make use of the lattice properties
when reasoning about abstract models. Often we will choose a symbolic lattice
where the elements are formulas. In this case > denotes a tautology and and ⊥
denotes a contradiction.

The function ~·� can often also be written as a function σ : E → (X → B)
that maps each abstract state to a predicate over the program variables X. This
predicate will be called state formula. For programs with control flow, the part of
the state formula that corresponds to the data variables will be called data-state
formula. We will restrict our considerations to concretization functions that can
be expressed as state formulas.

To give a simple example for an abstract model, the control flow graph in
Fig. 1b could be converted into an abstract model:

• �= {(2, ”error = 0”, 3), (3, ”i = 0”, 4), . . . , (9, ”error = 1”, 10)}

• T = {”error = 0”, ”i = 0”, . . . , ”error = 1”}

• N = {2, 3, 4, 5, 7, 9, 11}

• N0 = 2

• ∀n ∈ N : σ(ν(n)) ≡
(
pc = n

)
In other words, the abstract states represent all concrete states that have

a certain value for the program counter. A valid choice for the lattice then
is (N ∩ {>,⊥} ,≤,max(·, ·)),>,⊥). This abstract model can already be useful, as
locations that are not forward-reachable from the initial states can easily be
identified.

2.6.1 Soundness

In order to infer properties of the concrete system from properties of an abstract
model like in the example of the control flow graph, the abstract model needs to
be sound. Soundness is achieved by satisfying the following conditions:

1. the initial abstract nodes of the abstract model are an over-approximation
of the initial concrete states: C0 ⊂

{
~n0�ν | n0 ∈ N0

}
2. the transfer function of the abstract model over-approximates the succes-

sors in the concrete system:
{

f τ
→

(n′) | n′ ∈ ~n�ν
}
⊆

{
~n′�ν | n′ ∈ f τ

�
(n)

}
A visualization of this the second relationship is shown in Fig. 2. First taking

the (abstract) transfer function and then concretizing leads to a superset of the
reverse order, i. e., first concretizing and then applying the (concrete) transfer
function.
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n

~n�ν f τ
�

(n)

{
f τ
→

(n′) | n′ ∈ ~n�ν
} {

~n′�ν | n′ ∈ f τ
�(n)

}
⊆

~·�ν f τ
�

f τ
→ ~·�ν

Figure 2: Visualization of the second soundness criterion

2.6.2 Abstract paths

An abstract path is a sequence of triples (n0, τ0,n1), (n1, τ1,n2) . . . , (nm−1τm−1,nm)
of abstract nodes and actions. The abstract path is concretizable if the path
formula (σ(ν(n0)) ∧Φ0 ◦ σ(ν(n1)) ∧Φ1 ◦ · · · ◦ σ(ν(nm)) ∧Φm) is satisfiable. The
satisfiability of this path formula will ensure that there exists a concrete path
c0, τ0, c1, τ1, . . . , τm−1, cm in the program. The inclusion of the state formulas is
necessary to be sure that there is a concrete path that also represents the right
abstract path, i. e., ci ∈ ~ni�ν holds at every position 0 ≤ i ≤ m.

An abstract error path n0, τ0,n1, τ1, . . . , τm−1,nm is an abstract path whose last
state is an abstract error node, i. e., error ∧ σ(ν(nm) is satisfiable. A sound abstract
model proofs that a program fulfills a specification if it has no concretizable
abstract error path. As a consequence, if the abstract model is sound and does
not contain an abstract error node, there can be no abstract error paths and the
program fulfills the specification.

Abstract error paths are also called counterexamples, as they have the potential
of disproving that the program fulfills the specification. This does however only
hold if the counterexample is not spurious. A counterexample is spurious if the
corresponding path formula conjoined with the error predicate evaluated for
the last state is unsatisfiable. This corresponds to the formula:

(σ(ν(n0)) ∧Φ0 ◦ σ(ν(n1)) ∧Φ1 ◦ · · · ◦ σ(ν(nm)) ∧Φm ∧ σ(ν(nm+1) ∧ error)

The check for the error predicate in the last abstract node may be omitted,
provided that it is a node that has only concrete error states as concretization.

2.7 Constructing Abstract Models

For a given program and abstract domain there is a multitude of ways to build
a sound abstract models. Often it is possible to state an algorithmic way to
calculate the successors for an abstract state e ∈ E. This will lead to a transfer
relation ∈ E × T × E that is sound if{

f τ
→

(e′) | e′ ∈ ~e�
}
⊆

{
~e′� | e′ ∈ f τ

 (e)
}

This transfer relation over abstract states that may correspond to an infinite
system can be taken as a starting point to compute a finite abstract model that
can then be used to proof certain properties of the underlying program.

7



Historically, different approaches have been developed to achieve this. In
the area of static analysis, especially for use in compilers, fast lattice based
approaches are used, which we will subsume under the name data-flow analysis.
Another approach is traditionally used in model checking, where the (abstract)
paths are explored in a tree-shape. Both of these techniques can be seen as edge
cases of a unified approach, the configurable program analysis [1].

They start at the initial state and discover new abstract states from there
in a stepwise fashion stepwise. Each abstract state that is discovered will be
wrapped into a new abstract node. The partial abstract models that are built by
such an algorithm in each step form an abstract reachability tree (ART, cf. [12]) or
— more general — an abstract reachability graph (ARG).

2.7.1 Data-Flow Analysis

The lattice-based data-flow analysis generates the abstract model as a fixed point
computation. Starting from the initial state, the successors are consecutively
generated. Whenever a successor is encountered with the same location as an
already explored state but with different abstract state, the wrapped abstract
states are merged using the union operation that is given by the lattice structure
of the abstract domain. The merged abstract state is wrapped into a abstract
node that inherits its predecessors and successors from the two merged nodes.
Note that due to the merge the tree-shape is lost, so we will have an ARG instead
of an ART in most cases. The successors of a merged state are then explored
again. This might result in consecutive merging of its successors with already
existing states. This procedure is guaranteed to terminate if the lattice of the
abstract states has finite height and if there are only finitely many locations in
the control flow graph.

This is especially useful, e. g., for compiler optimizations, where arbitrary
long waiting time for an analysis result is simply not acceptable. The restriction
of the abstract domain to a lattice of finite (sufficiently small) height however
limits the complexity of the properties that can be shown with that method. This
is partly due to the fact that at the points where two states are merged, precision
is lost. It is important that the merge of abstract states preserves soundness. For
that one has to ensure that the concretization of the resulting abstract state is at
least a superset of the concretizations of the abstract states that are joined:

~merge(n,n′)�ν ⊇ ~n�ν ∪ ~n
′�ν

2.7.2 Model Checking

In model checking nodes with the same location are not merged. Thus the
generated ARG remains in tree-shape, where each new abstract state is wrapped
into a new abstract node. In order to get a finite abstract model, a fixed point is
achieved by checking for each new abstract node n′ whether the concrete states
it represents are already completely entailed by one or several existing abstract
nodes, which constitute the set Nc:

~n′�ν ⊆
⋃
n∈Nc

~n�ν
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In this case, the new state is said to be covered by the other states. This is
often indicated by a special coverage edge in the ARG. Coverage preserves
soundness because the second soundness criterion holds if the edge into the
covered node is redirected into edges into each of the covering nodes. Since the
covering abstract nodes are not modified by this transformation, they need not
be re-explored. This second way of looking at coverage can then be seen as a
different kind of merging abstract nodes, but in order to preserve the advantage
of having an ART instead of an ARG, the first way is normally used to express
coverage.

As the union on the right hand side of the coverage condition is sometimes
hard to compute, a stronger criterion can be used where the set Nc may only
contain a single element. Since it might also not be feasible to calculate the
subsumption over the concrete state sets, every preorder v: E × E→ B can be
used instead, provided that it fulfills the following soundness criterion:

e1 v e2 ⇒ ~e1� ⊆ ~e2�

The lattice can be chosen in a way that its subsumption relation is such a sound
preorder.

2.7.3 Configurable Program Analysis

Both ways of reaching a fixed point can be expressed in a unified way by an
algorithm where both the type of merge operation and coverage operation can
be configured. This algorithm can then be set to work like data-flow analysis,
like model checking or even offer a wide spectrum of new analysis between
these two.

The algorithm takes as input the initial abstract state e0 and a configurable
program analysis (CPA). The program L = (T,C,C0,→) that has to be checked
is implicitly assumed to be given. A CPA is a tuple (D, ,merge, stop) that
consist of an abstract domain D with a set E of abstract states, a transfer relation
 ∈ E × T × E and two operators merge : E × E→ E and stop : E × P(E)→ B.
The algorithm is consequently called the CPA algorithm. Note that since it was
first published, several variants of the algorithm like CPA+ and the CPA++
have been formulated [13]. For now we will just consider the original version
(cf. Algorithm 1).

The stop operator is used for coverage checks. The subsumption relation of
the lattice of the abstract domain can be used to construct a stop operator and
thus needs to respect the soundness equation for coverage from Section 2.7.2
unless soundness is not demanded.

The construction of the ARG is not explicit in the algorithm itself that just
tracks the set of reached abstract states. It can however be built by wrapping the
CPA into a special CPADARG whose operators have the side-effect of modifying
the transfer relation� of the ARG. The set of states forDARG can be expressed as
N =N × E, so each ARG state is comprised of a node number and the wrapped
abstract state. The transfer function ofDARG is not a pure function, as it needs to
keep track of node number in order to assign a new one to each new state. In this
regard it becomes clear thatDARG does not strictly adhere to the CPA concept,
but is still useful for constructing the abstract model out of the performed steps in
the CPA algorithm. Note the subtle distinction between an ARG and an abstract
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Algorithm 1 CPA Algorithm, taken from [1]

Input: a CPAD = (D, ,merge, stop), an initial abstract state e0 ∈ E, where E
denotes the set of elements of the lattice of D

Output: a set of reachable abstract states
Variables: a set reached ⊆ E, a set waitlist ⊆ E

1: waitlist := {e0}

2: reached := {e0}

3: while waitlist , ∅ do
4: choose e from waitlist
5: waitlist := waitlist \ {e}
6: for all e′ with e e′ do
7: for all e′′ ∈ reached do
8: // combine with existing abstract state
9: enew := merge(e, e′′)

10: if enew , e′′ then
11: waitlist := (waitlist ∪ {enew}) \ {e′′}
12: reached := (reached ∪ {enew}) \ {e′′}
13: if ¬stop(e′, reached) then
14: waitlist := waitlist ∪ {e′}
15: reached := reached ∪ {e′}
16:
17: return reached

model here. The ARG is a data structure that is used to represent the abstract
model. In this sense we can use the terms interchangeably. For intermediate
steps in the algorithm however, there might still be information missing in the
ARG, so speaking of the abstract model here is somewhat misleading.

Another interesting aspect of the CPA framework is that it al-
lows to combine different analysis for seperate abstract domains into
one analysis. Given two CPAs CPA1 = (D1, 1,merge1, stop1) and
CPA2 = (D2, 2,merge2, stop2) with abstract-state sets E1 and E2 and concrete-
state sets C1 and C2, a combined CPA× = (D×, ×,merge

×
, stop×) over the do-

main D× = (E1 × E2,C1 × C2, ~·�x : E1 × E2 → C1 × C2) is easily obtained using
the direct product. This can further be extended by the use of special operators
that transfer information between CPAs and thus lead to an improvement of
precision.

This composition is useful e. g. for tracking the program location as part of a
separate LocationCPA. By doing so, it is possible to formulate analyses that do
not depend on the program location and compose them with the LocationCPA
in case this information is needed for the analysis.

2.8 Abstraction Refinement

While the algorithms presented in the previous section enable us to construct an
abstract model, there is no guarantee that the result will be sufficient to decide
whether the specification holds. If the abstract model satisfies the specification,
so will the program. The reverse is in general not true, i. e., if the abstract model
does not satisfy the specification, the program might still do. The reason for

10
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Figure 3: The Abstract-Check-Refine Paradigm. As long as the check of the
constructed model is inconclusive, the model is refined and a new model is
calculated

that is that the abstract model is only designed to be sound, but not necessarily
precise.

2.8.1 CEGAR

In order to improve the abstract model, one needs a way to extract the information
about why the analysis fails from the ARG. The analysis fails if there is a spurious
counterexample, so the cause of infeasibility for an abstract error path can be
used to make the abstract model more precise. This is the core idea behind
counterexample guided abstraction refinement (CEGAR). Traditionally, this is done
according to the abstract-check-refine paradigm [14, 15, 16], where the whole
ARG is rebuild after the refinement (cf. Fig. 3).

This comes with an obvious drawback. A lot of computational results are
discarded and need to be recomputed in every iteration. Techniques like lazy
abstraction [17] try to mitigate this by refining the ARG on the fly without
repeating the whole analysis. As a special case of this, the ARG can also be
refined after the initial analysis is completed, a process that is commonly referred
to as global refinement. In summary, CEGAR can mean one of the following
refinement approaches:

1. change the inputs (e. g. abstract domain) and restart the analysis

2. improve the ARG during the analysis as soon as it is clear that the
abstraction needs to be more precise

3. improve the abstraction after it is completed (global refinement)

2.8.2 Combination of CPA and CEGAR

CEGAR can be used together with the CPA algorithm, provided slight adjust-
ments are made to the CPA algorithm. This modified version (cf. Algorithm 2)
will be referred to as CPA* algorithm.

In order to be able to stop the analysis for the refinement and the continue it
afterwards, the CPA* algorithm needs to return intermediate results. This can be
achieved by providing a function abort that indicates whether the analysis shall
be interrupted for a certain reached state. The CPA* algorithm will then return
the set of reached states and the set of frontier states it has not yet considered.
By providing these two sets as input, the algorithm can be continued after the
refinement.
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The algorithm for CEGAR (Algorithm 3) calls the CPA* algorithm in a loop
and applies the refinement function in case a target state is present. If the
refinement function fails to remove the target state from the ARG, the algorithm
returns false, indicating that the program does not fulfill the specification. If the
CPA algorithm finishes without any target state present, this means the program
fulfills the specification and true will be returned. Note that the specification
is given by the function isTargetState which can be seen as the algorithmic
equivalent of the error predicate from Section 2.4.

The three ways to perform CEGAR from Section 2.8.1 are a subset of the
possible configurations of the algorithms presented here.

The first way corresponds to a refine function that returns a reached set with
a new, different starting state and an wait list containing this starting state. The
abort function is set to always return false. Ideally, one wants to be able to
change the other inputs to the CPA* algorithm, like the abstract domain itself or
the transfer function. This is not possible in the CEGAR algorithm as presented
here (Algorithm 3), but it can be easily extended in this direction.

For the second case, abort mimics the isTargetState function to ensure that
the analysis is always stopped when a target state is reached. The refine function
then tries to remove this target state.

The third approach is similar to the first, but the refine function is designed
to remove all target states from the reached set and will not repopulate the wait
list. This way, when not all target states can be removed, the CEGAR algorithm
will return false after its next loop iteration.

Algorithm 2 CPA* Algorithm for use with CEGAR, adapted from [13]

Input: a CPAD = (D, ,merge, stop), an initial abstract state e0 ∈ E, where E
denotes the set of elements of the lattice of D,
a list of abstract states waitlist,
a list of abstract states reached,
a function abort : E→ B

Output: a set of reachable abstract states, a set of frontier abstract states
Variables: a set reached ⊆ E, a set waitlist ⊆ E

1: while waitlist , ∅ do
2: choose e from waitlist
3: waitlist := waitlist \ {e}
4: for all e′ with e e′ do
5: for all e′′ ∈ reached do
6: // combine with existing abstract state
7: enew := merge(e, e′′)
8: if enew , e′′ then
9: waitlist := (waitlist ∪ {enew}) \ {e′′}

10: reached := (reached ∪ {enew}) \ {e′′}
11: if ¬stop(e′, reached) then
12: if abort(e′) then
13: return (reached,waitlist)
14: waitlist := waitlist ∪ {e′}
15: reached := reached ∪ {e′}
16:
17: return (reached,waitlist)
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Algorithm 3 CEGAR Algorithm for CPA, adapted from [13]

Input: a CPAD = (D, ,merge, stop),
an initial abstract state e0 ∈ E,
a function refine : P(E) × P(E)→ P(E) × P(E),
a function abort : E→ B
a function isTargetState : E→ B

Output: false if abstract error state reachable, true otherwise
Variables: a set reached ⊆ E, a set waitlist ⊆ E,

1: waitlist := {e0}

2: reached := {e0}

3: loop
4: (reached,waitlist) := CPA∗(D, reached,waitlist,abort)
5: if ∃ e ∈ reached : isTargetState(e) then
6: (reached,waitlist) := refine(reached,waitlist)
7: if ∃ e ∈ reached : isTargetState(e) then
8: return false
9: else

10: return true

2.9 Interpolation

So far we have abstracted from how the refinement actually works. In general, the
requirement for such a refinement is that, in case the discovered counterexample
is spurious, some information has to be deduced automatically that can be used
to improve the abstract model such that the counterexample is no longer present.

One way to get this information is through interpolation. Given two formulas
A and B with A ⇒ B, the Craig interpolant [18] is a formula C that fulfills the
following conditions:

• A⇒ C

• C⇒ B

• C does only contain atoms that occur both in A and B

In other words, the Craig interpolant C constitutes only the part of A that is
necessary to conclude B.

In case of a spurious counterexample, the corresponding path formula
(conjoined with the error predicate in the last node) is unsatisfiable.

Craig interpolation can be applied here by making use of the fact that the
negation of an unsatisfiable formula is a tautology and vice versa. Thus a
tautology A ⇒ B holds iff ¬(A ⇒ B) is unsatisfiable. This is equivalent to
showing that A∧ (¬B) is unsatisfiable. The Craig interpolant for an unsatisfiable
formula A ∧ B is a formula C such that:

• A ∧ ¬C is unsat

• C ∧ B is unsat

• C does only contain atoms that occur both in A and B
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If the path formula is split into two parts, the Craig interpolant will contain
the information that is necessary at the split position in the path in order to
show that the whole path is unsatisfiable. This information can then be used for
refinement. In the special case that B is already unsat, no knowledge from A
has to be transferred, so the interpolant may be true. In the other special case
where A is already unsat, the interpolant is allowed to be f alse.

Note that the existential quantifiers resulting from the sequential compo-
sition in the path formula can be removed by skolemization. This effectively
reassembles static single assignment, where each intermediate state has its own
set of fresh variable names. I.e., each transition formula Φi transfers from the
set of variables Xi to the set Xi+1. We can bring the variables of the calculated
interpolant back to X after interpolation with a simple substitution.

Sequences of interpolants can be generated by splitting the path formula
between each pair of adjacent transitions. Given an unsatisfiable path formula
Φ0 ∧Φ1 ∧ · · · ∧Φm (in SSA form) for a path (n0, τ0,n1)(n1, τ1,n2) . . . (nm, τm,nm+1),
the ith element of the sequence of interpolants I1, . . . , Im can be calculated as
Craig interpolant of the formulas Φ0 ∧ · · · ∧Φi−1 and Φi ∧ · · · ∧Φm.

As a special case, a sequence of interpolants is called inductive if Ii∧Φi ⇒ II+1
holds for all i ∈ {1, . . . ,m}. Inductive interpolants can be calculated by replacing
Φ0 ∧ · · · ∧Φi−2 in the first formula by Ii−1. In other words, Ii can be calculated as
Craig interpolant of Ii−1 ∧Φi−1 and Φi ∧ · · · ∧Φm.

2.10 IMPACT

Impact1 is a software verification approach for programs with control flow
proposed by Kenneth McMillan in 2006 [19]. Being based on model checking, it
generates the abstract model by unrolling the abstract state space in a tree-shape.
Therefore coverage of nodes is used to reach a fixed point, as discussed in
Section 2.7.2. Starting from an abstract node at the initial location, successors
are explored according to the control flow. No further assumptions are made on
the data variables, so the data-state formula is initially set to > for all abstract
states. This way the soundness criterion is trivially fulfilled.

Besides expanding leave nodes and updating coverage, a refinement proce-
dure can be used whenever an infeasible error path is present. The inductive
sequence of interpolants is generated for the error path formula and the data-
state formula for each node on the path is refined by conjunction with the
corresponding interpolant. This is sound because the interpolants are proper
invariants at their abstract nodes, a consequence of the tree-shape of the ARG.
The data-state formula of the error node (and potentially other nodes as well)
will become ⊥, which means it can safely be removed from the ARG.

An illustration of different stages in the analysis for the example program
from Fig. 1 is shown in Fig. 4. In Fig. 4a some nodes have been explored. The
second node at location 4 is not expanded any further because it is covered by the
first node at that location (> trivially implies>). In Fig. 4b further expansion has
discovered an error path. In Fig. 4c the refinement on the error path changed the
data-state formulas according to the sequence of inductive interpolants. Note
that this sequence is not unique and it depends on the interpolation method how
this sequence will look like. E.g., both i < 2 and i = 0 are valid interpolants at

1Impact is actually the name of the tool, but we also use it synonymously for the approach
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Figure 4: Different stages of checking the example program from Fig. 1 with
Impact. Bold formulas next to the nodes represent the data-state formula, the
location is written inside the nodes. Coverage is drawn with dashed edges.

location 4 in the error path. Coverage at location 4 has been removed in Fig. 4c,
because > ⇒ i < 2 does not hold. Amongst others, the error state is infeasible
(data-state formula ⊥) and can be removed, indicating a successful refinement.
Impactwould then continue with expanding the leave node at location 4. For this
example, it would end with a sound abstraction that proofs the program correct.

The Impact algorithm can be expressed in the CPA framework [20].

2.11 Adjustable-Block Encoding

Impact can be used with large-block encoding, as this will only affect the program
representation that is treated as input to the algorithm. This will result in fewer
nodes and especially less interpolation steps for each refinement, which can
increase performance [20]. The main limitation for the block size of LBE are the
loop heads, as unbounded loops cannot be expressed in closed form by formulas
of first-order logic. Impact however does model checking with a tree-shaped
ARG, so loops are naturally unrolled in the abstract model. By moving the block
encoding into the abstract model, different block sizes than LBE are possible,
which has the potential of being more efficient. This approach called adjustable-
block encoding(ABE) was initially developed for predicate abstraction [10], but
can also be applied to Impact [20].

In ABE, states are distinguished into two categories, abstraction states and
non-abstraction states. This can be modelled by an operator, the so-called block
operator blk : E × T → B, which returns true if the successor state under a
certain transition is an abstraction state. The interpolants along a path are only
calculated for the nodes with abstraction states.

The state formula of the intermediate non-abstraction states is given implicitly,
since it is not of importance for the analysis. It is enough to know that for the
intermediate states the state formula could be calculated such that the whole
abstract model is sound. For example, in predicate abstraction with ABE the
non-abstraction state saves the state formula of the previous abstraction state
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Figure 5: The Impact analysis from figure 4 but with adjustable-block encoding
enabled. The block operator is chosen to mimic large-lock encoding. Gray nodes
contain abstraction states, the others contain non-abstraction states.

and the path formula to itself from there. Both combined could be used to
determine the exact state formula of this non-abstraction state, but this is never
explicitly done. Instead this information is carried on to the next abstraction
state, where it is used to calculate the computationally expensive predicate
abstraction.

The merge operator has to be adapted for ABE in a way that it merges two
nodes if their abstract states are non-abstraction states. This leads to ARGs
where the tree-shape does only hold if just the abstraction states are considered.
The general shape will be an acyclic graph. For calculating the path formulas at
points where two non-abstraction states transition into the same non-abstraction
state a disjunction can be used. This then reassembles the path formula structure
of LBE, where a single path formula can express multiple branches at once.

An example of Impactwith ABE configured to emulate LBE is shown in Fig. 5.
The gray abstraction nodes are the same nodes we would get with LBE.

CPA Adjustable-block encoding can be realized using the CPA DABE =
(DABE, ABE,mergeABE, stopABE) that has been developed for predicate abstrac-
tion with ABE [10]. It is defined using a different version of the CPA algorithm
where a set Π of predicates called the precision is tracked for each location.
This precision is used by the analysis to perform predicate abstraction in the
transfer relation. Note that we will be using formulas here instead of sets of
predicates as in the original formulation. This is equivalent as the conjunction
of all predicates in a set of predicates yields an equivalent formula.

The abstract domain consists of abstract states (l, ψ, lψ, ϕ), where lψ is the
location of the last abstraction state and ϕ is a path formula that represents the
path from the last abstraction state to the current state. l is the current location
and ψ a state formula. In predicate abstraction, for every abstraction state ψwill
result from the predicate abstraction calculation.
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The transfer relation contains the transition e1
τ
 e2 for states e1 =

(l1, ψ1, l
ψ
2 , ϕ1) and e2 = (l2, ψ2, l

ψ
2 , ϕ2) exactly when:{

l1
τ
→ l2 ∧ (ϕ2 = >) ∧ (lψ2 = l2) ∧ ψ2 =

(
ψ1 ∧ ϕ1 ◦ ϕτ

)Π(l2) if blk(e1, τ)
l1

τ
→ l2 ∧ (ϕ2 = φ1 ◦ φτ) ∧ ψ2 = ψ1 ∧ lψ2 = lψ1 otherwise

The result of the predicate abstraction (·)Π(l2) in the transfer relation will always
be> or⊥ in case that the precision Π(l2) is an empty set. ϕτ is the data transition
formula that describes the transition τ. When the blk operator returns true, e2

is an abstraction state. Note that (lψ2 = l2) ∧ (ϕ2 = >) is strictly not sufficient to
distinguish abstraction states from non-abstraction states, so this property has
to be tracked otherwise, e. g. byDARG .

The merge operator mergeABE for states e1 and e2 as above is defined as:

merge(e1, e2) =

{
(l2, ψ2, l

ψ
2 , ϕ1 ∨ ϕ2) if (l1 = l2) ∧ (ψ1 = ψ2) ∧ (lψ1 = lψ2 )

(l2, ψ2, l
ψ
2 , ϕ2) otherwise

The stop operator stopABE is defined as follows:

stop((l, ψ, lψ, ϕ), reached) =


true if ∃(l′, ψ′) ∈ reached :

l ∈ {l′, l>} ∧ (ψ ◦ ϕ⇒ ψ′ ◦ ϕ)
f alse otherwise

The blk operator in the transfer relation can be set to blksbe, which always
return true. As a result there are only abstraction states, so lψ is always equal to
l and ϕ is always >. In this case, the CPADABE is equivalent toDK, provided
that the initial abstract state has the data-state formula >.

Another blk operator is blklbe, which returns true only for initial states, error
states and loop heads.

2.12 Slicing Abstractions

Impactmakes use of a tree-shaped ARG for its refinement and is thus not suited in
cases where the ARG does not form a tree. A more general refinement approach
that works for all graph-like ARGs is slicing abstractions [4]. Here one makes
use of the fact that it is always sound to split a node n in the ARG into two nodes
n′ and n′′ such that the concretizations of the splitted nodes are a superset of
the concretization of the original node:

~n�ν ⊆ ~n
′�ν ∪ ~n

′′�ν

For the special case where the set equality holds in this equation, the set of
concrete paths represented by the abstraction does not change. This is always
the case when the splitting is performed in a way that can be expressed by a
predicate ψ(X). Suppose the node n has the state formula σn(X), then splitting
with the predicateψwill lead to two states with state formulas σn∧ψ and σn∧¬ψ
respectively. Together these states will always represent the same concrete states
as the original state:

~σn ∧ ψ� ∪ ~σn ∧ ¬ψ� ≡ ~σn ∧ ψ ∨ σn ∧ ¬ψ� ≡ ~σn ∧ (ψ ∨ ¬ψ)� ≡ ~σn�
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When a node is split, transitions have to be copied from the original node.
For self loops, all possibilities have to be considered, e. g. if a node has the self
loop n τ

� n, the transition relation after splitting n into n′ and n′′ has to contain
n′ τ
� n′, n′′ τ

� n′′, n′ τ
� n′′ and n′′ τ

� n′. This is depicted in Fig. 6.
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Figure 6: Example of splitting a node n into two nodes n′ and n′′ in an abstract
model. (a) is before the split, (b) afterwards.

Splitting alone is not enough for an effective refinement, as it does not
reduce the number of abstract paths. After splitting however, some of the
edges in the transition relation might actually become infeasible and every path
that contains them automatically becomes infeasible as well. These edges can
therefore be removed from the ARG. As further consequence, some nodes might
even become unreachable from the initial node in the ARG and can also be
removed. It is sound to remove an edge n τ

� n′ if the associated path formula
σ(ν(n)) ∧Φτ ◦ σ(ν(n′)) is infeasible.

2.12.1 For programs: Kojak

Abstraction slicing can be used as a refinement for programs, which contain
information about the control flow. An example is the Kojak algorithm [6], that
is also implemented in the software model checker Ultimate [7]. Kojak starts
with an initial abstract model that reassembles the CFA, where each abstract
state has the state formula >. As long as an infeasible error path is present, a
sequence of inductive interpolants is generated. For interpolation, it is sufficient
to use the data transition formulas in the path formula, e. g.:(

σ(ν(n0)) ∧ ϕ0 ◦ σ(ν(n1)) ∧ ϕ1 ◦ · · · ◦ σ(ν(nm)) ∧ ϕm
)

(1)

The reason for this is that the control flow integrity is already assured by the
initial abstract model. Each node on the path is then split according to the
corresponding interpolant. After splitting, the edges are checked for feasibility
in a slicing step. It is sufficient to use the data transition formulas in the slicing
path formula, e. g., σ(ν(n)) ∧ ϕτ ◦ σ(ν(n′)), by the same argument that holds for
the interpolation. The inductive property of the interpolants can be used to
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show that each refinement ensures a certain progress, i. e., the same error path
will not be discovered again [6].

The algorithm continues splitting and slicing until either a concretizable error
path is discovered – in which case the program does not fulfill the specification –
or no more error states are present (reachable from the initial node) in which
case the program satisfies the specification.

Note that original formulation of Kojak uses LBE as an optimization. This
leads to a smaller abstract model, where there are fewer interpolants per error
path. Another effect is that the path formulas describe more than one transition,
so they are generally harder to proof infeasible by a solver. But this also allows
offloading work from the interpolation to the slicing step. For example, imagine
a sequence of two transitions τ1 = ”[x == 0]” and τ2 = ”[x == 1]” with n0

τ1� n1

and n1
τ1� n2. The formula for the sequential composition of both transitions

is infeasible, independent on the state formulas, whereas the formulas for the
individual transitions could be feasible. In the case where the transitions are
considered separately, an interpolant like x = 0 has to be added before the slicing
can be successful. When both transitions are treated as a single transition, this
interpolation step is not necessary.

The application of the Kojak algorithm to the example program in Fig. 1 is
shown in Fig. 7. In Fig. 7a the initial abstract model is shown, which is just the
CFA of the example program from Fig. 1b annotated with a state data formula >
for every abstraction node. An error path through nodes 2,3,4,7,9,10 is present.
As this path is infeasible, interpolants are calculated. For nodes 2 and 3 these
are >. At node 4 a valid interpolant is i = 0. For locations 7,9,10 the interpolant
is ⊥ since the transition from location 4 to location 7 is incompatible with the
interpolant at location 4. Figure 7b shows the state of the abstract model after
splitting according to these interpolants. Only node 4 is split into nodes 4’ and
4′′. The other nodes on the error path are not split, because doing so with an
interpolant that is > or ⊥ has no effect (other than changes of node labels) after
the slicing step. The effect of the slicing step can be seen in Fig. 7c. Edges from
nodes 4’ to 7 and 3 to 4′′ are removed because they are not compatible with the
interpolants added to the split nodes. The effect of this refinement is that the
original error path is no longer present. The shortest error path is now longer
than the previous one, as can be seen in Fig. 7d where the nodes where merely
repositioned. The refinement effectively unrolled one loop iteration, so at least
two more refinements would be necessary to proof the program correct.

2.12.2 For transition systems: SLAB

Kojak makes use of the control flow in order to find a suitable initial abstract
model. This however limits the kind of transition systems that can be analyzed
to programs, which contain control-flow information.

The first approach that introduced the idea of abstraction slicing for software
model checking does not depend on control flow [4] and is implemented in the
tool SLAB [5]. It is intended for checking infinite-state concurrent systems and
contains several optimizations, which will not be covered in full extend here.
We will limit the description to the basic concept and only those optimizations
that are important for further understanding. The procedure will nonetheless
be referred to by the name SLAB.
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Figure 7: First refinement of Kojak applied to the example program from Fig. 1.
(a) shows the initial abstract model, (a) is after the first split. In (c) infeasible
edges have been sliced. (c) is a rearrangement of the nodes to show that the
minimal error path length changed.

For the initial abstract model, SLAB uses abstract states with state formulas
that consist of conjunctions of two predicates and their negations. One of them
is the predicate init(X) that identifies the concrete states that are considered
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as initial states. The other one is the predicate error(X) that defines which
concrete states are considered error states. In total there are four different ways
to make a conjunction out of these two predicates and their negation. The initial
abstract model contains one node for each of these four abstract states. The
transition relation starts with all possible transitions between these four nodes:
�= N×T×N. The two nodes where the predicate init(X) appears in unnegated
form constitute the set of initial nodes.

Regarding soundness, every concrete state has to be represented by exactly
one of these four nodes, as the disjunction of their state formulas is equivalent to
>. A transition from a node to another node is always possible for an arbitrary τ.
This means that for every concrete path there is an abstract path, which means
this initial abstract model is indeed sound.

The initial abstract model in its general form can be seen in Fig. 8a. The edges
are labeled with sets of actions now, as due to the lack of control flow the number
of edges between two nodes is not limited. The state formulas are written next
to their node. In most cases the formula init ∧ error is unsatisfiable. Otherwise
there would be an initial concrete state that already violates the specification.
The initial abstract model can be simplified by removing this node, resulting in
the abstract model shown in Fig. 8b. It can further be simplified by slicing those
transitions that are infeasible. The exact result of this depends on the program,
an exemplary slicing result as it occurs for most programs with control flow is
shown in Fig. 8c. Here the middle node n2 represents all intermediate program
states and therefore also aggregates most of the transitions from the transition
set T in a self loop. By splitting, the set of transitions for this self loop usually
gets smaller, an more detailed abstract model is generated. One possibility of
such a split is shown in Fig. 8d.

21



n1

init ∧ ¬error

n2

¬init ∧ ¬error

n3

init ∧ error

n4

¬init ∧ error

T

T

TT
T

T T

T
TT

T

T

T T

T T

(a)

n1

init ∧ ¬error

n2

¬init ∧ ¬error

n4

¬init ∧ error

T

T

T

T
TT

T T

T

(b)

n1

init ∧ ¬error

n2

¬init ∧ ¬error

n4

¬init ∧ error

{τ1}

{τ2}

T
\
{ τ

1 ,τ
2
}

(c)

n1

init ∧ ¬error
n′

2

¬init ∧ ¬error ∧ I

n′′
2¬init ∧ ¬error ∧ ¬I

n4

¬init ∧ error

{τ1}

{τ3}

{τ2}

T
\
{ τ

1 ,τ
2 ,τ

3
}

(d)

Figure 8: Visualization of different phases in SLAB. (a) shows the unsimplified
initial abstract model, in (b) node n3 is removed since it is normally infeasible. (c)
shows an exemplary result of slicing edges in (b). A possible result of splitting
and slicing is shown in (d)

SLAB in its original form does not use inductive interpolants for splitting.
Instead, the minimal spurious subpath in the error path is identified. This
subpath is then split before its last transition and a single Craig interpolant is
calculated for these two formulas. The result is a single interpolant at the second
last state in the subpath. The intention behind this is to find a split that effects
many abstract paths at once, not just the error path currently in consideration.

Abstraction slicing works for a wide range of splitting criteria, so the exact
interpolation method can be seen as a configurable component. We will deviate
from the original description and also use inductive interpolants for SLAB, as
this will make it easier to compare it to the other techniques like Kojak and Impact
that also use this kind of interpolation.

Up to now, only the basic form of SLAB has been described. Among the
different optimizations, there is one that can reduce the node count of the
abstract model by bypassing intermediate nodes, much like Kojak uses LBE for
the same purpose.
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Whenever there is a node n that has incoming transitions Ti from only a fixed
node ni and outgoing transitions To to only a fixed node no, n can be bypassed.
This happens by adding so-called bypass transitions to the set of transitions:

T′ = T ∪ {τi ◦ τo | τi ∈ Ti, τo ∈ To}

For each possible pair (τ1, τ2) ∈ Ti × To, the transition ni
τi◦τo� no is added to the

transition relation, while the transitions ni
τi� n and n

τo� no are removed. Since
the node n is then unconnected to the rest of the abstract model, it can also
be removed from the set of nodes. The semantics of the bypass transitions is
naturally defined by the sequential composition of the corresponding transition
predicates:

Φτi◦τo = Φτi ◦Φτo

For an example of bypassing, look at node n′2 in Fig. 8d. This node can be
removed if the bypass transition n1

τ1◦τ3� n′′2 is added.
The application of SLAB to the example program in Fig. 1 will look essentially

like shown in figure 7, where τ1 = ”error = 1” is the first action from the initial
node and τ2 = ”error = 1” is the action that leads to the error location. The
transition predicate for τ1 then is pc = 2 ∧ pc′ = 3 ∧ error′ = 0 and for τ2 it is
pc = 9 ∧ pc′ = 10 ∧ error′ = 1. The error path (n1, τ1,n2), (n2, τ2,n4) in Fig. 8c
is spurious because the program counter values of the two transitions are not
compatible. As a consequence, the interpolant for splitting will be pc = 3. This
way, consecutive splittings will uncover those parts of the control flow that are
necessary to verify the program.

3 Slicing Abstractions as CPA

So far, two different existing approaches for abstraction slicing have been
presented. One that makes use of the control flow of a program and one that
does not. The CPA framework (in combination with the CEGAR algorithm)
can be used to express various analyses using the same algorithmic setup. This
makes it possible to find differences, common aspects and also aids a better
comparison by varying joint building blocks [13, 21].

In order to be able to compare these two abstraction slicing techniques to
each other as well as to other state of the art approaches, they can be fitted into
the CPA framework. This consists of two parts. The first is to determine the
inputs for the CPA* algorithm that will lead to the desired abstraction. The
second part is to determine the inputs for the CEGAR algorithm, especially the
refinement procedure that will perform the splitting and slicing steps. Ideally
this refinement is designed in a way that it is the same for both CPAs. This might
even make it possible to use the refinement as a building block and combine it
with already existing CPAs to from new analyses.

Both analyses will be configured as a global refinement. The CPA algorithm
builds the initial (and sound) abstract model and then the global refinement will
attempt to remove all error states or find a feasible counterexample.
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3.1 Kojak Analysis

The Kojak analysis will first be formulated in a form that is equivalent to
single-block encoding. After that we add adjustable-block-encoding in order to
be able to comparable our implementation to the original Kojak implementation
which uses large-block encoding.

3.1.1 With Single-Block Encoding

CPA The Kojak analysis has the CPA DK = (DK, K,mergeK, stopK), where
the abstract domain is DK = (C, ~·�K, (EK,vK,tK,>K,⊥K)). The abstract domain
for the analysis has to keep track of the program counter as well as the data-state
formula. Therefore an abstract state in EK can be modeled as a tuple (l, ψ).
l is an integer (or the special element l>) indicating the value of the program
counter and ψ is a formula over the data-state variables V. l> is needed to be
able to define a proper lattice. Two data-state formulas who are equivalent
are considered to be the same element. This removes syntactic differences in
formulas, e. g. a∧¬a and > are equivalent and therefore (0, a∧¬a) is considered
to be the same abstract state as (0,>). The concretization function ~·� for this set
of abstract states is given by the following identity:that

c ∈ ~(l, ψ)� ⇔ c(pc) = l ∧ ψ[c(X)/X]

The reached set and the wait list for the CPA* algorithm are set to {(l0,>)}. In
order to configure a global refinement, the abort function always returns false.
The transfer relation does not need to change the data-state formula, it just has
to ensure that the control flow is respected:

(l, ψ) τ
 (l′, ψ′) ⇔ l τ

→ l′ ∧ (ψ ≡ >) ∧ (ψ′ ≡ >)

The merge operator always merges nodes provided they share the same location:

merge((l, ψ), (l′, ψ′)) =

{
(l, ψ ∨ ψ′) if l = l′

(l′, ψ′) otherwise

The stop operator marks a state as covered if there is a state in the reached set
that has the same location and whose data-state formula is implied by the
data-state formula of the covered state:

stop((l, ψ), reached) =

{
true if ∃(l′, ψ′) ∈ reached : l ∈ {l′, l>} ∧ (ψ⇒ ψ′)
f alse otherwise

When the CPA* algorithm is executed with this inputs, the merge operator
does not return a different abstract state when given two states with the same
location. This is because the data-state formula does not actually change.
The coverage relation induced by the stop operator marks all states with same
location. We can use this to construct the desired abstract model that reassembles
the control flow graph if we remove the covered nodes and deflect their incoming
edges to the node which covers them as described in Section 2.7.2.

We consider this post-processing step to be a implementation detail of the
CPA DARG into which the CPA DK is wrapped in the analysis. The merge
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operator of thisDARG can alternatively complement the merging behavior of
mergeK in order to truly merge states with the same location.

When the CPA* algorithm given these inputs finishes, the ARG that is
constructed byDARG will reassemble the initial abstract model of Kojak.

Refinement The function isTargetState that is given as input to the CEGAR
algorithm (Algorithm 3) will return true for a given abstract state E = (l, ψ) if
the data-state formula and the error predicate are compatible, e. g. if ψ ∧ error is
satisfiable. If the abstract states are guaranteed to be either pure error states or
do not contain any concrete error state, then this is equivalent to demanding
that ψ⇒ error holds.

The refinement function refineSliAbs (cf. Algorithm 4) performs splitting and
slicing until a feasible counterexample is found or no more target states are
present in the calculated reached set. This reached set is constantly updated to
account for the changes that are due to the splitting and slicing procedures. For
this update, a reachability analysis has to be performed on the ARG, starting
from the initial node.

refineSliAbs contains several procedures. getErrorPath returns a list of abstract
states that describe the error path. sat is a decision procedure that decides
whether such a path is feasible. In case the error path is infeasible, the procedure
getInterpolants calculates the sequence of inductive interpolants. The procedure
split uses this sequence to split the nodes on the path while copying the edges
accordingly (cf. Fig. 6). After this, the procedure sliceEdges removes all edges
that are infeasible from the ARG.

Note that, as slicing can remove edges between two parts of the ARG that
might or might not be connected somewhere else, reachability cannot be decided
locally. The time complexity of this calculation is linear in the edge count of the
ARG and has no time-intensive operations like solver calls, thus it is unlikely to
be a bottleneck for the performance of the analysis.

Solver calls occur for interpolation and when checking each edge in the slicing.
Since only some of the edges are actually affected by the added interpolation
predicates, the slicing can be optimized to only call the solver in cases where the
result is unknown.

3.1.2 With Adjustable-Block Encoding

The CPADK looks very similar toDABE. In fact, they are so similar thatDABE
can be seen as a generalization of DK. If we choose an blksbe and an empty
precision forDABE, all states will be abstraction states and the state formulas ψ
will remain > as desired.

The reuse ofDABE has the advantage that we can use different block operators.
When using blkabe, we get adjustable-block encoding for free. The result of
running the analysis with this block operator is shown in Fig. 9a. The abstraction
states are labeled with their data-state formula, which is always >. The other
components of the abstract state are not shown, as they are not of interest for
Kojak.

Refinement In order to make refineSliAbs work on abstract models that con-
tain non-abstraction states, some of the procedures in the refinement have
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Algorithm 4 refinement refineSliAbs for abstraction slicing

Input: a list of abstract states waitlist,
a list of abstract states reached

Output: false if abstract error state reachable, true otherwise
Variables: a map interpolants ⊆ E→ F (X) of abstract states to formulas, a list

errorPath of abstract states, a list of abstract states currentReached
1: currentReached = reached
2: while ∃e ∈ currentReached : isTargetState(e) do
3: errorPath = getErrorPath(reached)
4: if sat(errorPath) then
5: return (waitlist, currentReached)
6: interpolants = getInterpolants(errorPath)
7: for all (n, I) ∈ interpolants do
8: split(n, I)
9: currentReached = updateReachedSet(currentReached)

10: for all n ∈ currentReached do
11: sliceEdges(n)
12: currentReached = updateReachedSet(currentReached)
13: return (waitlist, currentReached)

to be adapted. For one, the procedure getErrorPath is modified such that it
only returns the abstraction states on the error path. The interpolation step
in getInterpolants then needs to construct the path formulas between these
abstraction states and use them to calculate the inductive interpolants at the
abstraction states in the path.

Bigger changes are necessary for the splitting and slicing steps, since the
concept of what an edge for slicing is has changed. As the abstraction nodes are
what is important for the analysis, it is of interest whether two abstraction nodes
are connected via non-abstraction nodes. We call the non-abstraction nodes
that lie between these two nodes segment and say that there is a segment edge
between the two states. Each segment has an abstraction node at which it starts
and an abstraction node at which it ends. For example, in 9a there is a segment
edge between the node at location 4 and the node at location 10 with a segment
containing the nodes at locations 7 and 9. So instead of slicing the usual edges
between abstract nodes (which could be non-abstraction or abstraction nodes),
the whole segment edges have to be checked for feasibility in the slicing step.
Eventually, the abstraction has to be changed in a way that the segment edge
is removed. The latter has to be done in a way that does not change the other
segment edges, which is not always trivial. We can see this if we look at a
butterfly-like graph as shown in Fig. 9b. Suppose the slicing determined that the
segment edge between n1 and n3 is infeasible. In order to remove the segment
edge, it is clear that the direct edge from n1 to n3 needs to be removed. Also,
the segment has to be disconnected from the abstraction nodes somehow. But
neither the edge from n1 to na nor the edge from nb to n3 can be removed, as this
would also affect the segment edges between n1 and n4 or n2 and n3.

One way of solving this is to copy the segment immediately before slicing
and thus eliminate the butterfly configuration (copy-on-slice). An example for
this is shown in figure 9c. Here the segment is duplicated such that each
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Figure 9: Various examples for explaining the design of Kojak with ABE
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non-abstraction node is only in segments that start at the same abstraction node.
If this property holds for every non-abstraction state, slicing a segment edge
can be performed by cutting the right regular edges. In the example of Fig. 9c,
these are the edges from n1 to n3 and from n′b to n3.

The other way is to avoid having non-abstraction states that are in segments
with different abstraction states at the beginning. Due to the way how DABE
is designed, the initial abstract model is already in this form. Violations then
occur when the splitting behavior is not changed compared to the SBE case. A
solution here is to copy the segment edges instead of the regular edges when
splitting (copy-on-split).

In Fig. 9d there is an example of how a part of the abstract model looks like
after the CPA* analysis finishes. Suppose the abstract node n1 is split into n′1
and n′′1 like in the SBE case, then the result would look like Fig. 9e, where slicing
the segment edge from n′1 to n3 is a nontrivial task. Instead we can split n1 like
shown in Fig. 9f, copying every segment that starts at n1 and ends at n3 over to
n′′1 while replacing n1 by n′1. This way slicing the segment edge from n′1 to n3 is
straightforward. A drawback is the multiple copies of non-abstraction states
that get generated this way.

3.1.3 Interprocedural Analysis

So far, we have not discussed the call of procedures. Since the call of a procedure
can happen at multiple locations, there are also multiple possible return positions
after the procedure call. This is normally indicated by a special return edge in
the CFG. This allows the CFG to be more compact, since inlining the procedure
leads to multiple copies of the body. Inlining also has the disadvantage that
recursive calls cannot be handled this way.

For the case where the procedure calls are not inlined in the CFG, we need
to extend the CPA for Kojak in order to remain precise. Otherwise a path
where we exit the procedure at the wrong return node will not be recognized
as infeasible. This can be fixed by taking advantage of the CPA framework. A
call-stack CPA DCS that keeps track of the call stack can be added to DABE using
CPA composition. This way, when the CPA* algorithm constructs the initial
abstract model, states inside the body of the procedure that belong to different
procedure calls have a different call-stack state and are therefore not merged.
In the resulting initial abstract model, the procedure will now be inlined and
soundness is restored.

The CPA* algorithm will not terminate with the new composite CPA as input
if we want to analyze a recursive program. One way of fixing this is representing
the call stack symbolically as part of the transition formulas instead of using
the call-stack CPA DCS. As this would reduce the interprocedural analysis to an
intraprocedural analysis and thereby also occlude important information about
the procedural nature of the program structure, we are not going to explore this
any further. After all, such a symbolic call-stack representation is orthogonal to
Kojak and might be useful also for other analysis.

Note that the software model checker Ultimate uses a special recursive CFG
and nested word automata with nested (tree) interpolants for proving recursive
programs [7, 22, 23].
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3.2 SLAB Analysis

For the analysis reassembling SLAB we will procede in a similar manner as with
Kojak. First, we define an analysis that has edges that only contain a single
transition. After that, we add an optimization that is comparable to large-block
encoding.

3.2.1 With Single-Block Encoding

CPA The CPADS = (DS, S,mergeS, stopS) for SLAB does not need to track
the program counter explicitly. Therefore the abstract states can be chosen as
state formulas ψ, which can contain information about the program counter
symbolically. The subsumption relationvS for the latticeES = (ES,vS,tS,>S,⊥S)
of the abstract domain DS = (ES, ~·�S,C) generates a flat lattice where — apart
from >S and ⊥S — only equisatisfiable formulas are subsumed:

ψ vs ψ
′
⇔ (ψ⇔ ψ′) ∨ ψ ≡ ⊥S ∨ ψ

′
≡ >S

The elements >S and ⊥S can be identified with the formulas for true and false,
> and ⊥ respectively.

The transfer function depends on the two predicates init and error that mark
the abstract states as initial states or error states. For every state ψ in the set of
abstract states E and every action τ out of the set of actions T the transfer relation
will allow the four possible boolean combinations of these two predicates as
successors. More formally, the following holds:

∀τ ∈ T, ψ ∈ E : ψ
τ
 s (init ∧ error) ∧ ψ

τ
 s (init ∧ ¬error) ∧

ψ
τ
 s (¬init ∧ error) ∧ ψ

τ
 s (¬init ∧ ¬error)

The merge operator checks its two arguments ψ,ψ′ for subsumption:

merges(ψ,ψ
′)) =

{
ψ ∨ ψ′ if ψ vs ψ′

ψ′ otherwise

Here again, the merge operator will have no immediate effect in the CPA*
algorithm since it will always return the same lattice element as its second
argument. The CPADARG that is responsible for constructing the ARG however
may merge the two corresponding nodes if the subsumption holds for their
wrapped abstract states.

The stop operator returns true if the subsumption holds for any element in
reached:

stops((l, ψ), reached) =

{
true if ∃ψ′ ∈ reached : ψ vs ψ′

f alse otherwise

Refinement In SLAB, the target locations are only given implicitly in form of
the error predicate. Therefore isTargetState in principle needs to check whether
ψ ∧ error is satisfiable. But since the state formulas in the initial abstract model
either contain error or ¬error and the refinement only adds predicates, the target
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state information can be determined more efficiently by caching this information
for each state. Target states always split into target states and all other states
never become target states.

The refinement function refineSliAbs(cf. Algorithm 4) can also be used for
SLAB with minor extensions. For the generation of the path formulas of the
error path and also for slicing, we need to use the full transition formulas instead
of just the data transition formulas. This will add the neccessary information
about the program counter symbolically. In order to get a behavior similar to
the original design of SLAB, we have to make sure that sliceEdges considers
each possible transition τ between two states separately.

For Kojak, it is always the case that there is not more than one τ ∈ T that
connects two states, while for SLAB there can be arbitrary many. For clarity, we
call the set of direct transitions between two states in the abstract model an edge
set. When constructing the path formula for slicing, we could simply make a
disjunction of the transition formulas of all transitions in the edge set between
two states. This would then lead to removing the connection between two states
only if there exists no τ ∈ T for which the transition is possible.

By breaking this path formula down into multiple formulas, we get smaller
formulas for which the satisfiability may also be solved faster. If then all but
one of these formulas are unsatisfiable, we can make use of this information by
removing the corresponding transitions from the edge set. Only when the edge
set is empty, there is no direct connection between the two states in the ARG
anymore.

The analysis for SLAB described up to this point is already functional.
Whenever a spurious error path is encountered, the CEGAR refinement will
discover new predicates and split the states accordingly. These new predicates
may contain assumptions about the program counter values. Thus the control
flow will become apparent if it is necessary for proving the program correct.

3.2.2 With Flexible-Block Encoding

The original version of SLAB uses transition bypassing as an optimization.
This leads to composition of sequential transitions into larger blocks wherever
possible. The similarity to LBE is evident. We can now add transition bypassing
to the SLAB analysis in a similar manner as we added ABE to Kojak. This results
in flexible-block encoding(FBE)2.

As for ABE, we differentiate between abstraction and non-abstraction nodes.
In the initial abstract model, each node is an abstraction node. After each
refinement iteration, there might be some nodes for which transition bypassing
is possible, that is:

• the node is an abstraction node

• the node has only one incoming edge with exactly one transition in the
edge set

• the node has only one outgoing edge with exactly one transition in the
edge set

2Originally we used the name dynamic-block encoding for this, but a recent publication uses
that term for a conceptually different approach [24]. In order to avoid confusion we switched the
name to FBE.
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• the node has no self loop (neither direct or via a segment edge)

We can formalize these criteria into a block operator blksimple that, given a
node in the abstract model, determines whether it shall be an abstraction node
or not.

For adding flexible-block encoding, we modify refineSliAbs as can be seen in
Algorithm 5. At the end of the while loop, we iterate through every abstraction
node in the abstract model and determine whether we can convert it into a
non-abstraction node using the block operator. Because this may change the
structure of segment edges between abstraction nodes, as a second step we try
to slice each affected segment edge. This in return might change the result of
the block operator for some abstraction nodes. As a consequence both steps
are repeated in a fixed-point iteration until no more nodes are converted into
non-abstraction nodes. In the end, the reached set is recalculated as it might
also have changed.

Algorithm 5 refinement refineSliAbs with flexible-block encoding

Input: a list of abstract states waitlist,
a list of abstract states reached

Output: false if abstract error state reachable, true otherwise
Variables: a map interpolants ⊆ E→ F (X) of abstract states to formulas,

a list errorPath of abstract states,
a list of abstract states currentReached,
a boolean fixpoint indicating whether FBE has reached a fixed point

1: currentReached = reached
2: while ∃e ∈ currentReached : isTargetState(e) do
3: errorPath = getErrorPath(reached)
4: if sat(errorPath) then
5: return (waitlist, currentReached)
6: interpolants = getInterpolants(errorPath)
7: for all (n, I) ∈ interpolants do
8: split(n, I)
9: currentReached = updateReachedSet(currentReached)

10: for all n ∈ currentReached do
11: sliceEdges(n)
12: fixpoint = false
13: while !(fixpoint) do
14: fixpoint = performFBE(currentReached)
15: sliceAllEdges()
16: currentReached = updateReachedSet(currentReached)
17: return (waitlist, currentReached)

The resulting block encoding from performing FBE with the block operator
blksimple described above is very basic, as it only generates blocks with linear
sequences of transitions. In LBE also simple control-flow branchings and merges
are summarized into one block, as long as no loop is formed.

By changing the block operator, this can also be achieved for FBE. The new
block operator blklarge will also return true if there are multiple incoming or
outgoing edges, provided that there is only one transition in each corresponding
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edge set. An important point here is that butterfly-like abstract models (cf. 3.1.2)
might arise if FBE is performed with this new block operator. That means that
the slicing step needs to be able to handle this, e. g. by copy-on-slice.

3.2.3 Interprocedural Analysis

Just like in the case of Kojak, the SLAB-like analysis as described here is inherently
imprecise with regard to interprocedural programs. For Kojak we were able to
fix this by adding a CPA that tracks the call stack. The information about the
right procedure exit points is then encoded into the abstract model during the
execution of the CPA* algorithm.

For SLAB this is not as simple. When we add a CPA that tracks the call stack
to the CPA for SLAB, the CPA* algorithm does not terminate for programs that
contain procedures. That is because for every abstract state there is always a
successor that results from one of the procedure-call edges and therefore has
a call stack that is one element larger than the call stack of the original state.
For solving this problem we need to add the information about the call graph
for the call-stack CPA such that a successor for a procedure-call edge is only
generated if the procedure call is possible from the context of the procedure that
is on top of the call stack. With this modification, the CPA* algorithm will create
an abstract state for every possible call-stack configuration and every possible
combination of the predicates init and error.

The necessary call-graph information can be encoded into the CFG, i. e., each
procedure-call edge contains the information about the context from within
which it is called. The resulting modification to the CFG is similar to the
recursive CFG used by Ultimate Kojak. The difference is that in the RCFG the
information about the call context is stored in the return edges, not the call
edges. This indicates that there might be a natural extension that leads to an
analysis that can verify recursive programs.

3.3 Connection between Slicing Abstractions and Impact

The refinement procedure refineSliAbs used in the CEGAR refinement for Kojak
and SLAB can also be used for other analyses. It is closely related to the
refinement procedure refineimpact of the CPA version of Impact [20]. In both
refinements, a sequence of interpolants is generated for the error path. While
Impact adds the interpolants to the states and then removes those that become
infeasible, the refinement refineSliAbs additionally generates a split state where
the negated interpolant is added instead. In an analysis like Impact where the
merge operator never merges states, the abstract model has a tree-like shape
and therefore this additional split state will always be removed by the slicing.
The reason for this is that the interpolant is a true invariant at this position in the
abstract model, as there is only one path from the tree root to the state. The only
way for the split state to not be removed is if it has a different parent from which
the transition is feasible, but this is never the case because of the tree shape.

As a consequence, refineSliAbs will remove all states from the abstract model
that are removed by refineimpact. It might however also remove other subtrees of
the abstract model, as Impact does not check whether the edges between the states
are feasible. It is not obvious whether this is an advantage or a disadvantage.
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On the one hand, the removed subtrees might contain states that are still in
the waitlist. In this case refineSliAbs saves us from unnecessarily exploring those
states. On the other hand, there might also be states in the deleted subtrees that
cover other states or would cover other states in the future. Removing them
means throwing away useful information that has to be rediscovered later. We
will answer the question whether refineSliAbs can improve an Impact-style analysis
later in Section 4.6.

4 Evaluation

In this section we will perform benchmarks in order to evaluate how different
variants of the new analyses perform compared to each other as well as compared
to already existing ones.

Here is an overview of the different configurations that we will evaluate:

UKojak This is Kojak as implemented in the Ultimate framework [7]. We use
the version that was submitted for SV-COMP18.

CPAKojak-abel CPAchecker configured to perform an Kojak-like analysis with
ABE as described in Section 3.1.2. The corresponding configuration file is
predicateAnalysis-Kojak-ABEl.properties.

CPAKojak-abel-lin As CPAKojak-abel, but the SMT solver uses linear instead of
bit-precise theory.

CPAKojak-sbe The same as CPAKojak-abel, but the block operator sets every
state to be an abstraction state. This results in SBE. The corresponding
configuration file is predicateAnalysis-Kojak-SBE.properties.

CPAKojak-fbe The same as CPAKojak-abel, but with additional FBE. In the begin-
ning, the block sizes are as in LBE. During the refinement, blocks can
increase in size due to FBE.

CPAPredAbs-abel CPAchecker configured to perform predicate ab-
straction with ABE. The corresponding configuration file is
predicateAnalysis.properties.

CPASlab-sbe A configuration of CPAchecker that performs a basic SLAB-like analy-
sis as described in Section 3.2.1. Handling of the call stack has not been im-
plemented, therefore this analysis is inherently imprecise. The correspond-
ing configuration file is predicateAnalysis-Slab-SBE.properties.

CPASlab-fbe The same as CPASlab-sbe, but with FBE enabled (cf. Section 3.2.2).

CPAImpact-abel A configuration where CPAchecker performs a predicate analysis
with a refinement as described in “Lazy Abstraction with Interpolants” [19].
ABE is used to speed up the analysis. The corresponding configuration
file is predicateAnalysis-ImpactRefiner-ABEl.properties.

CPAImpact-sbe Like CPAImpact-abel, but with SBE. The corresponding configuration
file is predicateAnalysis-ImpactRefiner-SBE.properties.
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CPASliAbs-abel Like the configuration for Impact, but the the refiner of impact
is replaced by refineSliAbs. The corresponding configuration file is
predicateAnalysis-ImpactRefiner-ABEl.properties.

CPASliAbs-sbe This configuration uses SBE instead of ABE. Everything else
is identical to CPASliAbs-abel. The corresponding configuration file is
predicateAnalysis-ImpactRefiner-SBE.properties.

In the configurations that work with FBE (CPAKojak-fbe and CPASlab-fbe),
the basic block operator blksimple is used. This is only because the current
implementation does not yet support copy-on-slice (cf. 3.2.2).

Whenever ABE is used, the block operator is configured to create abstraction
states at loop heads.

If not stated otherwise, MathSAT5 with bit-precise representation is used in all
configurations of CPAchecker. The version of CPAchecker used is revision 28465.

4.1 Benchmark Overview

Tasks In order to perform a meaningful benchmark, we need a set of tasks (C
programs) that is both large enough and representative for the kinds of problems
that verification has to deal with.

For benchmarking, we choose a well-established set of tasks from the
Competition on Software Verification(SV-COMP). While the benchmark set
of SV-COMP has many categories, we will restrict our benchmark to the
category reach safety, which contains 2942 tasks in 10 subcategories (see Table 1).
Our analyses will work for some of the other categories as well, but reach
safety should already be enough to compare the basic performance of different
configurations. The version of the tasks we will use is the one at the svcomp18
tag in the official benchmark repository3.

Environment It has been shown that for reliable benchmarking several aspects
have to be considered that can easily be done wrong [21]. For example, the exact
measurement of resource consumption as well as resource limitation are not
trivial. This can be done by making use of process namespaces and cgroups,
features that are available in the linux kernel since version 3.16. We will use
BenchExec4 to execute the tasks, which creates a containerized environment for
each task to run in. For the benchmark systems we use machines with uniform
hardware. Each machine consists of an Intel Xeon E3-1230 v5 CPU with 8
processing units and 33 GB of memory. The operating system on all machines is
Ubuntu 16.04, with the long-term support linux kernel version 4.4.0.

With BenchExec, we are able to set a time limit of 900 seconds, a memory limit
of 15 GB and ensure that the tool can use all 8 processing units. Note that this is
the same environment that was used for SV-COMP18, thus the results should be
directly comparable to the results for any tool used in the competition. While the
kernel version used in SV-COMP18 also was 4.4.0-101, we use version 4.4.0-128
which includes patches that mitigate recently discovered vulnerabilities in the
Intel x86 CPU hardware architecture [25, 26]. As these might have a measurable

3https://github.com/sosy-lab/sv-benchmarks/tree/svcomp18
4https://github.com/sosy-lab/benchexec
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influence on the computation times [27], we will not reuse the results of UKojak
from SV-COMP18 and instead reproduce them with the current kernel version.

Results An overview of the benchmark results for each of the configurations
explained in Section 4 is shown in Table 1.

4.2 Comparision with Ultimate Kojak

In order to assess the validity of our implementation, we can compare the new
Kojak implementation for CPAchecker with the original version UKojak. As UKojak
uses LBE, it is best compared to CPAKojak-abel. Another important component is
the SMT solver that is used for satisfiability checks as well as the underlying
theory for integer and floating point representation. According to the technical
paper [7], UKojak uses Z3 for feasibility checks of error paths and transition
formulas and does interpolation via SMTInterpol. It is unclear whether this still
holds for the version of UKojak submitted to SVCOMP18 or whether Z3 has been
dropped in favor of SMTInterpol.

The default solver for CPAchecker is MathSAT5 with bit-precise representation of
integers and floats. We can change this to a linear representation (floats are then
encoded as rational fractions) which results in the configuration CPAKojak-abel-lin.
Changing the solver from MathSAT5 to SMTInterpol does not have a significant
impact on the benchmark results. As a consequence we do not show benchmarks
where MathSAT5 is replaced by SMTInterpol.

Now we can have a look at UKojak, CPAKojak-abel and CPAKojak-abel-lin. These
tool configurations are shown in the first three columns of Table 1.

Recursion The first observation is that our implementations of Kojak in
CPAchecker cannot handle recursive programs, while UKojak can solve some of
the tasks in this category by making use of nested word automata with nested
interpolants [7, 22, 23].

Soundness Both UKojak and CPAKojak-abel are sound, as there are (close to) no
incorrect results. The one incorrect result of CPAKojak-abel in the heap subcategory
also appears for other sound analyses of CPAchecker like CPAPredAbs-abel and is
therefore not a unsoundness that originates from our particular implementation.

While CPAKojak-abel-linmanages to solve more tasks than CPAKojak-abel, it also
produces incorrect results. This is as expected, since the linear representation is
faster but also unsound.

Performance In general, the number of tasks solved per subcategory are
similar for CPAKojak-abel and UKojak. Overall, CPAKojak-abel can classify more
tasks correctly.

In subcategories where the numbers of solved tasks are more or less the
same, one would expect the tasks to be the same for both tools. This is however
not always the case, indicating that there are differences in other parts of the
tools that are not related to the Kojak refinement algorithm.

A scatter plot of the CPU time comparing both tools is shown in Fig. 10. Only
tasks that both tools classified correctly are drawn. Points below the central
diagonal are solved faster by CPAKojak-abelwhile for the points above UKojak is
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arrays (167 tasks)
correct results 10 11 4 3 5 4 3 6 6 3 3 7 5

correct true 6 3 2 2 3 2 2 3 2 1 2 2 2
correct false 4 8 2 1 2 2 1 3 4 2 1 5 3

incorrect results 0 16 0 0 0 0 0 0 0 0 0 19 13
bitvectors (50 tasks)

correct results 19 19 36 27 33 34 30 39 28 31 30 17 19
correct true 11 12 25 17 23 23 23 29 20 20 23 12 14
correct false 8 7 11 10 10 11 7 10 8 11 7 5 5

incorrect results 0 27 0 0 0 0 1 0 0 0 1 4 5
control flow (94 tasks)

correct results 31 68 59 44 52 55 24 62 34 39 23 4 8
correct true 16 33 29 16 26 26 11 33 14 17 10 2 6
correct false 15 35 30 28 26 29 13 29 20 22 13 2 2

incorrect results 0 0 0 0 0 0 0 0 0 0 0 0 0
ECA (1149 tasks)

correct results 328 235 200 6 201 450 3 477 4 241 3 1 3
correct true 267 151 160 4 162 301 3 333 3 167 3 1 3
correct false 61 84 40 2 39 149 0 144 1 74 0 0 0

incorrect results 0 93 0 0 0 0 0 0 0 0 0 0 0
floats (172 tasks)

correct results 33 53 34 6 34 28 6 91 11 27 5 2 2
correct true 29 34 8 2 8 2 2 65 7 1 1 2 2
correct false 4 19 26 4 26 26 4 26 4 26 4 0 0

incorrect results 0 66 0 0 0 0 0 1 0 0 0 0 0
heap (181 tasks)

correct results 100 117 108 94 103 110 94 114 94 100 94 54 77
correct true 52 71 62 51 61 64 52 66 54 59 52 35 43
correct false 48 46 46 43 42 46 42 48 40 41 42 19 34

incorrect results 0 4 1 1 1 1 1 1 1 1 1 1 3
loops (163 tasks)

correct results 96 103 76 73 74 74 71 82 69 71 68 64 63
correct true 60 68 45 41 45 41 40 47 38 40 37 34 33
correct false 36 35 31 32 29 33 31 35 31 31 31 30 30

incorrect results 0 6 0 0 0 0 0 0 0 0 0 7 7
product lines (597 tasks)

correct results 295 462 463 327 463 578 309 551 406 203 304 0 78
correct true 204 275 275 231 275 313 155 317 228 77 150 0 76
correct false 91 187 188 96 188 265 154 234 178 126 154 0 2

incorrect results 0 0 0 0 0 0 0 0 0 0 0 0 0
recursive (96 tasks)

correct results 45 0 0 0 0 0 0 0 0 0 0 0 0
correct true 19 0 0 0 0 0 0 0 0 0 0 0 0
correct false 26 0 0 0 0 0 0 0 0 0 0 0 0

incorrect results 0 0 0 0 0 0 0 0 0 0 0 0 0
sequentialized (273 tasks)

correct results 17 155 131 12 131 127 22 116 14 109 23 1 2
correct true 0 33 17 4 20 13 3 22 3 9 3 0 0
correct false 17 122 114 8 111 114 19 94 11 100 20 1 2

incorrect results 0 14 0 0 0 0 0 0 0 0 0 0 1
total (2942)

correct results 974 1223 1111 592 1096 1460 562 1538 666 824 553 150 257
correct true 664 680 623 368 623 785 291 915 369 391 281 88 179
correct false 310 543 488 224 473 675 271 623 297 433 272 62 78

incorrect results 0 226 1 1 1 1 2 2 1 1 2 31 29

Table 1: Benchmark results for the reach safety tasks when run with different
tool configurations

faster. Points that are between the other two diagonals do not deviate by more
than a factor of 10 in their CPU time.

There is a cluster of tasks that CPAKojak-abel can solve in less than 20 seconds,
In this cluster, CPAKojak-abel tends to be faster than UKojak. In the other cluster of
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Figure 10: Scatter plot comparing CPU time of UKojak and CPAKojak-abel for each
task that both tools where able to label correctly

task for which CPAKojak-abel takes more than 20 seconds, UKojak tends to be faster.
This indicates that our implementation does not scale as good with problem
size as UKojak.

There are two possible explanations for this. For one, the implementation of
block encoding via ABE has a certain overhead, especially for Kojak. When a
segment edge is split, all non-abstraction states have to be copied. Every time
the edge formula for a segment edge is needed – either as part of the error path
or when slicing – it has to be constructed using the current configuration of the
reachability graph. The second explanation is the difference in the time that it
takes solving the SMT queries. This depends on the solver as well as on the
underlying theory.

Fig. 11 shows a scatter plot between CPAKojak-abel to CPAKojak-abel-lin. While
the linear theory tends to decrease the CPU time, it is not enough to change the
scatter plot in Fig. 10 significantly. Thus the second explanation can not explain
the cluster of tasks for which CPAKojak-abel takes longer than UKojak.

There is also strong evidence that supports the first explanation. The majority
of tasks in the cluster where CPAKojak-abel takes more than 20 seconds are from
the ECA subcategory. The control flow of the tasks in this category consist of
large sections of acyclic control-flow branchings and merges. This is exactely
the kind of tasks for which we expect the overhead of the block encoding used
in CPAKojak-abel to be largest.

4.3 Effect of Block Encoding on Kojak

We still need to determine whether ABE has the desired effect on performance
for our implementation of Kojak. We can also enable FBE for Kojak that was
originally added for SLAB and evalulate whether this further improves the
analysis.
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Figure 11: Scatter plot comparing CPU time of CPAKojak-abel and CPAKojak-abel-lin
for each task that both tools were able to label correctly
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Figure 12: Scatter plot comparing CPU time of CPAKojak-abel and CPAKojak-sbe for
each task that both tools were able to label correctly

4.3.1 Effect of ABE

Fig. 12 shows a scatter plot comparing the SBE version with the ABE version of
CPAKojak. ABE almost always leads to a reduction of computation time when
compared to SBE. There is also a significant number of tasks that only the ABE
version is able to solve. This cannot be seen in the scatter plot, but becomes
clear from Table 1.
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Figure 13: Scatter plot comparing CPU time of CPAKojak-fbe and CPAKojak-abel for
each task that both tools were able to label correctly

4.3.2 Effect of FBE

Since ABE has a positive effect on Kojak, we can ask the question whether FBE
can further increase the performance. Fig. 15 shows a quantile plot containing
the benchmark results for CPAKojak-abel and CPAKojak-fbe. It becomes very clear
from the plot that FBE does add a minor overhead to the analysis and does
not in any way increase performance. Keep in mind though that the block
operator for FBE used here is still blksimple because of limitations of the current
implementation. The results could change of the stronger block operator blklarge
is used.

4.4 Comparison of SLAB and Kojak

As can be seen in Table 1, our implementation of SLAB cannot compete with
any of the other analyses. It also has a high number of false alerts which arise
from the fact that our implementation does not yet treat the call stack correctly.
The main reason for the performance loss when compared to Kojak is due to
the high number of solver calls. A comparison is shown in Fig. 14. In the first
iterations of the refinement, the reason for the infeasibility of the error path
is usually a mismatch in program counter value. The program counter value
is then added to one state via splitting and the size of the remaining self-loop
edge set for the split state usually decreases by one (cf. Fig. 8). If the complete
control-flow information is unrolled in this manner, it typically leads to a number
of slicing operations that is quadratic in the number of transitions in the CFG.
As a consequence, the number of solver calls required for rediscovering the
complete control flow can reach in the millions for bigger programs. In the
benchmark the time limit of 900 s is always exceeded before a million solver
calls are reached. This indicates that a solver call takes at least 1 ms on average.
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Figure 14: Logarithmic histograms of the number of solver calls performed by
(a) CPASlab-sbe, (b) CPASlab-fbe,(c) CPAKojak-sbe and (d) CPAKojak-abel. This includes
all tasks where this statistic is available, even if the computed result is incorrect
or the task did not finish in time.

4.5 Effect of FBE on SLAB

4.6 Kojak vs. Predicate Abstraction vs. Impact

4.6.1 With LBE or ABE

Fig. 15 shows a quantile plot comparing UKojak, CPAKojak-abel, CPAPredAbs-abel,
Impact, and CPASliAbs-abel. All analyses shown use ABE or LBE. While our
implementation of Kojak performs better than UKojak, it falls short of predicate
abstraction and Impact analyses. This is despite the fact that they are very similar:
they all use the predicates from a sequence of interpolants for an infeasible error
path to refine their abstract model.

While CPAPredAbs-abel and Impact can use this information to decide whether
to remove states, the Kojak-based analyses need to perform separate solver calls
in order to decide which edges can be sliced. States are then removed only as
a result of this slicing whenever they get disconnected from the initial state.
When an edge cannot be sliced, it can get duplicated in the next refinement
iteration. As a result, the number of edges that need to be checked for slicing
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Figure 15: Quantile plot comparing CPAKojak-abel, CPAPredAbs-abel, Impact,
CPASliAbs-abel and UKojak. All configurations use either LBE or ABE config-
ured to be compareable to LBE.

can duplicate. This overhead of slicing could explain the performance gap of
Kojak when compared to CPAPredAbs-abel and Impact.

Because of this, we try to optimize the slicing as much as possible in order to
rule out that the performance gap is simply a result of missing optimizations.
For some edges we can decide immediately that they are infeasible because of
the structure of the interpolants [6]. We slice these edges without the need of
a time-consuming solver call and also only attempt to slice an edge when the
state formula of one of the states it connects has changed.

Fig. 15 also shows the performance of CPASliAbs-abel, a configuration that
is like CPAImpact-abel except the refinement refineimpact is replaced by the slicing
refinement refineSliAbs. As discussed previously in Section 3.3 these analyses
are very similar. refineSliAbs removes more parts of the abstract model than
refineimpact because it also checks the edges of the changed states for infeasibility.
These slicing checks get more expensive if the segment size is increased,e. g., if
ABE is used. This explains the gap between CPASliAbs-abel and CPAImpact-abel.

4.6.2 SBE

We already saw in Section 4.3.1 that ABE has a positive impact on the performance
of our Kojak implementation. It is also clear that the same holds for predicate
abstraction and Impact [20]. What is however still missing is a comparison of the
SBE variants of the three tools. After all, the disadvantage of CPAKojak-abel arose
from the fact that slicing of large segments has a high cost of computation time.
When the block size is reduced to SBE, this effect should be reduced to some
extend.
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Figure 16: Scatter plot comparing CPU time of CPAPredAbs-sbe and CPAKojak-sbe
for each task that both tools were able to label correctly
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Figure 17: Quantile plot comparing CPAKojak-sbe with CPAPredAbs-sbe and
CPAImpact-sbe. All configurations use SBE

Fig. 17 shows a quantile plot comparing the SBE versions of the tools under
consideration. Surprisingly, CPAKojak-sbe is even faster than CPAPredAbs-abel
for most of the tasks that were solved correctly. CPAPredAbs-sbe however still
manages to solve more tasks. As can be seen in Table 1, this is mainly due to the
product-lines subcategory. In most of the other subcategories, the number of
correct results for CPAKojak-sbe and CPAPredAbs-sbe are remarkably close.
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5 Conclusion

In this section we summarize our findings and give an overview of possible
future work that can be done on the two abstraction-slicing analyses.

5.1 Summary

We were able to successfully implement basic versions of Kojak and SLAB
into the CPAchecker framework. Both analyses share a large fraction of their
implementation and individual components of the implementation like the
refiner are also available for use by other analyses. In the benchmark we
performed, our implementation of Kojak is able to compete with UKojak.

The usage of ABE instead of LBE has a measurable overhead for programs
with very large block sizes. When using SBE, our implementation of Kojak is
faster than predicate abstraction for most tasks, though it does not manage to
solve more tasks in total.

By switching to ABE this advantage in speed vanishes. This indicates that
increasing the block size comes with a drawback for Kojak, since the cost for
slicing edges is increased. As predicate abstraction does not slice edges, it does
not suffer from the same drawback. Apart from this drawback, we were also
able to show that the refinement used for abstraction slicing is very similar to
the refinement used in Impact.

For SLAB, we have shown that an optimization similar to ABE that we call
FBE can be used to increase the performance of the analysis. FBE has however
no positive effect on analyses that can already use ABE.

A comparison of SLAB with Kojak shows that usage of control-flow infor-
mation is preferable to treating the program counter symbolically.

5.2 Prospects

While a lot of work already has been done, there are still a lot of open points for
improvement.

One of them is that we did not yet consider recursive programs. Since a
way how this can be achieved is already known for UKojak, it should not be too
complicated to add this to our implementation of Kojak and potentially also to
SLAB. This might also naturally lead to elimination of function inlining, which
could also give a performance boost to nonrecursive program handling.

In our evaluation, we were only able to use a very basic version of FBE
due to missing support of the current implementation for a more general block
operator. In order to be sure that FBE has no positive effect on analyses that can
already use ABE, the corresponding experiments should be repeated as soon as
the stronger block operator is supported.

Regarding our implementation of SLAB, the original tool also used a number
of additional optimization which we did not yet implement. Maybe adding
these or finding a new optimization can speed up our SLAB implementation
significantly without effectively turning it into a variant of Kojak.

Up to now we did not yet consider different interpolation methods. CPAchecker
enables us to vary a wide number of building blocks like the interpolation method
independently. A systematic evaluation of the effects of changing these building
blocks might give interesting insights. As Kojak is able to generate noninductive
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invariants, adding support of witness generation and validation to our analysis
is also one of the logical next steps.
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