
INSTITUT FÜR INFORMATIK
Ludwig-Maximilians-Universität München

LTL SOFTWARE

MODEL CHECKING

in CPAchecker

Thomas Bunk

Master Thesis

Supervisor Prof. Dr. Dirk Beyer
Advisor Dr. Philipp Wendler

Submission Date April 8th 2019

Statement of Originality

English:

Declaration of Authorship

I hereby confirm that I have written the accompanying thesis by myself, without
contributions from any sources other than those cited in the text and acknowledg-
ments.

Deutsch:

Eidesstattliche Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst habe
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, April 8th 2019 Thomas Bunk

i

Abstract

Model checking is used to automatically verify a model against a specification. In
terms of software model checking, this ensures that the program behaves correctly
and does what it is supposed to do. The standard approach is to statically analyze a
program, construct an abstract model thereof, and finally perform an exhaustive
search of the state space in order to determine whether the specification holds.
The latter is mostly given in the form of a temporal logic, because this allows to
easily express desirable properties of a system, such as e.g. functional correctness,
reachability, safety, or liveness.

In this thesis a specific specification logic, linear temporal logic (LTL), is imple-
mented into the CPACHECKER framework. The main objective lies on analyzing
programs written in C to be verified for LTL properties, and in particular, liveness-
properties thereof. Generally, this can be done by converting a negated LTL formula
into an automaton on infinite words (more specifically, a Büchi automaton), and
combine this afterwards with a model of the software program. In CPACHECKER,
this results in an abstract reachability graph (ARG), that has a finite set of states
which can be reached from an initial starting state. The correctness requirement is
eventually proven by verifying that there is no set of words left which the ARG
accepts, i.e., that the language of the ARG is empty.

iii

Acknowledgements

This Master’s thesis was written at the ”Institut für Informatik” of the Ludwig-
Maximilians-Universität München at the chair of Software and Computational
Systems Lab.

My special thanks go to my advisers Prof. Dr. Dirk Beyer and Dr. Philipp Wendler,
who both provided great assistance by helping me with constructive advise and
dedicated support. I especially thank Martin Spiessl for many valuable and wide-
ranging discussions that we have had, particularly during the last months of my
work. I would also like to thank Karlheinz Friedberger, Dr. Marie-Christine Jakobs,
and all the other colleagues from the chair who assisted me by giving instructions on
how to utilize the CPAchecker project, and hence contributed to the success of this
Master’s thesis. Beyond that, many thanks go to Katharina Winter for her careful
reading of a draft of this thesis.

v

Contents

1 Introduction . 1

2 Related Work . 4

3 LTL Software Model Checking in CPAchecker 6
3.1 The Methodology . 6
3.2 Motivating Example . 8

4 Preliminaries . 13
4.1 Linear Temporal Logic . 14

4.1.1 Syntax . 15
4.1.2 Semantics . 17
4.1.3 Equivalences . 20

4.2 Safety and Liveness . 22
4.3 Büchi Automaton . 23
4.4 CPAchecker . 25

4.4.1 Control-flow Automaton . 26
4.4.2 CPA Algorithm . 28
4.4.3 Configurable Program Analysis . 30
4.4.4 Counterexample-guided Abstraction Refinement 31

5 LTL Software Model Checking . 33

6 Implementation . 38
6.1 Parsing LTL Formulas in CPACHECKER 39
6.2 Trace Abstraction . 44

6.2.1 Example . 45

vii

Contents

7 Conclusion and Future Work . 49

Bibliography . 51

viii

List of Figures

3.1 Feasibility of sequences . 7
3.2 C-Program together with a corresponding CFA 8
3.3 Büchi Automaton in comparison with the negated LTL property . . . 9
3.4 Example of a Büchi program . 10

4.1 Temporal modalities in LTL . 18
4.2 Transition system with two states . 21
4.3 Example of a Büchi automaton . 24
4.4 Architecture of CPACHECKER . 25
4.5 Example of a CFA . 27
4.6 Procedural method of CEGAR. 32

5.1 Implementation of LTL model checking in CPACHECKER 34

6.1 Example of an ANTLR4 syntax tree . 41
6.2 Example C-Program for the trace abstraction 46
6.3 Interpolation automaton and the resulting automaton from the first

refinement . 47
6.4 Interpolation automaton and the resulting automaton from the second

refinement . 48

ix

CHAPTER 1

Introduction

Nowadays computing devices are so well established that they accompany us in
almost every aspect of our daily life. From computers and smartphones through to
Smart TVs or IoT Devices, it is astonishing how ubiquitous they have become by
up to this point and how much they have contributed towards making life much
more convenient for the endconsumer. Even in mission-critical systems, such as
airplanes, automobiles, or entertainment, software is no longer indispensable. In the
modern car for example, the software ranges over control functions like breaking,
cruise control, or parking assistants, and more ambitious systems are currently in
research and development, such as connected cars equipped with internet access,
the reduction of energy consumption through advanced software algorithms, or
the autonomously driving car. These are all perfect examples for how increasingly
complex the software systems are becoming. Not only are they required to function
with a good performance in terms of response times and processing capacities,
but they are also expected to deliver an error-free experience. Taking high-speed
trains for example, it is frustrating for travelers when a train is canceled due to
technical problems. This is all the worse, if the problem is caused by a preventable
bug in the software. Therefore, it is crucial that formalisms, techniques and tools are
provided, which guarantee the correctness and well-functioning of such systems
with mathematical rigor.

This masters thesis introduces such a technique, namely LTL software model checking,
and describes how it is implemented in the java-written framework CPACHECKER,
an open-source project that allows software verification for programs written in C.

1

1 Introduction

Verification is a form of software quality control, in which the software system is
checked for satisfaction of the requirements that have been identified. To put it in
other words, verification checks that “we are building the product right”, i.e., that
the program achieves its goal without the occurrence of any bugs.

Model Checking thereby allows to formally verify software programs in an automated
fashion. Both the idea and the term were introduced independently in the early
eighties by Clarke and Emerson in [18], and Queille and Sifakis in [40]. Essentially,
the problem it describes boils down to: Given a model of a system, check algo-
rithmically whether this model fulfills a given specification. The model is usually
represented as a transition system (TS), i.e. a directed graph that consists of states and
transitions, because it allows the formal description of the behavior of a system in an
unambiguous and mathematically precise way. The model is thereby automatically
generated from an appropriate dialect or extension of programming languages like
Java or C. Having such a TS produced, the model checking technique then explores
all possible states of the system in a systematic way. This makes it possible for a
model checker to give a final verdict on whether the system model truly satisfies the
desired property. Should it be possible to encounter a state in which the property
does not hold, a counterexample can be created, which acts as a witness for how
the undesired state could be reached by the model. The counterexample is an
execution path in the TS that starts in an initial state and contains all the states that
are necessary to finally reach the violated state. In software model checking, the
violated state usually denotes a bug in the program, in which the counterexample
can then be used to understand and fix the underlying problem.

In order to guarantee a rigorous verification, the specification is likewise required
to be formulated in an unambiguous and precise formal language. The established
way to express such properties are temporal logics. They state explicitly what the
system should and should not do. The most common checked properties are:

• Functional correctness: Does the model work the way it is supposed to?

• Reachability: Is there an undesirable state reachable from an initial state?

• Safety: “Something bad will never happen”.

• Liveness: “Something good will happen eventually”.

• Fairness: Under special circumstances, does an event take place repeatedly?

The temporal logic used in this work for specifying properties is linear temporal
logic (LTL), according to the name of the verification technique used: LTL software

2

model checking. More specifically, the focus lies on verifying C-programs for general
liveness properties.
The goal of this thesis is to implement the above described concept in CPACHECKER,
a tool for verifying software programs written in C. It is based on the configurable
program analysis-concept (CPA), that allows to express different verification tech-
niques in a single formalism. Many analyses of well-known concepts of verification
methods are implemented using this framework. The major success of CPACHECKER

has now been proven for several years in the software verification competition
SV-COMP, where it has continuously won in various categories, amongst others the
category “Overall” 1 for five times.

The thesis is structured as follows: Chapter 2 describes some of the related work
that has been made in the area of LTL software model checking so far. Chapter 3
then shows by means of a concrete example how this is approached in theory with
respect to CPACHECKER. In Chapter 4, a background about chosen topics is provided
which might be helpful in further understanding the various components described
thereafter in this work. Chapter 5 presents the core algorithm that was developed
during this thesis, and describes in detail the elementary components that are
required in order to perform LTL software model checking in CPACHECKER. Chapter 6
presents some of the technical concepts that are of particular interest, as they are –
in this form – completely new in the CPACHECKER project. This refers most notably
to the process of transforming LTL formulas into automata from its framework,
as well as the implementation of so-called interpolation automata that allow the
execution of trace abstraction refinements. Chapter 7 finally draws a conclusion and
provides an outlook about possible optimizations for LTL software model checking
in CPACHECKER.

1https://cpachecker.sosy-lab.org/achieve.php (last accessed on March 08, 2019)

3

https://cpachecker.sosy-lab.org/achieve.php

CHAPTER 2

Related Work

The techniques used in this work to perform LTL software model checking are based
on the methods in “Fairness Modulo Theory: A New Approach to LTL Software Model
Checking” [23]. This paper was published at the University of Freiburg by Dietsch,
Heizmann, Langenfeld, and Podelski, and introduces the method of checking finite
prefixes before considering the full infinite path in order to perform LTL model
checking. Only if no such infeasibility argument exists, they proceed by searching for
a termination argument. The reason behind this approach is the fact that constructing
a proof for unsatisfiability is much cheaper than the proof of termination via the
construction of a ranking function.

In case the infinite path is not executable for either of the two reasons mentioned
above, a trace abstraction is subsequently performed, in which the reason for in-
feasibility is generalized. This allows to (possibly) exclude plenty of traces in the
next refinement iteration, namely all of which are not executable for the same rea-
son of infeasibility. The process of performing a trace abstraction is however quite
involved, which is therefore not part of the above mentioned paper. Instead, the
reader is referred to [29] and [30], respectively, in which the methods are elaborated
extensively.

The whole concept was implemented in the tool ULTIMATE LTL AUTOMIZER1, which
demonstrates the success of this approach.

1https://monteverdi.informatik.uni-freiburg.de/tomcat/Website/?ui=tool&

tool=ltl_automizer (last accessed on March 28, 2019)

4

https://monteverdi.informatik.uni-freiburg.de/tomcat/Website/?ui=tool&tool=ltl_automizer
https://monteverdi.informatik.uni-freiburg.de/tomcat/Website/?ui=tool&tool=ltl_automizer

In TERMINATOR [21], they state to have developed the first known fully automatic
verification tool (i.e., first known to the best of their knowledge), that is able to
check infinite-state programs for liveness properties. The approach there boils down
to reducing the problem of liveness checking into fair termination checking. This is
similar to the methods used in this work and ULTIMATE LTL AUTOMIZER, except that
for each infinite path a (costly) termination check is performed. This is what we
want to avoid by means of doing a check for infeasible finite prefixes beforehand. In
case of success, this allows us to do a general refinement in which all fair paths are
excluded that are unsatisfiable for the same reason of infeasibility.

Simple Promela Interpreter (SPIN) [32] is possibly the best known tool among the
publicly available ones, which has had its development started back in the early
eighties, making it one of the first model checking tools available. Its main target
is the verification of program models that are written in the Promela modelling
language. Promela is thereby short for Process Meta Language. The property to be
checked can be specified as LTL formula, which will be afterwards compiled into
a Büchi automaton. SPIN has its own format for expressing such Büchi automata
introduced, which is nowadays commonly known as Promela never claim. However,
despite the popularity of SPIN, it is still rather time-consuming and cumbersome to
remodel given code-bases into the Promela modeling language.

NUSMV is a reimplementation and extension of SMV (Symbolic Model Verifier) [35],
and uses either SAT-based bounded model checking or BDD-based symbolic model
checking in order to verify temporal logic properties. While SMV could originally
only handle CTL properties on a symbolic model, NUSMV is additionally able to
verify program-models against properties given as LTL formulas. However, the
verification process is effectively done by reducing LTL model checking to CTL
model checking.

5

CHAPTER 3

LTL Software Model Checking in CPAchecker

3.1 The Methodology

The common approach for LTL software model checking is to build transition
systems that represent both the model and the specification. In CPACHECKER, the
model is represented by a so-called control-flow automaton (CFA). This is a labeled
directed graph, where the nodes represent reachable states from a C-program, and
the edges are accordingly the transitions in between these states. The specification
is provided as LTL-formula, and hence needs to be translated first into a finite
state machine (or more precisely, a Büchi automaton, in which the final states are
visited infinitely often). Both transition systems are then combined afterwards,
such that a new kind of transition system is created as a result. In the remainder of
this work, this resulting TS will be called Büchi program. Depending on the kind
of specification, there are different approaches in order to show that the model
satisfies the specification. For safety properties, it must be shown that there exists no
execution path to an error state along a feasible path. A path is feasible if there exists
an executable sequence of states that begins in an initial state and ends up in the final
target state. A sequence of states is thereby executable if the corresponding logical
formula is computable by an solver for satisfiable modulo theory. This concept is
called Reachability Modulo Theory, and was introduced by Lal and Qadeer 2013 in [34].

For liveness properties, the approach slightly differs. It must be shown that in fact no
infinite path exists in the Büchi program, in which the specified state is never reached.
In its simplest form, a counterexample is a loop that represents such a path and that

6

3.1 The Methodology

does not contain the desired state. However, this is rather difficult to prove, because
this path might under given circumstances be very well just a finite prefix that can
be extended to another infinite path, which then satisfies the specification once again.

Therefore, to tackle this issue, the Büchi automaton is not created from the original
LTL-formula, but instead from its negated form. The resulting Büchi program, i.e. the
product of the Büchi automaton and the input program, consists of a distinguished
set of nodes. These are used to define infinite paths that visit the set of nodes
infinitely many times. Such paths are also denoted as fair. In order to show that
the original LTL-property holds, the approach is now to not prove the existence of
feasible fair paths, but instead to prove the opposite, namely their absence. In other
words, if the Büchi program does have a path that is both fair and feasible, this is a
violation of the LTL property, and a concrete counterexample for the given program.
Otherwise, if the absence of such paths can be shown for the whole Büchi pro-
gram, the specification then holds and it is proven that the C-program is free of bugs.

To be able to show the absence of infinite paths, it is necessary to prove that each
of them eventually terminates. Thus, it is required to compute a ranking function.
Fig. 3.1 depicts this exemplarily: For the two paths τ1 and τ2, a possible ranking
function r is r(x,y) = x− y.

x−− x > y x−− x > y x−− x > y x−− . . .τ1:

x := y x > y x−− x > y x−− x > y x−− . . .τ2:

Figure 3.1: Two sequences of statements with a common possible ranking function.

The sequence of states in τ1 is executable, for as long as x is greater than y. In
comparison , in path τ2 are the first two statements x := y x > y already not feasible,
despite its ranking function being fully valid.

There are open-source tools available that compute ranking functions for infinite
paths (e.g. [6, 13, 39]), just like in the example above, i.e. such as the infinite input
sequences (x := y x > y)ω and x := y x > y (x := y x > y)ω . However, according
to [23], it is always more costly to create a ranking function than to prove the
unsatisfiability of a logical formula corresponding to finite prefixes. This is the case
in τ2. Its infinite sequence of statements contains a finite prefix in which the first two
statements already contradict each other. This makes the path unexecutable and is
sufficient for a proof of unsatisfiability. It is hence rendered unnecessary to continue

7

3 LTL Software Model Checking in CPAchecker

creating a ranking function.

This fact will be exploited in this work. Instead of directly creating a ranking function
for a full infinite path, it is always checked first if there exist finite prefixes on the path
which are already contradicting each other. Modern SMT-solver are not only able to
show the infeasibility of logical formulas, they also provide interpolants (e.g. [15, 17]),
which can then be used to further generalize the proof of unsatisfiability.

3.2 Motivating Example

In this section it is illustrated by means of an example how LTL software model
checking is performed in CPACHECKER. Fig. 3.2a shows the pseudo-code for a program
written in C on the left. The program essentially contains two signed integer variables
x and y, in which the former gets a non-deterministic value assigned (i.e., a random
value from the whole range of positive and negative integer numbers), while the
latter is set to 1 for the moment. All the program then does is to continuously
decrement the value x for as long as it is strictly positive. Only afterwards, when the
point is eventually reached where the value of x is less or equal to 1, the variable y
is set to the value 0. On the right in Fig. 3.2b, a CFA is depicted that represents the
C-program. The graph is a finite state machine in which the transitions are labels
from the program statements, and where the states consist only of non-accepting
states (in this example).

1 int x, y;
2 while (1) {
3 x := *;
4 y := 1;
5 while (x > 0) {
6 x--;
7 if (x <= 1) {
8 y := 0;
9 }

10 }
11 }

(a) Pseudo-code of a C-program.

l0

l1

l2

l3

x := ∗;y := 1

x > 0

x−−

x <= 1;y := 0 !(x <= 1)

!(x > 0)

(b) A control-flow automaton.

Figure 3.2: Example of a C-program P which is shown in (a) on the left, while (b) on
the right depicts the corresponding representation as CFA.

The specification will be given as LTL property ϕ =�(x > 0⇒ ♦(y = 0)). In essence,
the program shall satisfy the condition, that for all times while x is greater than 0,

8

3.2 Motivating Example

it follows that eventually the variable y is set to 0. This is expressed in the Büchi-
automaton in Fig. 3.3a, which is equivalent to the LTL property. However, as the
property has the form of a liveness-property, a Büchi-automata of the negated LTL-
formula is instead required to be able to check whether the specification holds. The
automata on the left is therefore depicted for the sake of completeness, while the
one on the right is the actual one that is required in order to proceed.

q0

q1

!(x > 0) ∨ (y == 0)

(x > 0) ∧ !(y == 0)

!(y == 0)

y == 0

(a) Büchi automaton Aϕ .

q0

q1

true

(x > 0) ∧ !(y == 0)

!(y == 0)

(b) Büchi automaton A¬ϕ .

Figure 3.3: Fig. (a) on the left shows a Büchi automaton A1 for the LTL-property
ϕ = �(x > 0⇒ ♦(y = 0)). In this graph, the state q0 is both the initial-
and accepting state. In comparison, Fig. (b) on the right shows a Büchi
automaton A2 for the negated LTL property ¬ϕ . The accepting state is q1,
and is simultaneously a sink state.

The Büchi automaton in Fig. 3.3b was thus built using the negated LTL formula. The
syntax and semantics of LTL are defined in Sect. 4.1. Formally, the LTL-formula is
negated as follows:

¬ϕ = ¬�(x > 0 ⇒ ♦(y == 0))

= ♦¬(x > 0 ⇒ ♦(y == 0)) //with ¬�ϕ ≡ ♦¬ϕ

= ♦¬(¬(x > 0) ∨ ♦(y == 0))

= ♦(¬¬(x > 0) ∧ ¬♦(y == 0))

= ♦(x > 0 ∧ �¬(y == 0)) //with ¬♦ϕ ≡�¬ϕ

In the first step the input program and the LTL property both need to be translated
into finite automata, as seen above. The next step is then to create the cross-product
of these, which results in a Büchi program B. This is depicted in Fig. 3.4. The
primary goal in this Büchi program B is to show that there exists no path that is both
fair and feasible. Or to put it in other words, that no path exists that is executable
and at the same time able to reach the target locations infinitely often. A target
location is an accepting state which is marked in the graph with double circles. If
the absence of such paths can indeed be proven, this corresponds to no feasible and

9

3 LTL Software Model Checking in CPAchecker

fair path in the input program P. Hence it can be concluded that the specification ϕ

holds and our program returns SAFE.

l0q0

l1q0

l2q0

l3q0

l0q1

l1q1

l2q1

l3q1

x:=∗;y:=1

true

!(x > 0)

true

x > 0

true

!(x <= 1)

true

x <= 1;y:=0

true

x−−

true

x:=∗;y:=1

!(y == 0)

!(x > 0)

!(y == 0)

x > 0

!(y == 0)

x <= 1;y:=0

!(y == 0)

!(x <= 1)

!(y == 0)

x−−

!(y == 0)

x:=∗;y:=1

!(y == 0)∧ (x > 0)

!(x > 0)

!(y == 0)∧ (x > 0)

x > 0

!(y == 0)∧ (x > 0)

x−−

!(y == 0)∧ (x > 0)

!(x <= 1)

!(y == 0)∧ (x > 0)

Figure 3.4: The Büchi Program B is built from the product of the CFA that represents
the input program P (cf. Fig. 3.2b) and the Büchi automaton B with the
property ¬ϕ (cf. Fig. 3.3b).

The Büchi program is built as follows: The locations are pairs (liqi) that result
from the cross-product of the CFA locations li in P and the locations of the Büchi
automaton qi in A¬ϕ . Likewise, the transition labels do also come as pairs s1 s2 .
The first element s1 stands for a statement of the C-program, and is continuously
colored blue in the example graphs (i.e., the CFA and the Büchi program). The
second element s2 is an element from the Büchi-automaton, which comes always
as an assumption. For a better distinctiveness, these are colored green in the graphs.

In paper [23], a special notion for an infinite sequence of statements is introduced,
which is called a trace and described as a key concept. In comparison, the term
path is used to describe a (possibly infinite) sequence of nodes. Analogous to
infinite paths is a trace fair, if the labeling corresponds to a set of nodes that are

10

3.2 Motivating Example

visited infinitely often. Moreover, a trace is called feasible, if the associated path is
executable by the original input program P.

A trace τ always comes in the form τ1τω
2 , in which τ1 is a finite prefix and τ2 an

infinite sequence of statements. An example of a fair trace τ in the Büchi program B
is as follows:

x:=∗;y:=1 !(y == 0)∧ (x > 0) !(x > 0) !(y == 0)τ1:

x:=∗;y:=1 !(y == 0) !(x > 0) !(y == 0)τ2:

The trace is fair, because the locations (l0q1) and (l1q1) are both accepting and at the
same time traversed infinitely many times. Yet it is not feasible, because in τ1 the
second statement !(y == 0)∧ (x > 0) and the third statement !(x > 0) contradict each
other. Thus every trace in the Büchi program B, that is the labeling of the finite
prefix τ1 is infeasible.

In general, three possible types of infeasibilities are possible. In paper [23], they are
called 1.) “Local infeasibility”, 2.) “Infeasibility of a finite prefix”, and 3.) “ω-Infeasibility”.

Local infeasibility: The name refers to the fact that the infeasibility affects only
single edges in a Büchi program. More precisely, the labels of the edges consist
of pairs, in which the first element is the program statement and the second the
assume-edge from the Büchi automaton, and these two elements contradict each
other. An example in the Büchi program B is the following edge:

!(x > 0) !(y == 0)∧ (x > 0)l1q0 l0q1

Each trace that traverses along a path with this label is infeasible, because !(x > 0)

is contradictory to x > 0 . In the Büchi program B, there exists a second such case
where the concept of local infeasibility applies, namely the transition from (l3q1)

to (l1q1). The label contains the two statements y:=0 and !(y == 0) , which are not
executable either.

Infeasibility of a finite prefix: A trace with finite prefixes that eventually traverses
along the following sequence of statements is infeasible:

11

3 LTL Software Model Checking in CPAchecker

l0q0 x:=∗;y:=1 true l1q0

l1q0 x > 0 true l2q0

l2q0 x−− !(y == 0)∧ (x > 0) l3q1

l3q1 !(x <= 1) !(y == 0) l1q1

l1q1 !(x > 0) !(y == 0) l0q1

This is due to the last two statements !(x <= 1) and !(x > 0) from the input program
contradicting each other. The trace τ1τω

2 that was presented before is another
example for an infeasibility of a finite prefix.

ω-Infeasibility: Every trace that eventually ends up in the following loop is infeasi-
ble as well:

l1q1 (x > 0) !(y == 0) l2q1

l2q1 x−− !(y == 0) l3q1

l3q1 !(x <= 1) !(y == 0) l0q1

The loop can only be traversed for as long as the value of x is greater than 1.
However, the loop is bounded to terminate, because x−− will decrease the value of
x until it eventually contradicts the statement !(x <= 1) . The synthesized ranking
function is f (x) = x, which is the formal termination argument.

For the Büchi program B depicted in Fig. 3.4, it can be proven that each of the fair
traces is not feasible for one of the described reasons above. This relates to our input
program P not being able to traverse such a path either, thus showing that there is
no possibility to somehow violate the LTL property. Thus, we have proven that the
specification is indeed satisfied.

12

CHAPTER 4

Preliminaries

The intuitive meaning of software model checking was already described in the
introduction. It answers the question, whether a model of a program P satisfies a
specification ϕ . This is formally written as P � ϕ and pronounced “P is a model for
ϕ”.

In comparison to other verification techniques like automated theorem proving or
proof checking, model checking comes with a number of distinct advantages:

• The process is fully automatic, and requires minimal human intervention. In
particular, no interaction is required during the execution, which also means
that this verification technique is well suited for less experienced users.

• Compared to other methods, Model checking is relatively fast in practice.
Consider e.g. a proof-checker, which involves the manual construction of
proofs. This requires interactive work with the user, and is thus both highly
time-consuming, while at the same time extremely error prone.

• In case of failure, a counterexample is provided, whose execution trace is
invaluable in order to track down the reason as to why the specification did
not hold.

Model checking is beyond that able to cover all possible behaviors of the system.
This is in contrast to techniques such as testing or simulation, where only a single
behavior is considered at a time. The reason is that in the approach of model
checking, an exhaustive exploration of the state-space is performed. However, this

13

4 Preliminaries

leads to the most serious drawback of model checking, which is known as the state
explosion problem. It usually occurs in large systems with of a huge number of states,
because the size of the state-space can grow (at least) exponentially in the number of
its processes and variables. This results in the model being too large to fit in the
available amount of computer memory. A solution to this problem is an ongoing
scientific process, and one of the main driving forces behind the continuous efforts
in the research of model checkers and the used techniques.

The process of model checking is done in the following different phases:

1. Modeling: In the first step, both the specification and the program must be
converted into a formalism that is accepted by a model checker. In CPACHECKER,
for the former this is done using the property specification language LTL,
which is afterwards converted into a Büchi automaton that accepts the same
language of words. LTL and Büchi automata are defined in Sect. 4.1 and
Sect. 4.3, respectively, and is mainly based on [5]. The program is formalized
in form of an control-flow automaton (CFA), which is described in Sect. 4.4.1.

2. Running phase: In the next phase, the model checking algorithm is performed
to check the validity of the property in all states of the program model. The
process itself is executed fully automatic. This is elaborated in ??.

3. Analysis: Depending on the outcome of the last phase, the user may need to
manually analyze the result. In case the property is valid, it can be concluded
that the model is indeed satisfied. If however the result is that the property
does not hold, the counterexample needs to be analyzed in order to track down
the source of the bug.

4.1 Linear Temporal Logic

In order to express a specification, there are different temporal logics in use. This
section introduces linear temporal logic (LTL), and defines its syntax and semantics.
LTL was introduced by Amir Pnueli in [27, 38] and is a propositional logic that
is extended by modalities referring to time. However, there is no explicit notion
of time, i.e. an exact timing of events is not supported. Instead, these modalities
rather allow to specify the relative order, in which these events occur. An example
would be that a condition either holds at all times, or that it becomes true at least

14

4.1 Linear Temporal Logic

once eventually. The temporal modalities provide operators to describe these events
along a single path, with the following two operators being the most common ones:

♦ ”Finally” – a property is satisfied at some point in the future

� ”Globally” – a property is satisfied now and forever in the future

In literature, there are partly different expressions used for the above modalities.
The modal operator ♦ is often also referred to as eventually, whereas the operator �
is commonly also denoted with always or henceforth. Most of the temporal modalities
have additionally both a textual and a symbolical form. For example, “♦ϕ” is a
symbolical expression and has the same meaning as the textual “Fϕ”, and the same
is true for “�ϕ” and “Gϕ”

LTL is a linear-time logic. Another common kind of temporal logic is the branching-
time logic. Two popular such logics in computer science are computational tree
logic (CTL), which was introduced by Clarke and Emerson in [18], and CTL* from
Emerson and Halpern, which was introduced in [25]. Therein, the model can be
regarded as a tree-like structure, however, the future is not determined. That is,
there are different paths, and it is unknown from the starting state which one of
them will finally be taken. In LTL, in comparison, the formulas contain a single
universal quantifier, meaning that a path formula f holds for every such path. All
formulas in LTL are thus implicitly universally quantified.

4.1.1 Syntax

LTL formulas are constructed from a finite set of propositional variables AP, the
logical operators like conjunction ∧ and negation ¬, and the basic temporal modal
operators X (pronounced next) and U (pronounced until). The atomic proposition
p ∈ AP stands for a state label in the set APs. In the context of this work, the atomic
proposition is thus an assertion about values from variables of a C-program, such as
e.g. “x > 0” or “y! = 0. The X-modality is an unary prefix operator, which takes one
LTL formula as argument. Formally, Xϕ holds in the current state, if ϕ holds in the
next state. The U-operator is a binary infix operator, and requires two LTL formulas
as arguments. The modality ϕ1Uϕ2 holds for two LTL formulas ϕ1, ϕ2, if ϕ1 holds
from the current moment for at least so long, until ϕ2 is applied.
LTL formulas over the set AP of atomic propositions can be defined inductively as
follows:

15

4 Preliminaries

• if p ∈ AP, then p is an LTL formula

• if ϕ1 and ϕ2 are LTL formulas, then ¬ϕ1, ϕ1 ∧ϕ2, Xϕ1, and ϕ1Uϕ2 are LTL
formulas.

In general, the temporal modalities are either in unary prefix form or in binary infix
form. An example for the former is Xϕ , where the operator X stands in front of the
LTL-formula ϕ , whereas for the latter, the operator is enclosed by LTL-formulas
(e.g. ϕ1Uϕ2 for the operator U). As for the precedence order, unary operators bind
stronger than binary ones. However, while ¬ and X bind equally strong, there
are differences within the binary operators. Here, the temporal operators bind
stronger than the propositional operators, i.e., U takes precedence over ∧, ∨, and
⇒. Parentheses are left out wherever appropriate, e.g. instead of (ϕ1)U(ϕ2), this
is henceforth simply written as ϕ1Uϕ2. Finally, the binding of modal operators is
right-associative, e.g. ϕ1Uϕ2Uϕ3 has the same meaning as ϕ1U(ϕ2Uϕ3).

With the use of Boolean algebra, all of the other logical and temporal operators can be
derived successively. Given two LTL formulas ϕ1, ϕ2, the truth-values true and f alse,
as well as the propositional logical connectives ∨ (disjunction),⇒ (implication),⇔
(equivalency), and ⊕ (exclusive or) can be obtained as follows:

f alse≡ ϕ1∧¬ϕ1

true≡ ¬ f alse

ϕ1∨ϕ2 ≡ ¬(¬ϕ1∧¬ϕ2)

ϕ1⇒ ϕ2 ≡ ¬ϕ1∨ϕ2

ϕ1⇔ ϕ2 ≡ (ϕ1⇒ ϕ2)∧ (ϕ2⇒ ϕ1)

ϕ1⊕ϕ2 ≡ (ϕ1∧¬ϕ2)∨ (ϕ2∧¬ϕ1)

The two at the beginning of this section mentioned modal operators ♦ and � can be
formally derived using the until-operator U :

♦= true U ϕ (4.1)

�= ¬♦¬ϕ (4.2)

From the two equations above, the finally-operator ♦ has the following intuitive
meaning: ♦ϕ is satisfied, if at some point in the future ϕ holds. �ϕ , on the other
hand, holds, if there is no single moment in time, in which ¬ϕ does not hold. This is
equivalent to ϕ holding from now on forever.

16

4.1 Linear Temporal Logic

The temporal modalities can be arbitrarily combined. This leads to nested modalities
with a new meaning. The most common composite operators are the following two:

♦�ϕ “eventually forever ϕ” (stability, or also progress) (4.3)

�♦ϕ “infinitely often ϕ” (recurrence) (4.4)

Again, if only �ϕ is considered, this means that at all points in time beginning from
now on, ϕ must hold. However, if ♦ is added to the front, the proposition is then
synonymous to ♦(�ϕ), and means that �ϕ must hold forever, but only from some
time onward in the future. This is also called stability (also known as non-progress),
because once �ϕ holds, the sequence of states in which ϕ does not hold can never
be left afterwards. �♦ϕ on the other hand states that ϕ will occur at least once,
however, this applies at all points in time. This is the same as saying that ϕ holds
infinitely often, and hence guarantees that there is some progress, because ϕ will at
some point in time recur either way.

Further common composite modalities are:

ϕ1⇒ ♦ϕ2 “ϕ1implies eventually ϕ2” (response)

ϕ1⇒ ϕ2Uϕ3 “ϕ1 implies ϕ2 until ϕ3” (precedence)

♦ϕ1⇒ ♦ϕ2 “eventually ϕ1 implies eventually ϕ2” (correlation)

4.1.2 Semantics

An atomic proposition is a set of program states. Let ∑ be an alphabet over a finite
set of propositional variables, in which the propositions can either evaluate to
true or false. This has the same meaning as 2AP, which is in the following used
as expression for the alphabet. A letter A is an element of the alphabet. A word
over 2AP is a sequence of states A0A1A2... such that ∀ i≥ 0 : Ai ∈ 2AP. A prefix w′ of
the word w = A1A2... is a finite word B1B2...Bn with Bi = Ai for all 0≤ i≤ n . (2AP)∗

denotes the set of finite words over 2AP, while (2AP)ω indicates the set of all infinite
sequences over the alphabet 2AP.

The semantics of LTL in the following are defined by an interpretation over words.
Let ϕ be an LTL formula over AP. The language Words(ϕ) contains all infinite words
over the alphabet 2AP that satisfy ϕ . The words induced by ϕ is

Words(ϕ) = {σ ∈ (2AP)ω | σ � ϕ} (4.5)

with the satisfaction relation � ⊆ (2AP)ω × LT L.

17

4 Preliminaries

AP: p

p
. . .

arbitrary arbitrary arbitrary arbitrary arbitrary

Next: X p

arbitrary p
. . .

arbitrary arbitrary arbitrary arbitrary

Finally: ♦p

p
. . .

¬p ¬p ¬p arbitrary arbitrary

Globally: �p . . .

p p p p p p

Until: p1U p2

p2

. . .

p1∧¬p2 p1∧¬p2 p1∧¬p2 arbitrary arbitrary

Figure 4.1: Evaluation of temporal modalities over a sequence of states. The left-
hand side states the LTL formulas, while the right-hand side depicts the
corresponding paths.

A linear temporal property either holds on an infinite sequence of statements, or on
a single position of a word. This is illustrated in Fig. 4.1 – for an atomic proposition
p, the LTL formula is fulfilled, when the property holds on the first state of the
sequence, i.e. at position 0 in this case. An LT property is defined as a subset of
all infinite words in the set of atomic propositions AP. A word either satisfies an
LTL property or not. In correspondence with the definition given in Eq. (4.5), the
semantics for each LTL property is defined subsequently in detail. In general, ϕ

denotes an LTL formula, and σ is an infinite word from the set of APs, such that
σ = A0A1A2... ∈ (2AP)ω .

Boolean constant: If an LTL formula is given as truth-value true, a word σ is trivially
always satisfied:

σ � true (4.6)

Atomic proposition: An atomic proposition p is satisfied, when it holds in the first
statement A0 of word σ = A0A1A2... :

σ � p iff p ∈ A0 (4.7)

Negation: The negation of an atomic proposition ϕ is satisfied, if for a word σ the
proposition does not hold in the first statement of that word:

σ � ¬ϕ iff σ 2 ϕ (4.8)

18

4.1 Linear Temporal Logic

Conjunction: The conjunction of two LTL formulas ϕ1 and ϕ2 is satisfied for a word
σ , if σ satisfies both ϕ1 and ϕ2. Formally this is defined as follows:

σ � ϕ1∧ϕ2 iff σ � ϕ1 and σ � ϕ2 (4.9)

Next: The next-operator is used to specify that a word is satisfied in an immediate
next state of a word. I.e., given a word σ = A0A0A2... ∈ (2AP)ω and an LTL speci-
fication Xϕ , then ϕ is satisfied if and only if it holds onward from the direct next
statement, which is the letter A1:

σ � Xϕ iff σ [1...] = A1A2... � ϕ (4.10)

Until: For two LTL formulas ϕ1 and ϕ2, the until-operator U states that ϕ1 is satisfied
for at least so long, until ϕ2 is satisfied once. This is reflected in the definition, which
consists therefore of two parts:

• ϕ2 must hold in the word at some point in time. This is enforced by ϕ1.

• Until then, ϕ1 is required to hold. Note however that if ϕ2 is true at all points
in word σ , then ϕ1 does not necessarily need to be true either for the whole
until-operator ϕ1Uϕ2 to be satisfied.

Formally, the definition of the operator U is as follows:

σ � ϕ1Uϕ2 iff ∃ j ≥ 0 such that σ j � ϕ2 and for all 0≤ i≤ j, σi � ϕ1 (4.11)

The intuitive meaning of the finally- and globally-operators have already been
described in equation (4.1) and (4.2). These are subsequently formally defined:

Finally: The LTL formula ♦ϕ (also denoted Fϕ) is satisfied, if ϕ holds in a word σ

at any point in its sequence of statements. The semantics of the finally-operator is
derived from the until-operator, which is stated in the following as true U ϕ . The
definition is thus immediate from Eq. (4.1) and the semantics from the until-operator:

σ � ♦ϕ iff ∃i≥ 0. σ [i...] � ϕ (4.12)

Globally: The globally operator �ϕ (also written as Gϕ) states that in a word σ , the
LTL formula ϕ has to hold in all of its statements. Formally, the operator is defined
as a derivation from the finally-operator, i.e. ¬♦¬ϕ . This expands to the following
statement:

σ � �ϕ iff ∀i≥ 0. σ [i...] � ϕ (4.13)

19

4 Preliminaries

Finally-Globally and Globally-Finally: The intuitive meaning of the nested opera-
tors ♦�ϕ and�♦ϕ are described in (4.3) and (4.4), respectively. The semantics follow
directly by applying the equations (4.12) and (4.13) for the finally- and globally-
operator from above:

σ � ♦�ϕ iff ∃i≥ 0. ∀ j ≥ i. σ [j...] � ϕ (4.14)

σ � �♦ϕ iff ∀i≥ 0. ∃ j ≥ i. σ [j...] � ϕ (4.15)

4.1.3 Equivalences

As LTL extends propositional logic, all laws for logical equivalences are likewise
valid, such as the commutative properties (e.g. p ∨ q ≡ q ∨ p), the associa-
tive properties (e.g. (p ∨ q) ∨ r ≡ p ∨ (q ∨ r)), or the laws of De Morgan (e.g.
¬(p∧ q) ≡ ¬p∨¬q). Generally speaking, two logical formulas are equivalent,
whenever their truth-values are the same in all models. In the exact same manner
do these equivalence rules also exist for temporal modalities. Two LTL formulas
ϕ,ψ are said to be equivalent, written ϕ ≡ ψ , if for all words induced by ϕ and all
words induced by ψ the following holds: Words(ϕ) =Words(ψ). Below are some of
the most common equivalence rules stated with respect to the temporal modalities:

Negation propagation:

¬Xϕ ≡ X¬ϕ

¬♦ϕ ≡ �¬ϕ

¬�ϕ ≡ ♦¬ϕ

Idempotency:

♦♦ϕ ≡ ♦ϕ

��ϕ ≡ �ϕ

ϕU(ϕUψ) ≡ ϕUψ

(ϕUψ)Uψ ≡ ϕUψ

20

4.1 Linear Temporal Logic

Absorption:

♦�♦ϕ ≡ �♦ϕ

�♦�ϕ ≡ ♦�ϕ

Distributivity:

X(ϕ ∨ψ) ≡ (Xϕ)∨ (Xψ)

X(ϕ ∧ψ) ≡ (Xϕ)∧ (Xψ)

X(ϕUψ) ≡ (Xϕ)U(Xψ)

♦(ϕ ∨ψ) ≡ ♦ϕ ∨♦ψ

�(ϕ ∧ψ) ≡ �ϕ ∧�ψ

Expansion:

ϕUψ ≡ ψ ∨ (ϕ ∧X(ϕUψ))

♦ϕ ≡ ϕ ∨X♦ϕ

�ϕ ≡ ϕ ∧X�ϕ

All of the equivalences can be formally derived. As an example, the equivalence
between ¬♦ϕ ≡ �¬ϕ for an LTL formula ϕ and word σ is shown below:

σ � ¬♦ϕ

iff ¬∃i≥ 0. σ [i...] � ϕ (Def. of ♦, c.f. Eq. (4.12))

iff ∀i≥ 0. σ [i...] 2 ϕ (Def. of negation of ∃-quantor)

iff ∀i≥ 0. σ [i...] � ¬ϕ (Def. of ¬, c.f. Eq. (4.8))

iff σ � �¬ϕ (Def. of �, c.f. Eq. (4.13))

S0

{a}

S1

{b}

Figure 4.2: State-based transition system T S with two nodes S0 and S1. For a,b ∈ AP,
it holds that T S � ♦a∧♦b, and T S 2 ♦(a∧b).

An peculiarity for the distribution laws is the duality between ♦ and disjunction, and
� and conjunction, respectively. This is insofar important, as when interchanging the
logical operators ∧ and ∨ for the respective equations, the equations are no longer
equivalencies:

♦(ϕ ∧ψ) 6≡ ♦ϕ ∧♦ψ and �(ϕ ∨ψ) 6≡ �ϕ ∨�ψ

This is demonstrated in Fig. 4.2. The transition system T S has two states S0 and S1,
in which the former contains the letter a and the latter the atomic proposition b. It is

21

4 Preliminaries

apparent that the transition system satisfies ♦a∧♦b, since both of the states S0 and S1

will eventually be reached. However, because a and b will never hold concurrently
within one state, the formula ♦(a∧ b) is hence also never fulfilled, thus showing
that the two properties are not equivalent. For the same reason, this also applies to
�(a∨b) and �a∨�b.

4.2 Safety and Liveness

In linear temporal logic, there are two main classes of properties that can be
expressed using this specification language. These are called safety-properties and
liveness-properties. Alpern and Schneider proved in [2] that every temporal formula
can be written as the conjunction of a safety and a liveness property, thus making
these two types of properties so fundamental. They are subsequently elaborated in
more detail.

Safety properties: These express that “nothing bad” will happen, ever, during the
execution of a program. In general, a safety property evaluates to true for an infinite
behavior, if (and only if) it is true for every finite prefix of that behavior. There are
two possible ways to formulate them, which is either by

1. stating the illegal executions, i.e. “what may not happen”, or alternatively by

2. stating the legal executions, i.e. “what may happen” (though, this is not neces-
sarily required to happen)

The complement of the legal executions are the illegal executions. It is more often
both easier and more reliably to state the legal runs, because if something bad were
to happen, the violation of the property would have to occur within a finite number
of states. A formal definition for safety properties was provided by Alpern and
Schneider in [3] as follows:

∀σ ∈ Sω : σ � ϕ iff ∀i≥ 0 : ∃w ∈ Sω : σ [0..i]w � ϕ (4.16)

where ϕ is the property, S the set of program states (which is 2AP in our case), S∗ the
set of finite sequences of states, and Sω the set of infinite sequences of states. The
above definition states that the safety property ϕ is satisfied by an infinite word
σ ∈ Sω , if and only if this is true for each finite prefix σ [0..i]. Otherwise, if a violation
occurred, there exists a finite prefix σ such that the end of the prefix at position i,
denoted σ [i], would then mark the point in time where the violation first happens.
This is a concrete counterexample in which the violation is witnessed, and no matter
how often this finite prefix is extended to another infinite path, it still witnesses the

22

4.3 Büchi Automaton

violation of the desired property.

Liveness properties: These kind of properties express that “something good” will
happen, eventually, during the execution of a program. However, due to their nature,
they can never be refuted by observing only a finite sequence of statements. More
precisely, the occurrence of “something good” does not even have to be observable
in a fixed interval of time. Instead, it is fully possible that this first happens at a
later stage. Every finite prefix of an infinite sequence of statements can therefore be
extended to an infinite trace, in which the statements then satisfy the property again.
A formal definition is as follows (cf. Alpern and Schneider in [3]):

∀σ ∈ S∗ : σ � ϕ iff ∃β ∈ Sω : σβ � ϕ (4.17)

where again ϕ is the property, S the set of program states, S∗ the set of finite sequences
of states, and Sω the set of infinite sequences of states. The equation states that the
property ϕ is a liveness property, if and only if each finite sequence σ of states can
be extended to an infinite sequence of statements such, that the composition σβ

fulfills the specification. In contrast to safety properties, liveness does not stipulate
that “something good” always happens, only that it does so eventually. The end
of σ , i.e. the last statement of the finite prefix does thereby mark the point in time,
where something good happens such that the specification ϕ is satisfied.

4.3 Büchi Automaton

Finite automata allow to define languages over finite words. However, as seen in the
previous section, the properties for our cause require automata for languages over
infinite words. This can be achieved via Büchi automatons, which were introduced by
J. R. Büchi, a Swiss logician, in [14]. These automata are finite automata over infinite
words, and allow to specify LTL properties whose permitted executions represent
accepting words. A Büchi automaton is defined as a five-tuple A= (S,S0,∑,→,F),
in which the contained parts have the following meaning:

• S is a finite set of states,

• S0 ⊆ S is the set of initial states,

• ∑ is the finite alphabet of the automaton,

• → ⊆ (S × ∑ × S) is non-deterministic transition relation, and

• F ⊆ S is the (Büchi-) acceptance condition. The elements in F are called final or
accepting states.

23

4 Preliminaries

An infinite word σ over the alphabet ∑ is an infinite sequence A0A1A2... of symbols
Ai ∈ ∑ for all i ≥ 0. ∑

ω denotes the set of all infinite words over ∑. A language of
infinite words, also called ω-language, is any subset of ∑

ω . We write s l−→ s′ to
denote that (s, l,s′) ∈→ .

A run r on a word σ = A0A1A2... ∈ ∑
ω denotes an infinite alternating sequence of

states s0s1s2... ∈ S, such that s0 ∈ S0 and ∀i≥ 0 : si
li−→ si+1. A run is thus an allowed

sequence of states that an automaton may pass through while it reads the input. A
Büchi automaton accepts a run r = s0s1s2... ∈ S if it contains infinitely many accepting
states, i.e., if and only if si ∈ F for infinitely many indices i ∈ N. This is equivalent to
in f (r)∩F 6= /0. A word σ ∈ ∑

ω is accepted by A if there is an accepting run on σ .
The language L(A) of a Büchi automaton A is the set of all words from ∑

ω that are
accepted by A.

s0 s1 s2 s3
l0 l1 l2

l4

l3

Figure 4.3: A Büchi automaton A. An infinite accepting run is s0
l0−→ s1

l1−→ s2
l2−→

s3
l3−→ s1

l1−→ ... , that ends up traversing the looping states s1, s2, and
s3. The set of accepting runs defines the language L(A) of the Büchi
automaton A.

According to this definition, the Büchi automaton accepts an input if there is a run
along the statements of a word ϕ in which the accepting states F are visited infinitely
often. Since the set of F is finite, there must be at least one state s ∈ S that is infinitely
often visited along the word σ . This is demonstrated in Fig. 4.3. The automaton
consists of the alphabet ∑ = {l0, l1, l2, l3}. It can be seen there how a possible run
traces an infinite path which starts at the initial state s0 ∈ S0, eventually reaches the
final state s4 ∈ F , and thereafter keeps looping back to s4 infinitely often. This run
is written s0s1s2s3s1s2s3..., or in short, s0(s1s2s3)

ω . It is accepting, because it visits
the accepting state s3 infinitely often. The word on which the run traces along is
accordingly l0(l1l2l3)ω .

Another example of a run is s0sω
1 for the word l0lω

4 . This run is however not accepting,
because the accepting state s3 is never visited in this example. The same is true for
runs of the form s0(s1s2s3)

∗sω
4 . Here, the accepting state is visited, but only for finitely

24

4.4 CPAchecker

many times. The language accepted by this (deterministic) Büchi automaton is given
by the ω-regular expression

l0l∗4 l1l2(l3l∗4 l1l2)ω

In general, an LTL property is usually denoted as a formula ϕ , though, it is possible
to translate it into an equivalent nondeterministic Büchi automaton (NBA) [5] such
that L(ϕ) =L(A). In the remainder of this work it is thus assumed that for each LTL
property ϕ we have a Büchi Automaton A available.

4.4 CPAchecker

Source
Code

Spec

Results
Parser &

CFA Builder

CEGAR
Algorithm

CPA
Algorithm

DCA
CPA

Location
CPA

Callstack
CPA

Predicate
CPA

Func.Pt.
CPA

Figure 4.4: Simplified architecture of CPACHECKER.

CPACHECKER [10] is an open-source framework written in Java, and has the greater
goal of verifying programs that are written in C. For this reason, the framework
provides different approaches of program analysis techniques, such as e.g. predicate
analysis [11], explicit-state model checking [12], or k-induction [7].
Fig. 4.4 gives a rough overview of the architecture of CPACHECKER, with respect to
the components that are relevant most for this work. For the input, a specification
together with a source code written in C is required. In a first step, the source
code is parsed and then transformed into an intermediate representation, which
is in the case of CPACHECKER a control-flow automaton (CFA). The concept thereof
is explained in Sect. 4.4.1 in more detail. Afterwards a CEGAR algorithm will be
started. CEGAR is short for counterexample-guided abstraction refinement, and is an
abstraction technique that iteratively refines an abstract model in an automated
fashion, until either a real counterexample is found, or the overall absence of a
violation can be concluded, which then proves our program to be safe. For each
iteration in the CEGAR algorithm, a CPA-algorithm is started that computes an
abstract reachability graph (ARG). The ARG consists of reachable abstract states, on

25

4 Preliminaries

which graph algorithms are later executed on, in order to check whether reachable
cycles with target states exist. If such traces with cycles can be found, a check for
feasibility is performed immediately after. Each of the executable traces exemplifies
a concrete counterexample that witnesses a violation in our program. Otherwise, if
these traces are not executable, the CEGAR algorithm will start its next iteration,
in which the CPA algorithm is started from anew. The idea is to recreate the ARG,
this time however united with a new finite automaton that recognizes the set of all
infeasible traces from the last iteration. This allows to exclude all such violating
traces in the newly computed ARG, since the automaton makes sure that the states
within the cycles are no longer accepting. The whole procedure of refining the ARG
is afterwards continued for as long as executable traces with loops can be found, in
which the cycles within still contain accepting states.

The CPA algorithm is elaborated on in Sect. 4.4.2. In order to run successfully, it is
dependent on several other configurable program analyses (CPAs), all of which are
necessary to build the ARG: The DCA CPA consists of automata, including the Büchi
automaton that represents the specification. Any other automaton results from an
iteration step of CEGAR. These so-called Interpolation automata can be seen as a form
of precision that only affect local states of the ARG. As for the further CPAs, the
location CPA is used to track the program locations, the callstack CPA to track the
function callstack, and the function pointer CPA is used to track function pointers in
the program. The concept of CPAs is described in Sect. 4.4.3, while the functionality
of CEGAR is explained in the following section (i.e., Sect. 4.4.4) in more detail.

4.4.1 Control-flow Automaton

In order to verify a program, it is usually first modeled into an intermediate repre-
sentation. In CPACHECKER, a control-flow automaton (CFA) is used to represent such
a program, as it allows for a good abstraction of the software-based model. A CFA is
a directed graph that represents program states and a finite set of program variables
in blocks. This allows the traversal of all possible paths during the execution of a
program.
A CFA A over a given set of program operations Ops is defined as A =

(Loc, l0,G), where Loc is the finite set of nodes called the locations of the pro-
gram, l0 ∈ Loc is the initial starting location, and G is the set of control-flow
edges labeled with program statements, with G ⊆ Loc× Ops× Loc. An edge
(l,op, l′) can be denoted l

op−→ l′, and describes the control flow from a pre-
decessor location l to a successor location l′ by means of a program opera-
tion op ∈ Ops. CPACHECKER supports several types of program operations Ops:

26

4.4 CPAchecker

N1

17 int __VERIFIER_nondet_int();
18 int x = 0;
19 int y = 0;
20 int main();
21 Function start dummy edge
2 while

N3

4 x = __VERIFIER_nondet_int();
6 y = 1;
7 while

N8

N9

N10

11 x = x - 1;
12 __CPAchecker_TMP_0;

N13

15 y = 0;
16

N14

INIT GLOBAL VARS

while

while

[x>0]

[!(x>0)]

int __CPAchecker_TMP_0 = x;

__CPAchecker_TMP_0;

[x<=1]
[!(x<=1)]

Figure 4.5: Concrete example for a
CFA in CPACHECKER. It rep-
resents the program de-
picted in Fig. 3.2a.

The first one is the assignment operation
x := expr for a finite set of program variables
Var, with x ∈Var, and expr being an expres-
sion over Var. The next operation is the
assume operation [x], where x is a Boolean
operation over Var. Further operations are
a noop operation noop, in which the tran-
sitions are traversed without any further
effect, and a function call operation together
with a return operation to accordingly
represent function calls. A CFA has one
distinguished initial state. As for the exit
states, they are in this work not required in
the classical sense. To elaborate, an exit state
usually means some kind of bottom state
that does not have any successor state. The
focus in this work lies however on infinite
sequences of statements, thus only program
models are considered where each location
has at least one outgoing edge, such that
∀l ∈ Loc,∃op ∈ Ops,∃l′ ∈ Loc : (l,op, l′) ∈ G.
For each location where no such outgoing
transition exists, a selfloop is added using
the noop operation.

Fig. 4.5 depicts the interprocedural CFA
which represents the program from the
example chapter Sect. 3.2 (c.f. Fig. 3.2a). The
starting state l0 in this graph is the location
node N1, and every subsequent location is afterwards reachable by an edge either
labeled with a statement from the program, or by a noop operation in which the
edge label is omitted. There are no function calls in the example program, therefore
neither do call and return operations occur in this CFA.

A path is a (possibly infinite) sequence of locations l0l1l2.... The starting location l0
of a path is always required to be the initial starting location of the CFA. A trace τ

of a program P is an infinite sequence of operations τ = op0op1op2... such that τ is

27

4 Preliminaries

the edge labeling of an infinite program path. The set of all traces in a program are
formally defined as follows:

T (P) = {op0op1... ∈ Opsω | ∃l0l1... : (li,opi, li+1) ∈ G for all i≥ 0}

A trace τ is feasible, if for the corresponding sequence of program states l0l1l2...∈ Loc
a transition relation for each of these states in G exist. This is also called a program
execution, i.e. we say that a trace τ is feasible if it has a program execution, otherwise
we say that it is infeasible. Informally speaking, a trace is executable if it is not only
syntactically, but also semantically correct.

4.4.2 CPA Algorithm

A possible concept for program analysis is the configurable program analysis (CPA)
as introduced by Beyer, Henzinger, and Théoduloz in [8]. This was later extended
to configurable program analysis with precision adjustment (CPA+) [9], together with
an algorithm such that reachability analyses can be performed. However, as the
precision used there has no practical use in this work, we will keep using the
descriptions given in [8] in the remainder of this thesis.

The concept of configurable program analysis allows to automatically verify a
program, in which the two major approaches of program analysis [1] and model
checking [20] are combined. In [8] it is demonstrated how they are both subcases
of each other, thus making this approach possible. The difference is that program
analysis makes efficient yet inaccurate analyses, which means that there is a risk of
producing an overwhelming number of false alarms. In contrast, model checking
performs expressive analyses, such that the produced results are sound. That is, if a
program is declared to be save, it is indeed safe. The downside of this approach
is however the expensiveness that comes with it, i.e. it does not scale to large
programs. The challenge lies thus in finding a trade-off between a good precision
that keeps false positives from occurring, while at the same time aiming for a best
possible efficiency such that a satisfying performance can be achieved.

Alg. 1 depicts the CPA algorithm. In general, it is a waitlist-based reachability
algorithm in which a state-space exploration is performed. The main objective lies
in computing a set of abstract states whom are reachable from an initial state. Using
this approach, the algorithm can be used either for e.g. data-flow analysis, model
checking, or anything in-between the spectrum of these two approaches.

28

4.4 CPAchecker

Algorithm 1 CPA Algorithm (taken from [8], Algorithm 1)

Input: a CPA D= (D, ,merge,stop),
an initial abstract state e0 ∈ E, where E denotes the set of elements of
the lattice of D

Output: a set of reachable abstract states
Variables: a set reached⊆ E, a set waitlist⊆ E

1: waitlist := {e0}
2: reached := {e0}
3: while waitlist 6= /0 do
4: choose e from waitlist
5: waitlist := waitlist\{e}
6: for all e′ with e e′ do
7: for all e′′ ∈ reached do
8: // combine with existing abstract state
9: enew :=merge(e′,e′′)

10: if enew 6= e′′ then
11: waitlist := (waitlist∪{enew})\{e′′}
12: reached := (reached∪{enew})\{e′′}
13: if ¬stop(e′, reached) then
14: waitlist := waitlist∪{e′}
15: reached := reached∪{e′}
16: return reached

The algorithm takes as input a CPA D and an initial abstract state e0. It operates on
two sets reached and waitlist, that both consist of abstract states. The former contains
all states that have already been visited by the algorithm, and are hence declared
as “reached”. The waitlist contains all states whose successor states are yet to be
explored. In the beginning, only the state e0 is included in both of the sets. For as
long as the waitlist is not empty, an abstract state e is taken and removed from it. An
own strategy determines which state is chosen next. The algorithm then proceeds by
computing all abstract successor states e′ of e, based on the transfer relation of the
CPA D. Two computations are now subsequently made: First, all abstract successors
e′ are merged with each of the already computed, reachable states e′′ ∈ reached by
using the merge operator of D. As a result, a new abstract state enew is created that
may or may not be equal to e′′. In case of the former, e′′ is removed from both
the reached set and the waitlist, and instead enew is added to both of the sets. At
this point it does not matter whether the state e′′ has already been visited by the
algorithm so far, i.e. this is done completely independent from e′′ being in either the
waitlist or the reached set. Afterwards, a second computation is carried out, which
is the so-called stop-check. Using the stop-operator of D, the algorithm checks now
whether the current abstract state e′ is already covered in the reached set. In case it is

29

4 Preliminaries

not, e′ is added to both the reached set and the waitlist, such that it can be explored
in a later iteration. In case there are still abstract states left to be explored in the
waitlist, the algorithm then continues by picking one and analyzing it in the next
iteration. Otherwise, if all abstract states have been explored, the CPA algorithm
terminates and returns the reached set, which contains all of the analyzed states. In
CPACHECKER, an ARG is used afterwards that allows to represent these in an abstract
model.

4.4.3 Configurable Program Analysis

CPACHECKER is based on configurable program analyses (CPA), which provide the
means for expressing different verification techniques in a single formal setting.
The definitions are taken again from [8]. Formally, a CPA is defined as a tuple
D= (D, ,merge,stop), where D is the abstract domain, the transfer relation,
merge the merge operator, and stop the stop operator. These are explained in the
following in more detail:

1. The abstract domain D = (C,E, [[·]]) is defined by a set C of concrete states, a semi-
lattice E, and a concretization function [[·]] . The semi-lattice E= (E,v,t,>)
consists of a (possibly infinite) set E of lattice elements and a partial or-
der v ⊆ E×E over the elements of E. The elements E of E are thereby called
the abstract states of the analysis. The join operator t : E×E→ E of E is defined
through v and denotes the least upper bound for its two parameters. The
top element > ∈ E is the least upper bound of E. The concretization function
[[·]] : E → 2C allows to assign to each abstract state the set of concrete states
that they represent.

2. The transfer relation ⊆ E ×G× E assigns to each abstract state e ∈ E all
possible abstract successor states e′ ∈ E with respect to control-flow edges
g ∈ G from the CFA. We write e

g
 e′ if (e,g,e′) ∈ , and e e′ if there exists a

g ∈ G with e
g
 e′.

3. The merge operator merge : E×E→ E combines the information of two abstract
states. Depending on the first element e, this may result in a new abstraction
state that can be anything between the second element e′ and the top element>.
The resulting state can hence only be more abstract than the second parameter
e′. This guarantees that our analysis is sound, and is formally denoted as
e′ vmerge(e,e′). The two merge operators used most are mergesep and mergejoin:

mergejoin(e,e′) = et e′

mergesep(e,e′) = e′

30

4.4 CPAchecker

The operator mergejoin weakens the second parameter depending on the first
argument. This is also called widening. Using this operator, the performance of
the analysis can be increased at the cost of precision, since only the successor
states of the newly created abstract state need to be computed subsequently
(as opposed to computing the successors of both e and e′). The increase in
performance is due to the resulting state (possibly) representing more concrete
states. mergesep(e,e′) on the other hand does not weaken any abstract state.
This merge operator always returns the second parameter e′.

4. The stop operator stop : E×2E →B is used for coverage checks and is also called
termination check. It determines whether an abstract state e ∈ E is covered by a
set of states R ∈ 2E that is given as second parameter. If e is covered by R, then
stop(e,R) returns true and the CPA algorithm skips analyzing the successor
states of e. The two stop operators used most are thereby stopsep and stopjoin:

stopsep(e,R) = ∃e′ ∈ R : ev e′

stopjoin(e,R) = e@
⊔

ei∈R

ei

The operator stopsep checks every abstract state in R separately, i.e. whether a
state e′ ∈ R exists that represents at least all concrete states of e. The termination
check stopjoin first joins all states in R and then checks if this subsumes the first
state e. The soundness of a termination check is achieved if the stop operator
fulfills that

stop(e,R) = true implies [[e]]⊆
⋃

e′∈R

[[e′]]

4.4.4 Counterexample-guided Abstraction Refinement

Model checking relies on an exhaustive exploration of the state space in order to
find counterexamples. The state space can grow thereby exponentially, thus making
the search both costly in memory and time. For a large program with complex
structures, this typically ends up in a huge state space. In general, this issue can
be tackled by computing an over-approximating abstraction of the program, such
that a combinatorial blow-up (i.e. a state-space explosion) can be avoided. For this
reason, the abstraction should be as coarse as possible in order to keep the state
space small. However, if the abstraction is kept too coarse, this is also by no means
a satisfying solution, as this might leads to false alarms. A good abstraction needs
therefore to also be precise enough that such erroneous reports do not appear. With
counterexample-guided abstraction refinement (CEGAR) [19], an abstraction technique is

31

4 Preliminaries

used that allows to iteratively refine an abstract model making use of automatically
derived counterexamples.

Construct new
abstract model

Analyze
model

Feasibility
check

Abstraction
refinement

Program safe

Program unsafe

Program P

Specification ϕ

abstract
error path
found

error path
spurious

no error path found

error path feasible

Figure 4.6: Procedural method of CEGAR.

A counterexample is an interpretation in which the violation for a given property is
witnessed. In software model checking, the counterexample is thereby an error path
through the program, in which the reasoning does not hold, i.e. where the premises
of such a path are true while the conclusion is not. Fig. 4.6 gives an overview of the
approach. Given a program P and a property ϕ , an abstract model is constructed,
which is afterwards analyzed for the existence of an error path. If no such path
can be found, this relates to our input program P having no possibility to traverse
a path either in which the property does not hold. It can thus be concluded that
the program P is safe, and the analysis therefore terminates. Otherwise, should
an abstract error path be found during the analysis, it needs to be checked for
feasibility next. The reasoning behind this is that the reported counterexample
might be spurious, because it only exists within the abstract model of the program,
not however in the program itself. The feasibility check is performed by checking
whether the path is executable with respect to the concrete program semantics.
Should the error path be truly feasible, the analysis terminates and reports our
program to be unsafe, together with a counterexample that witnesses the violation
of the specification. Otherwise, the error path is spurious, which means that the
abstract model was too course. The infeasible error path is afterwards used for an
abstraction refinement, that is performed on the current model. Finally, CEGAR then
proceeds with the next iteration of this newly computed abstraction.

32

CHAPTER 5

LTL Software Model Checking

This chapter describes the elements of the LTL software model checking algorithm
and how they are implemented in CPACHECKER. The whole process is illustrated in
Fig. 5.1. The overall idea is to build a product of the CFA and the LTL property, and
to continuously refine the resulting ARG afterwards using counterexample-guided
abstraction refinement (CEGAR).

In the first step, a program P is converted into a control-flow automaton (CFA), in
which the set of states are the semantically reachable locations of P (c.f. box 1 in
Fig. 5.1). All states are thereby implicitly assumed to be accepting, such that each
infinite trace (i.e., the sequence of program statements) is accepted by the CFA. To
reiterate from Sect. 4.4.1, if a state does not have a successor state, we simply add a
selfloop that uses a noop-operation.
Now, let Bϕ be a Büchi automaton that accepts the same language as the LTL
property ϕ , such that L(Bϕ) = L(ϕ). In order to check if the abstract model of the
program P (i.e., the CFA) satisfies an LTL property ϕ , it is required that

L(CFA)⊆ L(Aϕ) (5.1)

The reason for this is that each (fragment of an) infinite trace must satisfy the given
property ϕ . That is, each of these (fragments of) traces are required to be in the
language of L(Aϕ) = L(ϕ). However, language containment is rather hard to prove.
In CPACHECKER, the LTL formula ϕ is instead negated and thereafter translated into
a corresponding Büchi automaton B¬ϕ that accepts the same language, such that
L(¬ϕ) =L(B¬ϕ). This is depicted in box 2 in Fig. 5.1 . Afterwards, the intersection of

33

5 LTL Software Model Checking

Program P LTL property ϕ

Control-flow automaton CFA
1

Büchi automaton A¬ϕ

2

Büchi Program
B := CFA × A¬ϕ

3

τ exists ?
4

τ = τ1τω
2

τ1τ2 ∈ L(B)

τ1τ2 feasible ?
5

τ terminating ?
6

P � ϕ
no

P 2 ϕ

τ is CEX

no

yes
no
B:=B∪ refineF (τ)

yes
yes
B:=B∪ refineω (τ)

Figure 5.1: The LTL software model checking algorithm in CPACHECKER.

the CFA and the Büchi automaton A¬ϕ is built. It is much easier to perform automata
intersection than checking for language inclusion, since then the model checking
process can be reduced to checking whether the language of the intersection result
is empty, i.e.:

L(CFA)∩L(A¬ϕ) = /0 (5.2)

The equation above (Eq. 5.2) is equivalent to the equation given in 5.1 . The
intersection results in a so-called Büchi program B (c.f. box 3 in the above figure),
that is the cross-product of the CFA and the Büchi automaton A¬ϕ , denoted as
CFA×A¬ϕ . The language L(CFA×A¬ϕ) satisfies L(CFA)∩L(A¬ϕ). In CPACHECKER,
the Büchi program is represented by an abstract reachability graph (ARG), as this is
the default used model that has all of the tools available in order to conveniently
store all of the essential information. While the Büchi program is only a theoretical
notion, it is in the following used synonymously with the term ARG.

34

The next step is now to check the Büchi program B for emptiness. The basic idea
boils down to “looking” for a fair and feasible trace τ in the ARG with τ 2 ϕ , since
the existence of such a trace would disprove that B � ϕ . Recall that a trace being
feasible means that it corresponds to some program execution, while a fair trace
denotes the following of a path which visits accepting states infinitely often. If no
such τ exists, the algorithm is done and it is concluded that the specification is in
fact satisfied by the Büchi program. This step is shown in box 4 in Fig. 5.1 .

Each infinite trace τ in the ARG consists of a finite prefix τ1 and an infinite suffix
τω

2 , such that τ = τ1τω
2 . The latter includes thereby only statements, in which the

corresponding locations of the ARG are visited infinitely many times. This means,
that the respective statements are reachable from each other. Since the set of locations
in the ARG is finite, this allows for computing a strongly connected component (SCC)
that contains only the set of corresponding locations of the trace. In CPACHECKER,
this is done using Tarjan’s algorithm [41], which is a depth-first-search where the
respective procedure is called only once for each node. The time complexity is linear
in the number of nodes and edges, i.e. O(|n|+ |e|).

The LTL software model checking implementation only considers traces that are
reachable from the initial location of the ARG and where the suffix τ2 contains at
least one accepting state, otherwise this would already contradict the requirement
of the trace being both fair and feasible. The trace would then not be part of the
language of B. As the SCCs can be nested, i.e. each SCC might be part of a bigger
SCC, the implementation in CPACHECKER extracts in a next step for each SCC the
contained cycles within. The algorithm used for this was developed by Donald B.
Johnson in [33]. He has proven in this work that all elementary cycles can be found
in time bounded by O((|n|+ |e|)(|c|+1)), with n being the nodes, e the edges, and c
the number of cycles found. The algorithm itself is however quite involved, and
thus not further elaborated in this thesis.

Subsequently, the algorithm checks the trace τ for the feasibility of finite prefixes.
This step is depicted in box 5 in Fig. 5.1 . This is done by checking first only the
stem τ1, then the loop τ2, and finally the concatenation τ1τ2. The algorithm always
proceeds in this order. Should neither of these finite traces prove to be feasible, a
trace abstraction B:=B∪ refineF(τ) is performed. In this process, an interpolation
automaton is created that is afterwards used to refine the ARG. The concept is based
on [30] and is explained in greater detail in Sect. 6.2 . In general, the refined ARG
excludes all fair traces of the current Büchi program that are infeasible for the same
reason for which trace τ is infeasible.

35

5 LTL Software Model Checking

Otherwise, if all three finite prefixes were proven to be satisfiable, a check for ter-
mination for the full infinite trace will be performed afterwards. This is shown in
box 6 in Fig. 5.1, and is executed in CPACHECKER using the components of the termi-
nation analysis that was implemented by Ott in [36]. The algorithm for LTL software
model checking makes in particular use of both the “LassoBuilder” framework in
CPACHECKER, as well as the tool LASSORANKER which is part of the ULTIMATE software
analysis framework. The former is thereby used to create a lasso-object from the
current analyzed trace, which will then be used as input for the LASSORANKER. A lasso
consists of a starting state, a stem τ1, a loop τ2, and a so-called honda state inbetween
them that marks the ending of the stem and both the beginning and ending of the
cycle. Using this as input, the LASSORANKER then tries to find a ranking function that
proves the eventual termination of the loop. When non-termination can be proven,
this relates to the trace being in fact executable by the program P, and is hence a
concrete counterexample that witnesses a violation of the property ϕ . Otherwise, if
LASSORANKER proves the trace to be non-terminating, it is spurious and the algorithm
continues with the next step.

Conceptually, this next step would now be a so-called omega-refinement (refineω) ,
in which another form of automaton is constructed, that is then used to refine the
ARG. The approach is quite similar to that of the trace abstraction for finite prefixes,
and has its concept explained extensively in [31]. However, this work was out of
scope for this thesis and needs yet to be implemented in CPACHECKER. For this reason,
the line in Fig. 5.1 is drawn dashed. The implementation of this in CPACHECKER should
however be rather straightforward, in particular after the trace abstraction of finite
prefixes is fully working. For the time being, the implementation in CPACHECKER

checks each lasso individually for its termination, i.e. without performing any ω-
refinements of the ARG at all.

In contrast, CEGAR is used for the process of finite-trace refinement in CPACHECKER.
The implementation is currently such that each time a complete ARG is built
from anew. Only afterwards is the above described analysis then performed. This
approach in CPACHECKER is also called global refinement.

For the checks of both the finite prefixes and termination, it should be considered
that these are – in general – based on undecidable methods. Thus, it is possible that
the algorithm (or more specifically, either the SMT-solver or LASSORANKER) does not
terminate and instead runs into a timeout. The analysis from CPACHECKER will then
return unknown as result.

36

As for the specification being satisfied by the program, it needs to also be emphasized
that the initial location of the CFA – and hence also in the ARG – is not checked
for its satisfiability, unlike any other location. Not having this restriction allows
additionally programs that satisfy the LTL property �(x = 0). An example for such
a program would be one that has its first statement set the value of x to 0, and then
to never modify it again in the remainder of the program flow.

37

CHAPTER 6

Implementation

The CPACHECKER framework uses SVN1 for versioning and revision control. Addi-
tionally, a read-only GIT mirror2 is provided that contains a detailed description on
how to install and utilize CPACHECKER. In order to execute the program, it requires
both a Java SDK, which is at least Java 8 compatible, and Apache Ant on the working
machine in order to compile the Java code and build an executable target binary.

After everything has been set up, LTL software model checking can be performed in
CPACHECKER using the following command3 from within the directory:

scripts/cpa.sh -ltl <path/program> -spec <path/specification>

The <program> is required to be a program written in C, while the <specification>
is the property that is to be verified. The specification needs to be given as a file with
the name “path/filename.prp”, and it may consist of only one line that includes the
LTL property. More precisely, the property within the specification file is required to
be precisely in the following format:

CHECK (init(<init_function>) , LTL(<property>))

The <init_function> is the main-function,i.e. the entry point of the program, and
is most often declared as main(). However, any other function name that is
valid in C is also appropriate. The property needs to be specified as a syntac-

1https://svn.sosy-lab.org/software/cpachecker/trunk/ (last accessed on April 06,
2019)

2https://gitlab.com/sosy-lab/software/cpachecker (last accessed on April 06, 2019)
3This has been tested using the operating system Ubuntu 18.04 LTS

38

https://svn.sosy-lab.org/software/cpachecker/trunk/
https://gitlab.com/sosy-lab/software/cpachecker

6.1 Parsing LTL Formulas in CPACHECKER

tically and semantically correct LTL property, such as defined in Sects. 4.1.1 and 4.1.2.

As an example, Sect. 3.2 has shown a C-program (c.f. Fig. 3.2a) that has an
entry point function main(), and which is to be checked for an LTL prop-
erty �(”x > 0”⇒ ♦(”y = 0”)), which is depicted in Fig. 3.3a. Now, in this example,
the specification file would therefore require to have the following line:

CHECK(init(main()), LTL([]("x > 0" ==> <>("y == 0")))) (6.1)

Deviations in the LTL property are possible, such as e.g. writing F("y==0") instead
of using the diamond symbol <>, or alternatively, adding additional whitespace
characters for a better readability. This is explained further in Sect. 6.1.

Examples for C-programs that are destined to be checked for LTL properties can
be found in the GitHub repository from ULTIMATE4. The latter is a program analysis
framework developed by the Software Engineering chair of the University of Freiburg.
Note that in this repository the LTL properties are directly written as comments
into the program files. I.e., to be able to execute these in CPACHECKER, the properties
must be first extracted into specification files and afterwards formatted as described
above. The example program from Sect. 3.2 was also taken from this repository5, and
has been used predominantly in order to test the implementation of LTL software
model checking in CPACHECKER.

The full implementation of the algorithm in CPACHECKER is versioned in the official
SVN-repository6 and can be found in the branch ltl-model-checking as of revision
30987. Though, it is intended to have it merged into trunk within the foreseeable
future.

6.1 Parsing LTL Formulas in CPACHECKER

For this thesis, it is required to parse LTL properties from the input specification file
and transform them into automata from the CPACHECKER framework. However, the
actual transformation to Büchi automata is performed by third party tools that are
publicly available, and which are in particular Spot [24] and LTL3BA [4].

4https://github.com/ultimate-pa/ultimate/tree/dev/trunk/examples/LTL (last
accessed on April 06, 2019)

5https://github.com/ultimate-pa/ultimate/tree/dev/trunk/examples/LTL/

simple/cav2015.c (last accessed on April 06, 2019)
6https://svn.sosy-lab.org/software/cpachecker/branches/

ltl-model-checking/ (last accessed on April 06, 2019)

39

https://github.com/ultimate-pa/ultimate/tree/dev/trunk/examples/LTL
https://github.com/ultimate-pa/ultimate/tree/dev/trunk/examples/LTL/simple/cav2015.c
https://github.com/ultimate-pa/ultimate/tree/dev/trunk/examples/LTL/simple/cav2015.c
https://svn.sosy-lab.org/software/cpachecker/branches/ltl-model-checking/
https://svn.sosy-lab.org/software/cpachecker/branches/ltl-model-checking/

6 Implementation

For the transformation process, while it would be theoretically possible to take the
raw LTL statement from the input specification and simply hand that over to either
of the tools, this used in practice to not be applicable for various reasons. Consider
e.g. the following property, which is a real example from the repository of ULTIMATE7

and demonstrates how a specification file can look like:

CHECK(init(main()), LTL((G (! "input == 4" || (F "output == 22")))))

To simply take the raw string within the parentheses of LTL(...) and passing it
on to the external tools used to not work in the past:

• Most of the available open-source tools for LTL to Büchi translation were not
able to cope with quotation-marks. Spot, for example, can only deal with such
quotes since around last summer8.

• The Spin-syntax9 for LTL formulas uses the symbolic form of LTL operators
instead of their textual form (e.g., ’[]a’ for the globally operator instead of
’G a’). An example for such a specification can be found on the previous page
in 6.1. Again, most of the tested tools used to only be able to deal with one of
the forms (i.e., either symbolical or textual).

The tested tools next to Spot and LTL3BA have been LTL2BA [28] and Rabinizer4 [26],
among others. The above mentioned restrictions have existed during the time the
framework was written in CPACHECKER. In fact, this issue has been the driving
force for implementing the framework in CPACHECKER in the first place. The two
shortcomings listed above could be simply circumvented by using a string visitor,
in which an output is created that is suited for the respective tools. For example,
the content within the quotation marks can be simply substituted by a temporary
placeholder variable. However, as of April 2019, most of the aforementioned tools
seem to have been updated, as these restrictions were no longer be experienced.
Some of them still remain though, e.g. for the tools LTL2BA and Rabinizer4.
Nonetheless, parsing raw LTL formulas into strongly typed objects by oneself
provides several more advantages, which are described in the remainder of this
section.

7https://github.com/ultimate-pa/ultimate/blob/dev/trunk/examples/LTL/

svcomp17format/ltl-eca/Problem14_prop_002_true-valid-ltl.c.i.prp (last
accessed on April 06, 2019)

8Tested in June, 2018, using the official online tool at https://spot.lrde.epita.fr/app/ (last
accessed on April 06, 2019)

9For more information regarding the syntax of Spin LTL formulas, c.f. http://spinroot.com/
spin/Man/ltl.html (last accessed on April 06, 2019)

40

https://github.com/ultimate-pa/ultimate/blob/dev/trunk/examples/LTL/svcomp17format/ltl-eca/Problem14_prop_002_true-valid-ltl.c.i.prp
https://github.com/ultimate-pa/ultimate/blob/dev/trunk/examples/LTL/svcomp17format/ltl-eca/Problem14_prop_002_true-valid-ltl.c.i.prp
https://spot.lrde.epita.fr/app/
http://spinroot.com/spin/Man/ltl.html
http://spinroot.com/spin/Man/ltl.html

6.1 Parsing LTL Formulas in CPACHECKER

In order to parse and extract LTL properties, a parser generator has been used that
allows to build hierarchical structures of an incoming stream of tokens. The name of
the tool is ANTLR4 [37], and is short for “Another Tool For Language Recognition”. It is
an open-source tool published under a 3-clause BSD License10. The main reasons
for taking this particular tool were mostly the nonrestrictive license, its support
for Java, that it is still maintained and under active development as of the date of
submission, and lastly the fact that the setup is intuitive and hence both easy to
understand and implement.

formula

expression <EOF>

orExpression

andExpression

binaryExpression

unaryExpression binaryOp binaryExpression

atomExpression

a

−> unaryExpression

unaryOp

F

binaryExpression

unaryExpression

atomExpression

′′ x > 0 ′′

Figure 6.1: ANTLR4 syntax tree for
the arbitrary LTL formula
a -> F ′′x > 0′′ .

The approach of ANTLR4 is to first do a lexi-
cal analysis, in which all words are grouped
into tokens, and then to perform the actual
parsing, where the tokens are analyzed for
their structure such that a parse tree can be
built. The grammar in ANTLR4 is specified
by an Extended Backus-Naur-Format (EBNF).
While the grammatical rules are too large to
be listed here, these are indicated in Fig. 6.1
on the right. The exemplary LTL formula
’a -> F ′′x > 0′′’ is parsed such, that at the
end all its different atoms can be unam-
biguously assigned according to the parser
rules. Should the submitted LTL formula
in CPACHECKER be syntactically incorrect, or
in any other way malformed, this would
then be spotted here, and an appropriate
(checked) exception is thrown. After a raw
LTL string has been parsed and evaluated by
ANLTR4, it is afterwards stored in a strongly
typed LabelledFormula-object in CPACHECKER,
in which the formula is represented again in
the form of a tree-like structure.

Regarding the LTL lexer, a high emphasis
was put on being able to deal with all preva-
lent forms of propositional and temporal modal operators. This is depicted in
Table 6.1, which shows all valid options on how the operators in an LTL formula

10https://www.antlr.org/license.html (last accessed on April 06, 2019)

41

https://www.antlr.org/license.html

6 Implementation

Table 6.1: The lexer rules for the ANTLR4 parser.
// LOGIC
TRUE ’TRUE’ | ’True’ | ’true’ | ’1’
FALSE ’FALSE’ | ’False’ | ’false’ | ’0’

// Logical Unary
NOT ’!’ | ’NOT’

// Logical Binary
IMP ’->’ | ’–>’ | ’=>’ | ’==>’ | ’IMP’
EQUIV ’<->’ | ’<=>’ | ’EQUIV’
XOR ’^’ | ’XOR’

// Logical n-ary
AND ’&&’ | ’&’ | ’AND’
OR ’||’ | ’|’ | ’OR’

// Modal Unary
FINALLY ’F’ | ’<>’
GLOBALLY ’G’ | ’[]’
NEXT ’X’

// Modal Binary
UNTIL ’U’
WUNTIL ’W’ | ’WU’
RELEASE ’R’ | ’V’
SRELEASE ’S’

may be denoted. Taking the implication symbol for example, the implemented lexer
is able to cope with multiple different notations. That is, all of the following options
are allowed for this operator: ’->’, ’–>’, ’=>’,’==>’, and ’IMP’. Furthermore, a con-
junction consisting of two atoms a and b can be expressed by using the logical and
in several ways. That is, all of the following options are valid: ’a&b’, ’a&&b’, and
’a AND b’. The same also holds for modal operators, e.g. an atomic propositions
a can be expressed by a globally operator using either its symbolical form [] a, or
alternatively the textual form G a.

Regarding the variables, there are two options on how to express these. That is,
either by specifying them as a lowercase identifier followed by any letter or number,
like e.g. ’a’ or ’myInput42’, or alternatively by using quotation marks, in which all
numbers, letters (both lower- and uppercase), and a wide range of mathematical
operators and comparators are allowed, such as e.g. ”x > 0” or ”myParam += 5”.
Note that anything which is written between the quotation marks is not actually
parsed by ANTLR4, but instead it is taken as raw string and passed on to the

42

6.1 Parsing LTL Formulas in CPACHECKER

existing CParserUtils-framework in CPACHECKER. If there is a syntactical error within
the quotes, this would then only be noticed there.

Having the parsing process of an LTL property available in CPACHECKER provides
furthermore the advantage of being able to perform transformations that addition-
ally simplify and optimize the LTL formula. For example, redundant symbols can
be removed, such as multiple consecutive parentheses as in (((ϕ))) for a temporal
formula ϕ , or double negatives as in !!ϕ . Beyond that, trivial identities are applied
in CPACHECKER which are stated below.

!0≡ 1

!1≡ 0

!!ϕ ≡ ϕ

1⇒ ϕ ≡ ϕ

0⇒ ϕ ≡ 1

ϕ ⇒ 1≡ 1

ϕ ⇒ 0≡ !ϕ

ϕ ⇒ ϕ ≡ 1

Note that in CPACHECKER the implication is implicitly converted into a disjunction,
i.e. ’1⇒ ϕ’ is first converted into ’!1 || ϕ’, and only afterwards will this term be
simplified to ’ϕ ’. This is also true for any equivalency- and xor-operations in an LTL
formula, i.e. these are also first converted into their respective logical connectives,
and only then checked for possible trivial identities. Below are denoted several
more of such trivial identities, with respect to the propositional operators. As the
operators thereof are commutative, the identities are hence also valid with their
arguments swapped.

0 && ϕ ≡ 0

1 && ϕ ≡ ϕ

ϕ && ϕ ≡ ϕ

0 || ϕ ≡ ϕ

1 || ϕ ≡ 1

ϕ || ϕ ≡ ϕ

Regarding the temporal modal operators, there are also several trivial identities that
are simplified in CPACHECKER. These are all the ones stated below.

X0≡ 0

X1≡ 1

F0≡ 0

F1≡ 1

FFϕ ≡ Fϕ

G0≡ 0

G1≡ 1

GGϕ ≡ Gϕ

43

6 Implementation

ϕ U 1≡ 1

0 U ϕ ≡ ϕ

ϕ U 0≡ 0

ϕ U ϕ ≡ ϕ

ϕ WU 1≡ 1

0 WU ϕ ≡ ϕ

1 WU ϕ ≡ 1

ϕ WU ϕ ≡ ϕ

ϕ S 0≡ 0

0 S ϕ ≡ 0

1 S ϕ ≡ ϕ

ϕ S ϕ ≡ ϕ

ϕ R 1≡ 1

ϕ R 0≡ 0

1 R ϕ ≡ ϕ

ϕ R ϕ ≡ ϕ

As a final point regarding the parsing process of LTL properties, the goal of this
thesis is to check programs for liveness properties. For the time being, the input LTL
formula is hence simply assumed to be given as liveness property. However, the
presented algorithm in Chapter 5 is theoretically also able to check programs for
safety properties, although some minor modifications would be required for this in
the current implementation. The availability of such a strongly typed LTL formula
makes it however easy to implement a query that checks properties for their type.

6.2 Trace Abstraction

Trace abstraction is a refinement method for counterexample-guided abstraction
refinement. In Chapter 5, it was shown how in each iteration loop of the CEGAR
algorithm a fair trace is analyzed. That is, the trace is checked (among others) for
finite prefixes, in which the statements possibly contradict each other. This is done
by an SMT solver, which is in case of this work SMTINTERPOL [16]. Should the solver
prove the trace to be unsatisfiable, the general idea is to refine the ARG afterwards,
such that in the new abstraction the trace is excluded from the language. The concept
of the trace abstraction now allows to additionally generalize this single trace to a
set of traces, such that in the next refinement abstraction all traces can be excluded
from the language that are infeasible for the same reason for which the analyzed
trace is infeasible. This is introduced in the two papers in [29, 30]. These are also the
sources on which the implementation in CPACHECKER is based upon. They describe
the approach of not only refining the current examined trace, but instead to refine an
over-approximation of the set of possible traces. Thus, in each iteration a new finite
interpolation automaton is created that recognizes a set of infeasible traces. This can
be done automatically by using interpolants. In [22], a Craig interpolant is defined
as follows. Let A and B be formulas, such that A⇒ B. An interpolant C is then a
formula, in which the following holds:

1. A⇒C
2. C⇒ B
3. C contains only atoms which occur both in A and B

44

6.2 Trace Abstraction

The interpolant C is thus an assertion that contains just enough information for A to
conclude on B.

In the algorithm for LTL software model checking, the interpolants are generated by
the infeasibility proof for the error trace. The interpolants are then used to create the
interpolation automaton, that not only accepts the error trace, but instead recognizes
(usually) a much larger set of traces that “share” the same reason of infeasibility as
the error trace.

In Chapter 5 in Eq. (5.2), it is shown how model checking is reduced to the emptiness
problem. In the first iteration of CEGAR, in which no refinement has been made yet,
the CFA and the Büchi automaton A¬ϕ are intersected and afterwards analyzed for
whether the language of the intersection result is empty. This is now extended to trace
abstraction. A trace abstraction is given by a tuple of automata (A1, ...,An), in which
each automaton Ai for i= 0...n recognizes a subset of infeasible traces. Now, let P be a
program that is represented by a CFA, and let L(Aϕ) be the specification automaton
for the LTL property ϕ . The trace abstraction (A1, ...,An) is said to not admit an
error trace, if the language recognized by the automaton (CFA∩Aϕ ∩A1∩ ...∩An) is
empty, i.e.:

L(CFA∩Aϕ ∩A1∩ ...∩An) = /0

The proof that the above equation is both sound and complete can be found in Sect.
4 in [29]. Regarding the negated Büchi automaton, note that in the above equation
Aϕ is equal to A¬ϕ . In the next section, it is shown by means of an example how this
concept is working out in CPACHECKER.

6.2.1 Example

In Fig. 6.2a, a C-program P is given as pseudo-code. In its sequence of program
statements, it first sets the value of x and y to 0, increments afterwards the value of x
for an arbitrary often, and finally checks that none of the two variables x and y has
its value set to −1. The depicted automaton in Fig. 6.2b shows the corresponding
CFA of program P. The initial trace abstraction is the empty tuple, therefore the
resulting restriction in this CEGAR iteration is the CFA itself. Note that for the sake
of simplicity, the LTL property is omitted in this example.

Now, the language of the CFA is clearly not empty, as it is possible to reach the error
state lerr from the starting location l0 with e.g. the trace π1 given below:

π1 = x := 0 y := 0 x++ x ==−1

45

6 Implementation

l0 x := 0;
l1 y := 0;
l2 while (nondet) {x++;}

assert(x != -1);
assert(y != -1);

(a) Program P.

l0 l1 l2 lerr
x := 0; y := 0

x++

x ==−1

y ==−1

(b) The CFA for P.

Figure 6.2: Example program P for the trace abstraction. The program statements
are shown in (a) on the left. The automaton in (b) is the corresponding
CFA. P is correct iff all words accepted by the CFA are unsatisfiable.

This trace is a spurious counterexample. In the algorithm of CPACHECKER, an SMT
solver is used to confirm that this trace is indeed unsatisfiable, and returns as proof
a sequence of interpolants. These are required in order to construct the interpolation
automaton A1, which is depicted in Fig. 6.3a. More precisely, the states and transi-
tions in this automaton are determined by Hoare triples, in which the interpolants
are used as invariants. The four Hoare triples below are sufficient in proving that
all possible paths from the initial location to the error location using the statement
x ==−1 are unsatisfiable in the CFA. They state that after the statement x := 0 the
assertion x≥ 0 holds, that it is an invariant during the execution of y := 0 and x++,
and finally that it prevents the statement x ==−1 from ever being executed.

{ true } x := 0 { x≥ 0 }
{ x≥ 0 } y := 0 { x≥ 0 }
{ x≥ 0 } x++ { x≥ 0 }
{ x≥ 0 } x ==−1 { false }

These four Hoare triples translate exactly to the automaton as given in Fig. 6.3a. It
has three states, one for each interpolant. That is, the initial state q0 for the assertion
true, the state q1 for x≥ 0, and the final state qerr for false. Note that these assertions
are however only depicted in the figure for the sake of demonstration, i.e. they
are used solely for building the automaton. Afterwards, they have fulfilled their
purpose and are no longer used. The automaton A1 has furthermore four transitions,
namely one for each Hoare triple. The resulting interpolation automaton come
always in this form, the only thing that is changing are the transitions. In general,
the automaton generalizes to any set of Hoare triples. Thus, any program statement
can be added as a transition to the automaton for as long as the respective Hoare
Triple is valid.

46

6.2 Trace Abstraction

q0

>

q1
x≥ 0

qerr

⊥

x := 0;

y := 0

x++

x ==−1

(a) Interpolation automaton A1

l0q0 l1q1 l2q1 lerrqerr

lerrqs

x := 0; y := 0

x++

x ==−1

y ==−1

(b) Resulting automaton of CFA ∩ A1

Figure 6.3: Fig. (a) on the left shows the interpolation automaton that is created from
the interpolants computed during the feasibility check of the error trace
π1. In Fig. (b) is the automaton from CFA ∩ A1 depicted, which is the
result of the first trace abstraction refinement.

Automaton A1 accepts each trace that has the same sequence of interpolants as the
trace π1. This also holds for subsequences of interpolants, and is the actual reason
why each of these traces have the same “reason of infeasibility”. In the second
CEGAR iteration, a new abstraction is created, which is shown in Fig. 6.3b. This is
the intersection result of the CFA and the tuple (A1), which consists in this iteration
step of only one element. In CPACHECKER, this is the resulting ARG after the first
refinement. As can be seen here, the counterexample π1 is no longer in the language
of this result. It is restricted due to the intersection of the CFA with the complement
of the derived interpolation automaton A1.

Yet, the error location is still reachable by another trace π2, which can e.g. be as
follows:

π2 = x := 0 y := 0 x++ y ==−1

This trace is unsatisfiable again. Using an SMT solver for checking this counterex-
ample yields the assertion y = 0 as part of the infeasibility proof. The interpolant is
then used again as invariant in order to create a second interpolation automaton A2,
which accepts all traces that reach the error location using the statement y ==−1.
This is proven by the four Hoare triples below.

{ true } x := 0 { true }
{ true } y := 0 { y = 0 }
{ y = 0 } x++ { y = 0 }
{ y = 0 } y ==−1 { false }

The next step is to create the interpolation automaton A2. This is done in the same
fashion as described above for A1. The resulting automaton can be seen in Fig. 6.4a.

47

6 Implementation

p0

>

p1
y == 0

perr

⊥

y := 0;

x := 0; x++

y ==−1

(a) Interpolation automaton A2

l0q0 p0 l1q1 p0 l2q1 p1

lerrqerr ps

lerrqs perr

x := 0; y := 0

x++

x ==−1

y ==−1

(b) Resulting automaton of CFA ∩ A1 ∩ A2

Figure 6.4: Fig. (a) shows the interpolation automaton that results from the infeasi-
bility proof of the error trace π2. Fig. (b) on the right depicts the result
from the second refinement, which is created from the intersection of
CFA ∩ A1 ∩ A2 .

Afterwards, a new abstraction is computed, based on the derived abstraction from
the last iteration together with the interpolation automaton A2 that is constructed in
the current iteration of CEGAR. The result is shown in Fig. 6.4b. It is the intersec-
tion of the CFA and the trace abstraction tuple (A1,A2). The resulting automaton
CFA ∩ A1 ∩ A2 excludes not only the traces π1 and π2, it in fact accepts no word at
all. The result accepts thus the empty language, which proves the program P to be
correct.

Discussion of the trace abstraction concept in CPAchecker
As a closing point regarding the trace abstraction, all of the above points have been
implemented in the framework of CPACHECKER. However, at the time of submission
of this thesis, the implementation does unfortunately not work, which is most
likely caused by a conceptual error in the setup of the interpolation automata.
Technical errors in CPACHECKER can be ruled out with almost absolute certainty, as
the implementation has been debugged extensively for several weeks, where it
was repeatedly double-checked that the code itself is indeed working as intended.
The current status is hence that technically everything is working correctly, while
during the execution of LTL program verification, the ARG is somewhat malformed
during the refinement. This leads to the ARG currently suffering from a state space
explosion after roughly 25 CEGAR iterations. The fixing of this issue is hence the
most critical thing in CPACHECKER, and is what needs to be addressed next. This is the
sole reason which currently prevents LTL software model checking from working
correctly.

48

CHAPTER 7

Conclusion and Future Work

The LTL software model checking problem can be solved in general by modeling
both the program and the specification as automata on infinite words. In CPACHECKER,
this is done using a CFA that models the program, while an LTL property is
transformed into an automaton in the already existing framework. Afterwards, the
model checking is then performed by verifying that the language of the product
of the CFA together with the specification automaton is empty. In practical, this is
however only applicable to small programs with non-complex structures, as the
model checking process requires a check for each infinite fair path for its feasibility
in order to prove program correctness. It is evident that this does not scale well to
large programs.

Thus, it was decided early in this work to additionally implement the concept
of trace abstraction for finite prefixes. The approach is to define a sequence of
semi-tests for infinite paths and have them checked first for their feasibility, before
performing the actual check for termination of the full infinite path. Should one of
these semi-tests prove that the path is unsatisfying, the trace abstraction algorithm
then automatically derives an interpolation automaton which is used thereafter with
the current abstraction in order to perform a refinement for finite prefixes. Using this
procedure has two major advantages: First, should the semi-tests prove a path to be
indeed infeasible, this would then render the full test for termination redundant,
thus making it possible to avoid the costly computation for a ranking function.
Secondly, the trace abstraction allows to (usually) exclude a large set of traces from
the language in the next refinement iteration, namely all of those that have the same

49

7 Conclusion and Future Work

reason of infeasibility. These two techniques lead to a huge improvement in terms of
efficiency, and allow the LTL software verification for larger programs where the
increasing complexity is no longer an insurmountable obstacle.

There are several ways how LTL software model checking can be further improved
with respect to CPACHECKER. First and foremost, the integration of trace abstraction
for termination proofs comes to mind. The approach is similar to the trace abstraction
of finite prefixes that is indicated above. The only thing that truly changes is the way
the interpolation automaton is constructed.
Another improvement is the increase of the used block size in the analysis. The cur-
rent implementation uses single-block encoding (SBE), however, different analyses
in CPACHECKER have shown that making use of adjustable-block encoding (ABE)
provides a further significant boost to the efficiency of the performed analyses.
Lastly, while the performance of the external tools that translate LTL formulas to
Büchi automata is already quite high, it would be interesting to see if it makes a
noticeable difference for LTL software model checking in CPACHECKER when the
different tools are exchanged with each other (e.g., LTL3BA, SPOT, or Rabinizer4).

50

Bibliography

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley series in computer science / World student series edition.
Addison-Wesley, 1986.

[2] B. Alpern and F. B. Schneider. Defining liveness. Inf. Process. Lett., 21(4):181–185,
1985.

[3] B. Alpern and F. B. Schneider. Recognizing safety and liveness. Distributed
Computing, 2(3):117–126, 1987.

[4] T. Babiak, M. Kretínský, V. Rehák, and J. Strejcek. LTL to büchi automata trans-
lation: Fast and more deterministic. In Tools and Algorithms for the Construction
and Analysis of Systems - 18th International Conference, TACAS 2012, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2012,
Tallinn, Estonia, March 24 - April 1, 2012. Proceedings, volume 7214 of Lecture
Notes in Computer Science, pages 95–109. Springer, 2012.

[5] C. Baier and J. Katoen. Principles of model checking. MIT Press, 2008.

[6] A. M. Ben-Amram and S. Genaim. On the linear ranking problem for integer
linear-constraint loops. In The 40th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’13, Rome, Italy - January 23 - 25,
2013, pages 51–62. ACM, 2013.

[7] D. Beyer, M. Dangl, and P. Wendler. Boosting k-induction with continuously-
refined invariants. In Computer Aided Verification - 27th International Conference,
CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I, volume
9206 of Lecture Notes in Computer Science, pages 622–640. Springer, 2015.

51

http://www.worldcat.org/oclc/12285707
http://www.worldcat.org/oclc/12285707
http://www.worldcat.org/oclc/12285707
http://dx.doi.org/10.1016/0020-0190(85)90056-0
http://dx.doi.org/10.1016/0020-0190(85)90056-0
http://dx.doi.org/10.1007/BF01782772
http://dx.doi.org/10.1007/BF01782772
http://dx.doi.org/10.1007/978-3-642-28756-5_8
http://dx.doi.org/10.1007/978-3-642-28756-5_8
http://dx.doi.org/10.1007/978-3-642-28756-5_8
http://dx.doi.org/10.1007/978-3-642-28756-5_8
http://dx.doi.org/10.1007/978-3-642-28756-5_8
http://dx.doi.org/10.1007/978-3-642-28756-5_8
http://dx.doi.org/10.1145/2429069.2429078
http://dx.doi.org/10.1145/2429069.2429078
http://dx.doi.org/10.1145/2429069.2429078
http://dx.doi.org/10.1145/2429069.2429078
http://dx.doi.org/10.1007/978-3-319-21690-4_42
http://dx.doi.org/10.1007/978-3-319-21690-4_42
http://dx.doi.org/10.1007/978-3-319-21690-4_42
http://dx.doi.org/10.1007/978-3-319-21690-4_42

Bibliography

[8] D. Beyer, T. A. Henzinger, and G. Théoduloz. Configurable software verifica-
tion: Concretizing the convergence of model checking and program analysis.
In Computer Aided Verification, 19th International Conference, CAV 2007, Berlin,
Germany, July 3-7, 2007, Proceedings, volume 4590 of Lecture Notes in Computer
Science, pages 504–518. Springer, 2007.

[9] D. Beyer, T. A. Henzinger, and G. Théoduloz. Program analysis with dynamic
precision adjustment. In 23rd IEEE/ACM International Conference on Automated
Software Engineering (ASE 2008), 15-19 September 2008, L’Aquila, Italy, pages
29–38. IEEE Computer Society, 2008.

[10] D. Beyer and M. E. Keremoglu. Cpachecker: A tool for configurable software
verification. CoRR, abs/0902.0019, 2009.

[11] D. Beyer, M. E. Keremoglu, and P. Wendler. Predicate abstraction with
adjustable-block encoding. In Proceedings of 10th International Conference on
Formal Methods in Computer-Aided Design, FMCAD 2010, Lugano, Switzerland,
October 20-23, pages 189–197. IEEE, 2010.

[12] D. Beyer and S. Löwe. Explicit-state software model checking based on CEGAR
and interpolation. In Fundamental Approaches to Software Engineering - 16th
International Conference, FASE 2013, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013.
Proceedings, volume 7793 of Lecture Notes in Computer Science, pages 146–162.
Springer, 2013.

[13] A. R. Bradley, Z. Manna, and H. B. Sipma. Linear ranking with reachability.
In Computer Aided Verification, 17th International Conference, CAV 2005, Edin-
burgh, Scotland, UK, July 6-10, 2005, Proceedings, volume 3576 of Lecture Notes in
Computer Science, pages 491–504. Springer, 2005.

[14] J. R. Büchi. Weak second-order arithmetic and finite automata. Mathematical
Logic Quarterly, 6(1-6):66–92, 1960.

[15] J. Christ, J. Hoenicke, and A. Nutz. Smtinterpol: An interpolating SMT solver.
In Model Checking Software - 19th International Workshop, SPIN 2012, Oxford, UK,
July 23-24, 2012. Proceedings, volume 7385 of Lecture Notes in Computer Science,
pages 248–254. Springer, 2012.

[16] J. Christ, J. Hoenicke, and A. Nutz. Proof tree preserving interpolation. In Tools
and Algorithms for the Construction and Analysis of Systems - 19th International
Conference, TACAS 2013, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings,
volume 7795 of Lecture Notes in Computer Science, pages 124–138. Springer, 2013.

52

http://dx.doi.org/10.1007/978-3-540-73368-3_51
http://dx.doi.org/10.1007/978-3-540-73368-3_51
http://dx.doi.org/10.1007/978-3-540-73368-3_51
http://dx.doi.org/10.1007/978-3-540-73368-3_51
http://dx.doi.org/10.1007/978-3-540-73368-3_51
http://dx.doi.org/10.1109/ASE.2008.13
http://dx.doi.org/10.1109/ASE.2008.13
http://dx.doi.org/10.1109/ASE.2008.13
http://dx.doi.org/10.1109/ASE.2008.13
http://arxiv.org/abs/0902.0019
http://arxiv.org/abs/0902.0019
http://ieeexplore.ieee.org/document/5770949/
http://ieeexplore.ieee.org/document/5770949/
http://ieeexplore.ieee.org/document/5770949/
http://ieeexplore.ieee.org/document/5770949/
http://dx.doi.org/10.1007/978-3-642-37057-1_11
http://dx.doi.org/10.1007/978-3-642-37057-1_11
http://dx.doi.org/10.1007/978-3-642-37057-1_11
http://dx.doi.org/10.1007/978-3-642-37057-1_11
http://dx.doi.org/10.1007/978-3-642-37057-1_11
http://dx.doi.org/10.1007/978-3-642-37057-1_11
http://dx.doi.org/10.1007/11513988_48
http://dx.doi.org/10.1007/11513988_48
http://dx.doi.org/10.1007/11513988_48
http://dx.doi.org/10.1007/11513988_48
http://dx.doi.org/10.1002/malq.19600060105
http://dx.doi.org/10.1002/malq.19600060105
http://dx.doi.org/10.1007/978-3-642-31759-0_19
http://dx.doi.org/10.1007/978-3-642-31759-0_19
http://dx.doi.org/10.1007/978-3-642-31759-0_19
http://dx.doi.org/10.1007/978-3-642-31759-0_19
http://dx.doi.org/10.1007/978-3-642-36742-7_9
http://dx.doi.org/10.1007/978-3-642-36742-7_9
http://dx.doi.org/10.1007/978-3-642-36742-7_9
http://dx.doi.org/10.1007/978-3-642-36742-7_9
http://dx.doi.org/10.1007/978-3-642-36742-7_9

Bibliography

[17] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani. The mathsat5 SMT
solver. In Tools and Algorithms for the Construction and Analysis of Systems - 19th
International Conference, TACAS 2013, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013.
Proceedings, volume 7795 of Lecture Notes in Computer Science, pages 93–107.
Springer, 2013.

[18] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In Logics of Programs, Workshop,
Yorktown Heights, New York, USA, May 1981, volume 131 of Lecture Notes in
Computer Science, pages 52–71. Springer, 1981.

[19] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM, 50(5):752–794,
2003.

[20] E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press, 2001.

[21] B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, and M. Y. Vardi. Proving
that programs eventually do something good. In Proceedings of the 34th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2007, Nice, France, January 17-19, 2007, pages 265–276. ACM, 2007.

[22] W. Craig. Three uses of the herbrand-gentzen theorem in relating model theory
and proof theory. J. Symb. Log., 22(3):269–285, 1957.

[23] D. Dietsch, M. Heizmann, V. Langenfeld, and A. Podelski. Fairness modulo
theory: A new approach to LTL software model checking. In Computer Aided
Verification - 27th International Conference, CAV 2015, San Francisco, CA, USA,
July 18-24, 2015, Proceedings, Part I, volume 9206 of Lecture Notes in Computer
Science, pages 49–66. Springer, 2015.

[24] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and L. Xu.
Spot 2.0 — a framework for LTL and ω-automata manipulation. In Proceedings
of the 14th International Symposium on Automated Technology for Verification and
Analysis (ATVA’16), volume 9938 of Lecture Notes in Computer Science, pages
122–129. Springer, Oct. 2016.

[25] E. A. Emerson and J. Y. Halpern. "Sometimes" and "Not Never" revisited: On
branching versus linear time. In Conference Record of the Tenth Annual ACM
Symposium on Principles of Programming Languages, Austin, Texas, USA, January
1983, pages 127–140. ACM Press, 1983.

53

http://dx.doi.org/10.1007/978-3-642-36742-7_7
http://dx.doi.org/10.1007/978-3-642-36742-7_7
http://dx.doi.org/10.1007/978-3-642-36742-7_7
http://dx.doi.org/10.1007/978-3-642-36742-7_7
http://dx.doi.org/10.1007/978-3-642-36742-7_7
http://dx.doi.org/10.1007/978-3-642-36742-7_7
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1145/876638.876643
http://dx.doi.org/10.1145/876638.876643
http://dx.doi.org/10.1145/876638.876643
http://books.google.de/books?id=Nmc4wEaLXFEC
http://dx.doi.org/10.1145/1190216.1190257
http://dx.doi.org/10.1145/1190216.1190257
http://dx.doi.org/10.1145/1190216.1190257
http://dx.doi.org/10.1145/1190216.1190257
http://dx.doi.org/10.2307/2963594
http://dx.doi.org/10.2307/2963594
http://dx.doi.org/10.1007/978-3-319-21690-4_4
http://dx.doi.org/10.1007/978-3-319-21690-4_4
http://dx.doi.org/10.1007/978-3-319-21690-4_4
http://dx.doi.org/10.1007/978-3-319-21690-4_4
http://dx.doi.org/10.1007/978-3-319-21690-4_4
http://dx.doi.org/10.1007/978-3-319-46520-3_8
http://dx.doi.org/10.1007/978-3-319-46520-3_8
http://dx.doi.org/10.1007/978-3-319-46520-3_8
http://dx.doi.org/10.1007/978-3-319-46520-3_8
http://dx.doi.org/10.1007/978-3-319-46520-3_8
http://dx.doi.org/10.1145/567067.567081
http://dx.doi.org/10.1145/567067.567081
http://dx.doi.org/10.1145/567067.567081
http://dx.doi.org/10.1145/567067.567081

Bibliography

[26] J. Esparza and J. Kretínský. From LTL to deterministic automata: A safraless
compositional approach. In Computer Aided Verification - 26th International
Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014,
Vienna, Austria, July 18-22, 2014. Proceedings, volume 8559 of Lecture Notes in
Computer Science, pages 192–208. Springer, 2014.

[27] D. M. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal basis of
fairness. In Conference Record of the Seventh Annual ACM Symposium on Principles
of Programming Languages, Las Vegas, Nevada, USA, January 1980, pages 163–173.
ACM Press, 1980.

[28] P. Gastin and D. Oddoux. Fast LTL to büchi automata translation. In Computer
Aided Verification, 13th International Conference, CAV 2001, Paris, France, July
18-22, 2001, Proceedings, volume 2102 of Lecture Notes in Computer Science, pages
53–65. Springer, 2001.

[29] M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of trace abstraction.
In Static Analysis, 16th International Symposium, SAS 2009, Los Angeles, CA, USA,
August 9-11, 2009. Proceedings, volume 5673 of Lecture Notes in Computer Science,
pages 69–85. Springer, 2009.

[30] M. Heizmann, J. Hoenicke, and A. Podelski. Software model checking for
people who love automata. In Proc. CAV, LNCS 8044, pages 36–52. Springer,
2013.

[31] M. Heizmann, J. Hoenicke, and A. Podelski. Termination analysis by learning
terminating programs. In Computer Aided Verification - 26th International Con-
ference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna,
Austria, July 18-22, 2014. Proceedings, volume 8559 of Lecture Notes in Computer
Science, pages 797–813. Springer, 2014.

[32] G. J. Holzmann. The model checker SPIN. IEEE Trans. Software Eng., 23(5):279–
295, 1997.

[33] D. B. Johnson. Finding all the elementary circuits of a directed graph. SIAM J.
Comput., 4(1):77–84, 1975.

[34] A. Lal and S. Qadeer. Reachability modulo theories. In Reachability Problems
- 7th International Workshop, RP 2013, Uppsala, Sweden, September 24-26, 2013
Proceedings, volume 8169 of Lecture Notes in Computer Science, pages 23–44.
Springer, 2013.

[35] K. L. McMillan. Symbolic model checking. Kluwer, 1993.

[36] S. Ott. Implementing a termination analysis using configurable software analy-
sis. Master’s Thesis, University of Passau, Software Systems Lab, 2016.

54

http://dx.doi.org/10.1007/978-3-319-08867-9_13
http://dx.doi.org/10.1007/978-3-319-08867-9_13
http://dx.doi.org/10.1007/978-3-319-08867-9_13
http://dx.doi.org/10.1007/978-3-319-08867-9_13
http://dx.doi.org/10.1007/978-3-319-08867-9_13
http://dx.doi.org/10.1145/567446.567462
http://dx.doi.org/10.1145/567446.567462
http://dx.doi.org/10.1145/567446.567462
http://dx.doi.org/10.1145/567446.567462
http://dx.doi.org/10.1007/3-540-44585-4_6
http://dx.doi.org/10.1007/3-540-44585-4_6
http://dx.doi.org/10.1007/3-540-44585-4_6
http://dx.doi.org/10.1007/3-540-44585-4_6
http://dx.doi.org/10.1007/978-3-642-03237-0_7
http://dx.doi.org/10.1007/978-3-642-03237-0_7
http://dx.doi.org/10.1007/978-3-642-03237-0_7
http://dx.doi.org/10.1007/978-3-642-03237-0_7
http://dx.doi.org/10.1007/978-3-642-39799-8_2
http://dx.doi.org/10.1007/978-3-642-39799-8_2
http://dx.doi.org/10.1007/978-3-642-39799-8_2
http://dx.doi.org/10.1007/978-3-319-08867-9_53
http://dx.doi.org/10.1007/978-3-319-08867-9_53
http://dx.doi.org/10.1007/978-3-319-08867-9_53
http://dx.doi.org/10.1007/978-3-319-08867-9_53
http://dx.doi.org/10.1007/978-3-319-08867-9_53
http://dx.doi.org/10.1109/32.588521
http://dx.doi.org/10.1109/32.588521
http://dx.doi.org/10.1137/0204007
http://dx.doi.org/10.1137/0204007
http://dx.doi.org/10.1007/978-3-642-41036-9_4
http://dx.doi.org/10.1007/978-3-642-41036-9_4
http://dx.doi.org/10.1007/978-3-642-41036-9_4
http://dx.doi.org/10.1007/978-3-642-41036-9_4

Bibliography

[37] T. Parr and K. Fisher. Ll(*): the foundation of the ANTLR parser generator.
In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pages
425–436. ACM, 2011.

[38] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on
Foundations of Computer Science, Providence, Rhode Island, USA, 31 October - 1
November 1977, pages 46–57. IEEE Computer Society, 1977.

[39] A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear
ranking functions. In Verification, Model Checking, and Abstract Interpretation, 5th
International Conference, VMCAI 2004, Venice, Italy, January 11-13, 2004, Proceed-
ings, volume 2937 of Lecture Notes in Computer Science, pages 239–251. Springer,
2004.

[40] J. Queille and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In International Symposium on Programming, 5th Colloquium, Torino, Italy,
April 6-8, 1982, Proceedings, volume 137 of Lecture Notes in Computer Science,
pages 337–351. Springer, 1982.

[41] R. E. Tarjan. Depth-first search and linear graph algorithms (working paper). In
12th Annual Symposium on Switching and Automata Theory, East Lansing, Michigan,
USA, October 13-15, 1971, pages 114–121. IEEE Computer Society, 1971.

55

http://dx.doi.org/10.1145/1993498.1993548
http://dx.doi.org/10.1145/1993498.1993548
http://dx.doi.org/10.1145/1993498.1993548
http://dx.doi.org/10.1145/1993498.1993548
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1007/978-3-540-24622-0_20
http://dx.doi.org/10.1007/978-3-540-24622-0_20
http://dx.doi.org/10.1007/978-3-540-24622-0_20
http://dx.doi.org/10.1007/978-3-540-24622-0_20
http://dx.doi.org/10.1007/978-3-540-24622-0_20
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1109/SWAT.1971.10
http://dx.doi.org/10.1109/SWAT.1971.10
http://dx.doi.org/10.1109/SWAT.1971.10

	1 Introduction
	2 Related Work
	3 LTL Software Model Checking in CPAchecker
	3.1 The Methodology
	3.2 Motivating Example

	4 Preliminaries
	4.1 Linear Temporal Logic
	4.1.1 Syntax
	4.1.2 Semantics
	4.1.3 Equivalences

	4.2 Safety and Liveness
	4.3 Büchi Automaton
	4.4 CPAchecker
	4.4.1 Control-flow Automaton
	4.4.2 CPA Algorithm
	4.4.3 Configurable Program Analysis
	4.4.4 Counterexample-guided Abstraction Refinement

	5 LTL Software Model Checking
	6 Implementation
	6.1 Parsing LTL Formulas in CPAchecker
	6.2 Trace Abstraction
	6.2.1 Example

	7 Conclusion and Future Work
	Bibliography

